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Abstract 
 
Trusted computing allows attesting remote system’s trustworthiness based on the software stack whose in-
tegrity has been measured. However, attacker can corrupt system as well as measurement operation. As a 
result, nearly all integrity measurement mechanism suffers from the fact that what is measured may not be 
same as what is executed. To solve this problem, a novel integrity measurement called dynamic instruction 
trace measurement (DiT) is proposed. For DiT, processor’s instruction cache is modified to stores back in-
structions to memory. Consequently, it is designed as a assistance to existing integrity measurement by in-
cluding dynamic instructions trace. We have simulated DiT in a full-fledged system emulator with level-1 
cache modified. It can successfully update records at the moment the attestation is required. Overhead in 
terms of circuit area, power consumption, and access time, is less than 3% for most criterions. And system 
only introduces less than 2% performance overhead in average. 
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1. Introduction 
 
Nowadays, computer under different platforms interacts 
with each other through internet environment. Although 
this provides convenience and increased functionality, it 
is necessary to securely indentify software stack running 
in remote systems. Effective remote attestation mecha-
nism has drawn lots of research interests. Trusted Com-
puting Group (TCG) first standardized the procedure to 
launch a remote attestation [1]. As defined, the protocol 
consists of three stages: integrity measurement, integrity 
logging, and integrity reporting [2]. The function of in-
tegrity measurement is to derive a proper measure that is 
an effective representation of a given platform status. In 
order to narrow down the range of such measures, 
Trusted Computer Base (TCB) is defined as hardware 
components and/or software modules whose integrity 
decides the status of a whole platform. Consequently, 
integrity measurement can simply based on measures 
from the TCB, which reduce performance overhead in 
measurement and attestation. Integrity logging is the 
process of storing aforementioned integrity measure in 
protected storing space. This process is not mandatory, 
but highly recommended to reduce the overhead due to  

repeated calculation for integrity measurement. The last 
step, which is called integrity reporting, is to attest sys-
tem based on the stored or calculated integrity measures.  

Computer systems emphasize different security goals 
per contexts. While system integrity is more important in 
one situation, the other may concern more about data 
privacy. Integrity measurement is strongly related to se-
curity policy applied to specific computer system and 
consequently results in different attestation mechanism. 
TCG’s specification describes an integrity measurement 
during system’s booting process. This mechanism is 
called “trusted boot”. At the very beginning, a hardware 
signature, which is stored in some security-related hard-
ware components, is used as the root of the trust. Current 
hardware vendors design Trusted Platform Module 
(TPM) to provide such functionality. As each entity is 
loaded into memory, the integrity measures on the bina-
ries are calculated one by one and form a trust chain at 
last. Unlike secure booting, system takes measurements 
and leaves them to the remote party to determine sys-
tem’s trustworthiness. TCG’s attestation based on such a 
trusted booting is also called binary attestation [2]. 

Other integrity measurements still follow TCG’s 
“measure-before-load” principle. Property attestation and 
semantic attestation both try to extract the high level 
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property or semantic information from binary measure-
ment. So it will be more efficient and effective to vali-
date whether a security policy is hold or violated on such 
a measured property a priori. IBM’s Integrity Measure-
ment Architecture (IMA) based on the TCG’s trusted 
booting extends the approach into application software 
stack. IMA is now a security module provided by Linux 
kernel since version 2.30 [3]. 

A good integrity measurement should be able to derive 
a reliable measure that represents the status of computer 
system. From the resulting measure, a challenger (the 
remote entity which is interested in attesting the system) 
should be able to tell the system’s updated security-rela- 
ted capability such as whether the memory has been ever 
corrupted by attacker, or whether programs can be prop-
erly executed in isolation, or whether cryptography keys 
are securely stored, and so on. On the other hand, meas-
urement procedure should be transparent to the local user 
and introduces little performance overhead. 

Current integrity measurements face problems of gath-
ering sufficient history information on what has been 
done to the computing device. When each entity is 
loaded into memory, measurement of its binary codes is 
recorded. However, there will be a “measurement gap” at 
the moment when measurement results are requested. 
System status may be different from the recording in 
measure. Furthermore, measurements are made directly 
on program’s executable code residing in main memory. 
There exists another “behavior gap” between instructions 
executed in the processor and executable codes in the 
memory. The integrity measure of executable code in the 
memory can be a good measure to represent the system 
state. However, as different attacks occur from internet, 
this is becoming less sufficient for a remote challenger. 
For those programs running for a long time, such as 
server programs, a static measurement prior to execution 
may have little relation to the system status at the current 
moment. As a result, more accurate measurement, which 
can include program behavior, needed to tell challenger 
all history of bad behavior. This results in a better deci-
sion on trustworthiness of the system. 

However, with more information included, overhead 
to measure programs’ state increases. As a result, some 
measurements are targeted to specific data, such as proc-
essor control data, function pointer in memory, network 
traffic, intrusion detection, and so on. Measurement is 
often restricted in order to utilize only limited amount of 
information. Consequently validation of system against a 
certain security policy introduces little performance 
overhead. This policy-driven attestation or validation 
schemes are largely based on limited information spe-
cific per intended attack scenarios. The problem is that 
although it is efficient in their proposed situation, port-
ability of such measurement is very low. In different 
situation, attestation may require a big modification 

which also exerts a large performance penalty. 
In order to provide updated integrity measurement as 

system evolves, we propose an original dynamic instruc-
tion trace measurement (DiT) to include in the metric 
dynamic instructions-level behaviour in the processor 
with the help of simple micro-architecture modification. 
However, instruction-level trace can vary from time to 
time, with some part of the program being executed more 
frequent than the other. Directly recording the processor 
behavior causes lots of performance overhead and with-
out increasing any accuracy. In stead of applying meas-
urement in processor, we still perform the operations on 
the memory. As a result, most function interfaces pro-
vided before, such as the ones proposed in TCG or 
IBM’s IMA, can be maintained.  

Cache is an evolutionary design building a bridge be-
tween the memory and processor to reduce access delay. 
However, in this paper, we modify the structure of the 
instruction cache to the one similar to the data cache. The 
consequence is that instructions can also be written back 
to the memory. As program continues its execution, code 
region in its address space no longer stores codes loaded 
before execution but records instructions which are exe-
cuted. We improve the integrity measurement for trusted 
computing in the following aspects: 

1) Extending the measurement scope. When the secu-
rity-sensitive program is loaded and starts execution, DiT 
writes back instructions into memory. Consequently, 
binary code located in its address space records instruc-
tions which are actually executed.  

2) Facilitating attestation for different security policy. 
DiT only replaces static measurement with dynamic one. 
As a result, it changes little on the high level interface 
and provides a better general solution to diverse scenar-
ios. 

3) Writing back instructions does not require the in-
volvement of operating system. Thus, DiT builds a con-
nection between what has seen inside processor and what 
resides in memory. This procedure does not require 
trusting operating system, which in some cases can be 
corrupted by attackers. 

The paper is structured as follows. Section 2 presents 
the background on trusted computing and integrity meas-
urement. In Section 3, we present DiT’s design in details. 
To avoid potential hazards from attacks, we propose 
several hardware-wise recommendations in Section 4. 
The experimental results and analysis are given in Sec-
tion 5. Finally, the related work and conclusion are made 
in Section 6 and Section 7. 
 
2. Background 
 
2.1. Trusted Computing 
 
Trusted computing deals with computer system in a haz-
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ard environment. Though there is lack of ubiquitous 
definition of trust, this paper refers the one from Trusted 
Computing Group (TCG) specification. Trust is men-
tioned as the expectation that a device will behave in a 
particular manner for a specific purpose [2].  

Trusted Computing Base (TCB) is specified as any 
hardware and/or software components within the inter-
ested platform, whose safety can affect the status of the 
whole system. The assumption is made that if TCB is 
safe, system can be trusted. However, TCB’s compo-
nents vary from systems. In some situations, it may work 
with integrity validation mechanism; as a result, run-time 
critical data values are included in TCB. However, on 
other situations, execution of security-sensitive programs, 
such as encryption/decryption operation, is important to 
system’s proper function; some architecture components, 
which guarantee privacy of such application program, 
are chosen in TCB. TCG has summarized diverse appli-
cation scenarios and concludes that it should include the 
following two characteristics: 

1) Isolated Execution, or protected execution. The 
computing platform should be able to equip security- 
related application program with an isolated environment. 
As a result, no other legacy programs can access or cor-
rupt information it relies on. To achieve this property, 
many researchers adopt the virtualization approach or 
hardware extension to legacy computer architecture [4].  

2) Remote Attestation. Each computing platform 
should be able to provide mechanisms to: (1) securely 
measure TCB’s safety state; (2) protect measure log 
stored locally; (3) transmit measure to remote challenger. 
 
2.2. TCG’s Binary Attestation 
 
TCG defines a binary attestation to provide a trusted 
booting. Whenever an entity is loaded into memory from 
the moment machine is physically turned on, TPM ap-
plies cryptographic hash function, say Hash, on its ex-
ecutable code to make a measurement result, say M. The 
binary measurement for each entity is logged separately. 
Additionally, each measurement is also stored in one of 
Platform Configuration Registers (PCRs) in TPM by 
making the cryptographically extend operations with 
PCR’s current value, PCRt, i.e., new PCR values PCRt + 1 
= Hash(PCRt|M), where|denotes concatenation. When 
verifier requires attestation, TPM sends measurement 
logs (in local hard disk) and the corresponding PCR 
value to the verifier. He will recalculate hash result based 
on measurement logs. The comparison between newly- 
computed hash result and PCR value can tell whether 
untrusted behaviour within the environment has ever 
modified PCR value, measurement log, or executable 
code itself. 

Using binary attestation facilitate verification in mainly 
two aspects. 1) measurement with such format hides 

many different high-level implementations and reduces 
the complexity to calculate measure log and PCR value; 
2) It successfully separates measuring and verification. 
Attestation does not try to prevent a system from illegal 
behaviour that might compromise system. It only records 
the history of loaded code, securely sends them to the 
verifier and leaves the verifier to make trustworthiness 
decision. 
 
2.3. Integrity Measurement on the Application 

Program 
 
Starting from the root of trust provided by TCG, Integ-
rity measurement architecture (IMA) from IBM takes the 
first step to extend measurements from booting process 
to application level programs. IMA is provided as a 
software module to Linux kernel from the version 2.30. 
It provides measurements regarding to current system’s 
software stack. The whole project provides integrity 
measurement but does not propose any detailed attesta-
tion mechanism. Measurements provide evidences sh- 
owing whether system is corrupted by certain rootkit 
attacks or not.  

IMA measures each individual component before it is 
loaded. With the help of extend operation, trusted boot-
ing forced execution to follow only one legal order. 
However, in application level, programs can execute 
different threads in parallel; program order does not re-
lated to trusted condition any more. So IMA groups 
measure together instead of applying extend operation 
one by one.  

But IMA’s is following TCG’s “measure before load-
ing” principle, therefore it inevitable maintains short-
comings of the binary attestation, such as its ineffective-
ness to reveal hardware attacks or the software attacks 
after the program is loaded and executing. 
 
3. Architecture Extension to Measure  

Instruction Level Behaviour 
 
3.1. Design of Integrity Measurement in  

Application Level 
 
DiT is based on IBM’s IMA which provides comprehen-
sive measurement over software stack. In IMA, all ex-
ecutable codes and chosen structured data are included in 
the measurement log. Any data which are loaded by op-
erating system, dynamic loaders, or applications with 
identifiable integrity semantics are hashed. Measurement 
can be made automatically at the moment when codes or 
data are loaded into main memory. As programs continue 
their execution, kernel is able to measure its own 
changes. Similarly, every user level process can measure 
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its own security sensitive inputs, such as its configuration 
files or scripts. The consequent 160 bit value from hash 
calculation becomes an unambiguous identity for such 
software module. Challenger can distinguish different 
file types, versions, and extensions by this unique fin-
gerprint. 

As system evolves, IMA collects hash results into a 
measurement list which is stored locally. The integrity of 
this list is of a great importance. Therefore, IMA uses 
TPM to prevent any modifications made on measurement 
list. Platform Configuration Register whose value can 
only be changed by physically system rebooting or TPM 
extend operation provides protected storage. Extend op-
eration is applied on each value stored in the measure-
ment list. Since it is impossible to restrict application- 
level softwares into a small number of orders, order of 
each value in the list is not used to validate the trustwor-
thiness of the system. 
 
3.2. Writing Back the Instructions 
 
Although IMA provides measurement of all loaded soft-
ware, it still follows TCG’s “measure-before-loading” 
mechanism. As a result, “metric gap” and “behaviour 
gap” can largely degrade efficacy of measure log.  

The “metric gap” occurs when measurement does not 
represent the updated state of the system. Application 
program can run for a long time, such as server program. 
So it may be a long period since the measurement is 
made. During this time interval, memory is possible to be 
corrupted. Attacks, who can take root privilege, can 
modify loaded executable codes. However, it is possible 
to detect such modification when the codes are being 
executed again. This is the basic assumption made in 
former tamper resistance design [5]. As executable code 
is hashed again, resulting measure will be different. 
However, attestation is made asynchronously to system’s 
operation. It is possible that attestation is made before 
executable codes are hashed again. As a result, meas-
urements may give challenger a misinformation about 
what is running at the moment.  

Figure 1 makes a comparison between three meas-
urement mechanisms: DiT proposed in this paper, IMA 
and Aegis which is a typical secure processor design to 
achieve tamper evidence and resistance environment [5]. 
When IMA measures executable code, it makes com-
parison to values which are calculated before. In Aegis, 
if software’s execution relies on a program, the meas-
urement of this program is calculated again and com-
parison is made to former calculated value. In these two 
situations, the challenger may still get measurements 
from which the system can regarded as trusted but actu-
ally the memory is already corrupted. 

“Metric gap” can be resolved by applying a measure to 
executable code at the moment of attestation is made  
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DiT 

IMA 

Aegis 

○1  ○2  ○3  Program Execution Procedure 
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○3 Represent the event the program is used by other application 
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& 

Validate

 

Figure 1. “Metric Gap” occurs in the design of IMA and 
Aegis. 
 
(which is also reflected in Figure 1). However, “behav-
iour gap” can further introduce more severe problem. 
This describes the fact that static codes in memory are 
different from instructions executed in processor. But it 
is instructions executed in processor finally corrupt the 
system. On the other words, executing instructions are 
truly represent the trustworthiness of the system. What 
makes things worse is that many attacks do not rely on 
the modification on program’s executable code to launch 
malicious behaviour any longer. For example, buffer 
overflow attack has diverse implementations. One of 
them is to insert codes directly in stacks which make 
detection only possible for a very short period of time. 
Challenger should also be able to know such deleterious 
execution since this system is vulnerable to attacks in the 
future.  

No matter how attacks exploit software vulnerability, 
it finally needs to execute its code in the processor. As a 
result, researchers also propose to records behaviour in 
the processor. To reduce performance overhead, they 
only analyse behaviour of critical instructions, such as 
indirect branch or critical data. Measuring those data 
may work for certain security policy but lacks of port-
ability and extendibility to future unknown attacks. 

Measuring all instructions is a challenge. Instructions 
are fetched from memory, but dynamic execution flow 
varies from situation to situation. It is impossible to pro-
vide limited number of unique state to represent safety of 
such execution. On the other hand, collecting all possible 
states are computationally impossible to make.  

DiT does not directly measure all executed instruction 
in processor. It maintains large part of original measure-
ment interfaces which measure codes in memory. What 
DiT successfully makes is to extend architecture’s pipe-
line to build connection between processor and memory 
(Figure 2). It proposes to store back instructions into its 
original locations after they are fetched into pipeline. The  
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Figure 2. Strcture to measure dynamic instruction trace. 
 
purpose is to resolve “behaviour gap” between processor 
and memory. This is not an intention to record all possi-
ble run-time execution paths but to store instructions 
which are truly executed into measure log. 

With such modification, what to measure and when to 
measure have to be carefully designed. Program’s ad-
dress space consists of data region, code region, and 
stack to record program execution context. In IMA, all 
executable code and part of related data, which are dy-
namically loaded by operating system, are measured 
(Figure 3). DiT will cover all code regions, data regions 
and stack as long as there are some instructions being 
written back to them. 

Due to attacks, instructions can come from other loca-
tions rather the code region. This not only makes DiT to 
expand measurement range to include memory region 
such as stack, but also require it to add several temporal 
points to make such measurement. We can still use the 
aforementioned buffer overflow as the example. Stack 
contents vary as program enters into different contexts. 
Malicious code hidden there may soon be overlapped by 
unrelated information, such as parameter passed by fol-
lowing function call. As a result, malicious code should 
be measured on time before it is eliminated by legal 
ones.  

To insert proper temporal points is a trade-off between 
detection ability and performance overhead. The per-
formance overhead in original integrity measurement 
mechanisms is amortized, which is due to the fact that 
hash calculation is made at the frequency of program 
loading. From many former anomaly-detection ap-
proaches, successful corruption usually results in some 
changes in instructions level behaviour, such as cache 
miss, prediction miss and so on [6]. Furthermore, hash 
operation, which calculates memory code, is easily per-
formed in parallel with program’s normal operation. In 
the current work, one inevitable measurement is added. 
DiT launches the measurement at the moment of attesta-
tion requirement is made, which at least resolve the met-
ric gap between measure and system state. 

Processor 

Code

Data

Stack

Code 

Data 

Stack 

Interpreter

Dynamic Code

○1 ○2  ○3  ○4  

Main 
Memory

○1 : Data with integrity semantic is loaded by operating 

○2 : Executable codes are fetched from memory 

○3 : Malicious codes are fetched in statck or other illegal location

○4 : Codes are executed dynamically  

Figure 3. Behavior gap occurs due to attacks or dynamic 
generated code. 

 
3.3. Introduce Randomization through the Use 

of Cache 
 
Most personal computers usually have two level caches. 
Instruction and data are divided in the level-1 cache 
while level-2 cache is usually a unified cache which 
stores them together. DiT includes cache into the proce-
dure of writing back instructions to the memory which 
“reverse” the procedure when instructions are fetching 
from it. In order to make write back work, instruction 
cache should be appended with few state bit just as data 
cache does.  

By replacing structure of individual cache to the one 
of data cache, processor actually does not need to have 
the actual action of “writing back”. It only needs to set a 
corresponding status bit and leave the work to cache and 
memory management unit. Whenever cache miss occurs, 
instruction cache first stores values in cache entry back 
to the memory and then read other instructions instead of 
overwriting it directly.  

Usually, it is hard to predict cache miss. This random-
izes the time to write back instructions. As a result, an-
other level of protection which prevents attacks from 
learning this measurement and hide its malicious codes 
can be made. Besides, this operation does not need the 
involvement of operating system. Even when OS is not 
trusted, such as the kernel is corrupted, writing back op-
eration can always be executed properly.  

Current micro-architecture design can further help our 
design to write back instructions. Since level-2 cache is 
unified, only level-1 instruction cache requires modifica-
tion. And the modification is restricted to small number 
of status bits added to each cache entry. As a result, 
overhead on chip area, power consumption and access 
time to cache entry (which is also called cache hit la-
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tency) is reasonable. Furthermore, instructions usually 
holds much better locality references than data cache 
which results in much less cache miss. Consequently, 
performance effect from writing back instructions is also 
possible to be restricted to a small amount. 
 
4. Further Micro-Architecture  

Recommendations 
 
With the proposed design, DiT is able to measure large 
amount of program’s execution. However, it may still 
miss some situation due to current operating system de-
sign as well as diverse attacking mechanism. In this sec-
tion, we propose several extra hardware recommenda-
tions to further resolve those issues. 
 
4.1. Adding Measurement Point 
 
With the aid of DiT, measurement will be recalculated 
with program’s execution. There is still a possible hazard 
that attacker replaces correct codes to the malicious ones 
(that he injects before) in memory to avoid proper meas-
uring (similar to the way he/she can insert malicious 
code) after malicious codes are stored back. As a result, 
adding more measurement points is necessary to provide 
another protection level on DiT itself. 

The cache miss or branch prediction miss indicate a 
behaviour change in instruction level, which can be used 
as a point to recalculate measurement. To further reduce 
performance, we propose to make the measurement at 
the moment when the potential attacks are going to hap-
pen. However, from current study in software vulnerabil-
ity, to detect the proper attacking potential is proved to 
be another difficult issue. As program is running, its ad-
dress space records its execution state through the use of 
stack and/or heap and so on. However, its code space 
remains stable. Operating system design provides a good 
protection when it launches different code space to exe-
cute, such as the design of context switch. However, at-
tackers successfully inject or exploit new or existing 
code space to avoid reliable operation provided from 
operating system.  

As a result, we can make measurement when instruc-
tions are written back to the memory location which is 
outside of the code region (not address space) for the 
current running programs. As each program is loading its 
code, we can records its physical address in memory into 
a table and store it in a memory management unit. A 
comparison between written back instruction and each 
physical address of a code region can indicate which 
program this instruction is belong to. If it does not be-
long to any legal program, we can raise an exception. On 
seeing this exception, measurement is not also necessary 
since action of avoiding measurement is made.  

By such architecture recommendation, DiT can achieve 
the validation such that every instruction executed in 
processor should be from executable code space which is 
properly loaded into memory before. Consequently, DiT 
can prevent injected code attacks while making meas-
urement. 
 
4.2. Measuring the Run-Time Generated Code 
 
Different from compiler which generates executable 
codes, interpreter executes machine instructions on the 
fly. In our proposed design, integrity measurement is 
only capable of measuring binary codes of interpreter 
itself, dynamic codes generate by interpreter to processor 
are not recorded (Figure 3). On the other hand, more 
popular attacks begin to adopt this mechanism. Such 
attacks, including sql injection, cross script attacks, 
dominate current web applications. This presents a big 
challenge to provide accurate measurements to remote 
challenge, as malicious behaviours are extracted from 
user input and getting execution one instruction by an-
other. Measuring executable codes from memory be-
comes impossible.  

When instructions are generated from interpreter, DiT 
finds that there is no source memory location to which 
such dynamic instructions can transmit. Our proposed 
method is to “deceive” the interpreter that the dynamic 
executed codes is actually dynamic loaded. As a result, it 
can follow the predefined procedure to make such meas-
urement. 

This is achieved by creating a new memory region 
which can be linked to the memory space of interpreter’s 
process. Current operating system, such as Linux kernel, 
provides safe interface to dynamically add or remove 
memory region from process’ address space. It will be 
easy to include such secondary code region to inter-
preter’s address space.  

This is equivalent to adding a container to store dy-
namically executed code; however, the measurement will 
not be possible at the “load” time, since the container is 
empty at this moment. Only at the end of execution when 
all executed codes are written back, proper measure is 
going to be made on the full container. 
 
5. Experiment and Result Analysis 
 
In order to analyse applicability of DiT, two sets of ex-
periments are conducted respectively. The first one simu- 
lated measurement mechanism, especially the situation to 
hash program’s code upon asynchronous attestation. 
Then another set of experiments are made to detect hard- 
ware and performance overhead caused by modification 
on level-1 instruction cache. 
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5.1. Implementing Measurement 
 
Different from IBM’s IMA which implements all integ-
rity measurements within Linux kernel, we implement it 
in the hardware level. DiT is integrated into Bochs which 
is a full-fledged open source × 86 PC emulator. It is used 
to emulate entire system from × 86 architecture to virtu-
ally instrumented monitor.  

Through our experiment, we find that write back in-
structions to memory causes some instability for emu-
lated system. As a result, DiT focuses on certain target 
program and only stores its on-fly instructions into m- 
emory. As mentioned before, TCB provides an isolation 
execution environment for the security-related programs. 
By implementing writing back instructions for only in-
terested program, we believe that DiT can more practi-
cally simulate TCB’s execution model.  

We install Gentoo Linux with the kernel of version 
2.6.29 in the emulation. To track process information, 
kernel is modified so that hardware emulator becomes 
aware of software context switch. Since version 2.6.x, 
kernel introduces the late binding for the context switch, 
so both exec () and sched () functions are modified. Con-
sequently, process identity, such as Process ID and 
Process name is updated into a global variable as soon as 
process is created and loaded into memory.  

Besides the operating system modification, we also 
implement several virtual debugging monitor. One of the 
most critical interfaces which DiT inserts is the one that 
halts the execution of current program in emulated oper-
ating system and hashes the code region in the address 
space of current active process. This efficiently emulates 
the situation that measurement is made upon the attesta-
tion request is sent from remote challenger. 
 
5.2. Performance Overhead 
 
In order to make instructions cache to write back, several 
extra status bits are required to each cache entry which is 
similar to the structure in data cache. Since in most mi-
cro-architecture design, level-2 cache is designed as a 
unified cache, only level-1 instructions cache needs 
modifications. To make a comprehensive analysis of 
such change, area, power consumption and access time is 
emulated under CACTI 5.0 [7]. The parameter of un-
modified cache is the same as the one used in Table 1, 
which is also used in SimpleScalar for performance ex-
periment. Five extra bits are added to each entry of the 
instruction cache to implement the write back mecha-
nism. With the simulation results given from Table 2, 
largest power overhead is less than 10%. Overhead of 
other criterion is actually ignorable. Especially, modifi-
cation has little effect on access time of level-1 cache. 

Table 1. Architecture parameters. 

Parameter Value 

Fetch/dispatch/issue 
width 

4 

Instruction window 128 entries 

register update unit size 128 entries 

Load/Store Queue 64 entries 

I-cache 128K 1 way set-asso., 1-cycle hit time 

D-cache 128K 1 way set-asso., 1-cycle hit time 

L2 cache 
Unified, 1M, 4 way set-asso, 6 –cycle hit 
time 

Memory 100 cycles access time, 2 memory ports 

Function unit 
4 Int ALUs, 1 Int MUL/DIV, 4 FP 
Adder, 1 FP MUL/DIV 

 
Table 2. Area, power and access time overhead for modified 
L1 cache. 

Technology 
node 

Overhead 
criterion 

Normal 
L1 Cache 

Modified L1
Cache 

Overhead

Area (mm^2) 2.59811765 2.66909173 2.73% 

Power (W) 5.23044172 5.23787143 0.142%90 nm 

Access time (ns) 1.40756434 1.40756434 0.00% 

Area (mm^2) 0.36714162 0.36929974 0.588%

Power (W) 3.54005779 3.87976541 9.59% 32 nm 

Access time (ns) 0.43442463 0.43875809 0.998%

 
We tested SPEC2000 benchmarks running in Simples- 
calar which models an out-of-order superscalar processor 
[8]. Reference inputs are adopted and we skip instruc-
tions of the number which is specified by SimPoint [9]. 

Writing back instructions are not supported in Sim-
plescalar, as a result, we modify source codes of sim- 
outorder (the out of order simulators) such that right after 
each time a read access is performed to the level-1 cache, 
a write access to the same entry in the cache is launched. 
The parameter to run Simplescalar is given in Table 1.  

We collect all number of level 2 cache access and 
cache misses for each program in SPEC 2000. The num-
ber of level-2 cache access varies to different programs. 
In eon, perlbmk and vortex, the modified level-1 cache 
increases more than 50% of level 2 cache accesses. But 
for other benchmarks, the change is not that obvious. We 
only select the increase of level-2 cache access with 
more than 0.01% among all 26 programs (Figure 4). 



H. LIN  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                   JIS 

8 

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

eo
n

ga
p

pe
rlb

mk
cra

fty

vo
rte

x
mes

a
pa

rse
r

six
tra

ck
tw

olf gz
ip vp

r
gc

c
bz

ip2

L2 Cache access L2 Cache Miss

 

Figure 4. Normalized Level-2 cache access and cache misss. 

 
Although there are big increases in level-2 caches ac-

cess, this does not simply increase the corresponding 
cache miss. All cache miss due to the modification of 
level-1 cache is increased with less than 1%. This is 
probably due to the fact that level-2 cache holds a good 
locality references for instructions. As a result, perform-
ance overhead for all benchmark programs is ignorable 
as shown in Figure 5. The largest performance overhead 
measured in IPC is less than 5%. 

 
6. Related Work 
 
6.1. Tamper Resistance Design 
 
Execute Only Memory (XOM) has included whole me- 
mory space in the trusted computing base as most adver-
saries launch the attacks to corrupt memory [10]. In or-
der to guarantee both integrity and privacy of the data in 
memory, encryption components are included in the leg-
acy architecture design. Data transmitted from processor 
to memory is encrypted and reversely, they are decrypted 
for execution in processor 

Aegis [5] follows the same assumption that memory 
can not be trusted. It hashes executable code when a 
program is loaded into the memory for execution. At this 
moment, any other code and data that the program relies 
on is checked to guarantee that the program is started in a 
trusted environment. In the situation that operating sys-
tem can not be trusted, Aegis introduce security related 
module and hardware component into the legacy proc-
essor. Tamper resistance design does not make assump-
tion on how memory is corrupted thus it is able to detect 
simple hardware attacks.  

Tamper resistance design is similar to our approach in 
the way of measuring untrusted code. However, they are 
holding the assumption that detection of static code can 
be found on moment the software is used again. As men-
tioned before, attestation can be made before next-use of  
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Figure 5. Comparison of IPC number with normal Level-1 
cache and modified L1 cache in processor. 

 
software modules, so directly adopting tamper resistance 
approach introduces “metric gap”. On the other hand, 
they are unable to measure program’s runtime behaviour 
as well. 
 
6.2. Integrity Measurement 
 
TCG first standardize the procedure to make a remote 
attestation, besides, it also recommends an integrity 
measurement methods which is efficient during system 
booting. This binary attestation can only record what the 
programs are running on the platform and use the iden-
tity and the loading order of programs to system state 
after booting.  

IBM’s IMA, Integrity Measurement Architecture, in-
serts measurement interface into Linux kernel. As each 
program is loaded into memory, its executable code is 
hashed. When a program is further loading other codes 
or security-critical data structure, measurement is made 
as program transfer its control flow. However, software 
vulnerability which is exploited by attackers during each 
individual program’s execution can also spoil measure-
ment.  

Based on the observation that modifications made in 
kernel space is usually permanent, Loscocco et al. pro-
pose to measure dynamic data structure which is critical 
to kernel control flow [11]. Such dynamic data structure 
is called contextual information, which is used to repre-
sent the state of the whole computing system. But this 
method is not efficient to be used in the user space op-
erations. 
 
6.3. Property Driven Remote Attestation 
 
Binary measurement has the advantage of easy calcula-
tion and application-independence. Since hash calcula-
tion is irreversible, directly exploiting such metrics pro-
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vides a big challenge and performance overhead. As a 
result, different attestation, which adopts different met-
rics, is proposed.  

With specific security policy being set for the attesting 
system, property attestation and semantic attestation [12- 
14] propose to derive system high level information in-
stead of the pure software stack. The extracted metrics 
can be directly used against security policy. Measure-
ment methods may be implemented differently, but 
measurement is decided by security policy. As security 
policy changes, it is less flexible to change measurement 
implementation accordingly. As they indirectly include 
validation part into attesting platform, attesting plat-
form’s performance overhead is increased and validation 
procedure is also put under the hazardous environment. 
We propose DiT which designs an application-inde- 
pendent measurement which separates validation and 
measurement just as binary attestation does.  

Some other researches also consider that program’s 
run-time behaviour as a validation metrics, however, 
with many limitations. Alam et al. propose a behaviour 
attestation method [15]. However, the behaviour is de-
fined as the quality of service the system can provide, 
connection latency, and so on. Consequently, this attesta-
tion implementation designed for web services only 
which lack the portability to be applied to other applica-
tions programs. 

 
7. Conclusions 
 
Ever since TCG standardized the procedure to launch a 
remote attestation, how to exchange the trust measure 
efficiently between computer systems under diverse pla-
toforms has been a popular open research issue. Locally, 
attesting mechanism derives integrity measure based on 
software stacks on which trust decision is made. TCG 
introduces a binary attestation during system booting and 
many integrity measurement implementations are pro-
posed following the “measure-before-loading” principle. 
Those measurements do not take into the account the 
actions after each program begins its execution. As a 
result software vulnerability which can corrupt both sys-
tem status as well as measurement operation can intro-
duce the “behavior gap” and the “metric gap” between 
program runtime behavior and consequent measurement. 
DiT, the dynamic instruction trace integrity measurement, 
is proposed as assistance to the current integrity meas-
urement methods. By changing the structure of instruc-
tion cache, instructions are stored back into memory 
when cache miss occurs. As a result, code region in pro-
grams address space actually contains dynamic instruc-
tions trace executed in processor. By applying integrity 

measurement based on this change, DiT successfully 
include most updated system state to the moment when 
attestation is required.  

We have experimented this attestation mechanism in 
bochs, a full-fledged emulator, with a current updated 
version of Linux kernel installed. We have successfully 
simulated the procedure of measuring program’s code (or 
trace) at the time when attestation is made. To further 
analyze the change made in level-1 instruction cache, 
Cacti is exploited to check area, power consumption and 
access time overhead. SPEC2000 benchmarks are run on 
the modified Simplescalar to analyze the performance 
overhead. As we only limit our small modification in 
level 1 instruction cache, the overhead in terms of circuit 
area, power consumption, and access time are all rea-
sonable, and also the performance overhead is marginal. 
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