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We report a new microscale Hall effect measurement method for characterization of semiconductor
thin films without need for conventional Hall effect geometries and metal contact pads. We derive
the electrostatic potential resulting from current flow in a conductive filamentary sheet with
insulating barriers and with a magnetic field applied normal to the plane of the sheet. Based on this
potential, analytical expressions for the measured four-point resistance in presence of a magnetic
field are derived for several simple sample geometries. We show how the sheet resistance and Hall
effect contributions may be separated using dual configuration measurements. The method differs
from conventional van der Pauw measurements since the probe pins are placed in the interior of the
sample region, not just on the perimeter. We experimentally verify the method by micro-four-point
probe measurements on ultrashallow junctions in silicon and germanium. On a cleaved silicon
ultrashallow junction sample we determine carrier mobility, sheet carrier density, and sheet
resistance from micro-four-point probe measurements under various experimental conditions, and
show with these conditions reproducibility within less than 1.5%. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2949401�

I. INTRODUCTION

In processing of semiconductor devices a wide range of
analytical techniques are applied for process control and
characterization,1 which is essential due to the very high
complexity of the full process flow and due to the high costs
involved. Process control and characterization will become
even more important and difficult in the future due to the
continued scaling of, e.g., complementary metal–oxide–
semiconductor �CMOS� processes. In these CMOS processes
extremely shallow ��20 nm� source/drain extensions with
very high carrier concentration and high carrier mobility are
required.2 Several techniques are applied for characterization
of activated ion-implanted shallow junctions; some of these
require specialized sample preparation others are destructive
or require delicate calibration.1 Among the parameters that
must be characterized are sheet resistance, sheet carrier den-
sity, and carrier mobility. Four-point probes are widely used
for sheet resistance characterization since essentially no ad-
ditional sample preparation is necessary.1 It has recently been
shown that micro-four-point probes3 are able to accurately
measure sheet resistance of ultrashallow junctions with high
spatial resolution4 and without artifacts due to probe
penetration5 and leakage current;6 moreover carrier profiling
on beveled ultrashallow junctions has been demonstrated.7,8

The implantation and annealing processes used in semi-
conductor fabrication today cannot guarantee 100% activa-
tion of the implanted dose, and defects not removed by an-
nealing may lead to reduced carrier mobility.9 While
standard four-point probe measurements characterize the

sheet resistance only, a combination with Hall effect10 or van
der Pauw11,12 measurements allow separation of the carrier
sheet density and mobility contributions to the sheet resis-
tance. The Hall effect characterization, however, usually re-
quires some level of sample preparation, which might even
be destructive, e.g., machining of a Greek cross from the
sample.1

In this work we show analytically and experimentally
that standard micro-four-point probes can be applied to Hall
effect measurements on thin films in addition to the conven-
tional sheet resistance measurement application. The only
additional requirements are that at least one lateral insulating
boundary must be present on the sample and that a strong
magnetic field can be applied normal to the sample surface.
The theoretical findings are verified experimentally by elec-
trical characterization of highly doped ultrashallow junctions
in Si and Ge where sheet resistance, sheet carrier concentra-
tion, and Hall mobility are determined.

II. THEORY

In a four-point probe measurement a current I0 is forced
through the sample surface using two of the four probe pins,
while the resulting potential difference is measured between
the two remaining probe pins. The current flow in the sample
results in an electrostatic potential distribution at the sample
surface, ��r�=��r ,r+ ,r−�, which is a function of the posi-
tion of interest, r, the positions of the current injection
points, r+ and r−, and the sample geometry and resistivity.

We shall consider primarily the colinear probe pin con-
figurations B and B�, as shown in Fig. 1. In configuration B,
the current is forced through the sample from pin No. 1 to
pin No. 3, r+=r1 and r−=r3, while the potential differencea�Electronic mail: oh@mk.dtu.dk.
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between pins Nos. 2 and 4 is measured. In configuration B�
the role of the pins is reversed. It follows, that the measured
voltages in configurations B and B� are

VB = ��r2,r1,r3� − ��r4,r1,r3� , �1�

VB� = ��r1,r2,r4� − ��r3,r2,r4� , �2�

respectively, where ri is the in-plane position vector of pin
No. i. In micro-four-point probe Hall effect measurements
the difference, �VBB��VB−VB�, between these voltages and
their average, VBB���VB+VB�� /2, turns out to be particularly
useful. In any case, the essential problem is to find the elec-
trostatic potential ��r ,r+ ,r−� at the surface of the sample in
presence of an applied magnetic flux density.

We shall restrict the analysis to thin, laterally homog-
enous filamentary samples with insulating boundaries. The
sample thickness h is assumed small compared to the lateral
sample dimensions and to the probe pitch. We shall use Car-
tesian coordinates with base vectors ex, ey, and ez. Moreover,
the magnetic flux density B is assumed constant and normal
to the sample B=Bzez. As a result, the current density, J, the
electric field, E, and the Lorentz force, F=Ze�E+vd�B�,
are normal to the magnetic flux density except in a small
region in close proximity of the current injection points; we
shall ignore this region since its effect is insignificant on a
length scale set by the probe pitch. It follows that the prob-
lem of solving for the potential and the electric field is re-
duced to two dimensions. Here Ze is the carrier charge
�Z= �1�, e the unit charge, and vd is the carrier drift veloc-
ity. With these simplifications the current density
becomes13,14

J = �d�E − Z�HB � E� , �3�

where we have explicitly used the condition B ·E=0. �d is
the direct conductivity and �H the Hall mobility, both of
these parameters might be dependent on the magnetic flux
density magnitude. It follows that a tensorial two-
dimensional �2D� conductivity � and a corresponding 2D
resistivity tensor �=�−1 can be defined15

� = � �d �H

− �H �d
� ,

� = ��0 − �H

�H �0
� , �4�

where the resistivity �0= ��d�1+�H
2 Bz

2��−1, and the Hall con-
ductivity �H=�dZ�HBz, while the Hall resistivity
�H=�0Z�HBz.

Conventionally, the Hall coefficient RH is used as the
primary measured entity in Hall effect measurements. The
Hall coefficient RH�E · �B�J� / �B�J�2=Z�H�0=�H /Bz

with the conditions given here.14 The Hall coefficient has the
same sign as the carrier charge and is inversely proportional
to the carrier density. Unfortunately the Hall mobility is dif-
ferent from the carrier conductivity mobility �, �H=rH�,
where rH is the Hall scattering factor. The Hall scattering
factor is of the order 1 and accounts for the different statis-
tical averaging needed for the two mobilities,14

rH= 	�m
2 
 / 	�m
2, where �m is the momentum relaxation time.

If the thin sample is nonhomogenous in the z direction,
such that �d=�d�z� and �H=�H�z�, the potential remains two
dimensional, �=��x ,y�, except in the small region in close
proximity of the current injection points. The current density,
however, varies in the z-direction J=J�x ,y ,z�, while Jz=0.
Integration of Eq. �3� across the thickness of the sample
yields the sheet current density JS=JS�x ,y�,

JS � �
0

h

Jdz = E�
0

h

�ddz − ez � E�
0

h

�Hdz , �5�

where the direct sheet conductance Gd and the Hall sheet
conductance GH can be defined as follows:

Gd � �
0

h

�ddz and GH � �
0

h

�Hdz . �6�

With this definition Eq. �5� becomes

JS = GdE − GHez � E . �7�

It follows that sheet conductance, GS, and sheet resistance,
RS=GS

−1, tensors,

GS = � Gd GH

− GH Gd
� ,

RS = �R0 − RH

RH R0
� , �8�

may be defined, where the direct sheet resistance is
R0= �Gd�1+GH

2 /Gd
2��−1, while the relative Hall sheet resis-

tance equals the relative Hall sheet conductance, RH /R0

=GH /Gd. In analogy to the Hall coefficient a sheet Hall co-
efficient may be defined as RHS�E · �B�JS� / �B�JS�2
=RH /Bz.

1

In the homogenous region of interest, 	, the sheet cur-
rent density must be divergence free, � ·JS=0, except at the
current injection points, furthermore, the sheet current den-
sity normal to the insulating boundary 
	 must vanish. It
follows from Eq. �7� that the electrostatic potential, �, must
fulfill

� · JS = − Gd�2D
2 � = I0�
�r − r+� − 
�r − r−�� in 	 ,

FIG. 1. The four-point probe configurations B and B�. The four probe pins
�Nos. 1–4� have position vectors r1, r2, r3, and r4, respectively. In configu-
ration B probe pins Nos. 1 and 3 are used for current injection, while probe
pins Nos. 2 and 4 are used for potential measurements. In configuration B�
the role of the probe pins is reversed.
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JS · n = �GdE − GHez � E� · n = 0 on 
	 , �9�

since E=−��, and � · �B�E�=E · ���B�−B · ���E�=0
for a constant position- and time-independent magnetic flux
density. Here r= �x ,y� is the in-plane position vector, r+ and
r− are the points where the currents �I0 are injected, while n
is the unit vector normal to the lateral insulating boundary

	, and 
�r� is Dirac’s delta function. Note the magnetic
flux density affects the potential only through the boundary
conditions.

In Secs. II A–II C and in the Appendix, we shall solve
Eq. �9� for a number of sample geometries relevant to four-
point probe measurements; these solutions differ from the
solutions given by van der Pauw12 since the probe pins are
assumed to be in the interior of the region 	, and not re-
stricted to the perimeter 
	 as assumed by van der Pauw.

A. Infinite sheet

If the lateral boundaries of the sample are infinitely far
from the current injection points the potential which solves
Eq. �9� is particularly simple, a superposition of two loga-
rithmic potentials

��r� =
I0

2�Gd
ln

�r − r−�
�r − r+�

=
I0R0

2�
�1 +

RH
2

R0
2 �ln

�r − r−�
�r − r+�

, �10�

which is formally identical to the solution16 for zero mag-
netic flux density except for the effect of the magnetic flux
density on the direct conductivity, �d=�d�B�. The current
density, however, is different since it is not only a sum of two
purely radial current density contributions, two additional
tangential current density contributions around each current
injection point are also needed.

Using the colinear probe configurations B and B�, as
shown in Fig. 1, we find from the potential in Eq. �10� that
the measured voltages VB and VB� are equal

VB = VB� =
I0R0

2�
�1 +

RH
2

R0
2 �ln

�r2 − r3�
�r2 − r1�

�r4 − r1�
�r4 − r3�

, �11�

a result that is valid for an arbitrary two-dimensional spatial
arrangement of the four probe pins. If the probe pins are
equidistant with the pitch s, the measured voltages in the two
configurations are

VB = VB� =
I0R0

2�
�1 +

RH
2

R0
2 �ln 3, �12�

a result that except for the factor �1+RH
2 /R0

2�= �1+ �̄H
2 Bz

2� is
identical to the result at zero magnetic flux density. This
factor accounts for part of the magnetoresistance, which at
ordinary magnetic flux densities is a quite small effect, ex-
cept in very high mobility samples. The average Hall mobil-
ity �̄H is defined in Eq. �24�.

B. Semi-infinite sheet—Upper half-plane

In the case of the semi-infinite sheet, y�0, the solution
to Eq. �9� can be obtained using the method of images;17 the
arrangement of current injection sources and images is
shown in Fig. 2. The images, however, must be modified in

order to fulfill the boundary condition JSy�x ,0�=0, since the
usual image method would ensure Ey�x ,0�=0, while
JSy�x ,0�=0 requires GdEy�x ,0�−GHEx�x ,0�=0 and thus
Ey�x ,0�= �GH /Gd�Ex�x ,0�.

The potential that solves Eq. �9� in 	 is

��r� = A+ ln
�r − r−�
�r − r+�

+ A− ln
�r − r−�
�r − r+�

+
I0RH

�
�arctan

x − x+

y + y+
− arctan

x − x−

y + y−
� , �13�

where r̄�= �x̄� , ȳ��= �x� ,−y�� are the positions of the modi-
fied images of the sources at positions r�. The first term is
the source term, while the two remaining terms originate
from the images, they are thus due to the boundary condi-
tions at y=0. For each of the current sources the boundary
conditions are fulfilled by combining a source term repre-
senting a purely radial electric field with image terms repre-
senting a purely radial current density. For later convenience
the coefficients A+ and A− have been defined as follows:

A+ �
I0R0

2�
�1 +

RH
2

R0
2 � ,

A− �
I0R0

2�
�1 −

RH
2

R0
2 � . �14�

Using Eqs. �1� and �2� the measured voltages in probe
configurations B and B� are calculated �the overbar in, e.g.,
r+ is used as an operator�. From these the voltage difference
�VBB� results

�VBB� =
2I0RH

�
�arctan

x2 − x1

y2 + y1
+ arctan

x3 − x2

y3 + y2

+ arctan
x4 − x3

y4 + y3
− arctan

x4 − x1

y1 + y4
� , �15�

while the average voltage VBB� becomes

FIG. 2. The arrangement of current injection sources ��� and modified
images ��� in the case of an insulating boundary at y=0.
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VBB� =
I0R0

2�
�1 +

RH
2

R0
2 �ln

�r2 − r3�
�r2 − r1�

�r4 − r1�
�r4 − r3�

+
I0R0

2�
�1 −

RH
2

R0
2 �ln

�r2 − r3�
�r2 − r1�

�r4 − r1�
�r4 − r3�

. �16�

These equations are valid for any arbitrary spatial probe pin
arrangement.

In a practical measurement, with equidistant, colinear
four-point probe pins aligned parallel to the y axis such that
the four probe pins are positioned at �is ,y0�, i� �0,1 ,2 ,3,
arranged in configurations B and B�, the measured voltages
VB and VB� can be combined as follows:

�VBB� =
2I0RH

�
�3 arctan

s

2y0
− arctan

3s

2y0
� �17�

and

VBB� = A+ ln 3 + A− ln�9 + 4� y0

s �2

1 + 4� y0

s �2 . �18�

From Eq. �17� the Hall sheet resistance RH can be extracted
using measured data as a function of distance to the bound-
ary, thereafter the direct sheet resistance R0 can be deter-
mined using Eq. �18�.

In Fig. 3, �VB−VB�� / �I0RH�, calculated from Eqs. �17�
and �15�, is shown as a function of the normalized distance
y0 /s of the probe center to the boundary at y=0, where
VB−VB�=2I0RH. Calculations for four different angles,
� �0,� /16,� /8,� /4�, between the line of probe pins and
the boundary are shown; at the angle =� /2 the Hall voltage
contribution vanishes, �VBB�=0. The measured voltage dif-
ference is seen to be significant only very close to the bound-
ary and vanish if the distance is more than a few times the
probe pitch. The effect of a small angular misalignment be-

tween the probe and the boundary is seen to be very small in
the case where parallel probe and boundary is wanted.

In Fig. 4, �VB+VB��� / �I0R0 ln 3�, calculated from Eq.
�18� is shown as a function of the normalized distance y0 /s
from the boundary y=0 at three values of the relative Hall
resistance, RH /R0. The sum of the measured voltages is in-
dependent on the relative Hall resistance close to the bound-
ary, where the measured value, VB+VB�= �R0I0 ln 3� /�, is
twice the value measured very far from the edge at zero
magnetic flux density. Far from the edge the full effect of the
magnetoresistance affects the sum of the measured voltages.
Equation �18� is reminiscent of the usual single insulating
boundary proximity correction for four-point probe sheet re-
sistance measurements on thin films.18,19

C. Narrow stripe

The potential in the stripe 0�y�w with insulating
boundaries at y=0 and y=w can be found from an infinite
sum of alternating modified and ordinary images. The
sources and ordinary images are positioned at r�+2nw,
where the vector w=wey and n is an arbitrary integer, while
the modified images are positioned at r�+2nw, as illustrated
in Fig. 5.

The potential that solves Eq. �9� in 	 is

��r� = A+ �
n=−�

�

ln
�r − r− − 2nw�
�r − r+ − 2nw�

+ A− �
n=−�

�

ln
�r − r− − 2nw�
�r − r+ − 2nw�

+
I0RH

�
�

n=−�

� �arctan
x − x+

y + y+ − 2nw

− arctan
x − x−

y + y− − 2nw
� . �19�

FIG. 3. The difference between measured voltages in configurations B and
B�, when the region of interest is the upper half-plane, as a function of
normalized position y0 /s, where y0 is the distance from the boundary to the
probe center. Calculations �Eqs. �15� and �17�� are shown for four different
angles, � �0,� /16,� /8,� /4�, between the line of the probe pins and the
insulating boundary; the line of the probe pins and the boundary are parallel
at =0.

FIG. 4. Position dependence of the average of the measured voltages in
configurations B and B� when the region of interest is the upper half-plane.
Voltages calculated from Eq. �18� for three different values of the relative
Hall sheet resistance RH /R0=0.0, 0.1, and 0.3, respectively, are shown. In
silicon or germanium RH /R0�0.1 at ordinary magnetic flux densities.
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From this potential, the measured voltages, VB and VB�, in
configuration B and B� can be calculated using Eqs. �1� and
�2�; these voltages can be subtracted or added to yield

�VBB� =
2I0RH

�
�

n=−�

� �arctan
x2 − x1

y2 + y1 − 2nw

+ arctan
x3 − x2

y3 + y2 − 2nw
+ arctan

x4 − x3

y4 + y3 − 2nw

− arctan
x4 − x1

y4 + y1 − 2nw
� , �20�

and

VBB� = A+ �
n=−�

�

ln
�r2 − r3 − 2nw�
�r2 − r1 − 2nw�

�r4 − r1 − 2nw�
�r4 − r3 − 2nw�

+ A− �
n=−�

�

ln
�r2 − r3 − 2nw�
�r2 − r1 − 2nw�

�r4 − r1 − 2nw�
�r4 − r3 − 2nw�

. �21�

In a practical measurement, with an equidistant, colinear
four-point probe aligned parallel to the y axis such that the
four probe pins are positioned at �is ,y0�, i� �0,1 ,2 ,3, ar-
ranged in configurations B and B�, the measured voltages, VB

and VB�, can be combined as follows:

�VBB� =
2I0RH

�
�

n=−�

� �3 arctan
s

2y0 − 2nw

− arctan
3s

2y0 − 2nw
� , �22�

and

VBB� = A+ �
n=−�

�

ln�9s2 + 4n2w2

s2 + 4n2w2

+ A− �
n=−�

�

ln�9s2 + 4�y0 − nw�2

s2 + 4�y0 − nw�2 . �23�

In Fig. 6, �VB−VB�� / �I0RH�, calculated from Eq. �22� is
shown as a function of the normalized distance y0 /s from the
boundary y=0 for a stripe of width w=5s; the measured

voltage difference is seen to be significant only very close to
the boundaries and vanish if the distance from each boundary
is more than a few times the probe pitch. In Fig. 6, the result
for a half-plane, Eq. �17�, is also shown for comparison; this
simple result is quite similar to the result for the stripe close
to the left boundary. Finally, the approximation resulting
from the first two terms in Eq. �22� is shown, but cannot be
distinguished from the exact solution; it follows that the sum
in Eq. �22� converges very rapidly.

In Fig. 7, �VB+VB��� / �I0R0 ln 3�, calculated from Eq.
�23�, is shown as a function of the normalized distance y0 /s

FIG. 5. Arrangement of sources �*�, ordinary images ���, and modified
images ��� in the narrow stripe 0�y�w.

FIG. 6. Position dependence of the difference between measured voltages in
configuration B and B� when the region of interest is the stripe 0�y�w
�Eq. �22�; full line�. The width of the region is assumed to be w=5s, where
s is the probe pitch. For comparison the result for the upper half-plane
region �Eq. �17�; dashed line� is also shown. Finally, the approximate result
from using only the first two terms in the infinite sum of Eq. �22� is shown,
but cannot be distinguished from the full solution.

FIG. 7. Position dependence of the average measured voltages in configu-
ration B and B� when the region of interest is the stripe 0�y�w �Eq. �23�;
upper set of curves�. The width of the region is assumed to be w=5s, where
s is the probe pitch. For comparison results for the upper half-plane region
are also shown �Eq. �18�; lower set of curves�. Results for three different
values of the relative Hall sheet resistance RH /R0 are shown.
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from the boundary y=0 for a stripe of width w=5s at three
values of the relative Hall sheet resistance RH /R0. The sum
of the measured voltages is independent on the relative Hall
sheet resistance close to the boundary. Far from the edge the
full effect of the magnetoresistance affects the sum of the
measured voltages. The finite width of the stripe affects the
sum of the measured voltages at all positions as seen from a
comparison with the result for a half-plane, Eq. �18�, which
is also shown in Fig. 7 for convenience.

D. Interpretation of Hall effect measurements

The primary applications of Hall effect measurements on
semiconductor samples are experimental characterization of
Hall mobility and carrier concentration. For a homogenous
sample, the Hall mobility can be calculated from the mea-
sured quantities, the Hall conductivity �H, the direct conduc-
tivity �d �or the respective resistivities�, and the magnetic
flux density, since �H=�H / ��dZBz�=�H / ��0ZBz�. The Hall
mobility can also be calculated from the Hall coefficient
�H=RH / ��0Z�. For a sample with carrier density, n=n�z�,
and thus mobility variations in the z direction a mean Hall
mobility, �̄H, can be calculated from the measured Hall sheet
conductance, GH, and direct sheet conductance, Gd, accord-
ing to20

�̄H =
GH

GdZBz
=

�
0

h

n��Hdz

�
0

h

n�dz

=
RH

R0ZBz
, �24�

where Eq. �6� and �d=e�n have been used. The equation
�d=e�n is valid at sufficiently low magnetic flux densities.

For a homogenous sample the carrier density is then
n=�d /e�=rH�d / �e�H�=rHZBz�d

2 / �e�H�. Using relations be-
tween resistivities and conductivities the carrier density be-
comes n=rHZBz�d�0 / �e�H��rHZBz / �e�H�=rHZ / �eRH� and
is thus easily calculated from the measured Hall resistivity if
the Hall scattering factor is known. The approximation is
valid at sufficiently low magnetic flux densities, where �0

�1 /�d. For a sample that is nonhomogenous in the z direc-
tion the sheet carrier density, NS��0

hndz, may be calculated
from the measured Hall sheet resistance,20

NS = r̄H

ZBzGd
2

eGH
= r̄H

��
0

h

n� dz�2

�
0

h

n��H dz

�
r̄HZBz

eRH
, �25�

where the average Hall scattering factor, r̄H, is defined as
follows:

r̄H =

��
0

h

n�2rHdz���
0

h

ndz�
��

0

h

n�dz�2 . �26�

Since much of the difficulty in interpretation of Hall mea-
surements is related to the average Hall scattering factor, it is

often conveniently assumed to equal 1 in practical Hall effect
experiments. In such cases, the measured Hall mobility is
still correct, but the sheet carrier density should really be
stated as a Hall sheet carrier density NHS�NS / r̄H.

The treatment given here only apply to samples that are
homogenous in the x−y plane; a nonhomogenous sample is a
far more difficult problem.21

III. EXPERIMENTS

Microscale Hall effect measurements were performed
with a micro-four-point probe �M4PP� using a CAPRES
microRSP-M150 �Ref. 22� system. The M4PP used in these
experiments consists of metal coated silicon cantilever elec-
trodes extending from the edge of a silicon die; Fig. 8 shows
a scanning electron microscope �SEM� image of a M4PP die
with a close up image of the probe cantilevers shown in the
inset. In the experiments Ni coated as well as Au coated
M4PP’s were used. For the microscale Hall measurements,
the sample chuck of the microRSP-M150 was fitted with a
permanent magnet. The resulting magnetic flux density at the
position of the sample was Bz=0.5 T as measured using a
calibrated Hall sensor.

To explore the potential of the new microscale Hall ef-
fect method, highly doped p-type silicon and p-type germa-
nium samples with single and double insulating barrier ge-
ometry, respectively, were characterized. These samples are
particularly challenging to characterize due to the rather low
mobilities and therefore small relative Hall sheet resistances.

First, the sheet resistance is measured far from the insu-
lating barrier �more than three times the electrode pitch� us-
ing dual configuration position correction.4 This is done to
determine the sheet resistance more accurately; dual configu-
ration measurements typically allow for sheet resistance re-
peatability with a standard deviation on the order of 0.1%,
whereas the relative standard deviation of a single configu-
ration measurement is an order of magnitude higher depend-
ing on the electrode pitch.23

Then the M4PP is aligned parallel to an insulating
boundary, i.e., the tips of the electrodes are positioned at
�is ,y0�, i� �0,1 ,2 ,3, while the insulating boundary is situ-
ated at y=y00. After optical alignment, the probe is repeat-

FIG. 8. SEM image of a 20 �m pitch M4PP. The 5 �m thick polysilicon
cantilevers are coated with a 200 nm Ni thin film on a 10 nm Ti adhesion
layer. The inset shows a close up SEM image of the cantilevers.
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edly engaged with the surface and moved to a new position
in a direction perpendicular to the insulating boundary. Dur-
ing each engage, a series of four-point resistance measure-
ments in configurations B and B� are performed using a mea-
surement current set-point of I0=100 �A. The measurement
noise on �VBB�= 	VB−VB�
 is reduced by averaging the mea-
surements during each engage.

Finally, the Hall sheet resistance RH and the exact
boundary position y00 in the probe coordinate system are
estimated by fitting to the measured data the appropriate ana-
lytical model for the specific geometry, Eqs. �17� or �22�,
using a nonlinear fitting algorithm.24 Thereafter, the Hall
sheet resistance RH and standard deviation �RH is calculated
using a linear regression where the positions y0 and y00 are
used with the analytical model to calculate a nonlinear posi-
tion axis where a linear relation to �VBB� is expected.

IV. RESULTS AND DISCUSSION

In the Secs. IV A and IV B, where measurements on
ultrashallow junctions in silicon and germanium are re-
ported, we experimentally verify the the microscale Hall ef-
fect method. A comparative experimental study of this
method and alternative characterization methods on ul-
trashallow junctions is in progress.

A. Silicon—Single barrier

An ultrashallow junction was formed in an n-type �100�
silicon wafer by low energy boron implantation �3 keV,
1�1015 cm−2� followed by rapid thermal annealing �RTA�.
The nonpatterned wafer was cleaved to provide a well-
defined straight insulating boundary. The dual configuration
sheet resistance measured on the sample was 267.1�0.8 	,
where the uncertainty is mainly due to sample nonhomoge-
neity.

On this sample microscale Hall effect measurements
were performed under various experimental conditions. For
this sample the Hall resistance measurement data were fil-
tered through a simple 40% median filter to eliminate severe
measurement outliers �each probe position treated separately�
prior to averaging. This was necessary due to measurement
noise, probably related to the electrode-sample contact prop-
erties.

Figure 9 shows Hall effect measurement data ��� using
a 30 �m pitch Au coated M4PP; the full line shows the
model fit to the measured data, corresponding to a Hall sheet
resistance, RH=0.562�0.005 	, and the estimated bound-
ary position, y00=0.22 �m. Hall effect measurements were
done using both Au and Ni coated M4PP’s in order to inves-
tigate if application of a ferromagnetic electrode metal would
affect the measurement. Likewise, the effect of electrode
pitch and measurement frequency was investigated by per-
forming measurements also using a 10 �m pitch M4PP and
by measurements at 11 Hz as well as 987 Hz. The Hall sheet
resistances and the corresponding standard deviations ex-
tracted from model fits to measurement data are summarized
in Table I, where no significant effect of the various experi-
mental conditions is seen. The repeatability even with sig-
nificant alterations of the experimental conditions is very

good, the relative standard deviation on the average of the
measurements in Table I is less than 1.5%. The minimum
number of measurement points necessary for an accurate ex-
traction of the Hall sheet resistance has not been investi-
gated, but a trade-off between precision and measurement
time exists; the total data acquisition time used to produce
the data in Fig. 9 was 5 min.

From the measured Hall sheet resistance and sheet resis-
tance of the sample both active Hall sheet carrier density,
NHS, and average Hall mobility, �̄H, were calculated using
Eqs. �24� and �25�, however, since the effective Hall scatter-
ing factor is not known r̄H=1 is assumed. The results are
summarized in Table I. The calculated active dose is approxi-
mately half of the implanted dose; this is in agreement with
the expected value since the boron concentration is above the
solid solubility and partial dose activation therefore ex-
pected. Finally, the Hall mobility is within 10% of the Hall
mobility reported by Sasaki for highly boron doped silicon.25

B. Germanium—Double barrier

Microscale Hall effect measurements were also per-
formed on a patterned shallow p-type junction �80 nm�
formed in Ge using RTA of a boron implant �10 keV,
2�1015 cm−2� following a preamorphization implant. The
pattern used for the measurements was a double insulating
barrier with a nominal distance between barriers of 100 �m.
Figure 10 illustrates the measurement setup. In the measure-
ments a 20 �m pitch M4PP probe was used at a measure-
ment frequency of 11 Hz. For this sample data were not
filtered. Figure 11 shows the measured Hall resistance data
��� resulting from a line scan across the p-type stripe; the
full line shows a model fit—using Eq. �22�—to measured
data with the Hall sheet resistance, RH, the position of the
left boundary, y00, and the width of the stripe, w, as fitting
parameters.

FIG. 9. Microscale Hall effect measurements on a boron doped ultrashallow
junction in silicon. The silicon sample has been cleaved to form a semi-
infinite sheet and a measurement scan from this edge was performed. The
measurement data ��� and a fit �full line� using Eq. �17� with the Hall
resistance RH and the position of the sample edge y00 as fitting parameters
are shown. The estimated position of the edge is y00=0.22 �m.
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The experimental results are summarized in Table II.
The high precision obtained for the direct sheet resistance
�R0=63.63�0.02 	� does not include sample variations
since the measurements were performed at a single position.
The low standard deviation on the Hall sheet resistance
�RH=0.264�0.002 	� demonstrates the high reproducibil-
ity of M4PP measurements on p-type Ge. The calculated
active Hall sheet carrier density �NHS= �1.18�0.01�
�1015 cm−2� is in good agreement with the expected value
considering the implanted dose. The calculated Hall mobility
��̄H=83.0�0.6 cm2 V−1 s−1� is in agreement with values re-
ported by Golikova et al.26

V. CONCLUSION

Carrier sheet concentration and mobility are key param-
eters with a strong effect on semiconductor device perfor-
mance. Conventional measurements of these parameters be-
come increasingly difficult with the continued
miniaturization of CMOS devices, in particular for the ul-
trashallow junctions required; these parameters nevertheless
needs to be characterized for process development and con-
trol purposes. In this work we demonstrate for the first time
that M4PP’s can be used to measure Hall mobility and sheet
carrier concentration with little or no additional sample
preparation.

The electrostatic potential due to the injected current and
applied magnetic flux density is derived for an infinite sheet,
a semi-infinite sheet, a narrow stripe, a quarter-plane, and a
rectangle. With one or more insulating lateral boundaries

present Hall effect affects the potential; without the insulat-
ing boundary only magnetoresistance is seen.

The voltage measured with a colinear, equidistant four-
point probe is derived for the semi-infinite sheet and the
narrow stripe sample geometries. The Hall effect contribu-
tion is separated from magnetoresistance and sheet resistance
by dual configuration difference and sum methods, respec-
tively. Finally, the sensitivity of the Hall effect signal to
small angular misalignment between a four-point probe and
an insulating boundary is shown to be virtually zero, which
is ideal for experiments.

The theory is verified by experiments on ultrashallow
implanted junctions in Si and Ge. The measured sheet carrier
concentration and Hall mobility are shown to be reproduc-
ible and virtually unaffected by changes in electrode material
�diamagnetic versus ferromagnetic�, electrode pitch, and
measurement frequency.

The microscale Hall effect measurement method has
several interesting potential applications since Hall mobility
and sheet carrier density may be measured �i� with high spa-
tial resolution, �ii� without the need for lithographically de-
fined metal contacts, �iii� on fragile samples where postpro-

FIG. 10. �Color online� Illustration of a M4PP Hall effect measurement on
a narrow stripe of highly doped Ge.

FIG. 11. Microscale Hall effect measurements on a 100 �m wide p-type Ge
stripe, doped using a shallow boron implant. A line scan has been performed
with a 20 �m pitch probe between the two barriers. The measurement data
��� and a fit �full line� using Eq. �22� with the Hall sheet resistance, RH, first
barrier position, y00, and stripe width, w, as fitting parameters are shown.

TABLE I. Hall sheet resistance RH and standard deviation extracted from M4PP Hall effect measurements on
an ultrashallow boron doped junction in silicon. The active Hall sheet carrier density NHS and Hall mobility �̄H

are calculated from M4PP Hall effect and sheet resistance measurements using Eqs. �25� and �24�. Four
different experimental conditions with variation of electrode material �Au or Ni�, probe pitch, s, and measure-
ment frequency, f , were used.

s f RH��RH NHS��NHS �̄H���̄H

��m� �Hz� �	� ��1014 cm−2� �cm2 V−1 s−1�

Au 30 11 0.562�0.005 5.55�0.05 42.1�0.4
Ni 10 11 0.570�0.015 5.48�0.14 42.7�1.1
Ni 30 11 0.556�0.008 5.61�0.08 41.6�0.6
Ni 30 987 0.551�0.003 5.66�0.03 41.3�0.3
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cessing may alter sample properties, �iv� on micrometer
sized samples, and �v� on scribe-line test structures on
CMOS device wafers.
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APPENDIX: QUARTER-PLANE AND RECTANGLE
Consider now the upper right quarter plane x�0 and

y�0, see Fig. 12. The sources at r� must be combined with
ordinary images at −r� and modified images at �r�, where
r�= �x̄� , ȳ��= �x� ,−y�� again are the y-axis mirrored modi-
fied image positions. The potential that solves Eq. �9� in 	 is
thus

��r� = A+ ln
�r − r−�
�r − r+�

�r + r−�
�r + r+�

+ A− ln
�r − r−�
�r − r+�

�r + r−�
�r + r+�

+
I0RH

�
�arctan

x − x+

y + y+
− arctan

x − x−

y + y−
�

−
I0RH

�
�arctan

y − y+

x + x+
− arctan

y − y−

x + x−
� . �A1�

Here the first term is due to the sources at r� and the ordi-
nary images at −r�, while the remaining three terms are due
to the modified images at �r̄�.

The potential in the rectangle, 0�y�w, 0�x��, with
insulating boundaries at y=0, y=w, x=0, and x=� can be
found from a double infinite sum of alternating modified and
ordinary images. The sources and ordinary images are posi-
tioned at �r�+2�nw+m��, while the modified images are
positioned at �r�+2�nw+m��, where n and m are arbitrary
integers and the vectors w=wey and �=�ex. The potential
that solves Eq. �9� in 	 is thus

��r� = A+ �
n=−�

�

�
m=−�

�

ln
�r − r− − 2�nw + m���
�r − r+ − 2�nw + m���

�r + r− − 2�nw + m���
�r + r+ − 2�nw + m���

+ A− �
n=−�

�

�
m=−�

�

ln
�r − r− − 2�nw + m���
�r − r+ − 2�nw + m���

�r + r− − 2�nw + m���
�r + r+ − 2�nw + m���

+
I0RH

�
�

n=−�

�

�
m=−�

� �arctan
x − x+ − 2m�

y + y+ − 2nw

− arctan
x − x− − 2m�

y + y− − 2nw
� −

I0RH

�
�

n=−�

�

�
m=−�

� �arctan
y − y+ − 2nw

x + x+ − 2m�
− arctan

y − y− − 2nw

x + x− − 2m�
� . �A2�

Here the first term is due to the sources and ordinary images,
while the remaining terms are due to the modified images.

From Eqs. �A1� or �A2� the measured voltages in con-
figurations B and B� and thus �VBB� and VBB� may be cal-
culated; due to the limited space, however, we do not report
these equations.
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