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The process of melting a small spherical particle is treated by setting up a two-phase Ste-
fan problem. Surface tension is included through the Gibbs-Thomson condition, the effect
of which is to decrease the melting temperature as the particle radius decreases. Analytical
results are derived via a small-time expansion and also through large Stefan number asymp-
totics. Numerical solutions are computed with a front-fixing scheme, and these results suggest
that the model exhibits finite-time blow-up, in the sense that both the interface speed and the
temperature gradient in the solid phase (at the interface) will become unbounded at some time
before complete melting. The near blow-up behaviour appears to be similar to that encoun-
tered in the ill-posed problem of melting a superheated solid (without surface tension), and
may help explain the onset of abrupt melting observed in some experiments with nanoscaled
particles.

Keywords: Two-phase Stefan problem, size-dependent melting, surface tension, finite-time
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1. Introduction

It is well known that surface tension acts to decrease the melting temperature of a solid particle
as the radius of the particle decreases (Buffat & Borel 1976). Indeed, for very small particles this
effect is nontrivial, with some metals displaying a significant reduction in melting temperature
at the nanoscale (see Zhang et al. 2000, Dippel et al. 2001, Olson et al. 2005, for example,
and the references therein). We consider here this phenomenon by treating a two-phase Stefan
problem in a spherical domain, including the effects of surface tension modelled through the
Gibbs-Thomson rule (Langer 1950).

Classical Stefan problems have received a great deal of attention in the literature. In addi-
tion to the small number of exact solutions available (for example, the Neumann solution given
in Carslaw & Jaeger 1959 and Crank 1984), many approximate, semi-analytical or numerical
methods have been developed. The vast majority of this research has neglected the effects
of a size-dependent melting temperature, partly because most melting applications are on the
macroscale, where these effects are negligible, but also because of the added mathematical dif-
ficulty that arises when the Gibbs-Thomson condition is applied at the solid-melt interface.
Examples of this difficulty are that the Baiocchi transform does not apply, meaning that prim-
itive variables must be used, and that one cannot employ the elegant enthalpy method to solve
the governing equations numerically.

For the important case of melting a spherical particle, much of the existing research is
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devoted to the idealised one-phase problem that arises by assuming the solid region is initially
at the melting temperature. By ignoring the effects of surface tension on the solid-melt interface,
this problem has been studied using a variety of analytical approaches. Of particular relevance
to the present study, large Stefan number and/or near-complete-melting asymptotic analyses
are given in Riley et al. (1974), Stewartson & Waechter (1976), Soward (1980) and Herrero
& Velázquez (1997), and a small-time perturbation expansion is given in Davis & Hill (1982).
These approaches have been extended and applied to the full two-phase version of the problem,
in which the solid region may take any initial temperature, by Kucera & Hill (1986) and McCue
et al. (2008).

There is a large number of numerical studies devoted to one- and two-phase Stefan problems
without surface tension. For example, the commonly used enthalpy scheme (see Meyer 1973,
Voller & Cross 1981, for instance) leads to reasonable results for the radially symmetric problem
(Dewynne 1985). Other numerical methods are detailed in Crank (1984), including a front-
fixing method, the variable time or grid step, the finite element method, the isotherm migration
method, or a combination of these.

Some of the above studies have been extended to include the effects of surface tension. For
example, the one-phase near-complete-melting asymptotic analysis and the small-time pertur-
bation approach has been applied by Herraiz et al. (2001) and Wu et al. (2002), respectively,
although the form of the Stefan condition used by these authors in the one-phase limit does not
conserve heat on the solid-melt interface (see Evans & King 2000, King & Evans 2005 and Wu
et al. 2008 for a relevant discussion). Wu et al. (2008) applied similar methods to the problem
with a different boundary condition, and also presented a large Stefan number expansion.

The goal of current study is to present analytical and numerical results for the full two-
phase Stefan problem of melting a spherical particle, including the effects of surface tension
through a Gibbs-Thomson condition applied on the solid-melt interface. We note that the
motivation for including surface tension (or kinetic undercooling, for example) in some other
studies (including Dewynne et al. 1989) has been to regularise the ill-posed problem of freezing
a supercooled liquid, with applications to crystal formation, for example (Gupta 2003). In that
context the unregularised model may predict an unphysical singularity, such as the birth of a
cusp with infinite radius of curvature (for example, see Howison et al. 1985, Velázquez 1997
and Herrero et al. 2000), and/or a solid-melt interface whose speed becomes unbounded at
some finite time (see Herrero & Velázquez 1996, for instance). It may be that the inclusion
of surface tension (or some other regularisation, such as kinetic undercooling) smooths these
singularities, so that the solution can be continued for later times. In contrast, the present
melting problem with zero surface tension is already well-posed, and here the motivation, in
part, comes from understanding size-dependent thermal effects on the nanoscale, with the goal
of explaining some peculiar experimental observations such as abrupt melting of nanoparticles.
Remarkably, the model predicts that very small particles undergo some form of self-superheating
when melted, and it turns out that our problem develops similar characteristics to that of the
ill-posed melting problem of a superheated solid. For background on this problem, the reader is
referred to Fasano & Primicerio (1977), Fasano et al. (1981), Fasano et al. (1990) and Herrero
& Velázquez (1996), for example. We also remark that superheating of nanoscaled particles is
discussed in the physics literature by Nanda et al. (2002) and Olsen et al. (2005), for example
(although, in that context, the superheating may result from embedding the particles in a
matrix of a different material).

The remainder of the paper is organised as follows. In Section 2 the governing equations
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Fig. 1. Schematic of the melting particle

for the two-phase melting problem for spheres are formulated. This problem is analysed using
a small-time perturbation approach in Section 3, and then a large Stefan number expansion in
Section 4. Numerical results are computed using a front-fixing numerical scheme, and these are
discussed in Section 5. It is shown that the analytic results derived in Sections 3 and 4 agree well
with the numerical results in the appropriate regimes. Further, in the limit of slow conduction
in the solid phase, numerical evidence is provided to show that the full two-phase problem does
indeed reduce to the one-phase problem derived in Evans & King (2000) and Wu et al. (2008).
Finally, the numerical results predict that ultimately the solid becomes (locally) superheated
and, furthermore, the speed of the solid-melt interface becomes unbounded at some critical
time before complete melting takes place. At this time the temperature gradient in the solid
phase also becomes unbounded at the interface. This form of finite-time blow-up is discussed
in Section 6, and the apparent relationship with the problem of melting a superheated solid
particle noted.

2. Mathematical formulation

2.1 Governing equations

The geometry for the melting process under consideration is illustrated in Fig. 1. The relevant
independent variables are the radial distance from the centre of the particle, r∗, and time, t∗.
We suppose the particle is initially of radius a∗, and at a uniform temperature T ∗i . Then at
time t∗ = 0 the temperature on the surface r∗ = a∗ is suddenly raised to T ∗a , and subsequently
held there at that value. Provided that T ∗a is above the melting temperature, the particle will
begin to melt, with a solid-melt interface r∗ = R∗(t∗) propagating from r∗ = a∗ towards the
centre of the particle.

The problem is to solve for the temperature distributions T ∗` (r∗, t∗) and T ∗s (r∗, t∗) in the
liquid and solid phases, respectively, as well as the location of the moving boundary r∗ = R∗(t∗).
As we are assuming heat transfers through both phases via conduction only, the governing
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equations are

∂T ∗`
∂t∗

=
k`

ρc`

1
r∗2

∂

∂r∗

(
r∗2

∂T ∗`
∂r∗

)
in R∗(t∗) < r∗ < a∗, (2.1)

∂T ∗s
∂t∗

=
ks

ρcs

1
r∗2

∂

∂r∗

(
r∗2

∂T ∗s
∂r∗

)
in 0 < r∗ < R∗(t∗). (2.2)

The material parameters k` and c` are, respectively, the thermal conductivity and the specific
heat capacity of the liquid phase, with the corresponding parameters for the solid phase taking
the alternate subscript s. The density ρ of the material is assumed to be the same constant in
each phase.

Equations (2.1)-(2.2) are supplemented with the appropriate boundary conditions, which
are as follows. On the fixed boundaries we have

T ∗` = T ∗a on r = a∗ and
∂T ∗s
∂r∗

= 0 on r∗ = 0. (2.3)

At the solid/liquid interface the temperature is equal to the curvature-dependent melting point
T ∗f (R∗):

T ∗` = T ∗s = T ∗f (R∗) on r∗ = R∗(t∗), (2.4)

where the form we use for T ∗f (R∗) is given below. Further, the discontinuity in heat flux due
to the absorbtion of latent heat L across the interface gives rise to the Stefan condition

k`
∂T ∗`
∂r∗

− ks
∂T ∗s
∂r∗

= −ρ
dR∗

dt∗
[
(c` − cs)(T ∗f − T ∗m) + L

]
on r∗ = R∗(t∗), (2.5)

where T ∗m is the bulk melting point of the material (the melting temperature when the interface
is flat). Finally, the initial conditions are that

T ∗s = T ∗i , R∗ = a∗, at t∗ = 0. (2.6)

2.2 Gibbs-Thomsom relation

Much research has been undertaken to relate the melting temperature to the surface (or in-
terfacial) tension of the material. Many models, such as the homogeneous melting and growth
model (Buffat & Borel 1976), the liquid shell model (Wronski 1967, Buffat & Borel 1976),
and the surface-phonon instability model (Wautelet 1991) have been proposed. For a spherical
nanoscaled particle, the size-dependent models based on theoretical calculations and empirical
results generally take the form

T ∗f (R∗) = T ∗m
(
1− ω

R∗

)
, ω =

2λ

ρsL
, (2.7)

which is the Gibbs-Thomson effect (Langer 1950) mentioned in the Introduction. Here ρs is
the mass density of the material in the solid state, and λ the interfacial tension coefficient. The
homogeneous melting and growth model considers the thermodynamical equilibrium between
the solid particle and the melted liquid phase. In this model, the interfacial tension coefficient,
λ = λHGM may be expressed as

λHGM = σsv − σlv(ρs/ρ`)2/3, (2.8)
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where ρ` denotes the mass density of the material in liquid state, σsv is the interfacial tension
between the solid and vapor phases and σlv the interfacial tension between the liquid and vapor
phases.

Table 1 contains values for these physical properties, using the metals gold, bismuth, tin
and lead as examples. We see that for gold, with an atomic radius of about 0.135 nm, we have
the value ω = 0.2396 nm. This means that when the radius of a gold particle is R∗ = 10 nm,
containing about 200 atoms, the melting point is about 26.9 K less than the bulk melting point.
This is a significant reduction.

Table 1. Physical properties for some metals

ρs ρl σsv σlv L Tm λ ω
(kg/m3) (kg/m3) (N/m) (N/m) (J/kg) (K) (J/m2) (nm)

Au 19.30×103 17.31×103 0.90 0.74 63718 1337.3 0.1473 0.2396
Bi 9.80×103 10.05×103 0.55 0.38 51900 544.4 0.1812 0.7126
Sn 7.27×103 6.99×103 0.66 0.55 59225 505.8 0.0957 0.4447
Pb 11.34×103 10.66×103 0.56 0.45 23020 600.6 0.0893 0.6847

2.3 Non-dimensional equations

We scale the problem using the dimensionless variables

r =
r∗

a∗
, R(t) =

R∗(t∗)
a∗

, t =
k`

ρc`a∗2
t∗, ∆T ∗ = T ∗a − T ∗m

(
1− ω

a∗

)
, (2.9)

T`(r, t) =
T ∗` (r∗, t∗)− T ∗m(1− ω/a∗)

∆T ∗
, Ts(r, t) =

T ∗s (r∗, t∗)− T ∗m(1− ω/a∗)
∆T ∗

. (2.10)

With these variables, the two-phase Stefan problem is

∂T`

∂t
=

∂2T`

∂r2
+

2
r

∂T`

∂r
in R(t) < r < 1, (2.11)

∂Ts

∂t
=

κ

δ

(
∂2Ts

∂r2
+

2
r

∂Ts

∂r

)
in 0 < r < R(t), (2.12)

subject to the boundary conditions

T` = 1 on r = 1, (2.13)

T` = Ts = σ

(
1− 1

R

)
on r = R(t), (2.14)

∂T`

∂r
− κ

∂Ts

∂r
= −dR

dt

(
−σ(1− δ)

R
+ α

)
on r = R(t), (2.15)

∂Ts

∂r
= 0 on r = 0, (2.16)

and initial conditions
Ts = V, R = 1, at t = 0. (2.17)
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The five dimensionless parameters in the problem are defined by

κ =
ks

k`
, δ =

cs

c`
, σ =

ωT ∗m
a∗∆T ∗

, α =
L

c`∆T ∗
, V =

T ∗i − T ∗m(1− ω/a∗)
∆T ∗

.

These are the ratio of thermal conductivities, the ratio of specific heat capacities, the interfacial
tension parameter, the Stefan number, and the dimensionless initial temperature, respectively.

3. Small time limit

Davis & Hill (1982) made use of a small time perturbation expansion in order to analyse the
classical one-phase Stefan problem (without surface tension) for spherical particles initially at
fusion temperature, and this technique was extended by Kucera & Hill (1986) and McCue et
al. (2008) to solve the full two-phase problem. More recently, Wu et al. (2008) extended the
one-phase analysis by taking into account the effects of surface tension. In this section we
generalise the above studies to the full two-phase problem with surface tension.

3.1 Summary of the details

Our analysis follows McCue et al. (2008) closely. The idea is to look for solutions of the form

u ∼ 1
r

{
A0(X) + Y A1(X) + O(Y 2)

}
, v ∼ V +

1
r

{
B0(X) + Y B1(X) + O(Y 2)

}
, (3.1)

as Y → 0+, where X and Y are defined by

X =
1− r

1−R
, Y = 1−R.

This change of variables transforms the inner solid phase to 1 6 X < (1−R)−1 and the outer
liquid phase to the fixed domain 0 6 X 6 1.

After substituting (3.1) into the governing equations (2.11)-(2.12), (2.15), we find that A0,
A1, B0 and B1 satisfy the coupled ordinary differential equations

A′′0 + γXA′0 = 0, A′′1 + γ(XA′1 −A1) =
a1 − γα

α− σ(1− δ)
XA′0,

κ

δ
B′′

0 + γXB′
0 = 0,

κ

δ
B′′

1 + γ(XB′
1 −B1) =

a1 − γα

α− σ(1− δ)
XB′

0,

where

γ = −A′0(1)− κB′
0(1)

α− σ(1− δ)
, a1 = A′1(1)− κB′

1(1) + κV.

From (2.13)-(2.14), (2.17), we have the boundary conditions

A0 = 1, A1 = 0, on X = 0,

A0 = 0, A1 = −σ, B0 = −V, B1 = V − σ on X = 1,

B0 = o(1), B1 = o(X), as X →∞.
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The leading order solutions are

A0 = 1− erf
(√

γ
2 X

)

erf
√

γ
2

, B0 = −V

erfc
(√

δγ
2κ X

)

erfc
√

δγ
2κ

, (3.2)

where γ is the solution to

γ(α− σ(1− δ)) =
1
L`

e−γ/2 +
κV

Ls
e−δγ/2κ, (3.3)

with L` and Ls defined by

L` =
√

π

2γ
erf

√
γ

2
, Ls =

√
κπ

2δγ
erfc

√
δγ

2κ
. (3.4)

The solution (3.2) together with the transcendental equation (3.3) is almost identical to the
well known Neumann solution (Carslaw & Jaeger, page 285), the only difference being that
in the Neumann solution (which is for zero surface tension), the term α − σ(1 − δ) in (3.3) is
replaced by α. The correction terms are

A1 = −σX + c1 X
(
1− eγ(1−X2)/2

)
,

B1 = c2

[
e−δγX2/2κ −

√
δγπ

2κ
X erfc

(√
δγ

2κ
X

)]
+ c3 Xe−δγX2/2κ, (3.5)

where

c1 =
1
3γ

(
γα− a1

α− σ(1− δ)

)
1
L`

e−γ/2, c3 =
V

3γLs

(
γα− a1

α− σ(1− δ)

)
, (3.6)

c2 =
κ

δγLs

{
σ − V

[
1− 1

3γ

(
γα− a1

α− σ(1− δ)

)
1
Ls

e−δγ/2κ

]} [
1− κ

δγLs
e−δγ/2κ

]−1

,

γα− a1

α− σ(1− δ)
=

3
(

γα + σ − κV + κ(V − σ)
[
1− κ

δγLs
e−δγ/2κ

]−1
)

(3 + γ)(α− σ(1− δ)) + V
γLs

e−δγ/2κ

{
κ

[
1− κ

δγLs
e−δγ/2κ

]−1

− κγ − κ + δγ

} .

From the Stefan condition (2.15) we have the small time behaviour

t =
1
2γ

(1−R)2 − 1
3γ2

(
γα− a1

α− σ(1− δ)

)
(1−R)3 + O((1−R)4) as R → 1−. (3.7)

As discussed in McCue et al. (2008), the solution described above does not satisfy the no-
flux condition (2.16) at r = 0, and indeed by the very nature of this approach, one boundary
condition must be sacrificed. However, we can easily derive an excellent approximate solution
for t ¿ 1 by changing (3.1)2 to be

v ≈ V +
1
r

{
B0(X)−B0(2Y −1 −X) + Y B1(X)− Y B1(2Y −1 −X)

}
,
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where B0 and B1 are presented in (3.2) and (3.5). Given that 2Y −1−X = (1+ r)/(1−R), this
alteration can be thought of as adding an image solution in the domain −1 6 r < 0. The effect
of this change is the new solution now satisfies (2.11)-(2.13) and (2.16)-(2.17) exactly, but only
satisfies (2.14)-(2.15) approximately; however, the errors from (2.14)-(2.15) are exponentially
small in Y as Y → 0+.

3.2 Boundary layer near r = 1

For later reference we note that for X − 1 = O(Y ) with Y ¿ 1, we have

v ∼ V

Ls
e−δγ/2κ(X − 1)− σY + O(Y 2), (3.8)

which describes the temperature in the solid phase in the boundary layer near r = 1 as t → 0+.

3.3 Slow diffusion limit of small-time analysis

In the limit κ → 0, the transcendental equation (3.3) becomes

γ(α− σ(1− δ)− δV ) =
1
L`

e−γ/2

and the constant c1 in (3.6) becomes

c1 =
γ(α + δσ − δV ) + σ

3 + γ
.

These two results agree with the small-time analysis of the one-phase problem studied in Wu
et al. (2008), which is as expected.

4. Large Stefan number limit

In this section we generalise the large Stefan number analysis of McCue et al. (2008), which was
for the classical two-phase problem, to allow for surface tension on the solid-melt interface. In
this limit the interface moves slowly, because of the large amount of latent heat being absorbed
there. For early times the surface tension has no qualitative effect on the melting process, and
the details follow McCue et al. (2008) very closely. For later times, the temperature in the solid
phase decays very quickly to zero for the classical case σ = 0; however, for σ 6= 0 the leading
order temperature in the solid follows the variable melting temperature, and correction terms
ultimately lead to local superheating. That is, after some point in time we find the temperature
in the solid phase will be everywhere greater than the melting temperature (which is of course
less than the bulk melting temperature).

4.1 Time-scale t = O(1)

On the first time-scale, which is t = O(1), heat diffuses a distance O(1) (provided κ = O(1)),
but the interface only propagates a distance O(α−1/2). Thus a boundary layer develops near
r = 1.
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4.1.1 Inner region, 1 − r = O(α−1/2) For the inner region we scale the spatial variables as
r = 1− α−1/2r̃, R(t) = 1− α−1/2R̃(t), and write

u ∼ ũ0(r̃, t) +
1

α1/2
ũ1(r̃, t) + O(α−1), v ∼ 1

α1/2
ṽ1(r̃, t) + O(α−1),

R̃ ∼ R̃0(t) +
1

α1/2
R̃1(t) + O(α−1) as α →∞.

The leading order problem for ũ0, namely

∂2ũ0

∂r̃2
= 0 in 0 < r̃ < R̃0, (4.1)

ũ0 = 1 on r̃ = 0, ũ0 = 0,
∂ũ0

∂r̃
= −dR̃0

dt
on r̃ = R̃0, (4.2)

has the solution

ũ0 = 1− r̃

R̃0

, R̃0 =
√

2t. (4.3)

Note that solution is independent of the surface tension σ, and is thus identical to that given
in McCue et al. (2008).

The next order problems are

∂2ũ1

∂r̃2
= 2

∂ũ0

∂r̃
in 0 < r̃ < R̃0,

∂2ṽ1

∂r̃2
= 0 in r̃ > R̃0, (4.4)

with boundary conditions
ũ1 = 0 on r̃ = 0, (4.5)

ũ1 + R̃1
∂ũ0

∂r̃
= −σR̃0, ṽ1 = −σR̃0,

∂ũ1

∂r̃
− κ

∂ṽ1

∂r̃
= −dR̃1

dt
on r̃ = R̃0, (4.6)

ṽ1 ∼ ã1(t)r̃ as r̃ →∞. (4.7)

The function ã1(t) will be determined by matching with the outer region, as described below.
In terms of ã1(t) the solutions to (4.4)-(4.7) are

ũ1 = − 1
R̃0

r̃2 +

(
1− σ +

R̃1

R̃2
0

)
r̃, ṽ1 = ã1(r̃ − R̃0)− σR̃0,

with R̃0 given in (4.3) and R̃1 satisfying the differential equation

dR̃1

dt
+

R̃1

R̃2
0

= 1 + σ + κã1 (4.8)

and initial condition R̃1(0) = 0.
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4.1.2 Outer region, 1 − r = O(1) The outer region is for 1 − r = O(1). Here we write
v = v̄(r, t), where

∂v̄

∂t
=

κ

δ

(
∂2v̄

∂r2
+

2
r

∂v̄

∂r

)
in 0 < r < 1,

v̄ = 0 on r = 1,
∂v̄

∂r
= 0 on r = 0, v̄ = V at t = 0.

The solution for v̄ is

v̄ =
2V

πr

∞∑
n=1

(−1)n+1

n
sin(nπr)e−n2π2κ t/δ. (4.9)

4.1.3 Matching between regions By rewriting (4.9) in inner variables (r̃, t) and expanding as
α →∞ we find

ṽ1 ∼ 2V r̃

∞∑
n=1

e−n2π2κ t/δ as r̃ →∞.

Thus matching between the two regions gives

ã1 = 2V

∞∑
n=1

e−n2π2κ t/δ, ṽ1 = 2V (r̃ − R̃0)
∞∑

n=1

e−n2π2κ t/δ − σR̃0. (4.10)

We may now solve (4.8) for the moving boundary location, yielding

R̃1 = 2
3 (1 + σ)t + V

∞∑
n=1





2e−n2π2κ t/δ

n2π2
−

δ1/2erf
(
πn

√
κt/δ

)

n3π5/2κ1/2t1/2



 .

As a check on the analysis, and to ensure it is consistent with that presented in Section 3,
we note that

∞∑
n=1

e−n2π2κ t/δ ∼ δ1/2

2(πκt)1/2
=

√
δ

2πκ

1
R̃0

as R̃0 → 0.

Using original variables this implies that in the boundary layer we have

v ∼ V

√
2δ

πκ

(
R− r

1−R

)
− σ(1−R) as R → 1−,

which is seen to agree with (3.8) once it is noted from (3.3) and (3.4) that

α ∼ γ−1,
1
Ls

e−δγ/2κ ∼
√

2δγ

πκ
as γ → 0.

A similar argument shows that the location of the interface agrees with that derived in Section 3
(see McCue et al. 2008 for details).
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4.1.4 Summary of time-scale t = O(1) On the time-scale t = O(1) we see that near the
moving boundary the temperature in both phases has an algebraic dependence on the small
parameter α−1/2. Furthermore, the two phases are coupled, although to leading order both
the temperature in the solid and location of the free boundary are independent of the liquid
phase. Note that the inclusion of surface tension has no qualitative effect on the solution on
this time-scale.

4.2 Time-scale t = O(α)

On the time-scale t = O(α) the solid-melt interface moves a distance O(1). We rescale time as
t = αt̂, where t̂ = O(1), and look for solutions of the form

T` = û0(r,R) +
1
α

û1(r,R) + O(α−2), Ts = v̂0(r,R) +
1
α

v̂1(r,R) + . . . + ŵ(r,R; α), (4.11)

t̂ = t̂0(R) +
1
α

t̂1(R) + . . . + τ̂(R; α) as α →∞. (4.12)

The ellipses in (4.11)-(4.12) denote terms which are O(α−2) and independent of the initial
temperature V , while the terms ŵ(r,R; α) and τ̂(R; α) are exponentially small in α (and will
depend on V ).

The problems for ûi and v̂i (i = 0, 1) are all elliptic (with no initial conditions); they are

1
r2

∂

∂r

(
r2 ∂û0

∂r

)
= 0 on R < r < 1,

1
r2

∂

∂r

(
r2 ∂v̂0

∂r

)
= 0 on 0 < r < R,

û0 = 1 on r = 1, û0 = v̂0 = σ

(
1− 1

R

)
on r = R,

∂v̂0

∂r
= 0 on r = 0,

t̂′0

(
∂û0

∂r
− κ

∂v̂0

∂r

)
= −1 on r = R,

1
r2

∂

∂r

(
r2 ∂û1

∂r

)
=

1
t̂′0

∂û0

∂R
on R < r < 1,

1
r2

∂

∂r

(
r2 ∂v̂1

∂r

)
=

1
t̂′0

∂v̂0

∂R
on 0 < r < R,

û1 = 0 on r = 1 û1 = v̂1 = 0 on r = R,
∂v̂1

∂r
= 0 on r = 0,

t̂′1

(
∂û0

∂r
− κ

∂v̂0

∂r

)
+ t̂′0

(
∂û1

∂r
− κ

∂v̂1

∂r

)
=

(1− δ)σ
R

on r = R,



12 of 20 S.W. MCCUE, B. WU & J. M. HILL

with solutions

û0 =
1
r

[
1−

(
1− r

1−R

)]
+ σ

(
1− 1

r

)
, (4.13)

v̂0 = σ

(
1− 1

R

)
, (4.14)

t̂0 = −σ2(1−R)
(1− σ)3

+
(1− 2σ)(1−R)2

2(1− σ)2
− (1−R)3

3(1− σ)
− σ2 ln [R + σ(1−R)]

(1− σ)4
, (4.15)

û1 = −R + σ(1−R)
6rR2

(
1− r

1−R

) [
1−

(
1− r

1−R

)2
]

, (4.16)

v̂1 = −σδ[R + σ(1−R)]
6κR4(1−R)

(r2 −R2), (4.17)

t̂1 =
1− δσ − 3σ(1− δ)

3

{
σ(1−R)
(1− σ)2

+
(1−R)2

2(1− σ)
+

σ ln [R + σ(1−R)]
(1− σ)3

}
. (4.18)

The function ŵ(r,R;α) satisfies

1
α

∂ŵ

∂t̂
=

κ

δ

(
∂2ŵ

∂r2
+

2
r

∂ŵ

∂r

)
in 0 < r < R,

∂ŵ

∂r
= 0 on r = 0, ŵ = 0 on r = R,

and an initial condition which comes from matching with the first time-scale. For this problem
we may think of R as being a given function of t̂. As explained in McCue et al. (2008), in
the limit α → ∞ we may write ŵ ∼ e−αg(t̂)

(
ŵ0(ρ) + O(α−1)

)
, where ρ = r/R to derive an

eigenvalue problem for ŵ0. The result is that

ŵ ∼ kR

r
sin

(πr

R

)
exp

{
−π2κα

δ

∫ t̂

0

dt̂

R2

}
as α →∞, (4.19)

where k is a constant determined as follows. By writing out Ts (given by (4.11), (4.14)-(4.17)
and (4.19)), in the variables used on the first time-scale, we find

Ts ∼ 1
α1/2

(
−σR̃ + kπ(r̃ − R̃)e−π2κR̃2/2δ

)
,

so by matching with ṽ1 in (4.10) we conclude that k = 2V/π. Finally, we calculate τ̂ via the
condition

dτ̂

dR
∼ −κ

(
∂û0

∂r

)−2
∂ŵ

∂r
on r = R,

which gives

τ̂ ∼ 2κV

∫ 1

R

ξ2(1− ξ)2

[ξ + σ(1− ξ)]2
exp

{
π2κα

δ

[
1− ξ

1− σ
+

ln[ξ + σ(1− ξ)]
(1− σ)2

]}
dξ as α →∞. (4.20)
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4.2.1 Summary of time-scale t = O(α) On the time-scale t = O(α) we see that the temper-
ature in both phases has an algebraic dependence on the small parameter α−1, although the
terms involving V are are exponentially small in α. The implication is that for large Stefan
numbers the melting process ultimately ‘forgets’ the initial condition v = V , and henceforth
the temperature in the solid phase is driven by surface tension alone. Furthermore, given that
v̂0 + v̂1/α is parabolic in shape with a maximum at r = 0, the solid becomes superheated, with
the temperature everywhere greater than the melting temperature.

5. Numerical results

The problem (2.11)-(2.17) was solved numerically with a front-fixing method (Crank 1984),
which involves mapping the moving boundary problem into a fixed boundary problem with
a Landau-type transformation. Central finite differences were then used to approximate the
spatial derivatives, and forward finite differences were employed for the temporal derivatives.
Typically, we used 120 spatial grid points in the solid phase, and 80 in the liquid. The ap-
propriate time step ∆t was chosen using Von Neumann’s method (Smith 1985), ensuring that
the resulting scheme was stable (typically ∆t = O(10−8)). As a test of the scheme, solutions
for the classical case σ = 0 were computed using an enthalpy method, with the two different
numerical approaches agreeing quite well over the full range of parameter values. Note that the
enthalpy method cannot be applied to the more general problem with σ 6= 0, since the melting
temperature is not constant in that case.

Typical temperature profiles are drawn in Fig. 2 for the parameter values α = 1, κ = 1,
δ = 1, V = −1, σ = 0.1. In part (a), numerical solutions are compared with the small-time
approximation derived in Section 3, and they are seen to be in excellent agreement with each
other. On this time-scale the melting temperature is almost constant, and so the surface tension
has no significant qualitative effect on the solutions. For later times, numerical profiles are drawn
in part (b) using the same parameters. We see that as the melting temperature decreases, there
is a point in time after which the solid is locally superheated, with the temperature everywhere
greater than the melting temperature (which, of course, is dependent on the size of the particle).
We believe that this phenomenon (which could be referred to as self-superheating) is followed
by a form of blow-up with ∂Ts/∂r(R, t) → −∞, Ṙ → −∞ as R → R+

c and t → t−c , where
Rc > 0 is some critical radius and tc < ∞ is the corresponding time at blow-up. We discuss
the point further below.

A representative solution for large Stefan numbers is presented in Fig. 3. Here the Stefan
number is α = 10, and the other parameters are the same as in Fig. 2. Included in the figure
is the numerical solution, as well as the large Stefan number approximation given in Section 4.
We see the asymptotic solution agrees extremely well with the numerical solution, except for
late times in the liquid phase. Note the parabolic shape of the temperature in the solid phase
for the profile with R = 0.1. Although not entirely clear on this scale, the curve is concave
down, meaning the solid is superheated at that stage. Again, we predict the solution will cease
to exist before complete melting takes place, however we have observed that the critical radius
Rc decreases as the Stefan number increases. We expect that Rc → 0+ as α → ∞, since the
infinite latent heat limit implies the interface will always be able to absorb the surrounding
heat energy, thereby preventing blow-up. See Section 6 for a related discussion.
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Fig. 2. Temperature profiles for α = 1, κ = 1, δ = 1, V = −1, σ = 0.1. In part (a), the solid curves represent
the numerical solution, while the dot-dashed curves are the small-time approximations; from right to left, the
profiles are for t = 0.0033, 0.013 and 0.028. Part (b) shows only numerical solutions; from right to left (in the
liquid phase), the profiles are for t = 0.045, 0.124, 0.194 and 0.245. The very thin curve in both parts denotes
the melting temperature.

It is of interest to compare numerical solutions of (2.11)-(2.17) for a small value of κ to the
corresponding solutions of the one-phase problem derived in Wu et al. (2008) (see also Evans &
King 2000) via the singular limit κ →∞. This is done in Fig. 4 using the same parameters as
Fig. 2, except that κ = 0.05. In this figure the dot-dashed curves in the liquid phase represent
numerical solutions to the one-phase problem, while dot-dashed curves in the solid phase are
drawn using asymptotic results given in Evans & King (2000) and Wu et al. (2008), namely

T̃s ∼ V +
[
σ

(
1− 1

R

)
− V

]
exp

(
δṘ(R− r)

κ

)
,

where the interface speed Ṙ is taken from the numerical solution to the one-phase problem.
We see the agreement between these two approaches is excellent. Again, it is worth noting how
superheating develops in the solid phase, which we expect leads to blow-up, as described above.
Wu et al. (2008) suggest that in the limit κ → 0, the blow-up will occur at the critical radius
Rc = σ/(α + δ(σ−V )). Using the parameter values used for this figure, that would be roughly
Rc = 0.048. The profile drawn in the figure for R = 0.05 appears to be very close to blow-up,
which is consistent with the one-phase prediction.

In order to illustrate a solution for a small Stefan number, and also to indicate more clearly
the behaviour of the melting process for late times, we present in Fig. 5 temperature profiles
for α = 0.1, κ = 1, δ = 1, V = −1 and σ = 0.05. For these parameter values, the numerical
results suggest that finite-time blow-up will occur roughly between R = 0.12 and 0.13. A
characterising feature of the solutions with small Stefan number is that blow-up appears to
occur very soon after the solid becomes superheated. We see this in part (b) of this figure,
where a roughly flat profile for R = 0.2 evolves very quickly to one which appears to have an
unbounded temperature gradient in the blow-up limit. Figure 6 illustrates the dependence of
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Fig. 3. Temperature profiles for α = 10, κ = 1, δ = 1, V = −1, σ = 0.1. The solid curves represent the
numerical solution, while the dot-dashed curves come from the large Stefan number asymptotics; from right
to left (in the liquid phase), the profiles are for t = 0.197, 0.612, 1.086, 1.452 and 1.547. The very thin curve
denotes the melting temperature.

the interface speed Ṙ on the particle radius R for the same parameters. The figure shows that
|Ṙ| appears to blow up at roughly between R = 0.12 and 0.13.

6. Discussion

We have considered the Stefan problem for spheres, including the effects of surface tension,
motivated in some part by experimental observations concerning the melting of nanoparticles,
as reported by Kofman et al. (1999). By setting up experiments based on dark-field electron
microscopy, Kofman et al. (1999) found that once the temperature of the particle reached a
certain value, the remaining solid core melted abruptly. It may be that our prediction of self-
superheating in the solid particles offers a possible explanation for these peculiar observations.
It would be interesting to measure the temperature profile inside the solid core of a nanoscaled
(spherically-shaped) cluster under melting conditions, with the goal of detecting a superheated
temperature profile; at this stage such measurements do not seem possible.

A most interesting result of our study is that the addition of surface tension in the full
two-phase Stefan model leads to superheating in the solid phase, and in fact our numerical
computations suggest that the solution will cease to exist when the particle radius reaches
some critical value Rc (with the corresponding time tc < ∞). This form of finite-time blow-
up is well-known to occur in some one-dimensional Stefan problems with superheating. For
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Fig. 4. Temperature profiles for α = 1, κ = 0.05, δ = 1, V = −1, σ = 0.1. The solid curves indicate the
numerical solution to the full two-phase problem (2.11)-(2.17), while the dot-dashed curves represent numerical
solutions to the limiting the one-phase problem derived in Wu et al. (2008); from right to left, the profiles are
for t = 0.039, 0.131, 0.237, 0.315 and 0.334. The very thin curve denotes the melting temperature.

example, consider the ill-posed one-phase problem (without surface tension)

∂Ts

∂t
=

κ

δ

∂Ts

∂x2
in 0 < x < s(t), (6.1)

Ts = 0, κ
∂Ts

∂x
= α

ds

dt
on x = s(t),

∂Ts

∂x
= 0 on x = 0, (6.2)

with the initial condition Ts = V (x) > 0. It is known (see Fasano & Primicerio 1977, Fasano et
al. 1981 and Fasano et al. 1990, for example) that blow-up will occur with ṡ → −∞ as s → sc,
where sc is some critical size of the domain, if

Q =
∫ 1

0

(V (x)− α) dx > 0.

In this case there is initially more heat energy in the solid than is required by the solid-melt
interface to melt the solid completely. Furthermore, this form of blow-up is still possible for
Q 6 0 if, for example, the initial condition V (x) has a sufficiently high peak near x = 1. Here
the situation is that there is a large amount of heat energy concentrated near the interface, and
this heat cannot be conducted away fast enough to prevent blow-up. In a similar vein, for our
own problem it may be that the melting temperature decays sufficiently quickly that blow-up
will always occur, regardless of the initial temperature, as there will come a time when too
much heat energy is concentrated near the interface. The exception will be the limiting case
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Fig. 5. Temperature profiles for α = 0.1, κ = 1, δ = 1, V = −1, σ = 0.05. The thick curves represent
the numerical solution, while the thin curve denotes the melting temperature. Part (a) is drawn for R = 0.2
(t = 0.1306), 0.4 (0.0114), 0.6 (0.0769), 0.8 (0.0292) and 0.9 (0.0088), while part (b) is for R = 0.13 (t = 0.1314),
0.16 (0.1312) and 0.2 (0.1306).

α = ∞, for which there can never be more heat in the solid than is required to melt it, and
presumably blow-up will not occur.

We note that the complete asymptotic structure of (6.1)-(6.2) near blow-up has been docu-
mented by Herrero & Velázquez (1996) and King & Evans (2005), for example, with the use of
a Baiocchi transform, the result being that

s(t)− sc ∼ 2(tc − t)1/2 ln1/2 (− ln(tc − t)) as t → t−c .

Notice the length scale that arises does not behave as the square root of time, which is unusual
for Stefan problems. The inclusion of surface tension in our model prevents such a Baiocchi
transform based approach here, and it is expected that the corresponding analysis for our
problem will be more complicated. However, we do anticipate that

T` ∼ σ

(
1− 1

r

)
for r −R(t) ¿ 1 as t → t−c ,

leaving a one-phase problem for the temperature in the solid, namely (2.12), (2.14), (2.16), the
modified Stefan condition

κ
∂Ts

∂r
=

dR

dt

(
−σ(1− δ)

R
+ α

)
+

σ

R2
on r = R(t),

and an appropriate initial condition. We leave these issues to be dealt with elsewhere.
It is worth emphasising that the motivation for including surface tension in some other stud-

ies has been to regularise the ill-posed problem of melting a superheated solid (or, equivalently,
freezing a supercooled liquid), with the goal of smoothing (unphysical) singularities, or prevent-
ing blow-up from occuring. In contrast, the present melting problem (with zero surface tension)
is well-posed, and it is in fact the inclusion of surface tension that drives the superheating, and
hence is responsible for the solutions to blow up before complete melting can take place. This



18 of 20 S.W. MCCUE, B. WU & J. M. HILL

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

R

lo
g   

 1
0  
(−

d
R

/d
t)

Fig. 6. Plot of the interface speed log10(−Ṙ) versus R for α = 0.1, κ = 1, δ = 1, V = −1, σ = 0.05.

appears to be a novel feature of the model (at least for Stefan problems). It may be that the
addition of some other form of regularisation mechanism (such as kinetic undercooling) in our
problem would enable the blow-up to be suppressed, so that the solution could be continued
past the blow-up region in the classical sense; however, for real particles the continuum hypoth-
esis would ultimately break down at some stage, so this question is likely to be of more interest
to mathematicians than physicists.

A number of points regarding one-phase models are worth repeating. First, when the effects
of surface tension are included at the solid-melt interface, there can never be a true one-phase
problem, as there will be always be temperature variations in both phases. However, Evans
& King (2000) derived a one-phase problem that arises by taking the singular limit of slow
conduction in the solid phase (κ → 0), and this problem was analysed by the present authors
in Wu et al. (2008) for radially symmetric geometries. We have provided in the present paper
numerical results that show strong agreement between the one-phase model and the full two-
phase model for small values of κ. As mentioned in the Introduction, it is noteworthy that some
authors treat the one-phase problem that arises by setting κ = 0 in (2.15) and ignoring (2.12),
however this problem does not conserve heat at the interface. For example, Herraiz et al. (2001)
analysed the near-complete-melting limit of that (unphysical) one-phase problem. There is no
finite-time blow-up for that problem, and the scalings derived by Herraiz et al. (2001) are not
appropriate to either the one-phase problem treated in Wu et al. (2008) or the full two-phase
problem studied presently.

Of particular interest would be to generalise the current study to the problem of melting an
arbitrary shaped three-dimensional particle. For the classical case with zero surface tension, the
one-phase problem has been considered by Andreucci et al. (2001) and McCue et al. (2005) (the
two-dimensional analogue is treated in McCue et al. 2003). In that case the solution continues
to exist right up to complete melting, and these authors show that in general, the solid-melt
interface approaches an ellipsoid in shape in the near-complete-melting limit. However, given
the numerical results presented in the present paper, one may expect that the solution for
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the more general three-dimensional problem to blow-up in a similar manner, and it may be
that the surface tension drives the melting process to be radially symmetric just before blow-
up, regardless of the initial geometry. On the other hand, it may be that self-superheating
in the more general three-dimensional problem is responsible for the onset of a cusp, perhaps
accompanied by another form of blow-up. These questions remain unanswered, and are left for
future research.
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