
Behavior Research Methods, Instruments, & Computers
1988, 20 (2), 206-217

Micro Experimental Laboratory: An integrated
system for IBM PC compatibles

WALTER SCHNEIDER
University of Pittsburgh, Pittsburgh, Pennsylvania

Micro Experimental Laboratory (MEL)is a third-generation integrated software system for ex
perimental research. The researcher fills in forms, and MEL writes the experimental program,
runs the experiments, and analyzes the data. MEL includes a form-based user interface, auto
matic programming, computer tutorials, a compiler, a real-time data acquisition system, data
base management, statistical analysis, and subject scheduling. It can perform most reaction time,
questionnaire, and text comprehension experiments with little or no programming. It includes
a Pascal-like programming language and can call routines written in standard languages. MEL
operates on IBM PC compatible computers and supports most display controllers. MEL main
tains millisecond timing with high-speed text and graphics presentation. MEL provides a sys
tematic approach to dealing with nine concerns in running an experimental laboratory.

Developers of any software system for experimentation
must trade off considerations of flexibility, learnability,
ease of use, precision, experiment generation time, and
experimental qualitycontrol to maximize systemperfor
mance. Incorporation of advances in hardwareand soft
ware technology allow for quantum jumpsin termsof sys
tem performance given the above considerations. The
Micro Experimental Laboratory (MEL) optimizes these
trade-offs within the constraints of personal computers
with640Kof memory, human factors considerations about
interfacetechnology, fourth-generation software technol
ogy, and the use of automatic programming techniques.

MEL is a third-generation psychology software system
that builds on the lessonslearned from earlier program
ming systems. The first generation of programming lan
guages in psychology were typically specialized process
control languages working in small memory partitions
(e.g., Schneider & Scholz, 1973; Scholz, 1972) operat
ing with less than 16Kof memory on machines such as
the DEC PDP-8 or the IBM 1800. The second genera
tion had two majorvariants. Thefirst was the subroutine
approach, whichinvolved a seriesof subroutines that are
called from FORTRAN or Pascal programs (e.g., Os
good, 1985, 1988) running on DECPDP-lIs or Apple lls
with 64K of usable memory per process.1 The second
variant was the stimulus presentation approach (Eamon,
1982;Poltrock& Foltz, 1982, 1988), in whichfixed dis
plays were presented in prespecified orders on Apple II
computers. The orders could be either specified within

Reprint requests can be sent to Walter Schneider, Learning Research

and Development Center Building, 3939 O'Hara St., University of Pitts

burgh, Pittsburgh, PA 15260. For detailed descriptions of the Micro

Experimental Laboratory software and demonstration floppies, contact
Psychology Software Tools, Inc., 511 Bevington Rd., Pittsburgh, PA

15221 (phone 412-244-1908). The cost of licensing the system varies,

depending on features requested and quantity ordered. Single licenses

are $295 for the student edition, $495 for the professional edition.

one of three prescribedparadigms, as in CEDATS (Ea
mon, 1982), or explicitly enumerated, as in APT(poltrock
& Foltz, 1982, 1988). The subroutine package approach
wasflexible but required thatgraduate students be trained
as programmers and involved longdevelopment timesto
generate experiments. The stimulus presentation approach
allowed fastexperiment specification at thecostof reduced
flexibility and a great deal of typing to enumerate all the
stimuli and the stimulus orderings.

MEL is a third-generation psychology software system
that operates on IBM PCs with 640K of memory and a
hard disk.2 The order of magnitude increase in memory
from the previous generation enablesmuch greater user
support in developing, debugging, documenting, and
analyzing experiments. In the 1980s, new software de
velopment techniques were generated to speed software
creation. These are referred to as fourth-generation lan
guages, code generators, or automatic programming sys
tems. These are systems in which the user specifies the
problemin a format that closelymatches the application
environment, using terms already knownby the user. A
code generator program converts the specification into
moretraditional computer source code(e.g., Pascal). Pro
gram generators can significantly reduce program de
velopment time compared with conventional program
ming. MEL incorporates a code generator to execute
routine experimental functions (e.g., stimulus display,
response collection, condition randomization, and data
logging). Manyexperiments can be donewithout the ex
perimenter's writingany code. If specialized displaysor
stimulus randomization procedures are needed, the user
can incorporate code as needed.

MEL incorporates a form-based user interface (see
Schneiderman, 1987) that allowsthe user to fill in blanks
in forms to specify experiments and request help on ev
ery blank, if needed. This type of user interfaceprovides
for structuredproblemdescriptions, self-documentation

Copyright 1988 Psychonomic Society, Inc. 206

of specifications, anddefaultspecifications of parameters,
and it greatly reduces the learning time required to use
the system (see Ogden & Boyle, 1982; Smith, 1982).

MEL is an integratedsoftware systemfor professional
and student experimental research using IBM PC com
patible machines. MEL can run nearly all discrete-trial
experimental paradigms (e.g., reaction time, question
naire, and textcomprehension experiments). Discrete-trial
paradigms are ones in which there is a precisely timed
trial followed by an intertrialinterval in whichsomevari
ability (e.g., 0.1 sec) is acceptable.' The user writes ex
periments by filling in forms, specifying information in
a manner consistent with the way a psychological re
searcher thinks about the problem (e.g., by entering in
dependent and dependent variables, blocks, trials, stimu
lus lists, questionnaires, etc.). The form specifications are
converted into sourcecodeusingautomatic programming
techniques. The source code is compiled into an object
code. The objectcode is run, presentingstimuliand col
lecting responses withmillisecond accuracy. The dataare
loggedfor later analysis.The analysisprogramsproduce
plots, tables, lists, and statistical tests (e.g., ANOVAs,
correlations, planned comparisons, grouptests). The data
can also be exported to other statistical packages. As an
integratedpackage, the experimenterfills in a form, and
the information on the form is transmitted to programs
that generate the experiment, compile the code, manage
the data, and analyze the results. All these programsuse
the same information, eliminating the need for the ex
perimenter to retype the information.

MEL wasdesigned to solvenineconcerns thatare com
mon in professional cognitive laboratories and were
present in my own laboratory. First, MEL allows rapid
experimental development and modification. Basic re
searchinvolves exploring theunknown. In mylaboratory,
we generally produce and test multiple pilot paradigms
before a procedure clearly illustrates the phenomena of
interest. In second-generation systems of the subroutine
type, experimentgenerationis probably the most expen
sive item in completing an experiment, in terms of time
and money. Even with a good subroutinelibrary, a typi
cal experiment requires 600 lines of code. Software in
dustry studies show that a professional applications
programmer, on average, generatesabout 10-65 linesof
debugged and documented code per day (see Yourdin,
1975,p. 143).At 30 linesper day, 160 h of development
time by a professionalprogrammer are required for im
plementing a new paradigm. In psychology laboratories,
graduate studentsdo most of the experimental program
ming. The students must first learn to be programmers
and thentheycanprogramaboutone novelparadigm each
semester. The long development time and difficulty of
learning the system havedetrimental sideeffects. Students
oftenworkwithsomeone else's paradigm, using codethey
do not understand.

MEL incorporates automatic code-generation tech
niques. The knowledge of how to program routine ex
perimentalproceduresfrom psychological specifications

MICRO EXPERIMENTAL LABORATORY 207

is incorporated into a program. MEL writes the program
for the experimenter at the rate of about 100linesof code
per second. Automatic programming can greatly reduce
the experiment generation time relative to the time re
quired for the subroutinecall approach. In MEL, a typi
cal paradigm can be developed in less than a day, sug
gesting a productivity increase of a factor of 20 (8 h vs.
160 h). I have implemented new paradigms in less time
than it took to read the article describing the paradigm.
Undergraduates have generated600 lines of documented
and debugged code in an afternoon. A graduate student
generateda new paradigmon one computer in about the
sametimeas it tookto recompile and linkan old paradigm
using a second-generation subroutine library approach.

The second concern is providing precision and speed
in experiment presentation. The subroutine approach pro
vides flexibility, but generally requires specialhardware
and strict adherence to programming rules. If the ex
perimentercalls subroutines in an inappropriateorder or
performs long-duration calculations at the wrong time,
erroneous timing will result. MEL reprograms the stan
dard ffiM hardware clock to maintain millisecond ac
curacy. The code generator will produce only debugged
code that maintains the precise order of commands to
eliminate coding timing errors. MEL also cues all pre
cise timingeventsin an eventtable so eventsare executed
precisely, independent of the time neededto generate the
events or log the data. The event table's cuing of com
mands also greatly speeds the output of critical events.
For example, MEL writescharacters82 timesfaster than
do write statements in Microsoft Pascal.

The thirdconcernis providingflexibility inexperimen
tal procedures. MEL provides greater flexibility than
stimulus presentation packages becausethe experimenter
is not limitedto a prescribed set of paradigms. The form
specifications in MEL are powerfulenoughto implement
most computerexperiments withoutcode. In a survey of
104experiments published in Perception & Psychophysics
that used computers, Butler (1988) estimated that 70%
could be authored with MEL without writing any code.
In addition, with some code added, MEL can perform
nearly all the experiments that can be run on a PC usi~
discrete-trial procedures. If specialfunctions are needed,
the experimenter can write code. MEL includes a Pascal
like language with special functions for real-time ex
perimentation. With a fewlines of code, an experimenter
can program graphics, interfacevoice keys, read the po
sition of the mouse, change character sizes, draw poly
gons, or calculate trigonometric functions to position
characters. If a student knows no programming, the
faculty member or an advancedstudentcan spend a few
minutes writing the needed code segment to enable a
specialized function. To maintain complete flexibility, the
experimenter can call procedures written in standardlan
guages such as Pascal, C, FORTRAN, and BASIC.

The fourth concern is quality control assurance. Test
ing of complex or real-time programs generally takes
longer than generating the programs originally (see

208 SCHNEIDER

Yourdin, 1975). A researcher must carefully test a pro

gram to verify that the experimental procedure exactly

matches the procedure reported in the method section.

MEL simplifies human checking of the program, verifi

cation of the conditions of the experiment, and verifica

tion of the timing of the experiment. To check a student

program using the subroutine method, a faculty supervi

sor would have to desk check the code and run a series

of test runs on the experiment. In the stimulus presenta

tion method, a faculty supervisor would have to check

the typing and the ordering of all the stimuli. In APT

(poltrock & Foltz, 1982, 1988), for example, this involves

checking lists of arbitrary numbers and letters to be sure

that there are no errors. In MEL the critical segments of

a program (e.g., the forms for stimulus presentation and

response collection) are typically specified in two or three

forms. These can be checked in a few minutes, rather than

spending an hour checking the resulting code. The order

ing of conditions is typically specified on a single blank

to determine how the stimuli are sampled. Stimulus lists

include only the part of the stimulus that changes (e.g.,

the list of words, rather than the full screens including

the words and instructions, as is the case in stimulus

presentation systems). The stimulus list also includes the

independent variable specification to facilitate checking

(e.g., the stimulus "l\CAT" may code a condition 1

word stimulus with the word "CAT" in a lexical deci

sion experiment). The invariant parts of displays (e.g.,

the instructions on the target frame) need only be typed

once. Most important, the code generator and the pro

grams in MEL have been extensively debugged in the

process of running over 100 studies collecting over a mil

lion observations of data.

MEL provides debugging aids for internal checking of

variables and precise timing to allow an experimenter to
verify the accuracy of the experiment. MEL verifies that

a valid value is logged on each trial or block. Any miss

ing value or out-of-range value is flagged, causing ter

mination of the experiment. The experimenter can set an

option to automatically display or print the trial number

and the trial's independent and dependent variables at the

end of each trial. This allows verification of whether the

executed trial matches the way the data were recorded.

A single command changes all timing from milliseconds

to seconds. With this option, one can verify that a 20

msec period is 20 msec by timing seconds with a wrist

watch. Commands can be entered to simulate respond

ing so that internal events can be timed (e.g., measuring

how many milliseconds it takes the computer to put up

12 lines of text). If a program is run in automatic execu

tion mode, the computer performs either the correct

responses or the random responses, so one can let an ex
periment run all night to verify that there are no random

subject sequences that can crash the program.

The fifth concern is that nonprogrammers should be able

to generate experiments. A large proportion of the gradu

ate students and undergraduates who might want to work

in a psychology laboratory have only minimal program

ming skills. The form-based approach used in MEL can

be quickly learned by nonprogrammers (see below).

The sixth concern is to minimize time and resources

needed to teach researchers to program experiments.

Probably the second largest expense of running a

computer-controlled cognitive laboratory is the cost of

training students. In the second-generation subroutine ap

proach, new graduate students required 6 to 12 months

before they could be trusted to program a novel paradigm

without someone else helping them or checking the work.

In fact, this cost was so high in the subroutine approach

that when I moved between institutions, the cost of training

a new staff was greater than buying the equipment to set

up the new laboratory. One year's support for a graduate

student (including indirect costs and tuition) can purchase

5 to 10 mM PC class machines. MEL reduces training

costs in six ways. First, the system is form based so there

is less to learn. Second, over 20 computer tutorial les

sons provide a self-study environment in which to learn

the system. Third, there are extensive manuals, which

detail the system for the novice (100 pages) and expert

user (300 pages). These manuals were developed using

protocol-aided revision (see Schriver, 1984), in which the

draft manuals and tutorials are given to novice users by

an independent testing organization. Students learned the

system with only the manuals to aid them. Whenever the

student had difficulty, the manuals were revised. Fourth,

an extensive sample program library provides examples

of how to specify classic experimental procedures. Fifth,

exercises and quizzes are included to extend and assess

student knowledge of the system. Sixth, task diagrams

have been developed to provide a quick reference to using

the system. These diagrams provide a step-by-step list

ing of goals and actions to specify an experiment. This
type of diagram was developed in industry (see Poller,
Friend, Hegarty, Rubin, & Dever, 1982) and has been

found to greatly reduce training times for learning tech

nical procedures.

The seventh concern is enhancing communications with

colleagues and exporting experimental procedures to other

laboratories. Easy communication of exact experimental

procedures can improve scientific communication, en

hance replication, and simplify extension of experiments.

Developments in computer science have been greatly

aided by the advent of standardization of programming

languages. Think how much progress is hindered for an

algorithm to be developed on one campus and not be ex

ported to another campus. This lack of exportability is

typical in psychology: Currently a program developed on

one campus can rarely be easily run and modified on

another campus. MEL runs on most mM PC compati
bles and supports over 30 display controllers. Most psy
chologists in the United States have access to an ffiM PC

compatible computer and hence can run experiments that

operate on a standard mM PC. To enhance communica

tion, a demonstration copy of MEL can be distributed

without charge for the purposes of nonprofit scientific

communication." The form-based specification language

allows colleagues to unambiguously determine the exact

experimental specification by reading a small number of

forms. I hope that in the future it will become common

place to offer demonstration floppies with reprint requests.

The reader should note that copying a floppy costs about

as much as photocopying 10 pages of a manuscript.

The eighth concern is rapid exploratory data analysis

of experiments. Since experiments must often be exten

sively pilot tested, it is important to go rapidly from run

ning the experiment to graphs, tables, and ANOY As of

the data. MEL is an integrated system that includes

graphics, descriptive statistics, and inferential statistics.

Minutes after running the subject, the data can be plotted

on the screen for the user to determine if the results are

reasonable. Individual subject's plots can be examined to

determine if all the subjects understand the task and are

performing adequately. Reaction time distributions can

be plotted to determine if long responses are biasing the

results and should be fIltered out. ANOY As and planned

comparisons can be used to determine whether effects are

significant. Analyses can be set up for automatic execu

tion as soon as the subject completes the experiment. Data

can be exported to other statistical packages if additional

analyses are needed.

The ninth concern MEL alleviates is that it allows grad

uate students to quickly and cheaply set up experimental

laboratories on their own, even if they have limited re

search funds.f An unfortunate problem with the current

system for graduate training is that most researchers are

trained in the best laboratories, where students have far

better hardware and technical support than they can ex

pect to have when they set up their own laboratories. The

result is that new junior faculty researchers often spend

most of their first year trying to set up their own labora

tories. Danny Kahneman, University of California,

Berkeley, has described the usefulness of MEL to gradu

ating students, stating that "MEL turns a PC equipped

with fairly standard features into a first-rate professional

laboratory tool. Every young Ph.D. trained in MEL will

therefore be able to set up a functioning laboratory with

no delay and very little cost" (personal communication).

AUfHORING EXPERIMENTS

To author an experiment in MEL, a researcher fills in

the blanks on a series of forms. There are seven steps to

getting an experiment ready to run. First, the names of

the independent and dependent variables must be listed.

Second, the experiment must be outlined with sample dis

plays drawn, the stimuli listed, and responses specified.

Third, an outline of the forms needed for the experiment

must be generated. Fourth, the forms are to be ftIled in.

Fifth, the skeleton experiment is tested. Sixth, the stimu

lus lists for the experiments are added. Seventh, all the

MICRO EXPERIMENTAL LABORATORY 209

data storage is checked to verify the conditions and data

logging of the experiment.

MEL allows incremental refinement of experiments.

The experimenter first generates the simplest possible ex

periment (e.g., one having only one stimulus with a sin

gle response). After the simple version of the experiment

is running correctly, the additional complexity is added

incrementally (e.g., both responses, all the stimuli, and

the instructions are added). Incremental refinement speeds

program generation (see Yourdin, 1975) by limiting the

number of new specifications at each stage. It also pro

vides the author with a rapid, top-level view of how the

experiment will look to allow assessment of the appropri

ateness of the paradigm. MEL makes incremental refine

ment easy due to the speed of going from code to a run

ning experiment. Conversion of a set of forms into a

running program occurs in less than 10 sec. A switch from

a running experiment back to editing the forms occurs

in I sec.

Filling in Forms

Most experiments can be implemented by filling in a

small number of forms. The author types in the blanks

of the forms. This form of human-computer dialog has

been found to be easier to learn and faster to specify than

command language or menu-based dialogs (e.g., Ogden

& Boyle, 1982). The blanks in MEL provide psycholog

ically meaningful key words to prompt the experimenter

to fully specify an experiment. Many of the blanks are

filled in automatically with default values. By pressing

a help key (Fl), a description of the effect of that field

is displayed. If the blank has a fixed number of options,

the author can press the "+" key to sequence through

the list of possible options for the form (e.g., pressing

the "+" key on the "FOREGROUND COLOR" field

will display "RED," "GREEN," etc.). The author needs

to type very little to specify a complete experiment. A

complete choice reaction time experiment can be im

plemented with as few as 96 keypresses. (Note that a sin

gle line of text is 80 characters.)

To specify a typical reaction time experiment requires

filling in four types of forms. The EXPERIMENT form

specifies the independent and dependent variable names,

the abstract, and the major events. The BWCKS form

specifies the number of blocks, the block conditions, and

the block events. The TRIALS form specifies the num

ber of trials, the trial conditions, and the trial events. The

INSERT form specifies the list of conditions and the

stimuli for the experiment. Figures 1-4 show the basic

four form types as they would be filled in for a four-choice

reaction time experiment.

The forms in Figures 1-4 specify the choice reaction

time experiment. The numbers with square boxes in

Figures 1-4 provide labels to simplify explanation. In the

following text, the numbers with square brackets around

the number refer to the labeled blank in the figures. The

210 SCHNEIDER

reader is encouraged to read each paragraph completely

and then examine the indicated blanks of the forms. The

underlined text on the form illustrates where the experi

ment author can enter information. The blanks without

squares are defaulted and were not typed by the author.

The EXPERIMENT form (Figure 1) includes the author's

name [1], experiment abstract [2], independent variable

name [3], and dependent variable name [4]. The experi

ment events include an orientation frame [5], blocks [6],

and a goodbye frame [7]. The BLOCKS form (Figure 2,

top) includes a comment describing the BLOCK [8], the

number of blocks [9], and the block events [10]. The

TRIALS form (Figure 2, bottom) contains a com

ment [11], number of trials [14], and trial events [17 and

18]. In addition, the trial form indicates whether error

trials are to be rerun at the end of a trial [16].

MEL provides a convenient method for specifying,

selecting, and utilizing stimulus lists. The method uses

inserts to insert text and parameters in forms before they

are executed. Most experiments require that stimuli be

selected from a list to be presented as changing stimuli

embedded in a series of displays that are fixed. For ex

ample, in a choice reaction time experiment, there may

be four displays, each of which includes the words' 'push

button" and one of the letters "a," "b," "c," and "d."

In MEL the author could complete four separate frames

for the four stimuli. However, this would be time

consuming andmay lead to errors. With inserts, the author

can type only the stimuli or parts of the display that vary

from trial to trial. The author can also identify the inserts

by indicating to what condition of the independent vari

able each stimulus belongs. This is done by the use of

slots. Each stimulus set has a number of slots. The IN

SERT form [19] (Figure 3) lists the condition letter pairs

for the choice reaction time experiment. A number [20]

encodes the condition number that is logged for later anal-

r=l:mB) :oa~;II;13a4iax"'j(mllel;~"i'1
[!] AUTHOR Bill JaJIlllS CREATlOtl DATE 18-31-81 LAST UPDATE 11-112-81

FILES: EXP cJoicert DATA cJoicert ItlSERT choicert ItlCLUDE

r!:
BACKUP DISK VOLUI1E DEBUG l101'IIllll SPARE

ABSTRACT This is a basic cJoice reaction til'le lll<Pl!1'illlmt. n.. subject
perfoms 2 blocks of 4 tials in a 4 cJoice reaction til'le task in which

tI.. subject ~ tim letter of tim stilllUllls. n.. subject receiues

aCCl.!1'ilC'l and reaction til'le feedback.
tlAIlES OF: BLOCK ItlDEPEtlDEtlT VARS 1: 2:--- 3:--- 4:---

<to be logged for later analysiS> 5:== £,:--- 7:--- 8:---
BLOCK DEPEtlDEtlT VAR IABLES 1: 2: 3: 4:

{logs as ACcuracy,SElection , an 5: ~== 7:== 8:==
TRIAL INDEPEIIDEtlT VARIABLES l:sti"lUJII 3 ___ 3:___ 4:___

{to be logged for later analysiS> 5 : ~ •___ 7:___ 8:___
TR IAL DEPENDENT VAR IABLES 1: 4 2: 3: 4:

{logs as ACcuracy,SElection, an 5:__ &:== 7:== 8:==

~
EVENT TYPE FORI1 ID COI1I1ENT IlISC. INSERT FIELD

1 fr_ _1__ welcone to subject
2 block _1__ peri'orn 2 blocks

3 f....... 5__ thank subject. goodbye

Figure 1. Sample EXPERIMENT form for labeling the experiment, labeling the indepen
dent and dependent variables, and listing tbe top-level events of tbe experiment. The ex
perimenter programs an experiment by filling in blanks. The words in capital letters iden
tify the function of ~h blank. The underlined text represents potential experimenter input.
The blanks with square boxes were typed by the experimenter. The other blanks were fdled

in as defaults by tbe system. See the text for a description of each of the blanks that the
experimenter typed in.

j
imBl .:I!t1H$"'1Qg!lII[(iUlIl;~.i1t

8 COIlI1ENT do 2 bl of trials

BLOCK INSERTS SEQUENCE I1lJI1e NUI1BER OF BLOCKS 2 9
VALUES OF BLOCK INDEPENDENT VARS 1: 2: 3: =-L:..r.:---I
{to be logged for later analysis}5: £,: 7: 8:=::--_1

EVENT TYPE FORII ID COI1MENT I1ISC. INSERT FIELD

{
I fral'le 2 block or ientatlon

10 2 trial 1 do 4 cJoice HI ----------1
., ·1

11 COI1I1ENT 13

TRIAL INSERTS 1 12 .~I"""'Ih:iNUI1BER OF TRIALS 4 14
VALUES OF TRIAL PENDENT VARS I:Ul} 15 2: 3: ~:.;J;---I
TO BE LOGGED FOR LA~E ALYSIS 5: £': 7: ,8: ,
RERUN ERROR TR IALS no 16
EVENT TYPE FORI1 ID COI1I1ENT I1ISC. IItSERT FIELD

1 t~ 3__ warning sti". get ready
2 fr_ 4__ present probe.yet resp.

Figure 2. Sample BLOCK (above) and TRIAL (below) forms. These specify the selec
tion of INSERT stimuli for the block/trial, the number of blocks/trials, the values of any

block/trial variables, and the events for the block/trial.

MICRO EXPERIMENTAL LABORATORY 211

Figure 3. Sample INSERT form lists the independent variables and conditions

for each stimulus that are used during each trial. In this case, the inserts have

two slots separated by a "\ " character. The first slot gives the number of the

condition, the second the stimulus for that condition.

Figure 4. Sample FRAME form specifying how to display, how to coDect the

response, and what to display. Thisspecifies theprobe display for a choice reaction

time experiment in which the subject sees the words "push button" and a letter

(determined by the trial insert slot 2 "{T2}") on each trial (see text for details).

ysis. A letter [21] designates the stimulus that will be dis

played. The insert "2\b" indicates a condition 2 trial in

which the "b" stimulus is displayed. The selection of

trial inserts is specified on the trial form. The inserts can

be used on any form to either display text or set parameters

on the form (e.g., the duration of a display).

The TRIALS form (Figure 2) specifies what stimuli to

select for the trial, how to select the stimuli, and to what

values the independent variables should be set for the trial.

The TRIAL INSERT blank [12] specifies from which IN

SERT form to select the stimuli (in this case, from IN

SERT 1). The stimuli are to be selected at random without

replacement [13]. They can also be selected in a fixed

order. The first trial's independent variable is set to the
first slot of the selected stimulus [15]. The insert slot is

designated by the input" {TI}." The letter, "T," indi

cates that this insert was selected on a TRIALS form. The

number" 1" indicates the slot of the selected stimulus.

Thus, if the stimulus selected for this trial is "2\b," the

{TI} is a "2" and {T2} is a "b." MEL also allows in

serts to be selected on BLOCK, FRAME, QUESTION

NAIRE, TEXT, and SUBJECT (for between-subject vari

ables) forms.

The FRAME form (Figure 4) specifies the experimen

tal display, response collection, and feedback. There are

many blanks on this form that provide options to control

the display presentation and response collection. For a

choice reaction time experiment, the FRAME form would

specify the probe stimulus. The FRAME form specifica

tions for displaying the text include the START LINE of

the text [22], ERASE [23] of the previous display, the

FOREGROUND [24] and BACKGROUND [25] color,

and the DURATION [27] in milliseconds.

The FRAME form specifies input responding, includ

ing the following: the input will be a single keypress [28];

the display will TERMINATE on the response [29] or

duration, whichever comes first; the acceptable

RESPONSE keys are "abcd" [30]; and the correct an

swer is determined by the trial insert slot 2 "{TZ}" [31].

If the selected insert on a trial were "2\b," then the trial

insert slot 2 would be "b," and thus the correct answer

for the trial would be "b." The FEEDBACK specifica

tion "accuracyHone+rt" [32] indicates that the subject

will receive accuracy, tone, and reaction time feedback

displays. The dependent variable to be logged for later

analysis [33] is the "resp" variable. This causes each trial

to log the variables of "respRT" for the reaction time,

"respAC" for the accuracy, and "respSE" for the

response key.

The FRAME form also includes what to display. The

text "push button" [34] will appear in red (FORE

GROUND COLOR [24]) on the 10th line (see START

LINE [22]) of the screen centered (see CENTER [26]).

The trial insert slot 2 "{T2}" [35] will appear centered

on the 11th line. If the selected insert on a trial were

"2\b," the subject would see a display with "push but

ton" centered on the 10th line and "b" centered on the

11th line.

The FRAME form allows inputs from typed strings,

computer mice, and external hardware (e.g., a voice key).

Graphics can also be specified (see below). The display

can be output so that it is blinking, is in multiple colors

on color monitors; or is in reverse video, highlighted, or

underlined on monochrome monitors. The display out

put can be synchronized to the refresh cycle of the dis

play monitor, and the entire screen can be blanked while

212 SCHNEIDER

the characters are being written so the subject does not
see the characters being sequentially written.

Figures 1-4 showthe specifications of the core proce
dure for a choice reaction time experiment that required
the filling in of five forms. A completeexperimentwould
add orientation displays, requiring four FRAME forms.
The set of formsprovidesa concise, exact, humanly read
able description of an experiment.

Code Generation

After the authorfills in the forms in Figures 1-4, press
ing the generate key (F3)causes MELto checkthe specifi
cations for consistency across formsand to write the code
for the experiment. MEL incorporatesan expert system
like set of rules to verify the consistency of the experi
ment. For example, if the author specified three indepen
dent variables for each trial and only two had been set
on a trial, MEL explains the error and positionsthe cur
sor on the TRIALform wherethe additional variable must
be added. If the author specified a display duration that

is less than a single refresh of the display monitor
(17 msecfor color displays and 20 msecfor monochrome
displays), MEL points out that suchdisplaysare not pos
sible for standard displays. After the checks have been
performed, MEL writes the source code for the ex
periment.

MEL converts the psychologist'sform description into
code, appropriately translating meaningful names into
sourcecodecommands andparameters and reordering the
information to producethe appropriate sequencing of com
mands to maintainprecision timing of events. Computer
source code is necessarily linear and often involves
specifying commands withparameters that seemarbitrary
to the novice user. In contrast, the forms are organized
into conceptual categories with meaningful names.

MEL createscodethat is syntactically correct. The code
passedto the compiler generally compiles without errors.6

One of the thrills of using MEL is when a user authors
his/her first experiment and writes, via automatic code
generation, a 200-line program without compiler errors
on the first pass. This is something I doubt that I ever

did using the subroutine method of experiment genera
tion. With MEL, this is now a routine practice for new
undergraduates in the laboratory.

Graphics

In manyexperimentsit is importantto provide graphic
stimuli to the subject. MEL supports a full range of
graphicscommands that will displayon over 30 graphics
adapters, including the ffiM standards of CGA, EGA, and
VGA graphics boards. Experimenterscan either specify
graphics with Turtle-like graphics primitives (as in the
Logo language) or import drawings that were drawn or
digitized with paint programs for the PC. These can be
intermixed with the text displayed with FRAME forms.
On machines withadvanced display controller cards (e.g.,
ffiM EGA or VGA), the color palette can be remapped
and imagescan be placed on virtual pages of the display
board to enablerapid (Y60 of a second) full-screen display
changes. Thisallows tachistoscopic presentation of stimuli
and complete controlof the sizeand colorof the displayed
images.These advancedcards also support a limitedani
mationcapacitythat can be usedfor studiesof perceptual
movement and shape transformation.

Figure 5 illustratesthe use of graphics for a mental ro
tation experiment. Cooper's (1975) subjects compared
polygons rotated at increments of 600

• In MEL single
character commandscan move a Turtle around the dis
play, making shapes. For example, to draw a circle, the
commandswould be "HM150,120 SC100" to Hide the
Turtle, Move to a point on the screen (150 horizontal,
120vertical), Showthe Turtle, anddrawa Circleof radius
100 points (see Figure 5). To draw a polygon, the com
mand is Fill Polygon with the move commands for the
pointsof the polygon withinparentheses ["FP(MI09,I04
... M1l2,163)"; see Figure 5].

Code for Complex Operations

Experimentscan require complexdisplay and calcula
tion requirements that necessitate writing of computer
source code. An important feature of MEL is that ex
perimenterscan intermix their code with code generated

Is the image on the right a rotated version of the one on the left?

Figure 5. Example graphic display for Cooper's (1975) mental rotation experi

ment. The display contains text and graphics. This represents a screen dump from

an mM EGA graphics display card. See text for details.

MICRO EXPERIMENTAL LABORATORY 213

CODE FORM FOR CIRCULAR DISPLAY

! Set radius of ring lased on visual angle, points and length of monitor

x ring =TAN(FLOAT(visual_angle»*FLOAT(view_distance) * x-points!x_length

y-ring =TAN(FLOAT(visual_angle»*FLOAT(view_distance) * y-points!y_length

! Set X and Y positions of the 16 points of the circular display

FOR i = 1 TO 16 DO

BEGIN
clock angle = FLOAT(i) * 22.5
x[i] ~ x center + ROUND(sin(clock_angle) * x ring)

y[i] =y:::center - ROUND(cos(clock-.angle) * y:::ring)

END

! Place the letters in the letter array and randomly permute the letters

DIVIDE INSERTS (letter, 'A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P')

PERMUTE STRING (letter. 1.16)

! Set character rotation, width, height. and slant

GRAPHICS_TEXT(O,char_width,char_height,O)

! Set colorA to black. write characters sequentially in black (invisible)

GRAPHICS COLOR(colorA)
SET PALETTE(colorA.black)
FOR-i ~ 1 TO 16 DO GRAPHICS_DISPLAY(x[i].y[i],letter[i])

! Wait till display refresh at top of screen. turn all char white

WAIT TOP
SET l'ALETTE(colorA.white)

SAMPLE DISPLAY FROM EGA MONITOR

:1"
......~

Q

EN
".]\.{

Figure 6. Sample code (top) and resulting display (bottom) for positioning characters

in a circular display with a given character size and retinal distance from the fixation cross.
The code positions each character on a 640 x 350 pixel grid and writes the characters
individually in black so they are invisible and then turns all the characters to white to ex
pose them simultaneously. The lines beginning with "!" are comments. MEL language key
words and function name are in capital letters; the user-defmed variable names are in

lowercase.

by MEL. This allows the use of forms to generate the

routine code for most randomization, data logging, stimu

lus selection, presentationof orientation displays, response

collection, and feedback. The experimenter adds code to

perform nonroutine display operations, branching, and

calculations. A typical complex experiment may combine

50 lines of code written by the experimenter with 500 lines

written by MEL.
MEL supports a Pascal- or BASIC-like language, pro

viding most of the flexibility available in standard com-

puter languages.7 Experimenters who have learned a stan

dard computer language such as Pascal, BASIC, or

FORTRAN can learn to write in the MEL language in

a day. MEL supports over 200 commands, including

multiple variable types (e.g., REAL, INTEGER,

ARRAY_ OF _STRING), control statements (IF, FOR,

REPEAT), structured coding (BEGIN, END), input/out

put commands (READ, WRITE), functions (SQRT,

LOG, COS, ARC_TAN), stimulus output (DISPLAY,

CLEAR, TONE), graphics (LINE, FILL_ARC,

214 SCHNEIDER

SET _PALETTE, GRAPHICS_FONT), timing
(WAIT, LATENCY, TIME_RESOLUTION), arith

metic (+, -, *, /, REMAINDER), statistics (SUM,
MEAN, STANDARD_DEVIATION), randomization
(PERMUTE, RRANGE, RANDOM_STIMULUS),
data logging (TRIAL_VAR, LOG_TRIAL), special
input/output (PORT_IN, ARRAY_PORT_OUT),
and system-maintained variables (ELAPSED_ TIME,

SUBJECT_NAME, TRIAL_NUMBER).
Figure 6 illustrates the use of code to place 16 charac

ters on a clock face so all the characters are at a fixed
retinal locus from the center and are presented on a sin

gle screen refresh. This code is for a display controller
that supports changing the colors of pixels (i.e., dots) on
the screenvia alteringthe color palette(i.e., a set of num

bers in EGA or VGA display controllers that set dots with
a given color designation to a specific hue). To accom
plish simultaneouspresentation of all the characters, the
characters are written in black first; then when the dis
play monitor is at the top of the screen, all the characters

are changed from black to white.

Text Comprehension

The text comprehension facilities in MEL allow easy
measurement of readingtimes. Theexperimenter can limit
and record the reading of a page, line, phrase, or word.
The subject presses a key to present the next unit of text
on the display. Words or phrases can be presented either
on a moving window (i.e., individual words or phrases

are made visible as they would appear in normal read
ing) or in a rapid sequential visual presentation (RSVP;
i.e., individual words or phrases are presented centered
on the screen). The resultingresponses showa close rela
tionship to eye movement reading times (see Just, Car

penter, & Woolley, 1982). To author a text comprehen
sion experiment, the author fills in a TEXT form
indicating the type of display format(i.e., page, line, mov
ing window, RSVP), the maximumdisplay time per unit
of text, and the text. MEL then presents the material for
the maximum display time or until the subject responds.
The reading time for each unit is recorded for later
analysis.

Text comprehension experimental procedures can be
combined with other types of procedures. For example,
one could load up short-term memory with three to five

digits before presenting the text and recording reading
times. To study priming, one could present the text with
a TEXT form and then examine the effects on priming
in a lexical decision experiment specified with a TRIAL
and FRAME. Similarly,one mightpresent sometext and

then use QUESTIONNAIRE forms to measure text com
prehension.

Questionnaire Experiments
The questionnaire facility in MEL enablesrapid gener

ation and administration of computer-controlled question
naires. MEL supports bipolar, multiple-choice, open
ended, and matching questionnaires. Different question

types with different numbers of alternativescan be inter
mixedin any order. Computeradministration of question
naires eliminates the hand coding of questionnaire data
that occurs in paper-and-pencilformat questionnairesor
the inflexibility and potential for subjectcodingerrors that
occur whenusingcomputer-readable answersheets. Com
puter administration of questionnaires provides many op
tions not available in paper-format questionnaires. Some

of the questionnaire features provided in MEL include
recording the reading time, returns, andchangesto a ques
tion; random ordering of the questions and alternatives
between subjects; limiting the time any question can be

examined; incorporating color graphic images; optional

forcing the subjects to answer each questionsequentially
and controlling whether they can return to a question;
branching to questionsbased on a response to a previous
question; subject-controlled priority marking so the sub
ject can label questionsfor review; optionalanswer feed

back; and immediatescoring of responses. The question
nairescan be combinedwith real-timeexperiments or text
comprehension experiments. For example, subjectscould
be givenhyperactivity questionnaires and then givena test

of how well they can focus attention.

DATA ANALYSIS

MEL incorporates a variety of analysis options to al

low rapid generation of graphs, tables, and analyses of
experiments. Outputoptions includeline and bar graphs,
multidimensional tables, lists, group tests, correlations,
regressions, and ANOVAs. Data can also be exported to
standard statistical programs, such as BMDP, SPSS,
SASS,and Power Stat, and to spreadsheet programs, such
as Lotus. The descriptive statistics provide means, me

dians, totals, variance, standard deviations, skewness,
minimum, maximum, number of observations, sum of
squares, proportion, cumulativeproportion, and cumula
tive average. The ANOVAs provide for up to lO-way de
signs, equal and unequalnumbersof observations,nested
designs, repeated measures, fixed and random effects,
general linear model, and planned comparisons.

The analysis system is form based to simplify specifi
cation, reduce learning time, provide self-documentation
of analyses, and allow single-line runningof analyses. An

analysis is specifiedby filling in a series of forms analo

gous to an experiment's being specified in a series of
forms. An analysis is composed of PLOT, TABLE,UST,
GROUP, CORRELATION, ANOVA, and EXPORT

forms. The user interface is similar to the experiment
forms. For example, defaults for routine informationare
pretyped, pressing the help key provides help on each

blank, forms are checked for internal consistencybefore
they are executed, and pressing the generate key causes
the analysis to be performed.

An experimenter can call up previously generated forms
to perform standard analyses. For example, the faculty
supervisor can generate the standard analysis forms used
for a paradigm. Then undergraduate subject runners can

call up the previousforms to performdailyanalyses. The
faculty supervisor can examine the resulting graphs, ta
bles, andanalyses to verifythat theexperiment is proceed
ing as expected. If problems appear (e.g., a subject
responds with too high an error rate), the problem can
be dealt with while the experiment is still progressing.
In fact, with the use of command files, the analyseswill
be executed automatically after the subject completes a
session.

INSTRUCTION WITH MEL

MEL is a powerful research tool that can be used in
undergraduate and graduate instruction. It has been used
in freshman experimental methods courses, graduate
laboratory courses, and research seminars. MEL gives
undergraduates theability to modify and develop theirown
experiments even in their first laboratory course. In many
psychology methods courses,students get boredafter run
ning half a dozen canned experiments. With MEL, un
dergraduates can develop and run experiments they de
sign themselves. Havingto designone's ownexperiment
makes many abstract concepts (e.g., counterbalancing,
subject assignment, control, number of observations,
statistics) become much more concrete.

The amount of time it takes to learn MEL dependson
the complexity of the experiments being executed, one's
computer expertise, and the availability of other
knowledgeable users. MEL is much easier to learn than
traditionalprogramming languages. A student taking an
introductorycomputer course at the University of Pitts
burgh typically spends 160 h in class, reading, and
programming machineproblems. Learningto author ex
periments in MEL is estimated to require a total of 2 h
for the student to run and analyze canned experiments,
8 h to modify experiments, 16 h to generate simple ex
periments and do inferential statistics, and 25-50 h to
producenovelexperiments requiring code."Introductory
laboratorycoursescan use the system,allocating 2 to 8 h
to learn the system,whereasan advanced labmay require
20 h. These estimates are provided to give the reader a
ballpark estimate of howmuchtimeis needed. About two
thirdsof the estimated time should be allocated for hands
on experience withthe computer. If machines are limited,
studentscan often work in pairs with little loss of learn
ing, assuming they take turns using the computerand do
not proceed until both studentscan perform the task. If
the system is used in a classroom, it is critical that the
teaching assistants knowMEL fairly well(e.g., have40 h
of experience)and are availableas consultants in the lab
room while students do the exercises.

MEL provides seven aids to ease learning of the sys
tem and to facilitate using the system for undergraduate
instruction. First, the systemis form based and provides
help along the way. After students have learned a few
basics about editing, the experimentsgenerally compile
and run withouterrors. Students spendmostof their time

MICRO EXPERIMENTAL LABORATORY 215

learning the structure of experiments and verifying that
the experimental procedure executes as intended.

The secondlearning aid is that computer tutorials take
students step-by-step through learning the system. The
tutorials present instructionsand explanations to the stu
dents whiletheyare executingMEL programs. Learning
from the tutorials is similar to havinga very knowledge
able friend introduce the package and explain each op
tion. The tutorialsalso verifyevery keystroke to keep the
students from getting into trouble and indicate when an
inappropriate key has been pressed. The tutorials include
editingforms; generating simplereactiontime, question
naire, text comprehension, and graphics experiments;
drawinggraphicimages;precise timingof tachistoscopic
displays; randomization and counterbalancing; graphic
and descriptive statistical outputof data; inferential statis
tics for correlations, t tests, ANOVAs; and incorporat
ingcodein experiments. There is a manual thatgoesalong
withthe tutorials to describe whatwillbe learnedandpro
vide homework exercises.

The thirdaid is providedby the manuals/text booksthat
describe how to use the systemas a psychologist. There
are two manuals. The User's Guide is written for under
graduate andgraduate students withminimalcomputer ex
perience. It describes howto authorexperiments in MEL,
researchmethods of using computers in psychology, test
experiments to verifythe procedure, dealwithhuman sub
jectsincomputerized experiments, analyze data,andsched
ule subjects. Experimental procedures that are frequently
used in psychology experiments are described. Runnable
source code is provided for procedures, including ran
domizing stimuli, counterbalancing, tachistoscopic dis
plays, dual task procedures, stimulus onset asynchrony,
voicekeyinput,andup-downpsychophysical procedures.
The Language Reference Manual (over200 pages) details
all thecommands in the language andprovides sample pro
gram segments. This is designed for advanced users who
have previously learned some programming language, such
as BASIC, Pascal, FORTRAN, or C.

The fourth aid is an experiment library with a labora
tory manual. The librarycontains 20 experiments, includ
ing manyclassics. These are includedin source fonn so
that students mayadaptthe experiments as exercises. The
laboratory manual includesexercises to help the student
understand the phenomena beingtested. The experiments
include sensory icondecay, short-termmemory, sentence
processing, problem solving, verballearning, mnemonics,
personality tests, free recall, recognition memory, human
factors design, reading comprehension, blind spot map
ping, visualsearch, automaticity, mental rotation, signal
detection, organization of memory, and spacingeffects.

The fifth aid is the provision of computer tests that ex
amine students' knowledge of the MEL. To be a skilled
researcher, one must know the precision and flexibility
of one's research tools. The tests are provided as MEL
questionnaires. They assesshowwella studentknowsthe
systemand providea laboratory director an objectiveas-

216 SCHNEIDER

sessmentof whether students shouldbe trusted to author
experiments on their own.

The sixth aid is a public domain experimental library
of experiments that run with MEL. Researchersare en
couraged to submitexperiments to the library. These are
distributed at cost and may be copied freely. A depart
ment can collect a largeexperimental librarythat students
can use to demonstrate experiments on themselves and
to develop extension experiments.

The seventh aid is an instructional tips pamphlet that
provides comments on how to set up an undergraduate
or research laboratory. Thepamphlet includes suggestions
on hardware, software, special interfaces (e.g., voice
keys), subjectbooths, readings, and a collectionof com

ments from other instructors.

ADVANCED FEATURES

MEL is an openarchitecture, making it possible to com
bine MEL code withother codeto enhanceits operation.
MEL can call subroutines written in standard program
ming languagessuch as Pascal, C, assembly, and FOR
TRAN. This simplifies supporting special-purpose de
vices. For example, a researcher might want to
incorporate a special display controller, eye movement
monitor, and brain wave recording. This can be done by
writing device drivers in a standard programming lan
guageand callingthese routines fromwithinMEL. Writ
ing device-driven coderequires having a skilled program
mer available. Sample programs are provided to illustrate

how to extend the MEL architecture.

COMPATIBILITY AND EQUIPMENT
REQUIRED

MEL will run on most ffiM PC, XT, AT, or PS/2 or
compatible computers. The minimal subjectdevelopment
station is an ffiM PC with384Kof memory, a floppy disk
drive, and a monochrome monitor. The recommended
subject station is an ffiM PC with 640K, a floppy disk
drive, EGA graphics adapter, and monochrome or color
monitor. The recommended development/analysis station
is an ffiM XT with 640K, floppy disk, hard disk, EGA
graphicscontroller,monochrome or colormonitor, float
ing point chip, and dot matrix printer. MEL will support
a pen plotter for plots if it is available.

MEL operates on most ffiM PC clones. It has been
testedon all of theffiMproduct lineand individual models
from LeadingEdge, AT&T, Zenith, Radio Shack (other
thanthe2000),Compaq, andPC Limited. However, there
are many off-brand clones, and some are not compati
ble. A researchershouldrun the demonstration programs
for MEL to verify compatibility.

MEL is compatible with a wide range of display con
trollers. Over 30 display controllerboardsare supported.
The compatibility with the ffiM line of controllerboards
includes the CGA, EGA, and VGA cards. The CGA
boards provide only very limited graphics support. The

EGAand VGAboardsprovidesupportfor remapping the
color palette and writing to virtual pages allowing rapid
display changes.

SUMMARY

MEL is a third-generation integrated software system
for experimental research. MEL is optimized to take full
advantage of the 640K memory, hard disk, and graphics
adaptors commonly availableon ffiM PC computers. It

incorporatesfourth-generation programming techniques
and a forms-based interface that are not availablein any
previously reported psychological research packages.
MEL is designed for executing professional-level psycho
logical research. MEL is very flexible and can program
mostexperiments withoutcode, and nearlyall with some
code. MEL maintains millisecond precisionof timing in
tervals. MEL is limitedto paradigms that have an inter
trial interval in whichsomevariability (e.g., 0.1 sec) can
be tolerated. MELenables rapidexperiment development,
providesexperimental precisionand speed, allows great
flexibility and range of experimental techniques, imple
ments quality control assurance, is usable by nonprogram
mers, reducestrainingtime neededto learn to author ex
periments, facilitates communication of experimental
procedureswithcolleagues, speedsdata analysis, and al
lows researchers to quickly and cheaply set up profes
sionallaboratories.Experiments are specified in MELby
filling in forms. Reactiontime, text comprehension, and
questionnaire experiments are supported. MEL incor
porates an analysis package providing graphs, tables, lists,
inferential statistics, and data export to other statistical
packages. Learning the system is facilitated by a forms
interface, computer tutorials, systemmanuals, a labora
tory manual with sample experiments, student knowledge
tests, a public domain experimental library, and an in
structional tips pamphlet. MEL is an expandable system
allowing incorporation of codewrittenin otherlanguages.
The systemis compatible with most ffiM PC clones and
graphics controllers.

MEL is a tool thatallows a psychology research labora
toryto utilize stafftimeto do psychological research rather
than expending a great deal of effort training program
ming skillsand developing software. The designof MEL
incorporates the lessons learned during 15 years of ex
perience in computerized psychological research over
three generationsof computerequipment. The speedand
ease of use of the system can empower students and
researcherswith minimal computerskills to develop, ex
ecute, and analyzecomplex computerized experiments in
short periods of time.

REFERENCES

BUTLER, D. L. (1988). A critical evaluation of software for experiment

development in research and teaching. BehaviorResearch Methods,
Instruments, & Computers, 20, 218-220.

COOPER, L. A. (1975). Mental rotation of random two-dimensional

shapes. Cognitive Psychalogy, 7, 20-43.

EAMON, D. B. (1982).CEDATS:A cognitiveexperimental designand

testing system. Behavior Research Methods & Instrumentation, 14,
142-145.

JUST, M. A., CARPENTER, P. A., '" WOOLLEY, J. D. (1982). Paradigms
andprocesses in reading comprehension. Journal ofExperimental Psy
chology: General, 111, 228-238.

OGDEN, W. C., '" BOYLE, J. M. (1982). Evaluating human-computer
dialog styles: Commandvs. form/fill-in for report modification. In

Proceedings ofthe Human Factors-26th AnnualMeeting (pp. 542
544). Santa Monica, CA: Human Factors Society.

OSGOOD, G. (1985). Apple-Psych software program (Report No.6). Eu

gene, OR: University of Oregon, Cognitive Science Laboratory.
OSGOOD, G. (1988). Generalizing the Apple-Psych system. Behavior

Research Methods, Instruments, & Computers, 20, 155-157.

PaLLER, M. F., FRIEND, E., HEGARTY, J. A., RUBIN, J. J., '" DEVER,
J. J. (1982). Handbook for writing procedures (Tech. Rep. selection
code700(242). Indianapolis, IN: Western Electric Distribution Center
(lDC).

POLTROCK, S. E., '" FOLTZ, G. S. (1982). An experimental psychol
ogy laboratory system for the Apple II microcomputer. Behavior
Research Methods & Instrumentation, 14, 103-108.

POLTROCK, S. E., '" FOLTZ, G. S. (1988). APT PC and APT II: Ex
periment development systems for theffiM PC and AppleII. Behavior
Research Methods, Instruments, & Computers, 20, 201-205.

SCHNEIDER, W., '" SCHOLZ, K. W. (1973). Requirements for minicom
puter operatingsystemsfor humanexperimentation and implementa

tion on a 4K PDP-8 computer. Behavior Research Methods & In
strumentation, S, 173-177.

SCHNEIDERMAN, B. (1987). Designing theuserinterface: Strategies for
effective human-eomputer interaction. Reading, MA:Addison-Wesley.

SCHOLZ, K. (1972). Computerized processcontrolin behavioral science
research. Behavior Research Methods & Instrumentation, 4, 203-208.

SCHRIVER, K. A. (1984). Revising computer documentation for com-

MICRO EXPERIMENTAL LABORATORY 217

prehension: Ten exercises inprotocol-aided revision (CDC Tech. Rep.
No. 14). Pittsburgh, PA: Carnegie-Mellon University, Communica

tions Design Center.
SMITH, S. L., (1982). User-system interface design for computer-based

information systems (Tech. Rep. ESD-TR-82-132). Bedford, MA:
USAF Electronic System Division.

YOURDIN, E. (1975). Techniques ofprogram structure anddesign. En

glewood Cliffs, NJ: Prentice-Hall, Inc.

NOTES

I. The PDP-lis can addressmuchmore memory, but the compilers
provide very limited support of the extended memory.

2. MEL willoperatewith 384Kwithtwo floppies; however, it is op

timized for 640K with a hard disk.
3. MEL is not appropriatefor tasks with continuous input and feed

back, such as a psychomotor tracking task.

4. The demonstration copiesare limitedto demonstration and do not
allow data collection.

5. This concern was pointed out to me by Danny Kahneman at the
University of California.

6. If theusersaddtheirowncode(seebelow),theymayproducesyn

tactical errors that the compiler will detect.

7. The languagedoes not supportrecursionor record-type definition

as does Pascal.
8. Theseestimates are basedon informal observations at fourtest sites

that have used MEL for instructing undergraduates. Note the variabil

ity is large, withthe standarddeviation beingprobably halfof themean.
The upper limitis typicalof students withoutprogramming experience,
thelowerlimitofstudents whohavehadat leastoneprogramming course.

If the studentsneed only modify previously written code rather than
write the code from scratch, nonprogrammers can usecode after 30 to
tal hours of instruction and practice.

