Behavior Research Methods, Instruments, & Computers
1988, 20 (2), 206-217

Micro Experimental Laboratory: An integrated
system for IBM PC compatibles

WALTER SCHNEIDER
University of Pittsburgh, Pittsburgh, Pennsylvania

Micro Experimental Laboratory (MEL) is a third-generation integrated software system for ex-
perimental research. The researcher fills in forms, and MEL writes the experimental program,
runs the experiments, and analyzes the data. MEL includes a form-based user interface, auto-
matic programming, computer tutorials, a compiler, a real-time data acquisition system, data-
base management, statistical analysis, and subject scheduling. It can perform most reaction time,
questionnaire, and text comprehension experiments with little or no programming. It includes
a Pascal-like programming language and can call routines written in standard languages. MEL
operates on IBM PC compatible computers and supports most display controllers. MEL main-
tains millisecond timing with high-speed text and graphics presentation. MEL provides a sys-
tematic approach to dealing with nine concerns in running an experimental laboratory.

Developers of any software system for experimentation
must trade off considerations of flexibility, learnability,
ease of use, precision, experiment generation time, and
experimental quality control to maximize system perfor-
mance. Incorporation of advances in hardware and soft-
ware technology allow for quantum jumps in terms of sys-
tem performance given the above considerations. The
Micro Experimental Laboratory (MEL) optimizes these
trade-offs within the constraints of personal computers
with 640K of memory, human factors considerations about
interface technology, fourth-generation software technol-
ogy, and the use of automatic programming techniques.

MEL is a third-generation psychology software system
that builds on the lessons learned from earlier program-
ming systems. The first generation of programming lan-
guages in psychology were typically specialized process
control languages working in small memory partitions
(e.g., Schneider & Scholz, 1973; Scholz, 1972) operat-
ing with less than 16K of memory on machines such as
the DEC PDP-8 or the IBM 1800. The second genera-
tion had two major variants. The first was the subroutine
approach, which involved a series of subroutines that are
called from FORTRAN or Pascal programs (e.g., Os-
good, 1985, 1988) running on DEC PDP-11s or Apple IIs
with 64K of usable memory per process.! The second
variant was the stimulus presentation approach (Eamon,
1982; Poltrock & Foltz, 1982, 1988), in which fixed dis-
plays were presented in prespecified orders on Apple II
computers. The orders could be either specified within

Reprint requests can be sent to Walter Schneider, Learning Research
and Development Center Building, 3939 O’Hara St., University of Pitts-
burgh, Pittsburgh, PA 15260. For detailed descriptions of the Micro
Experimental Laboratory software and demonstration floppies, contact
Psychology Software Tools, Inc., 511 Bevington Rd., Pittsburgh, PA
15221 (phone 412-244-1908). The cost of licensing the system varies,
depending on features requested and quantity ordered. Single licenses
are $295 for the student edition, $495 for the professional edition.

Copyright 1988 Psychonomic Society, Inc.

one of three prescribed paradigms, as in CEDATS (Ea-
mon, 1982), or explicitly enumerated, as in APT (Poltrock
& Foltz, 1982, 1988). The subroutine package approach
was flexible but required that graduate students be trained
as programmers and involved long development times to
generate experiments. The stimulus presentation approach
allowed fast experiment specification at the cost of reduced
flexibility and a great deal of typing to enumerate all the
stimuli and the stimulus orderings.

MEL is a third-generation psychology software system
that operates on IBM PCs with 640K of memory and a
hard disk.? The order of magnitude increase in memory
from the previous generation enables much greater user
support in developing, debugging, documenting, and
analyzing experiments. In the 1980s, new software de-
velopment techniques were generated to speed software
creation. These are referred to as fourth-generation lan-
guages, code generators, or automatic programming sys-
tems. These are systems in which the user specifies the
problem in a format that closely matches the application
environment, using terms already known by the user. A
code generator program converts the specification into
more traditional computer source code (e.g., Pascal). Pro-
gram generators can significantly reduce program de-
velopment time compared with conventional program-
ming. MEL incorporates a code generator to execute
routine experimental functions (e.g., stimulus display,
response collection, condition randomization, and data
logging). Many experiments can be done without the ex-
perimenter’s writing any code. If specialized displays or
stimulus randomization procedures are needed, the user
can incorporate code as needed.

MEL incorporates a form-based user interface (see
Schneiderman, 1987) that allows the user to fill in blanks
in forms to specify experiments and request help on ev-
ery blank, if needed. This type of user interface provides
for structured problem descriptions, self-documentation

206

of specifications, and default specifications of parameters,
and it greatly reduces the learning time required to use
the system (see Ogden & Boyle, 1982; Smith, 1982).

MEL is an integrated software system for professional
and student experimental research using IBM PC com-
patible machines. MEL can run nearly all discrete-trial
experimental paradigms (e.g., reaction time, question-
naire, and text comprehension experiments). Discrete-trial
paradigms are ones in which there is a precisely timed
trial followed by an intertrial interval in which some vari-
ability (e.g., 0.1 sec) is acceptable.? The user writes ex-
periments by filling in forms, specifying information in
a manner consistent with the way a psychological re-
searcher thinks about the problem (e.g., by entering in-
dependent and dependent variables, blocks, trials, stimu-
lus lists, questionnaires, etc.). The form specifications are
converted into source code using automatic programming
techniques. The source code is compiled into an object
code. The object code is run, presenting stimuli and col-
lecting responses with millisecond accuracy. The data are
logged for later analysis. The analysis programs produce
plots, tables, lists, and statistical tests (e.g., ANOVAs,
correlations, planned comparisons, group tests). The data
can also be exported to other statistical packages. As an
integrated package, the experimenter fills in a form, and
the information on the form is transmitted to programs
that generate the experiment, compile the code, manage
the data, and analyze the results. All these programs use
the same information, eliminating the need for the ex-
perimenter to retype the information.

MEL was designed to solve nine concerns that are com-
mon in professional cognitive laboratories and were
present in my own laboratory. First, MEL allows rapid
experimental development and modification. Basic re-
search involves exploring the unknown. In my laboratory,
we generally produce and test multiple pilot paradigms
before a procedure clearly illustrates the phenomena of
interest. In second-generation systems of the subroutine
type, experiment generation is probably the most expen-
sive item in completing an experiment, in terms of time
and money. Even with a good subroutine library, a typi-
cal experiment requires 600 lines of code. Software in-
dustry studies show that a professional applications
programmer, on average, generates about 10-65 lines of
debugged and documented code per day (see Yourdin,
1975, p. 143). At 30 lines per day, 160 h of development
time by a professional programmer are required for im-
plementing a new paradigm. In psychology laboratories,
graduate students do most of the experimental program-
ming. The students must first learn to be programmers
and then they can program about one novel paradigm each
semester. The long development time and difficulty of
learning the system have detrimental side effects. Students
often work with someone else’s paradigm, using code they
do not understand.

MEL incorporates automatic code-generation tech-
niques. The knowledge of how to program routine ex-
perimental procedures from psychological specifications

MICRO EXPERIMENTAL LABORATORY 207
is incorporated into a program. MEL writes the program
for the experimenter at the rate of about 100 lines of code
per second. Automatic programming can greatly reduce
the experiment generation time relative to the time re-
quired for the subroutine call approach. In MEL, a typi-
cal paradigm can be developed in less than a day, sug-
gesting a productivity increase of a factor of 20 (8 h vs.
160 h). I have implemented new paradigms in less time
than it took to read the article describing the paradigm.
Undergraduates have generated 600 lines of documented
and debugged code in an afternoon. A graduate student
generated a new paradigm on one computer in about the
same time as it took to recompile and link an old paradigm
using a second-generation subroutine library approach.

The second concern is providing precision and speed
in experiment presentation. The subroutine approach pro-
vides flexibility, but generally requires special hardware
and strict adherence to programming rules. If the ex-
perimenter calls subroutines in an inappropriate order or
performs long-duration calculations at the wrong time,
erroneous timing will result. MEL reprograms the stan-
dard IBM hardware clock to maintain millisecond ac-
curacy. The code generator will produce only debugged
code that maintains the precise order of commands to
eliminate coding timing errors. MEL also cues all pre-
cise timing events in an event table so events are executed
precisely, independent of the time needed to generate the
events or log the data. The event table’s cuing of com-
mands also greatly speeds the output of critical events.
For example, MEL writes characters 82 times faster than
do write statements in Microsoft Pascal.

The third concern is providing flexibility in experimen-
tal procedures. MEL provides greater flexibility than
stimulus presentation packages because the experimenter
is not limited to a prescribed set of paradigms. The form
specifications in MEL are powerful enough to implement
most computer experiments without code. In a survey of
104 experiments published in Perception & Psychophysics
that used computers, Butler (1988) estimated that 70%
could be authored with MEL without writing any code.
In addition, with some code added, MEL can perform
nearly all the experiments that can be run on a PC usi
discrete-trial procedures. If special functions are needed,
the experimenter can write code. MEL includes a Pascal-
like language with special functions for real-time ex-
perimentation. With a few lines of code, an experimenter
can program graphics, interface voice keys, read the po-
sition of the mouse, change character sizes, draw poly-
gons, or calculate trigonometric functions to position
characters. If a student knows no programming, the
faculty member or an advanced student can spend a few
minutes writing the needed code segment to enable a
specialized function. To maintain complete flexibility, the
experimenter can call procedures written in standard lan-
guages such as Pascal, C, FORTRAN, and BASIC.

The fourth concern is quality control assurance. Test-
ing of complex or real-time programs generally takes
longer than generating the programs originally (see

208 SCHNEIDER

Yourdin, 1975). A researcher must carefully test a pro-
gram to verify that the experimental procedure exactly
matches the procedure reported in the method section.
MEL simplifies human checking of the program, verifi-
cation of the conditions of the experiment, and verifica-
tion of the timing of the experiment. To check a student
program using the subroutine method, a faculty supervi-
sor would have to desk check the code and run a series
of test runs on the experiment. In the stimulus presenta-
tion method, a faculty supervisor would have to check
the typing and the ordering of all the stimuli. In APT
(Poltrock & Foltz, 1982, 1988), for example, this involves
checking lists of arbitrary numbers and letters to be sure
that there are no errors. In MEL the critical segments of
a program (e.g., the forms for stimulus presentation and
response collection) are typically specified in two or three
forms. These can be checked in a few minutes, rather than
spending an hour checking the resulting code. The order-
ing of conditions is typically specified on a single blank
to determine how the stimuli are sampled. Stimulus lists
include only the part of the stimulus that changes (e.g.,
the list of words, rather than the full screens including
the words and instructions, as is the case in stimulus
presentation systems). The stimulus list also includes the
independent variable specification to facilitate checking
(e.g., the stimulus ‘“1\CAT”’ may code a condition 1
word stimulus with the word ‘‘CAT”’ in a lexical deci-
sion experiment). The invariant parts of displays (e.g.,
the instructions on the target frame) need only be typed
once. Most important, the code generator and the pro-
grams in MEL have been extensively debugged in the
process of running over 100 studies collecting over a mil-
lion observations of data.

MEL provides debugging aids for internal checking of
variables and precise timing to allow an experimenter to
verify the accuracy of the experiment. MEL verifies that
a valid value is logged on each trial or block. Any miss-
ing value or out-of-range value is flagged, causing ter-
mination of the experiment. The experimenter can set an
option to automatically display or print the trial number
and the trial’s independent and dependent variables at the
end of each trial. This allows verification of whether the
executed trial matches the way the data were recorded.
A single command changes all timing from milliseconds
to seconds. With this option, one can verify that a 20-
msec period is 20 msec by timing seconds with a wrist-
watch. Commands can be entered to simulate respond-
ing so that internal events can be timed (¢.g., measuring
how many milliseconds it takes the computer to put up
12 lines of text). If a program is run in automatic execu-
tion mode, the computer performs either the correct
responses or the random responses, so one can let an ex-
periment run all night to verify that there are no random
subject sequences that can crash the program.

The fifth concern is that nonprogrammers should be able
to generate experiments. A large proportion of the gradu-
ate students and undergraduates who might want to work

in a psychology laboratory have only minimal program-
ming skills. The form-based approach used in MEL can
be quickly learned by nonprogrammers (see below).

The sixth concern is to minimize time and resources
needed to teach researchers to program experiments.
Probably the second largest expense of running a
computer-controlled cognitive laboratory is the cost of
training students. In the second-generation subroutine ap-
proach, new graduate students required 6 to 12 months
before they could be trusted to program a novel paradigm
without someone else helping them or checking the work.
In fact, this cost was so high in the subroutine approach
that when I moved between institutions, the cost of training
a new staff was greater than buying the equipment to set
up the new laboratory. One year’s support for a graduate
student (including indirect costs and tuition) can purchase
5 to 10 IBM PC class machines. MEL reduces training
costs in six ways. First, the system is form based so there
is less to learn. Second, over 20 computer tutorial les-
sons provide a self-study environment in which to learn
the system. Third, there are extensive manuals, which
detail the system for the novice (100 pages) and expert
user (300 pages). These manuals were developed using
protocol-aided revision (see Schriver, 1984), in which the
draft manuals and tutorials are given to novice users by
an independent testing organization. Students learned the
system with only the manuals to aid them. Whenever the
student had difficulty, the manuals were revised. Fourth,
an extensive sample program library provides examples
of how to specify classic experimental procedures. Fifth,
exercises and quizzes are included to extend and assess
student knowledge of the system. Sixth, task diagrams
have been developed to provide a quick reference to using
the system. These diagrams provide a step-by-step list-
ing of goals and actions to specify an experiment. This
type of diagram was developed in industry (see Poller,
Friend, Hegarty, Rubin, & Dever, 1982) and has been
found to greatly reduce training times for learning tech-
nical procedures.

The seventh concern is enhancing communications with
colleagues and exporting experimental procedures to other
laboratories. Easy communication of exact experimental
procedures can improve scientific communication, en-
hance replication, and simplify extension of experiments.
Developments in computer science have been greatly
aided by the advent of standardization of programming
languages. Think how much progress is hindered for an
algorithm to be developed on one campus and not be ex-
ported to another campus. This lack of exportability is
typical in psychology. Currently a program developed on
one campus can rarely be easily run and modified on
another campus. MEL runs on most IBM PC compati-
bles and supports over 30 display controllers. Most psy-
chologists in the United States have access to an IBM PC
compatible computer and hence can run experiments that
operate on a standard IBM PC. To enhance communica-
tion, a demonstration copy of MEL can be distributed

without charge for the purposes of nonprofit scientific
communication.* The form-based specification language
allows colleagues to unambiguously determine the exact
experimental specification by reading a small number of
forms. I hope that in the future it will become common-
place to offer demonstration floppies with reprint requests.
The reader should note that copying a floppy costs about
as much as photocopying 10 pages of a manuscript.

The eighth concern is rapid exploratory data analysis
of experiments. Since experiments must often be exten-
sively pilot tested, it is important to go rapidly from run-
ning the experiment to graphs, tables, and ANOVAs of
the data. MEL is an integrated system that includes
graphics, descriptive statistics, and inferential statistics.
Minutes after running the subject, the data can be plotted
on the screen for the user to determine if the results are
reasonable. Individual subject’s plots can be examined to
determine if all the subjects understand the task and are
performing adequately. Reaction time distributions can
be plotted to determine if long responses are biasing the
results and should be filtered out. ANOV As and planned
comparisons can be used to determine whether effects are
significant. Analyses can be set up for automatic execu-
tion as soon as the subject completes the experiment. Data
can be exported to other statistical packages if additional
analyses are needed.

The ninth concern MEL alleviates is that it allows grad-
uate students to quickly and cheaply set up experimental
laboratories on their own, even if they have limited re-
search funds.> An unfortunate problem with the current
system for graduate training is that most researchers are
trained in the best laboratories, where students have far
better hardware and technical support than they can ex-
pect to have when they set up their own laboratories. The
result is that new junior faculty researchers often spend
most of their first year trying to set up their own labora-
tories. Danny Kahneman, University of California,
Berkeley, has described the usefulness of MEL to gradu-
ating students, stating that ‘“‘MEL turns a PC equipped
with fairly standard features into a first-rate professional
laboratory tool. Every young Ph.D. trained in MEL will
therefore be able to set up a functioning laboratory with
no delay and very little cost’’ (personal communication).

AUTHORING EXPERIMENTS

To author an experiment in MEL, a researcher fills in
the blanks on a series of forms. There are seven steps to
getting an experiment ready to run. First, the names of
the independent and dependent variables must be listed.
Second, the experiment must be outlined with sample dis-
plays drawn, the stimuli listed, and responses specified.
Third, an outline of the forms needed for the experiment
must be generated. Fourth, the forms are to be filled in.
Fifth, the skeleton experiment is tested. Sixth, the stimu-
lus lists for the experiments are added. Seventh, all the

MICRO EXPERIMENTAL LABORATORY 209
data storage is checked to verify the conditions and data
logging of the experiment.

MEL allows incremental refinement of experiments.
The experimenter first generates the simplest possible ex-
periment (e.g., one having only one stimulus with a sin-
gle response). After the simple version of the experiment
is running correctly, the additional complexity is added
incrementally (e.g., both responses, all the stimuli, and
the instructions are added). Incremental refinement speeds
program generation (see Yourdin, 1975) by limiting the
number of new specifications at each stage. It also pro-
vides the author with a rapid, top-level view of how the
experiment will Jook to allow assessment of the appropri-
ateness of the paradigm. MEL makes incremental refine-
ment easy due to the speed of going from code to a run-
ning experiment. Conversion of a set of forms into a
running program occurs in less than 10 sec. A switch from
a running experiment back to editing the forms occurs
in 1 sec.

Filling in Forms

Most experiments can be implemented by filling in a
small number of forms. The author types in the blanks
of the forms. This form of human-computer dialog has
been found to be easier to learn and faster to specify than
command language or menu-based dialogs {e.g., Ogden
& Boyle, 1982). The blanks in MEL provide psycholog-
ically meaningful key words to prompt the experimenter
to fully specify an experiment. Many of the blanks are
filled in automatically with default values. By pressing
a help key (F1), a description of the effect of that field
is displayed. If the blank has a fixed number of options,
the author can press the “‘+’” key to sequence through
the list of possible options for the form (e.g., pressing
the ““+’” key on the “FOREGROUND COLOR”’ field
will display “RED,’” ““GREEN,”’ etc.). The author needs
to type very little to specify a complete experiment. A
complete choice reaction time experiment can be im-
plemented with as few as 96 keypresses. (Note that a sin-
gle line of text is 80 characters.)

To specify a typical reaction time experiment requires
filling in four types of forms. The EXPERIMENT form
specifies the independent and dependent variable names,
the abstract, and the major events. The BLOCKS form
specifies the number of blocks, the block conditions, and
the block events. The TRIALS form specifies the num-
ber of trials, the trial conditions, and the trial events. The
INSERT form specifies the list of conditions and the
stimuli for the experiment. Figures 1-4 show the basic
four form types as they would be filled in for a four-choice
reaction time experiment.

The forms in Figures 1-4 specify the choice reaction
time experiment. The numbers with square boxes in
Figures 1-4 provide labels to simplify explanation. In the
following text, the numbers with square brackets around
the number refer to the labeled blank in the figures. The

210 SCHNEIDER
reader is encouraged to read each paragraph completely
and then examine the indicated blanks of the forms. The
underlined text on the form illustrates where the experi-
ment author can enter information. The blanks without
squares are defaulted and were not typed by the author.

The EXPERIMENT form (Figure 1) includes the author’s
name [1}, experiment abstract [2], independent variable
name [3], and dependent variable name [4]. The experi-
ment events include an orientation frame [5], blocks [6],
and a goodbye frame [7]. The BLOCKS form (Figure 2,
top) includes a comment describing the BLOCK [8], the
number of blocks [9], and the block events [10]. The
TRIALS form (Figure 2, bottom) contains a com-
ment [11], number of trials [14], and trial events [17 and
18]. In addition, the trial form indicates whether error
trials are to be rerun at the end of a trial [16].

MEL provides a convenient method for specifying,
selecting, and utilizing stimulus lists. The method uses

B I
[JeiHor Bit1 Janes
FILES:
BACKUP DISK UOLUME

EXPERIMENT :SPECIFICATIONS H}3

CREATION DATE 18-31-87 LAST UPDATE 11-82-87
EXP choicert DATA choicert INSERT choicert INCLUDE

inserts to insert text and parameters in forms before they
are executed. Most experiments require that stimuli be
selected from a list to be presented as changing stimuli
embedded in a series of displays that are fixed. For ex-
ample, in a choice reaction time experiment, there may
be four displays, each of which includes the words “‘push
button’’ and one of the letters “‘a,”” “‘b,”” “‘c,”” and “‘d.”’
In MEL the author could complete four separate frames
for the four stimuli. However, this would be time-
consumning and may lead to errors. With inserts, the author
can type only the stimuli or parts of the display that vary
from trial to trial. The author can also identify the inserts
by indicating to what condition of the independent vari-
able each stimulus belongs. This is done by the use of
slots. Each stimulus set has a number of slots. The IN-
SERT form [19] (Figure 3) lists the condition letter pairs
for the choice reaction time experiment. A number [20]
encodes the condition number that is logged for later anal-

DEBUG normal SPARE

RBSTRRCT This is a basic choice reaction tine experinent. The subject
perfarns 2 blocks of 4 tials in a 4 choice reaction time task in which

the sub.j the

letter of the stimulus.
and reaction time feedback.

The sub j receives

a
NAMES OF: BLOCK INDEPENDENT VARS
{ta be logged for later analysis}
BLOCK DEPENDENT VARIABLES
{loys as ACcuracy,SElection, RT}
TRIAL INDEPENDENT VARIABLES
{tao be lagged for later analysis}
TRIAL DEPENDENT VARIABLES
{lags as ACcuracy,SElection, RT}
EVENT TYPE FORM ID

COMMENT

1 2:
5: 6:
1: 2:
5:
1:

stinnunlj I
5: d

1:

5:

4:
8:
4.

2:
6:

3
7
3
7 8:
3 4:
7: 8:
3 4!
7 8:
I D

MISC. INSERT FIEL

1 frame 1 weleone to subject
2 block 1 perforn 2 blocks
3 frame 5 thank subject, goodbye

Figure 1. Sample EXPERIMENT form for labeling the experiment, labeling the indepen-
dent and dependent variables, and listing the top-level events of the experiment. The ex-
perimenter programs an experiment by filling in blanks. The words in capital letters iden-
tify the function of each blank. The underlined text represents potential experimenter input.
The blanks with square boxes were typed by the experimenter. The other blanks were filled
in as defaults by the system. See the text for a description of each of the blanks that the

experimenter typed in.

== BLOCKS SPECIFICATIONS
trials

B ACE 1
8 JCOMHENT do 2 blagks

™
BLOCK INSERTS SEQUENCE none NUMBER OF BLOCKS 2|] ’
UALUES OF BLOCK INDEPENDENT VARS 1: 2: 3: :
{to be logged for later analysis}5: 6! 7. 8:
EVENT TYPE FORM ID COMMENT MISC. INSERT FIELD
ml 1 frame 2 block orientation

2 trial 1 do 4 choice RT

7

T0 BE LOGGED FOR LATER_ANALYSIS G: 8:
RERUN ERROR TRIALS @I
EVENT TYPE FORM ID COMMENT MISC. INSERT FIELD
1 frame 3 varning stin, get reads
2 frame 4 be . get

Figure 2. Sample BLOCK (above) and TRIAL (below) forms. These specify the selec-
tion of INSERT stimuli for the block/trial, the number of blocks/trials, the values of any
block/trial variables, and the events for the block/trial.

AGE 1R

%

= g INSERT SPECIFICATIONS
MMENT insert for condition \ letters

MICRO EXPERIMENTAL LLABORATORY 211

Enter inserts, use a "\" between each field in the insert,

A

(XTI

o
4\

o

Figure 3. Sample INSERT form lists the independent variables and conditions
for each stimulus that are used during each trial. In this case, the inserts have
two slots separated by a “\ ” character. The first slot gives the number of the
condition, the second the stimulus for that condition.

—

COMMENT present stimulus

FRAME SPECIF ICATIONS

Y

FRAME INSERT

TEXT begins on next line aim

push button
{23

m
RUENCE none 18 RASE
FOREGROUND COLOR red m BACKGROUND biack CENTER ges unnnon
JDISPLAY TYPE normal 25
INPUT MODE k ENGTH/PORT ¥ TNDEX ANSVERaq TERHINATE respomse|20
nssronss abed [30] aNSuER (123]31
FEEDBACK ao mm L0G DEPENDE RIABLE

continued on page 2

START LINE 23

[X)

Figure 4. Sample FRAME form specifying how to display, how to collect the
response, and what to display. This specifies the probe display for a choice reaction
time experiment in which the subject sees the words “push button” and a letter
(determined by the trial insert slot 2 “{T2}”) on each trial (see text for details).

ysis. A letter [21] designates the stimulus that will be dis-
played. The insert ‘“2\b’’ indicates a condition 2 trial in
which the *‘b’” stimulus is displayed. The selection of
trial inserts is specified on the trial form. The inserts can
be used on any form to either display text or set parameters
on the form (e.g., the duration of a display).

The TRIALS form (Figure 2) specifies what stimuli to
select for the trial, how to select the stimuli, and to what
values the independent variables should be set for the trial.
The TRIAL INSERT blank [12] specifies from which IN-
SERT form to select the stimuli (in this case, from IN-
SERT 1). The stimuli are to be selected at random without
replacement [13]. They can also be selected in a fixed
order. The first trial’s independent variable is set to the
first slot of the selected stimulus {15]. The insert slot is
designated by the input ‘‘{T1}.”’ The letter, “‘T,”’ indi-
cates that this insert was selected on a TRIALS form. The
number ‘‘1”’ indicates the slot of the selected stimulus.
Thus, if the stimulus selected for this trial is <‘2\b,"’ the
{T1}isa 2" and {T2} is a “‘b.”” MEL also allows in-
serts to be selected on BLOCK, FRAME, QUESTION-
NAIRE, TEXT, and SUBJECT (for between-subject vari-
ables) forms.

The FRAME form (Figure 4) specifies the experimen-
tal display, response collection, and feedback. There are
many blanks on this form that provide options to control
the display presentation and response collection. For a
choice reaction time experiment, the FRAME form would
specify the probe stimulus. The FRAME form specifica-
tions for displaying the text include the START LINE of
the text [22], ERASE [23] of the previous display, the
FOREGROUND {24] and BACKGROUND [25] color,
and the DURATION [27] in milliseconds.

The FRAME form specifies input responding, includ-
ing the following: the input will be a single keypress [28];
the display will TERMINATE on the response [29] or
duration, whichever comes first; the acceptable
RESPONSE keys are “‘abed’” [30]; and the correct an-
swer is determined by the trial insert slot 2 ““{T2}"* [31].
If the selected insert on a trial were ‘‘2\b,”’ then the trial
insert slot 2 would be “‘b,”’ and thus the correct answer
for the trial would be ‘‘b.”” The FEEDBACK specifica-
tion ‘‘accuracy +tone+rt”’ [32] indicates that the subject
will receive accuracy, tone, and reaction time feedback
displays. The dependent variable to be logged for later
analysis [33] is the “‘resp’’ variable. This causes each trial
to log the variables of ‘‘respRT’’ for the reaction time,
“respAC”’ for the accuracy, and ‘“‘respSE’”’ for the
response key.

The FRAME form also includes what to display. The
text “‘push button’’ [34] will appear in red (FORE-
GROUND COLOR [24]) on the 10th line (see START
LINE [22]) of the screen centered (see CENTER [26]).
The trial insert slot 2 ““{T2}"* [35] will appear centered
on the 11th line. If the selected insert on a trial were
2\b,”’ the subject would see a display with ‘‘push but-
ton’’ centered on the 10th line and ‘‘b’” centered on the
11th line.

The FRAME form allows inputs from typed strings,
computer mice, and external hardware (e.g., a voice key).
Graphics can also be specified (see below). The display
can be output so that it is blinking, is in multiple colors
on color monitors; or is in reverse video, highlighted, or
underlined on monochrome monitors. The display out-
put can be synchronized to the refresh cycle of the dis-
play monitor, and the entire screen can be blanked while

212 SCHNEIDER
the characters are being written so the subject does not
see the characters being sequentially written.

Figures 1-4 show the specifications of the core proce-
dure for a choice reaction time experiment that required
the filling in of five forms. A complete experiment would
add orientation displays, requiring four FRAME forms.
The set of forms provides a concise, exact, humanly read-
able description of an experiment.

Code Generation

After the author fills in the forms in Figures 1-4, press-
ing the generate key (F3) causes MEL to check the specifi-
cations for consistency across forms and to write the code
for the experiment. MEL incorporates an expert system-
like set of rules to verify the consistency of the experi-
ment. For example, if the author specified three indepen-
dent variables for each trial and only two had been set
on a trial, MEL explains the error and positions the cur-
sor on the TRIAL form where the additional variable must
be added. If the author specified a display duration that
is less than a single refresh of the display monitor
(17 msec for color displays and 20 msec for monochrome
displays), MEL points out that such displays are not pos-
sible for standard displays. After the checks have been
performed, MEL writes the source code for the ex-
periment.

MEL converts the psychologist’s form description into
code, appropriately translating meaningful names into
source code commands and parameters and reordering the
information to produce the appropriate sequencing of com-
mands to maintain precision timing of events. Computer
source code is necessarily linear and often involves
specifying commands with parameters that seem arbitrary
to the novice user. In contrast, the forms are organized
into conceptual categories with meaningful names.

MEL creates code that is syntactically correct. The code
passed to the compiler generally compiles without errors.®
One of the thrills of using MEL is when a user authors
his/her first experiment and writes, via automatic code
generation, a 200-line program without compiler errors
on the first pass. This is something I doubt that I ever

did using the subroutine method of experiment genera-
tion. With MEL, this is now a routine practice for new
undergraduates in the laboratory.

Graphics

In many experiments it is important to provide graphic
stimuli to the subject. MEL supports a full range of
graphics commands that will display on over 30 graphics
adapters, including the IBM standards of CGA, EGA, and
VGA graphics boards. Experimenters can either specify
graphics with Turtle-like graphics primitives (as in the
Logo language) or import drawings that were drawn or
digitized with paint programs for the PC. These can be
intermixed with the text displayed with FRAME forms.
On machines with advanced display controller cards (e.g.,
IBM EGA or VGA), the color palette can be remapped
and images can be placed on virtual pages of the display
board to enable rapid (Y, of a second) full-screen display
changes. This allows tachistoscopic presentation of stimuli
and complete control of the size and color of the displayed
images. These advanced cards also support a limited ani-
mation capacity that can be used for studies of perceptual
movement and shape transformation.

Figure 5 illustrates the use of graphics for a mental ro-
tation experiment. Cooper’s (1975) subjects compared
polygons rotated at increments of 60°. In MEL single-
character commands can move a Turtle around the dis-
play, making shapes. For example, to draw a circle, the
commands would be ‘“HM150,120 SC100”’ to Hide the
Turtle, Move to a point on the screen (150 horizontal,
120 vertical), Show the Turtle, and draw a Circle of radius
100 points (see Figure 5). To draw a polygon, the com-
mand is Fill Polygon with the move commands for the
points of the polygon within parentheses [‘FP(M 109,104
... M112,163)’’; see Figure 5].

Code for Complex Operations

Experiments can require complex display and calcula-
tion requirements that necessitate writing of computer
source code. An important feature of MEL is that ex-
perimenters can intermix their code with code generated

-

4

Is the image on the right a rotated version of the one on the left?

Figure 5. Example graphic display for Cooper’s (1975) mental rotation experi-
ment. The display contains text and graphics. This represents a screen dump from
an IBM EGA graphics display card. See text for details.

MICRO EXPERIMENTAL LABORATORY 213

CODE FORM FOR CIRCULAR DISPLAY

! Set radius of ring tased on visual angle, points and length of momitor

x_ring
y ring

TAN(FLOAT (visual angle))*FLOAT(view distance) * x points/x length
TAN(FLOAT (visual angle))+FLOAT(view distance) * y points/y_length

! Set X and Y positiona of the 16 points of the circular dieplay

FOR i = 1 TC 16 DG
BEGIN
clock angle = FLOAT(i) * 22.5

x[i]l = x center + ROUND(sin{(clock angle) * ;_;ing)
y[i]l = y center - ROUND(cos(clock angle) * y ring)

END

! Place the letters in the letter array aud randomly permute the letters
DIVIDE INSERTS(letter, 'A\B\C\D\E\F\G\H\I\J\K\L\M\N\D\P’)

PERMUTE_STRING (letter,1,16)

! Set character rotation, width, height, and slant
GRAPHICS TEXT(0,char width,char height,0)

! Set colorA to black, write characters sequentially in black (ipvisible)

GRAPHICS_COLOR (colorA)
SET PALETTE (colorA, black)

FOR i = 1 TO 16 DO GRAPHICS_DISPLAY(x[i].y[i],letter[i])

! Wait till display refresh at top of screem, turn all char white

WAIT TOP
SET PALETTE{colorA,white)

SAMPLE DISPLAY FROM EGA MONITOR

B

Nard

LDH_

G
I

K
P

Figure 6. Sample code (top) and resulting display (bottom) for positioning characters
in a circular display with a given character size and retinal distance from the fixation cross.
The code positions each character on a 640 x 350 pixel grid and writes the characters
individueally in black so they are invisible and then turns all the characters to white to ex-
pose them simultaneously. The lines beginning with “!” are comments. MEL language key-
words and function name are in capital letters; the user-defined variable names are in

lowercase.

by MEL. This allows the use of forms to generate the
routine code for most randomization, data logging, stimu-
lus selection, presentation of orientation displays, response
collection, and feedback. The experimenter adds code to
perform nonroutine display operations, branching, and
calculations. A typical complex experiment may combine
50 lines of code written by the experimenter with 500 lines
written by MEL.

MEL supports a Pascal- or BASIC-like language, pro-
viding most of the flexibility available in standard com-

puter languages.” Experimenters who have learned a stan-
dard computer language such as Pascal, BASIC, or
FORTRAN can learn to write in the MEL language in
a day. MEL supports over 200 commands, including
multiple variable types (e.g., REAL, INTEGER,
ARRAY__OF__STRING), control statements (IF, FOR,
REPEAT), structured coding (BEGIN, END), input/out-
put commands (READ, WRITE), functions (SQRT,
LOG, COS, ARC__TAN), stimulus output (DISPLAY,
CLEAR, TONE), graphics (LINE, FILL__ARC,

214 SCHNEIDER

SET__PALETTE, GRAPHICS__FONT), timing
(WAIT, LATENCY, TIME__RESOLUTION), arith-
metic (+, —, *, /, REMAINDER), statistics (SUM,
MEAN, STANDARD__DEVIATION), randomization
(PERMUTE, RRANGE, RANDOM__STIMULUS),
data logging (TRIAL__VAR, LOG__TRIAL), special
input/output (PORT__IN, ARRAY__PORT__OUT),
and system-maintained variables (ELAPSED__TIME,
SUBJECT_NAME, TRIAL__NUMBER).

Figure 6 illustrates the use of code to place 16 charac-
ters on a clock face so all the characters are at a fixed
retinal locus from the center and are presented on a sin-
gle screen refresh. This code is for a display controller
that supports changing the colors of pixels (i.e., dots) on
the screen via altering the color palette (i.e., a set of num-
bers in EGA or VGA display controllers that set dots with
a given color designation to a specific hue). To accom-
plish simultaneous presentation of all the characters, the
characters are written in black first; then when the dis-
play monitor is at the top of the screen, all the characters
are changed from black to white.

Text Comprehension

The text comprehension facilities in MEL allow easy
measurement of reading times. The experimenter can limit
and record the reading of a page, line, phrase, or word.
The subject presses a key to present the next unit of text
on the display. Words or phrases can be presented either
on a moving window (i.e., individual words or phrases
are made visible as they would appear in normal read-
ing) or in a rapid sequential visual presentation (RSVP;
i.e., individual words or phrases are presented centered
on the screen). The resulting responses show a close rela-
tionship to eye movement reading times (see Just, Car-
penter, & Woolley, 1982). To author a text comprehen-
sion experiment, the author fills in a TEXT form
indicating the type of display format (i.e., page, line, mov-
ing window, RSVP), the maximum display time per unit
of text, and the text. MEL then presents the material for
the maximum display time or until the subject responds.
The reading time for each unit is recorded for later
analysis.

Text comprehension experimental procedures can be
combined with other types of procedures. For example,
one could load up short-term memory with three to five
digits before presenting the text and recording reading
times. To study priming, one could present the text with
a TEXT form and then examine the effects on priming
in a lexical decision experiment specified with a TRIAL
and FRAME. Similarly, one might present some text and
then use QUESTIONNAIRE forms to measure text com-
prehension.

Questionnaire Experiments

The questionnaire facility in MEL enables rapid gener-
ation and administration of computer-ccatrolled question-
naires. MEL supports bipolar, multiple-choice, open-
ended, and matching questionnaires. Different question

types with different numbers of alternatives can be inter-
mixed in any order. Computer administration of question-
naires eliminates the hand coding of questionnaire data
that occurs in paper-and-pencil format questionnaires or
the inflexibility and potential for subject coding errors that
occur when using computer-readable answer sheets. Com-
puter administration of questionnaires provides many op-
tions not available in paper-format questionnaires. Some
of the questionnaire features provided in MEL include
recording the reading time, returns, and changes to a ques-
tion; random ordering of the questions and alternatives
between subjects; limiting the time any question can be
examined; incorporating color graphic images; optional
forcing the subjects to answer each question sequentially
and controlling whether they can return to a question;
branching to questions based on a response to a previous
question; subject-controlled priority marking so the sub-
ject can label questions for review; optional answer feed-
back; and immediate scoring of responses. The question-
naires can be combined with real-time experiments or text
comprehension experiments. For example, subjects could
be given hyperactivity questionnaires and then given a test
of how well they can focus attention.

DATA ANALYSIS

MEL incorporates a variety of analysis options to al-
low rapid generation of graphs, tables, and analyses of
experiments. Output options include line and bar graphs,
multidimensional tables, lists, group tests, correlations,
regressions, and ANOV As. Data can also be exported to
standard statistical programs, such as BMDP, SPSS,
SASS, and Power Stat, and to spreadsheet programs, such
as Lotus. The descriptive statistics provide means, me-
dians, totals, variance, standard deviations, skewness,
minimum, maximum, number of observations, sum of
squares, proportion, cumulative proportion, and cumula-
tive average. The ANOVAs provide for up to 10-way de-
signs, equal and unequal numbers of observations, nested
designs, repeated measures, fixed and random effects,
general linear model, and planned comparisons.

The analysis system is form based to simplify specifi-
cation, reduce learning time, provide self-documentation
of analyses, and allow single-line running of analyses. An
analysis is specified by filling in a series of forms analo-
gous to an experiment’s being specified in a series of
forms. An analysis is composed of PLOT, TABLE, LIST,
GROUP, CORRELATION, ANOVA, and EXPORT
forms. The user interface is similar to the experiment
forms. For example, defaults for routine information are
pretyped, pressing the help key provides help on each
blank, forms are checked for internal consistency before
they are executed, and pressing the generate key causes
the analysis to be performed.

An experimenter can call up previously generated forms
to perform standard analyses. For example, the faculty
supervisor can generate the standard analysis forms used
for a paradigm. Then undergraduate subject runners can

call up the previous forms to perform daily analyses. The
faculty supervisor can examine the resulting graphs, ta-
bles, and analyses to verify that the experiment is proceed-
ing as expected. If problems appear (e.g., a subject
responds with too high an error rate), the problem can
be dealt with while the experiment is still progressing.
In fact, with the use of command files, the analyses will
be executed automatically after the subject completes a
session.

INSTRUCTION WITH MEL

MEL is a powerful research tool that can be used in
undergraduate and graduate instruction. It has been used
in freshman experimental methods courses, graduate
laboratory courses, and research seminars. MEL gives
undergraduates the ability to modify and develop their own
experiments even in their first laboratory course. In many
psychology methods courses, students get bored after run-
ning half a dozen canned experiments. With MEL, un-
dergraduates can develop and run experiments they de-
sign themselves. Having to design one’s own experiment
makes many abstract concepts (e.g., counterbalancing,
subject assignment, control, number of observations,
statistics) become much more concrete.

The amount of time it takes to learn MEL depends on
the complexity of the experiments being executed, one’s
computer expertise, and the availability of other
knowledgeable users. MEL is much easier to learn than
traditional programming languages. A student taking an
introductory computer course at the University of Pitts-
burgh typically spends 160 h in class, reading, and
programming machine problems. Learning to author ex-
periments in MEL is estimated to require a total of 2 h
for the student to run and analyze canned experiments,
8 h to modify experiments, 16 h to generate simple ex-
periments and do inferential statistics, and 25-50 h to
produce novel experiments requiring code.? Introductory
laboratory courses can use the system, allocating 2 to 8 h
to learn the system, whereas an advanced lab may require
20 h. These estimates are provided to give the reader a
ballpark estimate of how much time is needed. About two-
thirds of the estimated time should be allocated for hands-
on experience with the computer. If machines are limited,
students can often work in pairs with little loss of learn-
ing, assuming they take turns using the computer and do
not proceed until both students can perform the task. If
the system is used in a classroom, it is critical that the
teaching assistants know MEL fairly well (e.g., have 40 h
of experience) and are available as consultants in the lab
room while students do the exercises.

MEL provides seven aids to ease learning of the sys-
tem and to facilitate using the system for undergraduate
instruction. First, the system is form based and provides
help along the way. After students have learned a few
basics about editing, the experiments generally compile
and run without errors. Students spend most of their time

MICRO EXPERIMENTAL LABORATORY 215
learning the structure of experiments and verifying that
the experimental procedure executes as intended.

The second learning aid is that computer tutorials take
students step-by-step through learning the system. The
tutorials present instructions and explanations to the stu-
dents while they are executing MEL programs. Learning
from the tutorials is similar to having a very knowledge-
able friend introduce the package and explain each op-
tion. The tutorials also verify every keystroke to keep the
students from getting into trouble and indicate when an
inappropriate key has been pressed. The tutorials include
editing forms; generating simple reaction time, question-
naire, text comprehension, and graphics experiments;
drawing graphic images; precise timing of tachistoscopic
displays; randomization and counterbalancing; graphic
and descriptive statistical output of data; inferential statis-
tics for correlations, ¢ tests, ANOVAs; and incorporat-
ing code in experiments. There is a manual that goes along
with the tutorials to describe what will be learned and pro-
vide homework exercises.

The third aid is provided by the manuals/text books that
describe how to use the system as a psychologist. There
are two manuals. The User’s Guide is written for under-
graduate and graduate students with minimal computer ex-
perience. It describes how to author experiments in MEL,
research methods of using computers in psychology, test
experiments to verify the procedure, deal with human sub-
jects in computerized experiments, analyze data, and sched-
ule subjects. Experimental procedures that are frequently
used in psychology experiments are described. Runnable
source code is provided for procedures, including ran-
domizing stimuli, counterbalancing, tachistoscopic dis-
plays, dual task procedures, stimulus onset asynchrony,
voice key input, and up-down psychophysical procedures.
The Language Reference Manual (over 200 pages) details
all the commands in the language and provides sample pro-
gram segments. This is designed for advanced users who
have previously learned some programming language, such
as BASIC, Pascal, FORTRAN, or C.

The fourth aid is an experiment library with a labora-
tory manual. The library contains 20 experiments, includ-
ing many classics. These are included in source form so
that students may adapt the experiments as exercises. The
laboratory manual includes exercises to help the student
understand the phenomena being tested. The experiments
include sensory icon decay, short-term memory, sentence
processing, problem solving, verbal learning, mnemonics,
personality tests, free recall, recognition memory, human
factors design, reading comprehension, blind spot map-
ping, visual search, automaticity, mental rotation, signal
detection, organization of memory, and spacing effects.

The fifth aid is the provision of computer tests that ex-
amine students’ knowledge of the MEL. To be a skilled
researcher, one must know the precision and flexibility
of one’s research tools. The tests are provided as MEL
questionnaires. They assess how well a student knows the
system and provide a laboratory director an objective as-

216 SCHNEIDER
sessment of whether students should be trusted to author
experiments on their own.

The sixth aid is a public domain experimental library
of experiments that run with MEL. Researchers are en-
couraged to submit experiments to the library. These are
distributed at cost and may be copied freely. A depart-
ment can collect a large experimental library that students
can use to demonstrate experiments on themselves and
to develop extension experiments.

The seventh aid is an instructional tips pamphlet that
provides comments on how to set up an undergraduate
or research laboratory. The pamphlet includes suggestions
on hardware, software, special interfaces (e.g., voice
keys), subject booths, readings, and a collection of com-
ments from other instructors.

ADVANCED FEATURES

MEL is an open architecture, making it possible to com-
bine MEL code with other code to enhance its operation.
MEL can call subroutines written in standard program-
ming languages such as Pascal, C, assembly, and FOR-
TRAN. This simplifies supporting special-purpose de-
vices. For example, a researcher might want to
incorporate a special display controller, eye movement
monitor, and brain wave recording. This can be done by
writing device drivers in a standard programming lan-
guage and calling these routines from within MEL. Writ-
ing device~driven code requires having a skilled program-
mer available. Sample programs are provided to illustrate
how to extend the MEL architecture.

COMPATIBILITY AND EQUIPMENT
REQUIRED

MEL will run on most IBM PC, XT, AT, or PS/2 or
compatible computers. The minimal subject development
station is an IBM PC with 384K of memory, a floppy disk
drive, and a monochrome monitor. The recommended
subject station is an IBM PC with 640K, a floppy disk
drive, EGA graphics adapter, and monochrome or color
monitor. The recommended development/analysis station
is an IBM XT with 640K, floppy disk, hard disk, EGA
graphics controller, monochrome or color monitor, float-
ing point chip, and dot matrix printer. MEL will support
a pen plotter for plots if it is available.

MEL operates on most IBM PC clones. It has been
tested on all of the IBM product line and individual models
from Leading Edge, AT&T, Zenith, Radio Shack (other
than the 2000), Compaq, and PC Limited. However, there
are many off-brand clones, and some are not compati-
ble. A researcher should run the demonstration programs
for MEL to verify compatibility.

MEL is compatible with a wide range of display con-
trollers. Over 30 display controller boards are supported.
The compatibility with the IBM line of controller boards
includes the CGA, EGA, and VGA cards. The CGA
boards provide only very limited graphics support. The

EGA and VGA boards provide support for remapping the
color palette and writing to virtual pages allowing rapid
display changes.

SUMMARY

MEL is a third-generation integrated software system
for experimental research. MEL is optimized to take full
advantage of the 640K memory, hard disk, and graphics
adaptors commonly available on IBM PC computers. It
incorporates fourth-generation programming techniques
and a forms-based interface that are not available in any
previously reported psychological research packages.
MEL is designed for executing professional-level psycho-
logical research. MEL is very flexible and can program
most experiments without code, and nearly all with some
code. MEL maintains millisecond precision of timing in-
tervals. MEL is limited to paradigms that have an inter-
trial interval in which some variability (e.g., 0.1 sec) can
be tolerated. MEL enables rapid experiment development,
provides experimental precision and speed, allows great
flexibility and range of experimental techniques, imple-
ments quality control assurance, is usable by nonprogram-
mers, reduces training time needed to learn to author ex-
periments, facilitates communication of experimental
procedures with colleagues, speeds data analysis, and al-
lows researchers to quickly and cheaply set up profes-
sional laboratories. Experiments are specified in MEL by
filling in forms. Reaction time, text comprehension, and
questionnaire experiments are supported. MEL incor-
porates an analysis package providing graphs, tables, lists,
inferential statistics, and data export to other statistical
packages. Learning the system is facilitated by a forms
interface, computer tutorials, system manuals, a labora-
tory manual with sample experiments, student knowledge
tests, a public domain experimental library, and an in-
structional tips pamphlet. MEL is an expandable system
allowing incorporation of code written in other languages.
The system is compatible with most IBM PC clones and
graphics controllers.

MEL is a tool that allows a psychology research labora-
tory to utilize staff time to do psychological research rather
than expending a great deal of effort training program-
ming skills and developing software. The design of MEL
incorporates the lessons learned during 15 years of ex-
perience in computerized psychological research over
three generations of computer equipment. The speed and
ease of use of the system can empower students and
researchers with minimal computer skills to develop, ex-
ecute, and analyze complex computerized experiments in
short periods of time.

REFERENCES

BuTLER, D. L. (1988). A critical evaluation of software for experiment
development in research and teaching. Behavior Research Methods,
Instruments, & Computers, 20, 218-220.

CooPER, L. A. (1975). Mental rotation of random two-dimensional
shapes. Cognitive Psychology, 7, 20-43.

Eamon, D. B. (1982). CEDATS: A cognitive experimental design and
testing system. Behavior Research Methods & Instrumentation, 14,
142-145.

Just, M. A., CARPENTER, P. A., & WOOLLEY, J. D. (1982). Paradigms
and processes in reading comprehension. Journal of Experimental Psy-
chology: General, 111, 228-238.

OGDEN, W. C., & BoyLE, J. M. (1982). Evaluating human-computer
dialog styles: Command vs. form/fill-in for report modification. In
Proceedings of the Human Factors—26th Annual Meeting (pp. 542-
544). Santa Monica, CA: Human Factors Society.

OsGoop, G. (1985). Apple-Psych software program (Report No. 6). Eu-
gene, OR: University of Oregon, Cognitive Science Laboratory.
0OsGoop, G. (1988). Generalizing the Apple-Psych system. Behavior

Research Methods, Instruments, & Computers, 20, 155-157.

PoLLER, M. F., FrRIEND, E., HEGARTY, J. A., RUBIN, J. J., & DEVER,
J. J. (1982). Handbook for writing procedures (Tech. Rep. selection
code 700-242). Indianapolis, IN: Western Electric Distribution Center
(IDC).

PoLTROCK, S. E., & FoL1z, G. S. (1982). An experimental psychol-
ogy laboratory system for the Apple II microcomputer. Behavior
Research Methods & Instrumentation, 14, 103-108.

PoLTROCK, S. E., & FoL1Z, G. S. (1988). APT PC and APT II: Ex-
periment development systems for the IBM PC and Apple II. Behavior
Research Methods, Instruments, & Computers, 20, 201-205.

SCHNEIDER, W., & ScHoLz, K. W. (1973). Requirements for minicom-
puter operating systems for human experimentation and implementa-
tion on a 4K PDP-8 computer. Behavior Research Methods & In-
strumentation, S, 173-177.

SCHNEIDERMAN, B. (1987). Designing the user interface: Strategies for
effective human-computer interaction. Reading, MA: Addison-Wesley.

ScHoLz, K. (1972). Computerized process control in behavioral science
research. Behavior Research Methods & Instrumentation, 4, 203-208.

SCHRIVER, K. A. (1984). Revising computer documentation for com-

MICRO EXPERIMENTAL LABORATORY 217

prehension: Ten exercises in protocol-aided revision (CDC Tech. Rep.
No. 14). Pittsburgh, PA: Carnegie-Mellon University, Communica-
tions Design Center.

SMmiTH, S. L., (1982). User-system interface design for computer-based
information systems (Tech. Rep. ESD-TR-82-132). Bedford, MA:
USAF Electronic System Division.

YOURDIN, E. (1975). Techniques of program structure and design. En-
glewood Cliffs, NJ: Prentice-Hall, Inc.

NOTES

1. The PDP-11s can address much more memory, but the compilers
provide very limited support of the extended memory.

2. MEL will operate with 384K with two floppies; however, it is op-
timized for 640K with a hard disk.

3. MEL is not appropriate for tasks with continuous input and feed-
back, such as a psychomotor tracking task.

4. The demonstration copies are limited to demonstration and do not
allow data collection.

5. This concern was pointed out to me by Danny Kahneman at the
University of California.

6. If the users add their own code (see below), they may produce syn-
tactical errors that the compiler will detect.

7. The language does not support recursion or record-type definition
as does Pascal.

8. These estimates are based on informal observations at four test sites
that have used MEL for instructing undergraduates. Note the variabil-
ity is large, with the standard deviation being probably half of the mean.
The upper limit is typical of students without programming experience,
the lower limit of students who have had at least one programming course.
If the students need only modify previously written code rather than
write the code from scratch, nonprogrammers can use code after 30 to-
tal hours of instruction and practice.

