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Due to the rapid development of micro/nano manufacturing techniques and the greater

understanding in electrochemical principles and methods, micro/nano electrode array

sensing has received much attention in recent years, especially in bioanalysis. This

review aims to explore recent progress in innovative techniques for the construction

of micro/nano electrode array sensor and the unique applications of various types of

micro/nano electrode array sensors in biochemical analysis. Moreover, the new area

of smart sensing benefited from miniaturization of portable micro/nano electrode array

sensors as well as wearable intelligent devices are further discussed.
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INTRODUCTION

Electrochemical arrays, containing numbers of sensors on single platform or device, are of great
interest in electroanalytical chemistry since quantification and characterization of substances
in complex sample can be conducted simultaneously with the individual sensors based on
electrochemical analysis at high time resolution and sensitivity (LaFratta and Walt, 2008; Chow
et al., 2009; Park et al., 2011; Takulapalli et al., 2012; Fu et al., 2016; Li et al., 2019). Electrochemical
sensing has a long history since the first electrochemical sensors for oxygen were reported in 1960’s
and later glucose sensors developed in 2002 (Wang, 2002). Benefited from the great progress made
in micro and nano fabrication technology, the field of electrochemical sensing is experiencing a
revival (Lemay and White, 2016). Especially in last few years, owing to the rapid development
in micro/nano meter scale machining technology, micro/nano electrode array sensors emerged
and are constantly receiving great attention because of their multiplexing ability and robustness
for bioanalysis at different biological levels (e.g., cell, tissue or organ, etc.) as well as in-situ and
real-time dynamic monitoring with higher spatiotemporal resolution and selectivity (Arrigan,
2004; Godino et al., 2009; Ongaro and Ugo, 2013; Liu et al., 2017; Du et al., 2019). Moreover,
due to the breakthrough on new materials and microelectronic technology in recent years,
micro/mano electrode array sensors are moving toward miniaturization, digitization, intelligence
and systematization, and are widely used in diverse fields including environmental monitoring,
medical and health care (Feeney and Kounaves, 2000; Berduque et al., 2007; Orozco et al., 2010;
Sekretaryova et al., 2015; Liu et al., 2017).

Several reviews have summarized the progresses on micro- or nano-electrode array sensors
with concerns for relevant theory, fabrication or application (Arrigan, 2004; Huang et al., 2009;
Orozco et al., 2010; Yeh and Shi, 2010; Zoski and Wijesinghe, 2010; Henstridge and Compton,
2012; Chen et al., 2013; Ongaro and Ugo, 2013; Tomčík, 2013; Karimian et al., 2016; Karimian and
Ugo, 2019). In this minireview (Figure 1A), we havemainly focused on the recent accomplishments
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in materials and innovative techniques for the construction of
various micro/nano electrode array sensors and their unique
applications in bioanalysis. In addition, the recent development
of smart sensing and wearable intelligent devices benefited from
miniaturization of portable micro/nano electrode array sensors
are further discussed.

FABRICATION AND CHARACTERISTICS
OF MICRO/NANO ELECTRODE ARRAYS

Single micro/nano electrodes, with dimensions at micro/nano
scale, show unique advantages, such as increased mass transport,
faster transient response as well as lower destructive probe,
compared to conventional electrodes (Penner et al., 1990;
Amatore, 1995). A certain number of micro/nano electrodes are
arranged and combined to form micro/nano electrode arrays.
The electrode size, morphology, structure and material generally
determine the electrochemical performance of micro/nano
electrode arrays (Arrigan, 2004; Chevallier and Compton, 2007;
Hood et al., 2009). Various types of micro/nano electrode
arrays adapted to different measuring conditions have been
designed and fabricated to meet the sensing requirement. In
general, micro/nano electrode arrays could be prepared by
means of bottom-up fabrication techniques, mainly involving
electrode material (metal, carbon, ceramic, etc.) layer deposition
or growth on the top, bottom, or formation in-between sandwich
structure relative to the templates or substrates (silicon, glass,
polymer, ceramic, etc.) (Patel et al., 2008; Xiang et al., 2009;
Lee and Silvester, 2016; Ledo et al., 2017). Photolithography is
basic technology commonly applied for micro electrode arrays
manufacturing, including surface insulation and micron holes
drilling based on parts of thin film or the bulk of a substrate
removal selectively by photoresists and illumination sources
exposure (Lowinsohn et al., 2006; Aguiar et al., 2007; Ordeig
et al., 2008; Xu et al., 2008). Other preparation processes such as
screen print, deposition, membrane formation, firing, etc. have
also been used for micro electrode arrays fabrication (Mann and
Mikkelsen, 2008; Vagin et al., 2014; Lee and Silvester, 2016).
In addition, ink-jet and 3D printing technologies have recently
become a powerful alternative processing tool for high-resolution
microstructures which enables complex electrode patterns at
micro scale (Nouran et al., 2018; Kundu et al., 2019). Based on
the above various fabrication methods, different types of micro
electrode arrays (e.g., microdisk or microband electrode array
and interdigitated, linear or 3D micro electrode array, etc.) have
been reported (Fiaccabrino et al., 1996; Aguiar et al., 2007; Ordeig
et al., 2008; Xu et al., 2008; Menshykau et al., 2010; Yi et al., 2016).

With the breakthrough of nano processing technology and
electrochemical instrumentation with higher performance, nano
electrode arrays have aroused wider research interests. So far,
beside photolithography (Xiang et al., 2009; Chen et al., 2011;
Heo et al., 2011), other methods for nano electrode arrays
manufacturing, include nanoimprint-lift-off, focused ion beam
(FIB), electron beam lithography (EBL) (Sandison and Cooper,
2006; Lanyon and Arrigan, 2007; Errachid et al., 2008; Moretto
et al., 2011; Branagan et al., 2012;Ma et al., 2013;Wahl et al., 2013;

Sentic et al., 2016). For example, via FIB milling following by a
layer-by-layer deposition, nano electrode arrays on nanochannels
with embedded annular nanoband electrodes have been prepared
(Branagan et al., 2012).

Nano electrode arrays can be constructed on solid substrates
by chemical means, such as template-based method involving
electrochemical deposition or chemical plating process (Zhang
et al., 2004; Cao and Liu, 2008; Ongaro et al., 2012). In addition,
nucleation and growth of materials to form nanostructures
with electrochemical performances has also become a way for
construction of nano electrode arrays. Vertically aligned carbon
nanotubes/nanofibers (Arumugam et al., 2009; Robinson et al.,
2016; Song et al., 2019) as well as a vast range of nano
electrocatalysts (e.g., prussian blue, porous gold or platinum
nanowire, NiO nanocone, mesoporous rhombus-shaped ZnO
rod, etc.) have been fabricated as nano electrode arrays (Karyakin
et al., 2004; Puganova and Karyakin, 2005; Zhang et al., 2009;
Wang et al., 2011, 2012; Wen et al., 2015). Different fabrication
techniques can be combined to construct more complex nano
electrode arrays. For instance, by integrating track-etched
polycarbonate membrane and a lithographically fabricated
addressable Pt ultramicroelectrode array platform, microregions
of a macro-nanoelectrode membrane could be individually
addressed (Zoski et al., 2007). Furthermore, an integration
scheme for high-density individually and electrically addressable
out-of-plane Si nanowire arrays by solid-state wafer bonding
were developed for the first time. The fabrication procedures of
these new type nano electrode arrays with submicrometer site-to-
site spacing mainly involved a combination of photolithography,
EBL and plasma enhanced chemical vapor deposition (PECVD)
atop an electrically insulating and transparent sapphire substrate
with standard integrated circuit fabrication technologies (Liu
et al., 2017).

Variety of methods have been developed and employed to
achieve electrode arrays characterization at the micron or nano
scale, which is helpful for better understanding of electrochemical
performance of electrode arrays. Scanning electron microscopy
or transmission electron microscopy (SEM, TEM) are commonly
used to visualize the dimensions or morphologies of micro/nano
electrode arrays (Figure 1B). The topography of the nano
electrode arrays is observed by atomic force microscope (AFM)
(Puganova and Karyakin, 2005), and in situ AFM technique is
even applied to characterize the geometry and surface reactivity
variation of electrodes during working in solution (Nogala et al.,
2012). X-ray photoelectron spectroscopy (XPS) (Forrer et al.,
2000) or energy-dispersive X-ray spectroscopy (EDX) (Liu et al.,
2017) normally be used for arrays surface element composition
identification (Figure 1B). Additionally, the steady-state limiting
current can reflect electrode morphology to some extent (Bond
et al., 1988; Arrigan, 2004; Wahl et al., 2013), and the diffusion
or reaction layers at nano electrodes arrays can be studied from
electrochemical luminescence imaging (Sentic et al., 2016).

Under micro/nano scale sizes, electrode arrays show unique
electrochemical characteristics compared with conventional
electrodes. As the electrode dimensions decrease to micro/nano
scale, the double layer has lower capacitance, and smaller time
constant enable micro/nano electrode arrays to achieve rapid
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FIGURE 1 | (A) Overview of the main research content on micro/nano electrode array sensors introduced in this minireview. (B) (a) Illustration of fabrication procedure

for high density electrically isolated nanowire probes. The SEM images of a typical Si nanowire array (b) after etching and (c) after SiO2 passivation. Scale bar in (b) is

5µm and in (c) is 3µm. (d) EDX mapping of O, Ni, and Ti on single nanowire. Scale bars are 1µm. (e) A TEM image of the NiSi/Ti/Ni/Ti underneath the Si nanowire.

Scale bar is 200 nm. The bottom panels are HRTEM images at the interface between Si and NiSi. Scale bars in bottom panels are 2 nm. Liu et al. (2017). Copyright©

2017 American Chemical Society.

response and high-speed measurement under less destructive
sensing (Freeman et al., 2013). Electrode radius becomes smaller
than the thickness of diffusion layer for micro/nano electrode
arrays, mass transport increases, which is appropriate for the
study of electrochemical process transients (Godino et al.,
2009; Henstridge and Compton, 2012). For the nano electrode
arrays obtained by EBL, important advantages, such as exactly
controlled geometry and the miniaturization possibility from
pure radial diffusion regime, are showed (Moretto et al., 2011).

The total current generated from micro/nano electrode arrays is
the sum of each micro/nano electrodes, resulting in increased
detection current, improved signal-to-noise environment and
higher analysis sensitivity (Bond et al., 1988; Arrigan, 2004).
Furthermore, by electrode modification with specific recognition
sites, functional molecules or materials, the stability and
selectivity of micro/nano electrode arrays can be improved (Fruk
et al., 2007; Arya et al., 2010; Frey et al., 2010; Pang et al., 2017).
For instance, as a layered metal oxide semiconductor equipped
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with high work function and good hole conductivity, MoO3 has
been electrodeposited successfully on the surfaces of as-prepared
TiO2 nanoneedles (NNs) to constitute TiO2 NNs@MoO3 array.
The latter shows ultrasensitive photocurrent response and a wide
linear range with a low detection limit on account of tuned
interfacial microstructure (Pang et al., 2017). Note that due to
the significant increase in mass transfer rate when the size of
electrode reaches nano scale, the resulted extreme sensitivity
to the electron transfer kinetics may limit their performance
in biosensing applications (Menon and Martin, 1995; Sun and
Mirkin, 2006; Sliusarenko et al., 2015, 2017; Yu et al., 2016;
Edwards et al., 2018).

MICRO/NANO ELECTRODE ARRAY
SENSORS FOR BIOLOGICAL
APPLICATION

With the rapid development of science and technology, humans
are increasingly focusing on individual health and the impact
of environmental conditions on life entities and activities. Over
recent decades, studies of bioactive related chemicals (e.g.,
inorganic salt, neuroactive substances, carbohydrate, nucleic
acid, proteins, gas, etc.) have attracted widespread interest due
to their crucial roles in a series of physiological and pathological
processes, as well as biological applications. Distinguishing
characteristics enable micro/nano electrode arrays to act as
effective electrochemical sensors for biological application,
promoting in vitro and in vivo biosensing research. Various
typical applications with micro/nano electrode arrays in
bioanalysis are showed in Table 1. Micro/Nano electrode arrays
have been applied to electrochemical sensing for bioactive
molecule with high sensitivity and selectivity (Puganova and
Karyakin, 2005; Burmeister et al., 2008; Xu et al., 2008;
Jiang and Zhang, 2009; Arya et al., 2010; Frey et al.,
2010; Gholizadeh et al., 2012; Wang et al., 2012; Hinzman
et al., 2015; Zhang et al., 2016). Gholizadeh et al. (2012)
employed a high-density vertically aligned carbon nanotube nano
electrode array (VACNT-NEA) with glutamate dehydrogenase
covalently attached on the CNT tips as electrochemical glutamate
biosensors, exhibiting an extremely low detection limit of 10 nM
for glutamate. A ceramic-based multisite micro electrode array
was developed by Burmeister et al. (2008) for simultaneous
determinations of choline and acetylcholine in the central
nervous system. The array was designed with one recording
site modified with choline oxidase (ChOx) and the other
with acetylcholinesterase and ChOx. Hinzman et al. (2015)
reported the selectively measurement of extracellular adenosine
by using an enzyme-linked microelectrode array A in vivo
limit of detection leveled down to ∼0.04µM is achieved.
Moreover, biological macromolecules (e.g., DNA, RNA, protease,
etc.) can be detected by micro/nano electrode array sensors
(Koehne et al., 2004; Lapierre-Devlin et al., 2005; Periyakaruppan
et al., 2013; Silvestrini et al., 2013; Selvam et al., 2015; Lee
et al., 2016; Delle et al., 2018; Song et al., 2019). Song et al.
(2019) developed vertically aligned carbon nanofibers as unique
electrochemical platform for investigating protease activities

(Figure 2A). The carbon nanofibers are functionalized with
specific peptide substrates containing a ferrocene tag. It is
reported that the detection limit for cathepsin B activity and
concentration are 2.49× 10−4 s−1 and 0.32 nM, respectively. The
fabricated nano electrode arrays showed outstanding selectivity
with negligible cross-reaction with 6.0 nM of other two cancer-
related proteases (ADAM10 and ADAM17). It demonstrates that
the electrochemical chip fabricated with present methodology
holds great potential in rapid profiling protease activities
in cancer diagnosis. Micro/Nano electrode arrays have been
employed as immunosensors, including sensitive detection for
immunoglobulin IgY (Bottari et al., 2014), cardiac biomarker
(Sharma et al., 2018) and IgG-type tissue transglutaminase
(Habtamu et al., 2019), which show the potential to be
applied for the diagnosis and monitor of diseases in clinical or
nonclinical settings.

Micro/Nano electrode array sensing technology provides an
effective tool for neuroactive substances detection and neuron
activities direct reading, contributing to reveal the complex
neuron communication and connection (Burmeister et al., 2008;
Dincer et al., 2015; Liu et al., 2017; Kim et al., 2018; Ledo
et al., 2018; Du et al., 2019; Xiao et al., 2019). Kim et al.
(2018) developed a simple cylindrical gold nano electrode
arrays with optimized electrode size and height for measuring
dopamine and detecting its release from human dopaminergic
neurons. By modulating the dopamine (DA) concentration,
Parkinson’s disease (PD) can be well-treated. In order to improve
electron transmission capabilities, Xiao et al. (2019) designed
a four-shank implantable micro-electrode array with platinum
nanoparticles and reduced graphene oxide nanocomposites
(Pt/rGO) fabricated onto the recording microelectrode sites.
Synchronous DA levels and neural spike real-time detection was
achieved in the cortex and caudate putamen during apomorphine
modulation of 6-hydroxydopamine-induced Parkinson’s disease
rats. The changes of ion channel currents and intracellular
potentials originated from the ion concentrations differences
(Na+ and K+) between the inside and outside of the cell reveal
the response of neurons to drugs. Liu et al. (2017) utilized a
novel high-density vertical Si nanowire arrays with independent
electrical addressability and superior spatial resolution to
conduct electrophysiological recordings from mouse and rat
primary neurons, as well as human induced pluripotent stem
cell-derived neurons (Figure 2B). High signal-to-noise ratios and
sensitivity to potentials (as low as a few millivolts) without
cell damage was achieved. This new nano electrode arrays
is expected to be a platform for drugs screening based on
the disease models of neuronal networks, helping to better
understand the communication of individual cells in large areas
of neural networks and the mechanisms of the drug treatment to
neurological diseases.

Owing to the breakthrough in new materials, microelectronic
technology as well as electrochemical understandings, biosensors
based on micro/nano electrode arrays are moving toward
miniaturization, digitization, intelligence and systematization.
Smart sensing created from miniaturization of portable
micro/nano electrode array sensors as well as wearable intelligent
devices has been paid great attention in recent years (Triroj
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TABLE 1 | Micro/Nano electrode arrays for bioanalysis applications.

Electrode array type Fabrication Analysis target Measurement methods Sensing

performance

References

VACNT-NEA Photolithography/glutamate

dehydrogenase immobilization

Glutamate Differential pulse

voltammograms (DPV)

10 nM (LOD) Gholizadeh et al.,

2012

Enzyme-linked and

self-referenced

microelectrode arrays

Four Pt recording sites linked

with ADA enzyme/

micropipette attachment

Extracellular

adenosine

Constant potential

amperometry

0.04µM (in vivo LOD) Hinzman et al., 2015

Au-coated vertical silicon

nanowire electrode array

(VSNEA)

Chemical vapor deposition

(CVD)/ peptide immobilization

and RNA functionalization

HIV-1 RRE RNA DPV 1.513 fM (LOD) Lee et al., 2016

Gold nanoscale interdigitated

electrode (IDE) arrays

Nanoimprint and

photolithography

DNA hybridization Impedance spectroscopy Dynamic detection

range of 1–100 nM

Delle et al., 2018

Vertically aligned carbon

nanofibers (VACNFs) arrays

PECVD/passivation and

functionalization of

Fc-hexapeptide substrates

Cathepsin B activity

and concentration

AC voltammetry (ACV) 2.49 × 10−4 s−1 and

0.32 nM (LOD)

Song et al., 2019

Substrate-bound

interdigitated array (IDA)

nanoelectrodes.

Photolithography and

RF-sputtering/ immobilization

of mAb-cMyo

Cardiac myoglobin

(cMyo).

Cyclic voltammetry (CV) Linear detection

range of

0.001–100 ng/mL

0.43 pg/mL (LOD)

Sharma et al., 2018

Cylindrical gold nano

electrode arrays (CAuNE)

Laser interference lithography

(LIL) and electrochemical

deposition (ECD)

Dopamine (DA) in

human neural cells

CV 5.83µM (LOD) Kim et al., 2018

Four-shank implantable

micro-electrode array

Photolithography/ Pt/rGO

nanocomposites modification

onto the recording

microelectrode sites

Synchronous DA

levels and neural

spike real-time

detection

Amperometry <20 nM (LOD) Xiao et al., 2019

FIGURE 2 | (A) Carbon nanofiber nanoelectrode arrays and their electrochemical activity for protease analysis (Song et al., 2019). Copyright© 2019 American

Chemical Society. (B) Recording from hiPSC-derived cortical neurons on high density individually addressable nanowire arrays. Liu et al. (2017). Copyright© 2017

American Chemical Society.

et al., 2011; Huang and Mason, 2013; Wang et al., 2015; Lee
et al., 2017; Baradoke et al., 2019; Gao et al., 2019; Kim et al.,
2019; Yokus et al., 2020) and proved to possess the capacity
to integrate with point-of-care systems. During implantation
and long-term conditions, the performance to sample in real
time is vital to the effective sensing. Utilizing low density
aligned nano electrode arrays as robust transducer elements,
Triroj et al. (2011) fabricated a microfluidic biosensor chip
with improved sensitivity in a nanoliter volume testbed for the
current response by two orders of magnitude compared to that
obtained from a microelectrode. The nano electrodes arrays were
functionalized with prostate specific antigen (PSA) to construct
competitive immunoassay chip, and the detection limit is around

10 pg/mL (∼270 fM), corresponding to ∼30,000 copies of
PSA. An improved sensitive functional system was developed
by Wang et al. (2015) for wireless rapid analysis of saxitoxin
and brevetoxin with portable cardiomyocyte-based potential
biosensor. It was constructed by 8-channel recording micro
electrode arrays, and can dynamically monitor the multisite
electrical activity of cardiomyocyte network. Furthermore, a
sensor based flexible microneedle electrode array, coupled with a
multi-channel portable electrochemical analyzer, was developed
by Gao et al. (2019) for the simultaneous detection of glucose,
uric acid, and cholesterol levels in serum. Excellent sensing
performance with a wide linear range, low detection limit and
rapid response time was shown, therefore facilitating effective
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monitoring of blood metabolites at home. Nowadays, portable
miniaturization micro/nano electrode arrays and wearable
intelligent devices have showed the function of label-free, multi-
parameter and real-time smart dynamic sensing, which play
an important role in both the development of medical devices
and biomedical research. In the future, smart sensing created
from miniaturized micro/nano electrode array sensors would
have broad prospects in biological applications, such as cellular
behavior measurement, metabolism monitoring as well as new
treatments development.

CONCLUSIONS

This minireview mainly summarizes the recent advances in
fabrication of micro/nano electrode array sensors and presents
their emerging biological applications and their use in portable
intelligent devices. In past decades, there have been remarkable
progresses on the development of micro/nano electrode array
sensors for biological applications, however, challenges still
present. First, the miniaturized fabrication of micro/nano
electrode arrays with more integrating multiplex (e.g., electro-
optical response, wearable device) and the development of
versatile sensors applicable to the actual conditions. Second,

the influence of complex physiological environment in vivo

on sensing sensitivity and selectivity remains an issue. Finally,
sensing at small amounts of molecules and even exploring
the relationship between molecular structure and function are
expected eagerly. Finding out solutions to these challenges
would be helpful for improving the stability and veracity
of the detecting result in quality and quantity, and largely
accelerating the wide application of micro/nano electrode array
sensors in biological analysis. More importantly, it will greatly
promote the understanding of physiological and pathological
processes connected with matter in chemical movement, offering
a unique contribution to the life related chemicals study and life
science research.
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