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Abstract This paper presents the development of

a micro coaxial helicopter (MCR UAV) whose

main characteristic is that it should be carried by
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an air shuttle transporter and then released in a

desired place far away from the launching site,

to develop surveillance missions in hover flight.

A real-time embedded system is built in order

to validate the proposed aerodynamic prototype,

and a classic control law based on a classical

backstepping procedure for the dynamic system

is implemented to test this vehicle in autonomous

flight. Finally, simulation and practical results are

presented for hover flight.

Keywords Coaxial helicopter · Wind analysis ·

Hover flight · Backstepping control ·

Real-time embedded system

1 Introduction

The applications of micro UAVs (Unmanned

Aerial Vehicles) are growing constantly due to

the scientific-technologic challenge. Researchers

from the international community to control, ro-

botics, aerospace and control, among others tend

to focus their scientific research in this area. The

applications of UAVs are based on not only mili-

tary actions, the civilian applications begin to take

more importance. Some civilian applications can

be cited as examples: the monitoring of traffic on

highways, support in search and rescue, interven-

tion in hostile environments, detection of fire in

forests.These applications require an UAV that is
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able to evolve and adapt to the environment in

which it is operating.

Coaxial helicopters require mechanisms such as

swashplates, stabilizer bars, and tilt-rotors in order

to control the direction of rotor thrust vector. In

fact, some theoretical and practical contributions

about coaxial helicopters have been reported in

the literature. A robust control for a coaxial mi-

cro helicopter was presented in [1]. Bouabdallah

et al. [2] discusses the design and control of an

indoor coaxial helicopter. A simplified model and

backstepping control for a coaxial helicopter can

be found in [3].

Our Micro Coaxial Rocket-Helicopter (MCR

UAV) differs from those conventional-coaxial

helicopters because it possesses control surfaces

(ailerons) to control the attitude flight, and em-

ploys the air produced by the coaxial propellers

(Prop-wash) over the control surfaces to maintain

the vertical position. The main objective of the

(MCR UAV) is to be catapulted and then hover

at a long distance from the launching site, see

Fig. 1, with the purpose of reducing the energy

consumption, increasing the range, and develop-

ing surveillance missions.

On the other hand, several control techniques

to stabilize UAVs have been published in the

literature. In [4], the authors present the trajectory

tracking control design for autonomous heli-

copters using a backstepping algorithm. The mod-

eling and decoupling control of the commercial

coaxial helicopter is presented in [5]. However,

the control problem of our MCR UAV in hover

flight is solved by proposing a complete backstep-

ping procedure considering the reduced nonlinear

system.

The main contribution of this paper is to

present the modeling, the attitude control and the

real-time embedded system of the Micro Coaxial

Rocket-Helicopter (MCR UAV). This prototype

is developed at LAFMIA CNRS-CINVESTAV

Mexico in collaboration with the Laboratoire

Heudiasyc (Université de Technologie de Com-

piègne, France). The paper is organized as follows:

Fig. 1 Objective of the project
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Section 2 introduces a functional description

and the dynamic equations of the vehicle. In

Section 3, the control technique based on a back-

stepping procedure, and the stability analysis are

presented. Simulation results of the closed-loop

system and experimental results in hover flight are

shown in Sections 4 and 5 respectively. Finally,

Section 6 gives the conclusions and future works

of this project.

2 Micro Coaxial Helicopter

In this section, a complete functional description

of the vehicle is given, and the dynamic model

is obtained using the classical Newton–Euler

equations.

2.1 Description

The micro coaxial rotorcraft-helicopter (MCR

UAV) is based on a couple of counter rotat-

ing brushless motors, and the main characteris-

tic of this vehicle is that it is capable of being

launched through an air shuttle transporter, and

transforming itself into a coaxial helicopter at a

long distance from the launching site. Once the

vehicle reaches the objective (a place, a building,

an uninhabited area, etc.), it performs hover flight,

and can inspect the environment acquiring and

transmitting information through a RF camera to

a ground station. Concerning the functional de-

scription, the MCR vehicle possesses aerodynamic

control surfaces (ailerons) which are used to con-

trol the roll and pitch motion while the difference

of the velocities of the two motors regulates the

yaw motion.

2.2 Dynamics

Consider an inertial fixed frame and a body

frame fixed attached to the center of gravity of

the helicopter denoted by I = {xI, yI, zI} and

B = {xB, yB, zB}, respectively, see Fig. 2, [6].

Assume the generalized coordinates of the mi-

cro UAV as q = (x, y, z, ψ, θ, φ)T ∈ R
6, where

ξ = (x, y, z)T ∈ R
3 represents the translation co-

ordinates relative to the inertial frame, and η =

(ψ, θ, φ)T ∈ R
3 describes the vector of three Euler

I

ξ

x B

φ yB

zB

θ
ψ

x I

yI

z I

B

Fig. 2 MCR UAV

angles with rotations around z, y, x axis. These

angles ψ , θ , and φ are called yaw, pitch and

roll, respectively. Assume the translational veloc-

ity and the angular velocity in the body frame

as ν = (u, v, w)T ∈ R
3 and � = (p, q, r)T ∈ R

3,

respectively.

The Newton–Euler equations of motion for a

rigid object provide the dynamic model for this

micro coaxial helicopter. This expression is de-

scribed as [7]

ξ̇ = V (1)

mV̇ = RF (2)

Ṙ = R�̂ (3)

I�̇ = −� × I� + Ŵ (4)

where F ∈ R
3 and Ŵ ∈ R

3 are the total force and

torque acting on the vehicle, respectively. V =

(ẋ, ẏ, ż)T ∈ R
3 is the translational velocity in the

inertial frame, m ∈ R denotes the mass of the

MCR UAV, I ∈ R
3×3 contains the moments of

inertia of the micro helicopter, and �̂ is a skew-

symmetric matrix such that �̂a = � × a. Thus, R
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represents the transformation matrix from the

body frame to the inertial frame

R =

⎛

⎝

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ

−sθ sφcθ cφcθ

⎞

⎠

where the shorthand notation of sa = sin(a) and

ca = cos(a) is used. For this matrix, the order of

the rotations is considered as yaw, pitch and roll

(ψ, θ, φ) [8].

2.2.1 Forces

The forces that act on the vehicle are given as

follows

Propulsion Forces The thrust force is generated

by two motors and is described as

Fp =

⎛

⎝

0

0

Tc

⎞

⎠

where Tc is the thrust force of the two motors

(Tc = T1 + T2). In this analysis, the thrust force is

oriented parallel to the axis zB of the body frame,

see Fig. 3.

Aerodynamic Forces The aerodynamic forces in

the body frame are written as

Fa = BTWT

⎛

⎝

−L

Y

−D

⎞

⎠

where L, Y, and D are the aerodynamic forces:

lift, side force, and drag, respectively. B and W are

rotation matrices that represent the transforma-

tion the aerodynamic forces from the body frame

to aerodynamic frame (stability and wind frames).

B =

⎛

⎝

cα 0 sα

0 1 0

−sα 0 cα

⎞

⎠ , W =

⎛

⎝

cβ sβ 0

−sβ cβ 0

0 0 1

⎞

⎠

where α is the angle of attack and β is the sideslip

angle.

Gravitational Force The force due to the weight

of the vehicle is described as

Fw = RT

⎛

⎝

0

0

−mg

⎞

⎠

where g is the acceleration due to gravity.

Fig. 3 Schematic of the
vehicle

δδδδδδδδ δδδδδδδδ

a b
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Therefore, the total force F is

F =

⎛

⎝

Fx

Fy

Fz

⎞

⎠ = Fp + Fa + Fw

2.2.2 Moments

The moments acting on the micro helicopter are

described as

Actuator Moments The moments due to actua-

tors are

Ŵact =

⎛

⎝

τφ

τθ

τψ

⎞

⎠

where τφ = ℓr Lr, τθ = ℓr Lp and τψ = τM1
+ τM2

are the control inputs with ℓr that represent the

distance from the center of mass to the forces Lr

and Lp.

Gyroscopic Moments The gyroscopic moments

due to motors are described as

Ŵgyro =

⎛

⎜

⎝

q
(

Ir1
ωr1

− Ir2
ωr2

)

p
(

−Ir1
ωr1

+ Ir2
ωr2

)

0

⎞

⎟

⎠

where ωri
denotes the angular velocity of the ro-

tor, Iri
is the inertia moment of the propeller and

Iroti
is the moment of inertia of the rotor around

its axis for i = 1, 2.

Aerodynamic Moments The aerodynamic mo-

ments acting on the vehicle are

Ŵa =

⎛

⎝

L̄

M̄

N̄

⎞

⎠

where L̄, M̄ and N̄ are the aerodynamic rolling,

pitching and yawing moments respectively [7, 9].

Thus, the total moment is given as

Ŵ =

⎛

⎝

ŴL

ŴM

ŴN

⎞

⎠ = Ŵact + Ŵgyro + Ŵa

2.2.3 Hover Flight Analysis

In order to obtain the behavior in hover flight, the

propeller thrust and induced axial velocities in

the presence of a given wind are analyzed using

the Glauert’s hypothesis. Figure 4 shows the vehi-

cle perturbed with a translational wind [10, 11].

The thrust equation is described as

Tc = 2ρ Avrvi (5)

where A represents the area of the rotor disc, ρ

denotes the air density, vo is the freestream wind

velocity, vi represents the induced wind velocity

and is directed opposite to the thrust, and vr is the

resultant wind velocity.

From the Fig. 4, the resultant wind velocity vr

and the angle of attack α are determined as

vr =
√

(vi − vo sin(α))2 + (vo cos(α))2 (6)

and

α = sin
−1

(

−
Dp

Tc

)

(7)

where Dp is the drag force of the propeller.

Considering the case α = 0, and vo = 0, the

Eqs. 5 and 6 give the induced velocity vh of the air

produced by the coaxial propellers (Prop-wash)

over the control surfaces to perform the hover

flight. This equation is described as

vi = vh =

√

Tc

2ρ A
(8)

Finally, the aerodynamic forces and moments are

written by

D =
1

2
ρv2

hSCD L̄ =
1

2
ρv2

hSbCl

Y =
1

2
ρv2

hSCY M̄ =
1

2
ρv2

hSc̄Cm

L =
1

2
ρv2

hSCL N̄ =
1

2
ρv2

hSbCn (9)

where S represents the fin-aileron area, c̄ is the

fin-aileron chord, and b is the fin-aileron span. CD,
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Fig. 4 Vehicle
submerged in the
propeller slipstream

αααα

αααα

αααα

CY and CL are the aerodynamical non-dimensional

coefficients of drag, sideforce and lift. Cl, Cm and

Cn are aerodynamical non-dimensional coeffi-

cients of the aerodynamic rolling, pitching and

yawing moments [12].

2.2.4 Equations of Motion

The nonlinear model obtained by the Newton–

Euler formulation for the hover flight, i.e. α = 0,

β = 0 and vo = 0, is described as

ẍ =
Ax

m
cθcψ +

Ay

m

(

sφsθcψ − cφsψ

)

+
Az

m

(

cφsθcψ + sφsψ

)

ÿ =
Ax

m
cθ sψ +

Ay

m

(

sφsθ sψ + cφcψ

)

+
Az

m

(

cφsθ sψ − sφcψ

)

z̈ =
−Ax

m
sθ +

Ay

m
sφcθ +

Az

m
cφcθ − g

φ̈ =
θ̇ ψ̇

cθ

+
θ̇ φ̇sθ

cθ

+
1

Ixx

[

ŴL + qr
(

Iyy − Izz

)]

+
cφsθ

cθ Izz

[

ŴN + pq
(

Ixx − Iyy

)]

+
sφsθ

cθ Iyy

[

ŴM − pr (Ixx − Izz)
]

θ̈ = −φ̇ψ̇cθ +
cφ

Iyy

[

ŴM − pr (Ixx − Izz)
]

+
sφ

Izz

[

−ŴN − pq
(

Ixx − Iyy

)]

ψ̈ =
θ̇ φ̇

cθ

+
θ̇ ψ̇sθ

cθ

+
cφ

cθ Izz

[

ŴN + pq
(

Ixx − Iyy

)]

+
sφ

cθ Iyy

[

ŴM − pr (Ixx − Izz)
]

(10)

where

Ax = −L

Ay = Y

Az = Tc − D

ŴL = τϕ + q
(

Ir1
ωr1

− Ir2
ωr2

)

+ L̄

ŴM = τθ + p
(

−Ir1
ωr1

+ Ir2
ωr2

)

+ M̄

ŴN = τψ + N̄
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3 Stability Analysis

In this section, the control technique for the atti-

tude stabilization of the vehicle in hovering flight

is presented using a classical backstepping proce-

dure [13, 14]. The stability analysis demonstrates

asymptotic stability about the origin of the closed-

loop system. The objective of this controller is to

regulate the attitude of the vehicle with different

initial conditions. For simplicity, the nonlinear

Eq. 10 are separated into three subsystems. One

subsystem describes the longitudinal motion, and

the second subsystem describes the lateral motion,

and the last subsystem describes the directional

motion, [15]. Since the yaw motion is mechanically

stable using contra-rotating propellers, the gyro-

scopic moment Ŵgyro will essentially be zero.

Considering the condition φ = 0, and ψ = 0,

the longitudinal subsystem is written as

ẍ = −
L

m
cθ +

Tc − D

m
sθ

z̈ = −
Ax

m
sθ +

Az

m
cθ − g

θ̈ =
τθ + M̄

Iyy

(11)

Defining a change of variables

uθ =
τθ

Iyy

+
M̄

Iyy

(12)

Substituting, it yields

ẍ = −
L

m
cθ +

1

m
Tcsθ −

1

m
Dsθ

z̈ =
1

m
Tccθ −

1

m
Dcθ +

L

m
sθ − g

θ̈ = uθ (13)

In order to stabilize the altitude of this vehicle, a

nonlinear control law is proposed as

Tc =
m

cθ

(

−kz1
(z−zd) − kz2

ż+
D

m
cθ −

L

m
sθ +g

)

(14)

where the constants kz1
> 0 and kz2

> 0, thus

z → zd, ż → 0, as t → ∞. Then, the Eq. 13 can be

rewritten as

ẍ = −
L

m
cθ −

L

m
tθ sθ + gtθ

θ̈ = uθ (15)

Taking a change of variables x1 = x; x2 = ẋ; x3 =

θ ; x4 = θ̇ , the state space representation is written

as follows

ẋ1 = x2

ẋ2 = −
L

m
cx3

−
L

m
tx3

sx3
+ gtx3

ẋ3 = x4

ẋ4 = uθ (16)

In order to control the previous subsystem, a

nonlinear control law based on the backstepping

procedure is proposed. First, let us define the

error e1 as

e1 = x1 − xd
1

(17)

differentiating Eq. 17

ė1 = ẋ1 − ẋd
1

defining the following positive function

V1 =
k1

2
e2

1

whose derivative is

V̇1 = k1e1ė1 = k1e1

(

ẋ1 − ẋd
1

)

and using ė1 =
(

x2 − ẋd
1

)

, it yields

V̇1 = k1e1

(

x2 − ẋd
1

)

(18)

Now, let us define xv
2

as the virtual control input,

such that

xv
2

= ẋd
1
− e1 (19)

then, substituting Eq. 19 in Eq. 18, it implies

V̇1 = −k1e2

1
+ k1e1

(

x2 − xv
2

)

Now, the error e2 is defined as

e2 = x2 − xv
2
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it results

V̇1 = −k1e2

1
+ k1e1e2

Now, the following positive function is pro-

posed as

V2 =
k2

2
e2

2

taking its derivative as

V̇2 = k2e2ė2 = k2e2

(

ẋ2 − ẋv
2

)

= k2e2

(

−

{

L

m
cx3

+
L

m
tx3

sx3
− gtx3

}

− ẋv
2

)

Defining the virtual control input δv
1

as

δv
1

= ẋv
2
−

k1

k2

e1 − e2

then V̇2 yields

V̇2 = −k2e2

2
− k1e1e2

+ k2e2

({

L

m
cx3

+
L

m
tx3

sx3
− gtx3

}

− δv
1

)

Defining the error e3 as

e3 =

{

L

m
cx3

+
L

m
tx3

sx3
− gtx3

}

− δv
1

then, V̇2 yields

V̇2 = −k2e2

2
− k1e1e2 + k2e2e3

Now, proposing a positive function V3 as

V3 =
k3

2
e2

3

whose derivative is given as

V̇3 =k3e3

[(

L

m
tx3

cx3
+

L

m
sx3

t2

x3
−g

(

1 + t2

x3

)

)

x4−δ̇v
1

]

Let us define the virtual control input as

δv
2

= δ̇v
1

−
k2

k3

e2 − e3

then, V̇3 yields

V̇3 = −k3e2

3
− k2e2e3 + k3e3

×

[(

L

m
tx3

cx3
+

L

m
sx3

t2

x3
−g

(

1+t2

x3

)

)

x4−δv
2

]

finally, defining the error e4 as

e4 =

(

L

m
tx3

cx3
+

L

m
sx3

t2

x3
− g

(

1 + t2

x3

)

)

x4 − δv
2

V̇3 yields

V̇3 = −k3e2

3
− k2e2e3 + k3e3e4 (20)

Proposing the last positive function as

V4 =
k4

2
e2

4

it results

V̇4 = k4e4ė4 = k4e4

((

d1uθ + d2x2

4

)

− δ̇v
2

)

(21)

where

d1 =
L

m
tx3

cx3
+

L

m
sx3

t2

x3
− g

(

1 + t2

x3

)

d2 =
L

m
tx3

sx3
+

L

m
cx3

+
2L

m
cx3

t2

x3
+

2L

m
sx3

t2

x3

−2gtx3
− 2gt3

x3

From Eq. 21, a control input uθ is proposed such

that V̇4 = −k4e2

4
− k3e3e4, it results

uθ =
1

d1

(

δ̇v
2

−
k3

k4

e3 − e4 − d2x2

4

)

(22)

now, a Lyapunov function is proposed as

V = V1 + V2 + V3 + V4 (23)

and V̇ yields

V̇ = −k1e2

1
− k2e2

2
− k3e2

3
− k4e2

4
≤ 0 (24)

thus, the system 11 is stable in the origin [14].

In order to control the lateral subsystem, the

control methodology presented to stabilize the

longitudinal subsystem is employed. Considering

the condition θ = 0, and ψ = 0, the lateral subsys-

tem is written as

ÿ =
Y

m
cφ −

Tc − D

m
sφ

φ̈ = uφ (25)
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Fig. 5 Simulation results—yaw angle and angular velocity
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Fig. 6 Simulation results—pitch angle and angular velocity
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Fig. 7 Simulation results—roll angle and angular velocity
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while the control law obtained considering the

state variables [x1 = y, x2 = ẏ, x3 = φ, x4 = φ̇] is

done by

uφ =
1

d3

(

δ̇v
2

−
k3

k4

e3 − e4 − d4x2

4

)

(26)

where

d3 = −
Y

m
sx3

− gcx3

and

d4 = −
Y

m
cx3

+ gsx3

On the other hand, in order to stabilize the

remaining directional subsystem, a linear control

input is proposed as

τψ = Izz(−kψ1
ψ − kψ2

ψ̇) − N̄ (27)

which is substituted in

ψ̈ =
τψ + N̄

Izz

(28)

Fig. 8 Gumstix and expansion board

Fig. 9 Experimental platform

and it yields

ψ̈ = −kψ1
ψ − kψ2

ψ̇ (29)

Finally, the constants kψ1
, kψ2

are chosen such that

the Eq. 29 is Hurwitz polynomial.

4 Numerical Simulation

In this section, the simulation results of the at-

titude dynamics are shown. It is observed that

Table 1 Experimental platform parameters

Parameter Value

Fin-aileron area S 0.023 m2

Fin-aileron chord c̄ 0.1 m

Fin-aileron span b 0.23 m

Aspect ratio 2.3

Mass vehicle (m) 0.45 Kg

Propeller 7 × 5 in

Battery LiPo 11.1v

Coaxial motor (Himax) HC2805-1430
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Fig. 10 Experimental results—Yaw angle and angular velocity

the controller stabilizes the attitude dynamics in

a short time. The parameters and gains satisfy the

tuning conditions from the stability analysis. The

initial conditions used for simulation are ψ(0) =

17.2, θ(0) = −4.38, and φ(0) = −10.1

In Fig. 5a the response of the yaw motion is

shown, while the yaw rate with respect to time is

shown in Fig. 5b. The pitch angle response and

pitch rate of the closed-loop system are plotted

in Fig. 6a and b, respectively. Finally, Fig. 7a

and b represent the roll motion and the roll rate.

In general, observe that all states (φ,φ̇,θ ,θ̇ ,ψ ,ψ̇)

converge to the equilibrium in a short time.

5 Experimental Platform

The prototype consists of an embedded system

based on the Gumstix Overo Fire Computer-

on-Module (COM) [16], the Summit expansion

board and the electronic board which interface

all the sensors and actuators with the Gumstix

COM (Fig. 8). This COM has an ARM Cortex-A8

based 720 Mhz platform which is ideal for our ap-

plication due to its characteristics such as 802.11g

WiFi, 512 MB RAM, microSD card slot and sev-

eral communication protocols (I2C, SCI, USB,

SPI) to adquiere and control the different sen-

sors and actuators involved in the avionics of the

MAV. The most important feature of this COM is

that it can run the Xenomai Real-Time framework

[17], which is a real-time development framework

cooperating with the Linux kernel that is achieved

through a dual-kernel approach with the objective

to allow deterministic response times regardless

of the standard Linux implementation in order

to provide hard real-time support to user-space

applications [18]. The complete description of the
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Fig. 11 Experimental results—Pitch angle and angular velocity
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Fig. 12 Experimental results—Roll angle and angular velocity

avionics, the hardware and the software layer of

this vehicle are shown in [19]. Figure 9 shows

the experimental platform built to validate the

simulation results and allowing us to reach the

next stage of the project (forward flight). Table 1

shows the platform parameters.

Figure 10 shows the performance in yaw motion

of the vehicle during the autonomous flight. The

pitch angle and pitch rate are depicted in Fig. 11

while Fig. 12 illustrates the behavior of the roll

angle and roll rate of this aerodynamic platform,

which are the goal in this stage of the project, i.e.,

stability of the aerial vehicle in hover flight.

6 Conclusions

This paper addresses the description of a micro

aerial vehicle launched by a semiautonomous air-

plane. The dynamic model considering aerody-

namical forces and moments was obtained and

simulated. The real-time embedded system was

designed in order to satisfy all the avionics re-

quirements, and one platform was built and tested

in several experimental tests showing promising

results to reach the next stage of the project (MCR

vehicle launched by the air shuttle transporter).

Finally, a complete backstepping controller was

tuned and validated in the micro aerial vehicle for

hover flight, which represents the beginning of the

whole project.
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Abstract In this paper, a multiple UAVs control

scheme is developed considering the full nonlinear

position/orientation model of a j-Quadrotor sys-

tem. A novel second order sliding mode controller
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is presented which guarantees exponential and ro-
bust tracking of admissible time-varying pose. The
harmful chattering is not involved and no dynamic
model is required to implement the controller to
yield fast and precise tracking. Additionally, well-
posed terminal and controlled time convergence
allows an enforced contact at given pre-defined
stable contact points at the same time. A stiffness
control is proposed for grasping objects consider-
ing virtual linkages approach. Our approach yields
high performance from the control system, in con-
trast to other simple controllers proposed for load
carrying. In this sense, our advanced nonlinear
control solves the apparent limitations imposed by
the available technology from the viewpoint of the
precise tracking control, and control of the inher-
ent unstable underactuated dynamics, for friction-
less contact points (neither rolling nor sliding are
considered). A numerical simulation study, under
various conditions, shows the numerical feasibility
of the proposed approach.

Keywords Underactuated dynamic model ·

Second order sliding mode control ·
Aerial grasping · Stiffness control ·
Cooperative Quadrotors

1 Introduction

Although, it has been acknowledged the poten-

tial of rigid grasp for aerial objects with multiple
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UAVs in diverse applications, there has been

little, if any, formal description on the problem

as such, aerial grasp manipulation is a concept

under development. The fact is that different ap-

proaches handle loosely the terms grasping and

manipulation for UAVs which suggest the need

to review and clarify such a concept. An interest-

ing particular scheme for load carrying has been

widely studied and successfully implemented, for

full scale [12] and multiple small helicopters [2],

using only orientation dynamics. However, this

paper presents an approach to the problem of

grasping and manipulation of a free-flying object

for j-UAVs, coined here as aerial grasp manipu-

lation which is conceived in the realm of classical

multi-finger rigid grasping [16]. The problem is to

immobilize an object with a given contact points

set to establish stable grasp of a free-flying dy-

namic object, motionless at time of contact, then

controlling external and internal forces to move

and manipulate the object [19]. Clearly, the tran-

sition from free to constrained motion is included

[1], otherwise it is assumed that the object is al-

ready in a stable grasp condition.

1.1 Contribution and Organization

The problem of grasping and manipulation of a

free-flying object is discussed in Section 2, then a

brief review and a proposed classification are in-

troduced in Section 3. This section also establishes

a distinction on different modalities and informa-

tion of what is known as aerial grasp manipula-

tion. Section 4 shows the model of the position

and orientation dynamics of a Quadrotor UAV,

as well as its structural properties of a convenient

open-loop error equation, including the system of

j-Quadrotors. Section 5 introduces the controller

and its stability analysis which guarantees the fast

and robust tracking of admissible trajectories, in-

cluding convergence to a desired contact time.

This last stability property in particular allows

Quadrotors to meet at a given point and at a given

time. Section 6 presents the grasping and manipu-

lation strategy to enforce a stable grasp map for all

time. Simulations are presented and thoroughly

discussed in Section 7, which lead to some remarks

presented in Section 8. Finally, conclusions are

given in Section 9.

2 The Problem

2.1 The Physics of Interaction with a Free-flying

Object with UAVs

The concept most exploited in the literature is

some sort of object or load carrying with rigid

grip using one UAV or with cables using sev-

eral UAVs. However, rigid grasp has not been

really studied, it does not involve cables but rigid

coupling, with several UAVs. Rigid grasp of an

object with j-UAVs implies the ability to exert

forces into the object mostly along x and y axes

and to compensate for interacting forces among

the UAVs. In contrast, load carrying or object

grabbing mostly stands for compensation of forces

in the z direction. The former maintains its center

of gravity, while the latter suffers from inverted

pendulum effect because its center of mass is dis-

placed downwards. However, exertion of forces

occurs mostly along x, y which requires higher

pitch. This fact brings the problem that there is a

physical limit imposed by the thrust required to

compensate for gravitational force along z. That

is, the more pitch the less thrust and viceversa.

This happens because there is not independent

actuation to control the displacements along x and

y axes. The displacements along these directions

are achieved by controlling roll and pitch angles,

in other words given such desired displacements a

virtual controller is built, then the corresponding

roll and pitch angles are found, which finally will

stand for the desired roll and pitch angles for

the orientation controller, allowing the interaction

into x and y axes.

It is clear that for rigid frames and objects, the

interaction forces and moments are propagated

all along the bodies, then fast and robust con-

trollers must compensate or accommodate such

interactions to avoid instabilities. To accommo-

date, distribute and share loads along x, y, z due

to the object or other UAVs, some sort of passive

linkage or compliant mechanism may be required,

otherwise grasping will be possible only with light

objects that require small pitch angles, that is,

small fx, fy. In this paper the flight control of

multiples UAVs is presented in order to establish

grasp and manipulation without considering this

aforementioned problem.
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2.2 Problem Statement

The problem of aerial grasping only with rotary

wing UAVs is considered, leaving out UAVs with

fixed wings because those cannot regulate their

position. Being said that, single main rotor like

a typical helicopter or multiple main rotors such

as a Quadrotor are considered because of its hov-

ering characteristic to position the UAV at the

given point in order to grasp the object. However,

grasping a motionless object in the air requires to

exploit at the limit the highly maneuvering charac-

teristic of the underactuated vehicles. In fact, this

task can be classified as an extreme flight regime;

it requires high-end models, avionics, coordina-

tion and control in order to achieve grasping,

and it needs top of the line precise positioning,

stable hovering, sensing and time synchronization

of multiple UAVs, as well as extraordinary flight

control. Then, it comes to no surprise that so far

there is none scheme that tackles the problem

of aerial multi-grasp manipulation, defined as the

grasping in the air of an object with multiple UAVs

and then manipulate it (controlling the pose over

time) once stable grasp is achieved.

2.3 Motivation

There are some distinct useful features of Quadro-

tors to solve the problem: (i) their small size,

mass and inertia make them convenient for mul-

tiple UAV cooperation, their ability for underac-

tuated maneuvering (it can reach any pose, but

not through any trajectory), and (ii) their ability

to positioning and stable hovering. All these char-

acteristics are appealing for interaction tasks, but

this involves a high analytical and computational

cost. A Quadrotor is, in general, unstable, that

is the linear approximation is of non-minimum

phase similar to the helicopter case and the non-

linear model is not passive, from torque input to

angular velocity output due to its underactuation.

To make things worse, orientation dynamics is

very fast in comparison to the position dynamics,

which are related by a dynamic mapping whose

solution is non-causal. This imposes to consider as

much information of the system as possible, conse-

quently, in particular there should be considered

a formal approach to take into account full non-

linear models to design robust and fast nonlinear

control for tracking. Solving, even partially, this

problem would allow the formulation of diverse

task on load carrying, deploying and recovering,

and in general drone cooperation that involves

physical interaction.

2.4 Hypothesis

Grasp manipulation in the air is perhaps one of

the dream flight regime of a j-Quadrotor system.

It would require such performance that the the-

oretical and technological challenges that arise

seem to amount for an unsurpassed scientific

problem nowadays. However, to surmount such

set of challenges, some stringent hypothesis are

required to, at least, work out a small part of the

whole problem. As a first step in this direction, the

problem based on the following technological and

theoretical hypothesis is study: (a) no technologi-

cal constraints are considered, such as slow sensor

response with limited resolution, multisampling

rate of sensors and actuators, latency require-

ments, limitations on mechanical design of the ap-

pendage to establish convenient contact to the

object, and processing unit is able to guarantee fast

and constant sampling update; (b) full state feed-

back is available; (c) reasonably it is assumed un-

known dynamic model and unknown parameters,

but full knowledge on kinematic model; (d) the

dynamic object is motionless before any contact,

whose invariant pose is known beforehand; and

(e) there exists a motion planning that delivers on-

line admissible desired position trajectories and

desired contact force that ensures a stable grasp.

2.5 Proposed Solution

The full nonlinear model of position and ori-

entation is assumed, that is the R
6 model with

four inputs, in contact to a rigid object. Firstly,

a second order sliding mode controller is syn-

thesized for the orientation dynamics to achieve

fast and robust exponential convergence to de-

sired smooth and bounded ωd(t) ∈ C2 trajectories.

Then, a similar controller is developed for the po-

sition dynamics assuming virtual inputs. Secondly,

an analytical and causal solution is found for roll

and pitch angles, and for zero yaw. Henceforth,
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virtual inputs are build upon controlling angular

velocities of the orientation dynamics. Thirdly, a

time-based generator is proposed to induce ter-

minal stability within the invariant manifold (the

sliding surface) to enforce convergence at a given

desired time. This allows j Quadrotors to grasp

the object at the same time in j contact points.

Finally, an additional control term is designed to

control the interaction forces. This term is based

on virtual linkages approach, using a stiffness con-

trol approach, to guarantee a stable grasp, and it

is proved the stability of the whole closed-loop

system. This builds a solution to the problem of

grasping and manipulation, with multiple UAVs,

of a motionless free-flying dynamic object located

off ground. Then, exertion of a given set of in-

ternal forces is required to guarantee stable grasp

and be able to commute to controlling external

forces to move the object.

3 Brief Background

3.1 Rough Classification

The described problem is virtually non-existent

in the literature and, in this paper, it is confined

to the discussion and review of related problems

such as load carrying, load gripping and grabbing

as well as rigid formation of UAVs. Briefly, aerial

grasp has been loosely used indistinctly to refer to

grabbing of an object with an UAV. The follow-

ing classification arises, without much rigor, but

depending on how the object is carried or grasped:

– Load Carrying Rigidly. One UAV is carrying

an object rigidly attached to its mainframe. In

this case, the UAV is likely to be off-centered

or imbalanced, diminishing the flight capability.

– Load Carrying with Cables. It considers at

least three UAVs with cables, whose ends

are attached to the object at a point where

static equilibrium arises. Flight is difficult be-

cause the object attracts the UAVs, then this

configuration is useful only for large objects,

w.r.t. to the size of the UAVs [7].

– Aerial Gripping. An object is already rigidly

attached to the UAV all the time [8].

– Ground Grabbing. The object is at the ground,

then the UAV encounters the aerodynamical

problem of ground ef fect from hovering near

ground which looses thrust, then grabs with an

active device the object.

– Aerial Grabbing. A static aerial object is

grabbed by magnetic or gripper-type mecha-

nism. Then, the object is rigidly attached to the

mainframe of the UAV. When two or more

UAVs are involved, a new UAV arises be-

cause the two original mainframes are now

rigidily connected through the object.

– Aerial Manipulation. The pose of an object is

passively controlled in the air by two or more

UAVs.

– Aerial Grasp and Manipulation. A motionless

dynamic object is grasped without any ground

effect, then its pose is controlled indepen-

dently of the UAV pose.

The last category is studied in this paper.

3.2 Relevant Works

Aerial grabbing is proposed in [15] with a co-

operative scheme for load transportation with a

simplified model and control, and planning of

this tasks is further proposed in [7]. Gripping is

presented in [14] for magnetic coupling. Inter-

estingly, with a claimed submilimiter precision,

aerial gripping is proposed in [8], and a simplified

control scheme under rigid constraints is discussed

in [9]. There are other references in particular

impressive videos can be found in a popular video

web channel, however there does not exist formal

publications on the algorithmic foundations.

4 The Dynamic Model of the Quadrotor System

4.1 The Dynamic Model of a Quadrotor

The dynamic model of a Quadrotor is basically

obtained representing the aerial vehicle as a rigid

body evolving in 3D and subject to one force and

three moments [6, 10]. Let us consider earth fixed

frame I = {ex, ey, ez} and body fixed frame A =
{eb

x , eb
y , eb

z }, as seen in Fig. 1. The center of mass

and the body fixed frame origin are assumed to
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Fig. 1 The UAV system.
fi represents the thrust of
motor Mi and T is the
main thrust

coincide. The orientation of the rigid body is given

by a rotation R : A −→ I, where R ∈ SO(3) is an

orthogonal rotation matrix, parameterized by the

Euler angles ψ, θ, φ (yaw, pitch, roll). Newton–

Euler equations of motion state the dynamics of

the quad-rotor as follows:

mξ̈ = −T Rez + F(t) (1)

Ṙ = Rω× (2)

Jω̇ = −ω × Jω + τ + d(t) (3)

where ξ = (x, y, z)T denotes the position of the

center of mass of the airframe in the frame I

relative to a fixed origin, ω = (ω1, ω2, ω3)
T ∈ A

denotes the angular velocity of the airframe ex-

pressed in the body fixed frame. m denotes the

mass of the rigid object and J ∈ R
3×3 denotes the

constant inertia matrix around the center of mass

(expressed in the body fixed frame A). ω× denotes

the skew-symmetric matrix of the vector ω, which

is given by

ω× =

⎛

⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞

⎠

T ∈ R+ represents the magnitude of the principal

non-conservative forces applied to the object. F(t)

represents the external forces applied to the aerial

vehicle, such that in the absence of forces exerted

by the environment (aerodynamic reaction forces,

etc.) F(t) = mgez. τ ∈ A is the control torque, and

d(t) ∈ R
3 represents the external torque distur-

bances induced by F(t) which is assumed to be

smooth and bounded.

4.1.1 The Open-Loop Error Equation

In order to design a control law, it is useful to

define a dynamic equation parameterized by the

error which is called open loop error equation.

Let us define a parametrization Yr in terms

of a nominal reference ωr, to be defined, and its

derivative ω̇r, as follows

Yr = Jω̇r + ω×Jωr + ω×
r Jω − ω×

r Jωr (4)

Introducing Eq. 4 into Eq. 3 yields

JṠr + S×
r JSr = τ + d(t) − Yr (5)

where the error coordinates Sr are defined by

Sr = ω − ωr (6)

At this point, the control objective is to design

a τ such that Sr is stable despite the presence of

bounded disturbances.

4.2 The Dynamic Model of a Set of j-Quadrotors

Based on the dynamic model of a Quadrotor pre-

sented in Section 4.1, we now present the dynamic

model of N Quadrotors. The complete model is

such that the j − th element corresponds to the j-

Quadrotor, whose dynamic model is given by

m jξ̈ j = −T jR jez + F j(t)

Ṙ j = R jω
×
j

J jω̇ j = −ω×
j J jω j + τ j + d j(t) (7)
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where j goes from 1 to N. Then, a compact form

of the dynamic model of N Quadrotors is given by

m̄�̈ = −T̄ R̄ez + F̄

˙̄
R =

[

R̄
]

	̂

J̄	̇ = −
[

	̂
]

J̄	 + τ̄ + d̄ (8)

where

� = (ξT
1 , . . . , ξT

N)T , 	 = (ωT
1 , . . . , ωT

N)T ,

R̄ = (RT
1 , . . . ,RT

N)T , 	̂ = ((ω×
1 )T , . . . , (ω×

N)T)T ,

m̄ = blockdiag(m1 I, . . . , mN I), τ̄ = (τ T
1 , . . . , τ T

N )T ,

T̄ = blockdiag(T1 I, . . . , TN I), d̄ = (dT
1 , . . . , dT

N)T ,

J̄ = blockdiag(J1, . . . , JN), F̄ = (FT
1 , . . . , FT

N)T ,

I represents the 3 × 3 identity matrix and [X]
denotes the block diagonal matrix whose diagonal

block elements are the elements of X.

5 Control Design and Stability Analysis

In this section a Second Order Sliding Mode

(SOSM) controller is provided for the system 1–

3 [5, 18].

5.1 Attitude Control Design

We employ the unit quaternion as the attitude

representation. Using this representation the at-

titude control design does not suffer from singu-

larities. The unit quaternion is defined as

q =
(

q0

q

)

=

⎛

⎜

⎝

cos
(μ

2

)

e sin
(μ

2

)

⎞

⎟

⎠
(9)

where e is the Euler axis and μ is the Euler

angle. The unit quaternion satisfies the following

constraint

qTq = q2
0 + qTq = 1 (10)

and it is related to the angular velocity ω by the

following differential equations

q̇ =
(

q̇0

q̇

)

=

⎛

⎜

⎜

⎝

−1

2
qT

ω

1

2

(

q0 I + q×)

ω

⎞

⎟

⎟

⎠

(11)

Let us define the angular velocity error ωe as

follows

ωe = ω − ωd (12)

where ωd is the desired angular velocity expressed

in the body fixed frame.

Let us consider the following nominal reference

ωr = ωd − αqe + Sd − γ σ (13)

where σ̇ = sgn(Sq), feedback gains, α > 0 and γ

is diagonal positive definite matrix; the function

sgn(X) = (sgn(x1), sgn(x2), sgn(x3))
T stands for

the input wise discontinuous function of X, and

Sq = S − Sd (14)

S = ωe + αqe (15)

Sd = S(t0) exp(−k(t − t0)) (16)

with k > 0 and S(t0) stands for S(t) at t = t0. qe =
(q0e, qT

e )T is the relative attitude error defined as

qe = q ⊗ q∗
d (17)

where ⊗ denotes the operator for quaternion mul-

tiplication, qd = (q0d, qT
d )T is the desired attitude,

such that q0d(t), qd(t) are one time differentiable

functions and q∗
d is the inverse of qd. The vectorial

part qe is given by

qe = −q0qd + q0dq − q×qd (18)

Notice that ω̇r is discontinuous, because of σ̇ =
sgn(Sq), and Sq(t0) = 0 for any initial condition.

From Eqs. 6, 12, 13 and 15 the dynamic error

coordinates Sr are given by

Sr = Sq + γ σ (19)

5.1.1 Structural Properties of the Open-Loop

Error Equation

There exist positive scalars βi for i = 0, . . . , 4,

such that

0 < β0 < λmin(J) ≤ ‖J‖ ≤ λmax(J) < β1 < ∞
‖qe‖ < 1

‖ωr‖ ≤ β2 + ‖γ ‖‖σ‖

‖ω̇r‖ ≤ β3 + β4‖ωe‖

(20)
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where λmin(J), λmax(J) stand for the minimum

and maximum eigenvalues of matrix J ∈ R
3,

‖J‖ =
√

λmax(JTJ) and ‖ · ‖ stands for the vector

Euclidean norm.

From Eqs. 3, 4 and using Eq. 20, d(t) − Yr can

be bounded as

‖d(t) − Yr‖ ≤ ‖d(t)‖ + ‖J‖‖ω̇r‖ + 2‖ω‖‖J‖‖ωr‖

+ ‖J‖‖ωr‖2

≤ ‖d(t)‖ + β1β3‖ωe‖ + 2β1β2‖σ‖‖ω‖

+ 2β1β2‖γ ‖‖σ‖ + β1‖γ ‖2‖σ‖2 + β5

≤ η(t) (21)

where β5 = β1β4 + β1β
2
2 , and η(t) is a state-

dependent function. Notice that, η(t) considers all

the external torques including state-dependence

of d(t).

Consider the following control law

τ = −KdSr (22)

where Kd is a diagonal positive definite matrix.

We now have the following result.

Theorem 1 Consider the attitude dynamics 3 in

closed loop with the controller 22. Then, semi-

global exponential tracking is assured, provided

that γ in Eq. 19 and Kd are large enough, for small

initial errors.

The proof of this theorem is given in the

Appendix.

5.2 Control Design for Position

Consider the translational dynamics 1. Now, let us

define the following virtual control

u = T Rez (23)

Then, the system 1 can be rewritten as follows

mξ̈ = −u + F(t) (24)

Following a similar procedure from the Section

5.1, the control design becomes straightforward.

The parametrization can be written in terms of a

nominal reference ξr as follows

mξ̈r = Ȳr (25)

Introducing Eq. 25 into Eq. 24 yields

m ˙̄Sr = −u + F(t) − Ȳr (26)

where S̄r = ξ̇ − ξ̇r.

Consider the following nominal reference ξ̇r

ξ̇r = ξ̇d − ᾱξe + S̄d − γ̄ σ̄ (27)

˙̄σ = sgn
(

S̄q

)

(28)

where the tracking error ξe = ξ − ξd, reference

trajectory ξd(t) ∈ C2, feedback gains ᾱ, γ̄ are di-

agonal positive definite matrices, and

S̄q = S̄ − S̄d (29)

S̄ = ξ̇e + αξe (30)

S̄d = S̄(t0) exp(−k̄(t − t0)) (31)

for k̄ > 0 and S̄r rewritten as

S̄r = S̄q + γ̄ σ̄ (32)

As before, F(t) − Ȳr�̄ can be bounded as

F(t) − Ȳr�̄ ≤ ‖F(t)‖ + m‖ξ̈r‖ (33)

≤ ‖F(t)‖ + m(β̄ + ᾱ‖ξ̇e‖) (34)

≤ η̄(t) (35)

where β̄ is a positive constant, and η̄(t) is a

state-dependent function. Notice that, η̄ not only

includes all the external forces affecting the aer-

ial vehicle (buoyancy forces, aerodynamic forces,

gravity, etc.) but also a general state-dependence

of F(t).

Then, a control law that assures semiglobal

exponential tracking, in closed-loop with system

1, is given by

u = K̄d S̄r (36)

where K̄d is a diagonal positive definite matrix.

In a similar way to the proof of the Theorem 1,

it follows that S̄r and ˙̄Sr are upper bounded, and

the sliding mode in S̄q(t) = 0 is enforced for all

time. In this way, tracking errors are constrained

to evolve on a manifold that has exponential

solution toward the desired trajectory ξd(t) for
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designer parameters k̄ and ᾱ. This establishes the

exponential convergence of tracking errors

ξ(t) → ξd(t) ξ̇ (t) → ξ̇d(t) (37)

regardless of uncertainty of system parameters.

Let us now present the deduction of the desired

attitude trajectories to satisfy Eq. 23.

In order to compute the desired Euler angles

and angular velocity, let Td be defined as the mag-

nitude of u and Rdez as a unit vector, representing

the direction, as follows

Td = ‖u(t)‖, Rdez = u(t)/Td

Then, solving the above relations for yaw ψd =
0, we obtain the following desired Euler angles

θd = arctan (u1/u3) (38)

φd = − arcsin (u2/Td) (39)

where u1, u2, u3 are the components of the con-

trol input u. The desired angular velocity ωd is

deduced from the relationship between the Euler

angles (and its derivatives) and the angular veloc-

ity ω, as follows

ω1d
= −(u̇2Td − Ṫdu2)/Td

√

u2
1 + u2

3 (40)

ω2d
=

√

1 − u2
2/T

2
d

(

u3u̇1 − u̇3u1

u2
1 + u2

3

)

(41)

ω3d
= u2(u3u̇1 − u̇3u1)/Td(u

2
1 + u2

3) (42)

where Ṫd = u1u̇1+u2u̇2+u3u̇3

Td
and the time derivative

of the control u̇ = (u̇1, u̇2, u̇3) is established from

the fact that S̄q = 0 implies ˙̄Sq = 0. Then, from

Eqs. 32 and 36 u̇ = K̄dγ̄ sgn(S̄q). qd is obtained,

from the desired Euler angles, by using the con-

version between quaternion and Euler angles.

Notice that, Eqs. 38–42 are well-posed, since

the third component of the control u3 is coun-

teracting the gravity, and therefore u3 > 0 for all

time.

5.3 Control Design for Terminal Stability

In order to implement the control law 36, the

vectorial term T Rez must converge to u in finite-

time. This is done by assuring finite-time conver-

gence of attitude tracking errors through a de-

sired rotation matrix Rd and thrust Td, computed

from the control u. However, the result presented

in Theorem 1 only provides exponential conver-

gence of the attitude tracking errors, and does not

guarantee finite-time convergence.

We now propose a new sliding surface, para-

meterized by a time base generator (TBG), based

on [17], which moves and rotates continuously the

nominal sliding surface through a known, state-

independent, vanishing vector to achieve finite

time convergence of tracking errors, with an ar-

bitrary convergence time. This methodology can

also be applied to the position control as will be

shown in simulation results.

Consider the following first order differential

equation

ż = −ρ(t)z (43)

where

ρ(t) = ρ0

χ̇

(1 − χ) + δ
(44)

with ρ0 = 1 + ε, 0 < ε ≪ 1, and 0 < δ ≪ 1. The

time base generator χ(t) ∈ C2 must be provided

by the user so as to χ goes smoothly from 0 to 1

in finite time t = tb > 0, and χ̇ (t) is a bell-shaped

derivative of χ such that χ̇(t0) = χ̇(tb ) ≡ 0. Under

these conditions, a solution of Eq. 43 is given by

z(t) = z(t0) [(1 − χ) + δ]1+ε (45)

with ρ(tb ) > 0. Note that tb is independent of any

initial conditions and hence

ρ(tb ) = 1 ⇒ z(tb ) = z(t0)δ
1+ε > 0

can be made arbitrarily small in arbitrarily finite

time tb . Thus, the key idea is to bring the solution

of the attitude tracking errors to an equation sim-

ilar to Eq. 45, defining ρ0 = 1+ε
q0e

. Notice that q0e(t)

is positive and converges to 1, so ρ0 is well possed.

Consider that the sliding mode is induced on

Sq(t) = 0, for all time, and Sd(t) ≈ 0 as has been

proved in Appendix. Then, from Eq. 70, and re-

placing the gain α by 2ρ we obtain

d

dχ
qe = −ρ0q0e

qe

(1 − χ) + δ

which attains the following solution

qe(t) = qe(t0) [(1 − χ) + δ]1+ε

= qe(t0)δ
1+ε at time t = tb
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since by assumption χ(tb ) = 1 and by considering

q0e ≈ 1. Considering that δ and ε are very small,

then at t = tb , tracking errors belong to a very

small vicinity ε of the origin, which in practice

may stand for the required precision or zero error.

Note that at t > tb , the time varying feedback gain

ρ(t) must be reset to the desired constant α > 0.

Thus, convergence of the attitude tracking errors

are guaranteed in finite-time.

6 Control Design of Force for Stable Grasp

Based on [20], which establishes the model and

computation for internal forces at a static equi-

librium, [22] proposes a multi-grasp manipulation

scheme for robot arms that account for a stiffness

control, that is, force model is computed according

to the restitution force of the Joule model. In

this way, force arises because of the compression

ratio of virtual springs that connect each finger

with the object and the object with the target

point. This is interesting for our problem, because

it indicates that it is possible to design a grasp-

ing matrix to enforce stable grasp using a simple

stiffness control as the gradient of the potential

energy of the virtual springs. To accommodate this

new torque control term, the position-orientation

controller proposed in the previous section will

compensate for as if this torque stands for a torque

disturbance.

6.1 System Model and Assumptions

Consider without loss of generality that j = 4, that

is modeling 4 Quadrotors to grasp a rigid object.

Then, the following Euler-Lagrange model can be

derived for the multi-body system,

Mr(xr)ẍr + Cr(xr, ẋr)ẋr + gr(xr) = wext + w f

Mq(xq)ẍq + Cq(xq, ẋq)ẋq + gq(xq) = τ − τ f + τext

where xq = (xT
f1
, ..., xT

fN
)T ∈ R

M is the vector of

generalized positions for N Quadrotors. The vec-

tor τ ∈ R
M−2N contains the corresponding gener-

alized control inputs, that is three for orientation

and the thrust in z axis for each Quadrotor. The

vector xr ∈ R
6 is the local representation of the

object frame Hr ∈ SE(3). Consider that indexes

q and r stand for Quadrotor and object, respec-

tively, then Mq(xq) ∈ R
M×M and Mr(xr) ∈ R

6×6

stand for the symmetric and positive definite iner-

tial matrices, Cq(xq, ẋq) ∈ R
M and Cr(xr, ẋr) ∈ R

6

contain the centripetal and centrifugal forces in

terms of the Coriolis components, and gq(xq) ∈
R

M and gr(xr) ∈ R
6 are the vectors of generalized

gravity forces. Finally, wext ∈ R
6 contains the ex-

ternal generalized wrench acting on the object,

and then w f ∈ R
6 models the wrench applied to

the object at the contact points by the Quadro-

tors. Vector τ f represents the generalized torque

inputs due to the contact forces in the Quadro-

tors. In order to focus on the presentation of

the multi-Quadrotor part of the dynamics, other

physical effects like link and joint flexibility as

well as joint friction are neglected reasonably be-

cause it is assumed frictionless contact and rigid

frames.

The following definitions are used to facili-

tate the notation. A frame Hx,y = [RX,Y , pX,Y ] ∈
SE(3), consisting of a rotation matrix RX,Y ∈
SO(3) and a translation pX,Y ∈ R

3, transforms a

given position in the coordinate system Y into the

coordinate system X. If only one index is used, the

coordinate system X is considered as an inertial

coordinate system, that is, Hy = HI,Y . A frame

HX can be described by a local parametrization

xX ∈ R
6. Vector wX = ( f T

X , mT
X)T contains the

generalized forces and moments acting at the ori-

gin of the coordinate system Hx, with fx, mx ∈ R
3

represented in the body frame [16].

In the following, fine manipulation with mul-

tiple Quadrotors is treated. Assume N > 2 and

a manipulable grasp map [16], for a 3D object;

furthermore, consider the following assumptions

1. Internal forces are sufficiently large such that

the friction constraints are fulfilled for all con-

tact points, that is no sliding arises at any

contact point.

2. The contact between the object and the

Quadrotors is restricted at one point.

3. The relative contact points between the

fingertips and the object do not change

(neglecting rolling effects). This assumption

introduces a relatively small kinematic er-

ror to maintain consistently a holonomic

constraint.
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4. The magnitude of internal forces ensures a

stable grasp for any reachable pose within the

available Quadrotors’ thrust.

5. The corresponding internal forces that guar-

antee object manipulation are inside the sub-

space of admissible Quadrotor pose during

the contact with the object.

6. There is a point contact with friction, that

is, only forces and no torques can be trans-

mitted at the contact point. There are only

constraints in position, but not in orienta-

tion, it means that the Quadrotor exerts only

forces to the object, but not moments and the

Quadrotor can change its orientation without

directly affecting the orientation of the object.

Now consider forces f f i, the velocities ṗ f i, and the

variations of position δp f i(x f i) of the Quadrotors

in stacked notation, and that the i-th Cartesian

Quadrotor position p f i(x f i) ∈ R
3 and its orien-

tation relative to the inertial frame R f i(x f i) can

be calculated as a function of the generalized

positions x f i. To indicate stacked notation the

index is removed [e.g. f f = ( f T
f,1, ..., f T

f,N)T ]. Note

that stacked variables are expressed in the iner-

tial frame, then the Quadrotors’ stacked jacobian

Jq(xq) = ∂p f (xq)

∂xq
maps the Quadrotor velocities to

the inertial frame. Assumptions (4) and (5) en-

sure that J−1
q (xq) exists and is well-posed. In this

condition, the grasp map Gr ∈ R
6×3N is used to

determine the effect of the stacked contact forces

at the Quadrotors’ contact points f f ∈ R
3N on the

object wrench w f , with

Gr = [AdT
H−1

r, f1

B, ..., AdT
H−1

r, fN

B]RT
f ,

R f = blockdiag(R f1
, ..., R fN

),

B = [I3×303×3]T , (46)

where B ∈ R
6×3 is the wrench basis, and AdT

Hx,y

represents the adjoint transformation associated

with Hx,y [16], given by

AdHx,y
=

[

Rx,y p̂x,y Rx,y

0 Rx,y

]T

, (47)

with the skew-symmetric operator ŵ = w× :
R

3 → R
3×3, and Hr, fi

is the configuration of the i-

th contact frame relative to the object frame. Ro-

tation RT
fi

transforms the forces at the fingertips

f f represented in the inertial system into the i-

th contact frame. The grasp map relates not only

forces, but also velocities and variations at the

Cartesian fingertip level, with the ones at the

object level as follows

w f = Gr f f , GT
r ẋr = ṗ f , GT

r δxr = δp f

Now, the well-known grasp constraint can be for-

mulated as follows

Jq(xq)ẋq = GT
r (xq, xr)ẋr (48)

6.2 Implementation of Impedance Behaviors

The impedance behaviors are based on the follow-

ing control law defined as

τo = −T Rez −
(

∂V(xq)

∂xq

)T

(49)

where T Rez represents the virtual control on the

Quadrotor position for hovering at a desired al-

titude zd. The overall potential function V(xq)

models the environmental potential energy from

the virtual springs connecting the Quadrotors with

the object at each contact point. Clearly, V(xq)

stands for the impedance behaviors according to

[22], consisting of the sum of the individual po-

tential functions of all the springs components.

In our case, since the controller τq guarantees

an invariant manifold Sq = 0 in closed-loop for

tracking of admissible position and orientation,

the control input τo creates the restitution forces

of such springs.

6.3 Inversion of the Grip Map

Most grasp controllers presented in the literature

are based on the inversion of the grip map Q [13].

To obtain it, consider the grasp map G(p f (xq), xr)

stacked together with its orthogonal complement

E(p f (xq)), which spans its null space. The ma-

trix E(p f (xq)) can be modeled using the virtual

linkage [20]. To this end, consider task states x as

follows

x =
(

xr

xη

)

, �x = x − xd, Kx =
[

Kr 0

0 Kη

]

(50)

where xr stands for the coordinates of the object

and xη ∈ R
(N−1)N/2 is the coordinates of the virtual
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linkage, with the i-th distance between fingertips

xη,i =‖ p f, j − p f,k ‖. The coefficients j, k cover

all possible fingertip connections, where xd =
(xT

r,d, xT
η,d)

T models its corresponding desired val-

ues where full rank of G(p f (xq), xr) occurs. As

suggested by [22], such a grip map-based con-

troller can be obtained as follows. Consider a

potential function that describes the energy of

an object-level spring, corresponding to internal

forces, clearly a direct choice is

V(�x) = 1

2
�xT Kx�x (51)

although more interesting and physical meaning-

ful restitution forces can be modeled with nonlin-

ear saturated springs. Then, the compliance con-

trol law 49 is nothing but

τo =
(

∂V(�x)

∂�x

∂�x

∂p f

∂p f

∂xq

)T

= JT
q

(

∂�x

∂p f

)T

Kx�x, (52)

using the local transformation

∂p f

∂x
=

[

∂p f

∂xr

∂p f

∂xη

]

≡ QT . (53)

Herein, using the local properties, GT
r (pf (xq), xr) =

∂p f

∂xr
can be recognized as the grasp map, and the

inversion map E(p f ) := ∂xη

∂p f
can be determined by

the virtual linkage [22].

For a four-fingered hand, each entry of E(p f )

can be computed using the unit vector pointing

from fingertip k to j, that is, e j,k = (p f, j − p f,k)/ ‖
p f, j − p f,k ‖ , then E(p f ) becomes

E =

⎡

⎢

⎢

⎣

e12 e13 e14 0 0 0

−e12 0 0 e23 e24 0

0 −e13 0 −e23 0 e34

0 0 −e14 0 −e24 −e34

⎤

⎥

⎥

⎦

, (54)

where the equivalence between the virtual linkage

E as proposed in the literature and our potential-

function-based derived mapping is discussed in

Appendix. In this way, the virtual linkage E is

orthogonal to the grasp map, that is, Gr E = 0.

Consequently, the choice of coordinates for the

virtual linkage combined with the grasp is such

that the matrix Q is square with full rank if the

grasp is stable and the virtual linkage establishes

a non-degenerate map. In this case, the inverse of

the grip map arises as follows

Q−1 =
(

∂�x

∂p f

)T

= [G+
r E]. (55)

In [20], the Moore-Penrose pseudoinverse of the

grasp map Gr is used, furthermore, [4] shows

that a weighted pseudoinverse, the object wrench

is in the range space of the grasp map Krxr ⊂
R(Gr) and the controlled fingertip forces f f =
J−T

q τo have consistent physical units, providing

a way to introduce kernel control schemes, if

necessary.

Since ẋr cannot be measured directly, the in-

verse of the transposed grasp map is used to derive

it based on the velocities of the fingertips

ẋr = GT+
r ṗ f (56)

Furthermore, according to [21], integrating Eq. 56

yields xr, respectively Hr(xr), instead of observing

the real-object dynamics, certainly a viable option

in real implementations, as long as initial condi-

tions are available for the integration process.

To obtain the stiffness properties, it is assumed

that the controller compensates for object gravi-

tational forces, and the object Coriolis forces are

neglected; object dynamics can be analyzed in

virtual coordinates, that is

Mx ẍ = fx + fx,ext (57)

with fx = Qf f , the generalized external force

fx,ext = (wT
ext, f T

η,ext)
T , and fη,ext the external force

related to the coordinates xη. The inertia matrix

Mx = blockdiag(Mr, 0) since the object does not

have any inertia w.r.t. to internal motions. Now

since t f = JT
q f f , dynamics can be written as

Mq ẍq = −JT
q f f + τ (58)

with ẋ = Q−1 Jq ẋq, and the acceleration constraint

ẍ = Q−T Jq ẍq + d
dt

(Q−T Jq)ẋq, in which the second

term can be interpreted as a Coriolis term, ne-

glected in the damping design. Pre-multiplying

Eq. 58 by Q−T Jq M−1
q , and using f f = Q−1 fx and

ẍ, we obtain

ẍ = −Q−T Jq M−1
q JT

q Q−1 fx + Q−T Jq M−1
q τ. (59)

Now, multiplying Eq. 59 with Mx
q =

(Q−T Jq M−1
q JT

q Q−1)−1, the Quadrotors inertia



J Intell Robot Syst

matrix represented in generalized coordinates, it

arises

Mx
q ẍ = − fx + Mx

q Q−T Jq M−1
q τ. (60)

Solving for fx, and using the above equation

(Mx + Mx
q)ẍ = Mx

q Q−T Jq M−1
q τ + fx,ext. (61)

where τ = τq + τo is the total control law. Finally,

the simplified closed-loop dynamics can be written

as

(Mx + Mx
q)ẍ + Kxx = −Mx

q Q−T Jq M−1
q KdSr

+ fx,ext + Kxxd (62)

6.4 The Full Controller

The control τ = τq + τo for stable grasping yields

Kxxd as an additional endogenous controlled

force.

7 Simulation Study

7.1 Simulator Setup

A modular simulator is programmed using

Matlab� and Simulink� V10.2, on a Windows 7

personal computer equipped with Intel Core I7

first generation, with 4 Gb of DRAM. It can be

distinguished six modules, four for the 4 Quadro-

tors dynamics, one for the object interaction, and

another for the grasp matrix calculations. Module

means an embedded function block of Simulink.

Two cases are considered, the first one is grasp-

ing, that is, immobilize the object from different

initial conditions of each Quadrotor. The second

simulation considers grasp and then manipulation,

that is controlling the pose of the object. In both

case, terminal stability is considered to reach and

touch the object exactly at the same time by all

Quadrotors.

Table 1 Quadrotors’ initial conditions

Quadrotor 1 Quadrotor 2 Quadrotor 3 Quadrotor 4

x0 = 0 x0 = 2.5 x0 = 2.5 x0 = 0

y0 = 0 y0 = 0 y0 = 2.5 y0 = 2.5

z0 = 0 z0 = 0 z0 = 0 z0 = 0

Table 2 Desired trajectories

Quadrotor 1 Quadrotor 2 Quadrotor 3 Quadrotor 4

x1d = ̺ + 1
2

x2d = −̺ + 2 x3d = −̺ + 2 x4d = ̺ + 1
2

y1d = ̺ + 1
2

y2d = ̺ + 1
2

y3d = −̺ + 2 y4d = −̺ + 2

z1d = ̺ + 1
2

z2d = ̺ + 1
2

z3d = ̺ + 1
2

z4d = ̺ + 1
2

with ̺ = 0.5 tanh(4t − 3.4)

7.2 Conditions, Desired Trajectories, Parameters

and Feedback Gains

7.2.1 Conditions

In the first case, initial conditions for each 4

Quadrotor starts at different locations, see Table

1; then, the controller τq drives them in finite time

to grab a cylindrical plate and immobilizing it. The

object has a plate shape of a diameter do = 0.7 m,

a height ho = 0.05 m, a mass mo = 0.4 Kg and is

placed motionless at z = 1 m of altitude.

7.2.2 Desired Trajectories

Desired references are shown in Table 2.

7.2.3 Control Gains

Feedback gains for all Quadrotors are equally

tuned independent of different reference signals

and different initial conditions. Desired time to

grasp the object is at 1.88 s, see Table 3.

7.3 Simulations Results

7.3.1 Case 1: Grasping Only

Convergence of position trajectories stands for the

synchronization of all Quadrotors, according to

the task, as it can be seen in Figs. 2 and 3.

Table 3 Control gains

Attitude control gains Position control gains

kd = diag(10, 10, 10) k̄d = diag(26, 26, 23)

γ = diag(1, 1, 1) γ̄ = diag(0.25, 0.25, 0.8)

α = diag(25, 25, 25) ᾱ = diag(11, 11, 11)

s(t0) = diag(0, 0, 0) s(t0) = −0.0089I3×3

k = 5 k = 5

tb = 0.5 tb = 1.88
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Fig. 2 Exponential position tracking

Figure 4 shows the force tracking that ensures

exerting of a planned profile that complies to a

stable grasp of all the Quadrotors starting at time

t = tb .

Three dimensional contact forces allows the

exertion of predefined and necessary forces

to establish a grasp map that enforces stable

grasp.

Figure 5 shows how the grip map does not lose

rank at any moment once the Quadrotors have

grabbed the object, meaning that stable grasp is

always obtained.

Fig. 3 Representation in
3D of the 4 Quadrotors
and the object
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Fig. 4 Force applied to the object

7.3.2 Case 2: Grasping and Manipulation

This involves the whole case 1, complemented

with controlling the pose of the object, that is,

manipulation using slight different feedback gains,

see Table 3, with same initial conditions. Once

stable grasp, the object is taken up and down over

and over, and desired trajectories are achieved.

For the second case of study, the reference sig-

nals were changed after the grabbing of the plate

and the objective is to move the plate up and

down, see Fig. 6. In consequence, the reference

signals are divided and chosen for a certain time;

the reference signals until t = 4 s are shown in

Table 4.

After t = 4s, manipulation starts with the tra-

jectories defined in Table 5.

Results indicate that Quadrotors lift up and

down the object, and stable grasp has been

achieved, see Fig. 6. Evidence of this is the ranks

of matrices Q, Gr and E which maintain rank

during the whole manipulation regime, see Fig. 7.

8 Remarks

8.1 On the Control System

The closed-loop system shows fast and robust

tracking without any knowledge of dynamic

model of any Quadrotor nor the object. The con-

troller is quite simple to implement it, while the

theoretical proof is not that easy. It involves ad-

vanced arguments of Lyapunov stability, terminal

stability, variable structure control and high order

sliding modes, as well as structural properties of

the Quadrotors.

So, this makes more interesting the control

structure since the computational cost to imple-

ment this controller is very low, demanding low
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Fig. 5 Computation of rank(Gr), rank(E), rank(Q), showing a stable grasp at time of grabbing and during manipulation

computational resources, although full state feed-

back is required. No acceleration is needed, and

no approximation of any sort has been assumed

on the controller of system dynamics.

Our approach requires full state feedback,

which limits its scope for practical applications,

as any scheme that assumes it. The challenging

and relevant problem of partial feedback stabi-

lization or tracking with velocity estimation is not

studied in this paper. For instance, an alternative

approach for the regulation case is proposed in

[3]. However, the Quadrotor possesses a typical

Fig. 6 Manipulation of
3D object with 4
Quadrotors

0
0.5

1
1.5

2
2.5

0

0.5

1

1.5

2

2.5
0

0.5

1

1.5

2

2.5

3

3.5

4
Plate at 4, 6 and 12s 

Plate at 9.14s

Plate at 1.88s



J Intell Robot Syst

Table 4 Reference signals

Quadrotor 1 Quadrotor 2 Quadrotor 3 Quadrotor 4

x1d = ̺ + 1
2

x2d = −̺ + 2 x3d = −̺ + 2 x4d = ̺ + 1
2

y1d = ̺ + 1
2

y2d = ̺ + 1
2

y3d = −̺ + 2 y4d = −̺ + 2

z1d = ς + 2 z2d = ς + 2 z3d = ς + 2 z4d = ς + 2

with ̺ = 0.5 tanh(4t − 3.4) and ς = 2 tanh(1.3t − 2)

structure of an Euler Lagrange system (with vir-

tual inputs) which makes plausible to develop a

deterministic estimator for position and orien-

tation dynamics. We are studying this problem

based on our previous work [11].

8.2 On the Interaction Process

Interaction forces couple the whole system since

object and UAVs are considered composed by

rigid frames. However, our approach considers

only one type of interaction forces, the contact

forces, and leave out forces arising from rigid

interaction of UAV i to UAV m. A passive im-

pedance attaching device [23], may be an effective

option to accommodate smoothly such interac-

tion with a second order filter, then such force

is treated as a smooth external bounded force.

Another option to compensate actively for the

interaction forces, similar to [24], is to model

the interaction as a constrained velocity, that is

the velocity projected into each force subspace

Jϕ(q) spanned by the gradient ∂ϕ

∂q
of the kinematic

model of the object, written in terms of an im-

plicit equation ϕ(q) = 0. This would stand for an

active compensation of interaction forces, a more

promising scheme that would couple models and

controllers only in terms of this vi =
∑ j

i JT
ϕi(qi)

q̇ j.

In this case, clearly for rigid interaction it had that
∑ j

i vi = 0, then
∑ j

i �vi = 0, for �vi = vi − vdi, and

vdi = JT
ϕi(qdi)

q̇ j. This last approach has been proved

Table 5 Desired trajectories after t = 4 s

Quadrotor 1 Quadrotor 2 Quadrotor 3 Quadrotor 4

x1d = ̺ + 1
2

x2d = −̺ + 2 x3d = −̺ + 2 x4d = ̺ + 1
2

y1d = ̺ + 1
2

y2d = ̺ + 1
2

y3d = −̺ + 2 y4d = −̺ + 2

z1d = ρ + 7
2

z2d = ρ + 7
2

z3d = ρ + 7
2

z4d = ρ + 7
2

with ̺ = 0.5 tanh(4t − 3.4) and ρ = 0.5 cos(t − 6)

successful in multirobot arms for cooperative ma-

nipulation [24].

8.3 What We Learned on the Simulation Study

Exponential tracking is achieved in position co-

ordinates to synchronize all Quadrotors, so as

to they meet at a given peripheral point onto

the object at a given precise time. Grasp occurs

and then manipulation happens. Simulations are

carried out in rather ideal conditions since nei-

ther gust wind nor cross (from one Quadrotor

to the other) wind are considered. Anyway, the

controller considers such bounded external distur-

bances, but clearly as long as no aerodynamical

cross gust happens.

Nevertheless, if a disturbance strong enough

were to happen, the object will be thrown by

the Quadrotors due to the lack of a cooperative

interaction control design with each other since

our controller is not cooperative. For cooperation,

an additional control variable must be included to

convey a variable that codes a cooperative behav-

ior, for instance see [24].

8.4 The Virtual Linkage Approach

In some cases, the virtual linkage can degenerate,

however for the Quadrotors case we are inter-

ested in those configurations corresponding to not

feasible poses where flight control cannot happen.

For instance, when all contact points are coplanar

or more than two points lie on a common line. Ex-

cluding such defunct configurations with assumed

good motion planning, E does not lose row rank

according to [21]. Thus, it poses no problem to the

definition of the stiffness properties of the virtual

linkage.

8.5 On the Device for Contact

Active and passive devices have been proposed

for grabbing and gripping an aerial object, as well

as simple devices for load carrying. They argue

that such devices allow the poor position preci-

sion observed in UAV with simple controllers.

Although the passive controlled and variable

impedance device proposed in [23] may accom-
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Fig. 7 Rank of matrices Gr, E and Q indicating stable grasp and manipulation of the object

modate poor position tracking of the UAV, it is

true that sub-millimeter position tracking can be

achieved when a more complete dynamic model

and advanced controller are used [8]. In our ap-

proach, it is clear that since we assume that the

object is grasped at the same time at given con-

tact points by j-UAVs, it is required the best

possible position tracking attainable. The device

proposed in [23] may accommodate passively the

force sensor within the object, so as to measure

contact force fc ∈ R
3 at each j-contact points with

a passive 3D ball joint. In this way, the object

should be instrumented with j wireless 3D force

sensors.

9 Conclusions

A control scheme for aerial grasp manipulation

with a j-Quadrotor system is proposed. Position

and orientation dynamics are considered for the

design of the controller, which enforces a second

order sliding mode for fast and robust tracking

of admissible trajectories. Firstly, each Quadro-

tor’s dynamics, with possible different initial con-

ditions and different parameters, reaches a given

spatial point onto the object at the very same

time to grasp the object. Then, when stable grasp

is verified, the virtual linkages approach ensures

rigid grasping and the manipulation can be carried

out, with an object-level stiffness control term. It

is assumed stable contact points and admissible

object trajectories. Clearly, implementation of this

approach suggest a passive gripper for attach-

ing and detaching, for instance, distance sensors

within the object would determine that all UAVs

are ready for contact to launch the attaching. The

numerical simulation study allows the detection

of a number of issues to be analyzed. It suggests

that a new dynamic model is required such that

the j-Quadrotor system is modeled as a unique

super-system, such that the whole system behaves

as a super-Quadrotor system, with the object in

common.
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Appendix

Proof of Theorem 1 Substituting Eq. 22 into Eq.

26 yields

JṠr = −
(

KdSr + S×
r JSr

)

+ d(t) − Yr (63)

Let us consider the following Lyapunov

function

V = 1

2
ST

r JSr (64)

The total derivative of Eq. 64 along its solution

63 gives rise to

V̇ = −ST
r KdSr + ST

r (d(t) − Yr)

≤ −‖Sr‖ (λmin(Kd)‖Sr‖ − η(t)) (65)

Let c = supt≥0 η(t). Note that if ‖Sr‖ >

(c/λmin(Kd)) then V̇ < 0. This implies that

exists a time t1 such that

‖Sr‖ ≤ c

λmin(Kd)
∀t > t1 (66)

In this way Sr is upper bounded by c/λmin(Kd).

Boundedness of Sr implies the boundedness of

the state which includes σ . Therefore, we can

conclude that Ṡr ≤ c̄ for some real c̄ > 0.

Now, we will show that for a given γ , sliding

mode is induced on Sq = 0. Consider the following

dynamical system defined by Eq. 19

Ṡq = −γ sgn(Sq) + Ṡr (67)

with the following positive definite function

Vq = 1

2
ST

q Sq (68)

The total derivative of Eq. 68, along its solution 67

give rise to

V̇q = −ST
q γ sgn(Sq) + ST

q Ṡr

≤ −
(

λmin(γ ) −
√

3c̄
)

|Sq|

Thus, in order to prove that Sq → 0 in finite

time, we can always choose ν = λmin(γ ) −
√

3c̄ >

0 which guarantees the existence of a sliding

mode condition. This implies that a sliding mode

is established at time ts ≤
(

|Sq(t0)|/ν
)

, and since

Sq(t0) = 0 for any initial condition, then the sliding

mode in Sq(t) = 0 is enforced for all time.

Considering that Sd ≈ 0, then

ωe = −αqe (69)

Introducing Eq. 69 into the time derivative of

qe yields

q̇e =

⎛

⎜

⎝

α

2
qT

e qe

−α

2
q0eqe

⎞

⎟

⎠
=

(

f1(t)

− f2(t)qe

)

(70)

where f1(t) is a positive-definite function and

f2(t) is a positive-definite function, provided that

q0e(t0) > 0, a simple and yet practical constraint

easy to meet for small errors. Then the solution

of Eq. 70 is given by

q0e
(t) = q0e

(t1) +
∫ t

t1

f1(t) (71)

qe(t) = q
e
(t1)e

− f2(t)(t−t1) (72)

Then, by using the constraint of a unit quater-

nion 10, exponential convergence of qe and q0e is

achieved. This completes the proof of Theorem 1.
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