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Micro-thermocouple on nano-
membrane: thermometer for 
nanoscale measurements
Armandas Balčytis1,2, Meguya Ryu3, Saulius Juodkazis  1,4 & Junko Morikawa3

A thermocouple of Au-Ni with only 2.5-µm-wide electrodes on a 30-nm-thick Si3N4 membrane 

was fabricated by a simple low-resolution electron beam lithography and lift off procedure. The 
thermocouple is shown to be sensitive to heat generated by laser as well as an electron beam. Nano-
thin membrane was used to reach a high spatial resolution of energy deposition and to realise a heat 
source of sub-1 µm diameter. This was achieved due to a limited generation of secondary electrons, 
which increase a lateral energy deposition. A low thermal capacitance of the fabricated devices is 
useful for the real time monitoring of small and fast temperature changes, e.g., due to convection, and 
can be detected through an optical and mechanical barrier of the nano-thin membrane. Temperature 
changes up to ~2 × 105 K/s can be measured at 10 kHz rate. A simultaneous down-sizing of both, the 
heat detector and heat source strongly required for creation of thermal microscopy is demonstrated. 
Peculiarities of Seebeck constant (thermopower) dependence on electron injection into thermocouple 
are discussed. Modeling of thermal flows on a nano-membrane with presence of a micro-thermocouple 
was carried out to compare with experimentally measured temporal response.

Thermal characterisation of nanoscale heat sources and heat flows around/through nano-objects is a challenging 
task1,2 due to a deep sub-wavelength nature when IR imaging is used while a direct contact measurement suffers 
from a large heat capacitance and, correspondingly, alters thermal distribution pattern. Moreover, direct con-
tact methods of temperature measurements are slow when micro-thermocouples are used3. Simulation of a heat 
transport by atomistic methods, e.g., Monte Carlo simulations, still have challenges for modeling of the actual 
sizes of nanoscale devices4. During the last decade advances in measuring heat transport through the interfaces, 
at conditions of phase transitions with nanoscale resolution using an atomic force microscopy (AFM) probes were 
reported5. A real time monitoring capability is still strongly required for research of phase transitions, crystalline 
phase formations and photo-thermal cancer treatments6. For an optical light harvesting, the thermal radiation 
and suppression of reflectivity (impedance matching7) have to be determined for the optimised performance.

A recently introduced hot-tip scanning lithography with an AFM tip heated up to ∼ °800 C temperature 
(Nanofrazor, SwissLitho, Ltd.) allows to write 3D nanoscale patterns with resolution down to 10 nm in molecular 
glass resists. With this approach, a secondary electron damage usually occurring in a high-resolution electron 
beam lithography (EBL) exposure during patterning of thin layers of electronic devices is avoided. Thermal pro-
tocols of 3D material growth and structuring for nanotechnology applications (a recent review8) are strongly 
dependent on thermal properties and conditions, which are currently not well known at the nanoscale. 
Management of temperature and heat flows in 2D layered materials and structures, e.g., graphene, are important 
for photo-detectors and light harvesting devices9. Conceptually, a thermal microscopy with a miniaturised heat 
source and detector are strongly required to develop next generation of transistors beyond current 10-nm-node 
where thermal management will be of paramount importance.

We show here fabrication and characterisation of thermocouples on 30-nm-thick Si3N4 membranes. The 
Au-Ni thermocouple was made from thin evaporated metal films of ∼100 nm thicknesses. Small thermal capaci-
tance of SiN nano-membrane facilitated detection of minute temperature changes due to the absorbed energy 
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(dose), e.g., ∼ .0 1 K measured under ∼1 mW red laser illumination as well as heating by an electron beam expo-
sure (this estimate was obtained for the sensitivity of 10.1 µV/K determined for a similar thermocouple1).

Results
Laser beam heating. Miniaturisation of a thermocouple by fabrication of a cross pattern of few-microme-
ter-wide stripes of dissimilar metals is an obvious step3 and was demonstrated for direct contact measurements 
of the temperature diffusivity in polymers10. The next improvement carried out in this study was fabrication of 
such pattern onto a thin Si3N4 membrane to reduce thermal capacitance and augment sensitivity as well as to 
reduce a response time of thermocouple. Figure 1 shows the pattern of thermocouple used in this study, a mask 
for definition of contacts pads, the final device, and a scanning electron microscopy (SEM) image of the Au-Ni 
micro-thermocouple made on a slide glass substrate.

Voltage generated by the thermocouple in response to modulated laser power when laser was illuminated 
from the front-side (the surface on which the contacts were made) is shown in Fig. 2(a). Sensitivity increased 
∼ .34 5 times for the same thermocouple made on a 1-µm-thick SiN-membrane (Fig. 2(b)). For temperature cali-
bration, the sensitivity 10.1 µV/K of a similar thermocouple was used1. In this study we were aiming at detection 
of fast temperature changes induced by the laser and electron beam irradiation rather on determination of its 
absolute values (see, Methods Sec. for details). A junction of Au-Au used as a reference also showed some sensi-
tivity for the laser-induced heating. This is caused by two reasons. First, an adhesion of 5-to-10-nm-thick layer of 

Figure 1. Thermocouple fabrication stages and patterns of electrodes at different magnifications. Thermocouples 
were fabricated on glass and Si3N4 membranes of different thicknesses: 1 µm and 30 nm. (a) Metal junctions 
of 2.5-µm-wide metal stripes with 100 × 100 µm2 primary contact pads. (b) Photo image of a laser ablated 
photolithography mask used for resist exposure. It defines the secondary contact pads to interface with electrical 
measurements. (c) Photo of the final device on glass. (d) A SEM image of the micro-thermocouple and reference 
electrodes. The central pair is the Au-Ni thermocouple.

Figure 2. Characterisation of thermocouples. (a) Temperature increase induced by laser heating at different 
laser power s measured by the optical modulation method (wavelength λ = 830 nm; p-polarisation at slanted 
front-side incidence). Thermocouple Au-Ni was made on a slide glass. Sensitivity of 10.1 µV/K1 determined for 
similar thermocouple was used for estimation of temperature changes; Au-Au junction was used as a reference. 
Illumination of the substrate was carried out from the side to contacts. (b) Temperature vs. laser power for 1 µm-
thick Si3N4 membrane. The Au-Au reference electrodes had a Cr adhesion layer and formed a thermocouple 
which was experiencing a thermal gradient due to asymmetry of the primary contact pads during laser heating 
(see panel (c)). (c) An optical see-through image of the 400 × 400 µm2 SiN-membrane region with thermocouple 
whose response is plotted in (b); laser spot was ∼100 µm in diameter. Note a thermal asymmetry of this layout 
where the upper 100 × 100 µm2 primary contact square pad was on the SiN membrane while the lower one on 
the Si substrate.
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Cr was evaporated before deposition of Au. This created an additional Au-Cr thermocouple. The second reason is 
due to an asymmetry in placement of the square 100 × 100 µm2 contact pads, which have the bi-metal Cr-Au 
structure (the pads are seen in upper and lower part in Fig. 2(c)). The upper pad was placed on the SiN membrane 
while the lower one was in contact with the Si substrate. This caused an unwanted temperature gradient upon 
laser heating and the temperature sensitivity. In next design the both pads were placed on Si to eliminate temper-
ature gradient and sensitivity of the Au-Au reference contacts.

In the final design, a 30-nm-thick SiN-membrane with a smaller window was used. It secured placement of the 
contact pads outside the membrane region, hence, at a constant temperature defined by the bulky Si substrate. 
Figure 3(a,b) show SEM images of the thermocouple. Response of the thermocouple to laser heating was similar 
as for 1 µm membrane. Saturation tendency at a larger laser power is attributable to the heat sink effect of the 
substrate, which was closer to the ∼100 µm diameter laser spot (note, the smaller membrane window). The laser 
irradiation at a slanted angle caused a larger elliptical projection of the laser spot onto the membrane. The Au-Au 
junction showed no photo-sensitivity when the contact pads were outside the membrane region in this final ther-
mocouple design.

Electron beam irradiation. Thermal sensitivity of the thermocouple to electron beam focused to the ∼ .0 5 µm- 
diameter spot and scanned across the membrane with single point irradiation at 30 Hz is shown in Fig. 3(d). The 
largest voltage response was recorded with e-beam close to the thermocouple. Here we used the same 10.1 µV/K 
coefficient to estimate ∆T and validity of this judgment is discussed below. When separation between the e-beam 
spot and thermocouple was >5 µm with e-beam still on the SiN-membrane, the temperature readout was almost 
the same. When e-beam was on the thick Si substrate, thermocouple was recording a decreasingly smaller tem-
perature as electrons were impinging at a larger distance from the thermocouple. The slope of the voltage with 
distance had a characteristic single exponential decay over distance xd = 130 µm. With e-beam directly irradiat-
ing the Au-Ni junction or the metal leads (Au or Ni) there was an electrical signal generated due to electron 
injection and was by two orders of magnitude larger (∼230 µV vs ∼2 µV for the electron and laser exposures, 
respectively). All the e-beam exposure locations were selected to avoid direct electron irradiation of the metal 
leads.

Detection of fast heat transients. Next, temporal response of thermocouples with 6 µm2 area were inves-
tigated at much higher ∼kHz frequencies with more tight definition of the laser focal spot on the junction (Fig. 4). 
A square-wave excitation was used to test thermocouple response time. Absorbed amount of light irradiated from 
the contact side is very small in the case of 30-nm-thick SiN, however, the saturation level of signal is reached 
faster as compared with the same thermocouple on the slide glass. The fastest segment of temperature rise and 
decay was τ ∼ 10 µs (the same time constant was the best fit also for the rising part of the transient but is not 
shown in Fig. 4). Up to a 10 kHz laser repetition rate, saturated temperature values were reached within the period 
of illumination. The absolute temperature values were extracted from oscillograms (Fig. 4). For the 30 nm 
SiN-membrane, an approximately 4-times smaller span of min-max temperatures was observed as compared with 
thermocouple on the slide-glass (4 vs 16 K). Also, slightly higher maximum temperatures were reached on the 
SiN-membrane. Considering a half of the min-max span of ∆T ≈ 2 K occurring within the fastest change of τ = 
10 µs, the heating (cooling) rates up to 0.2 × 106 K/s are measurable. This is a promising feature for practical 
applications in real time monitoring of temperature.

Heat and direct electron injection contributions. When the thermocouple response was measured 
from the front-side (where metal contacts were deposited), larger ∼30 µm steps were used and positions were 
chosen to avoid direct electron irradiation of the thermocouple (Fig. 3). Next, a back-side e-beam irradiation was 
carried out in small ∼7 µm steps with simultaneous detection of back-scattered (reflection) and transmitted 

Figure 3. Thermocouple on a 30-nm-thick SiN-membrane. (a,b) SEM images of thermocouple made on a 
250 × 250 µm2 SiN window. Note, secondary (large) contact pads are made from the same metal (Au or Ni) as 
the smaller ones to avoid formation of a secondary thermocouple. The large contacts are placed on Si substrate 
to remove a thermal gradient on the thermocouple (such gradient was responsible for the observed temperature 
change in Fig. 2(b) measured with the Au-Au contact). (c) Temperature vs. laser power. (d) Temperature vs. 
position of the electron beam across the central cross section (along the line in (b)). Diameter of the e-beam was 
∼ .0 5 µm at the acceleration voltage of 25 keV; modulation frequency was 30 Hz, current ∼ .1 7 nA as measured 
by Faraday cup without the sample. Central shaded region depicts the location of membrane. E-beam was 
scanned across the SiN window and Si substrate without direct exposure of metal leads/contacts.
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(Faraday cup) electrons during measurements of the Au-Ni thermocouple response (Fig. 5). High transmission 
of SiN-membrane was confirmed with no reflected electrons measured with a detector at a large scattering angle 
(sensitive to the secondary electrons). Transmission of the membrane to electrons is also confirmed by a 
high-contract SEM image (Fig. 5(a)). Thermocouple signal was normalised to the transmitted Faraday cup signal 
and the surface of the Au-Au and Ni-Ni junctions were grounded to eliminate possible charging effects. All the 
device area was covered with stainless steel foil with an only 4-mm-opening for the e-beam exposure. Small volt-
age detected by thermocouple (Fig. 5(b)) close to Au-Ni junction is a signature of a changing thermopower since 
direct electron injection into the junction occur. Thermopower of the free electron gas has a negative sign, hence, 
a reduction of Seebeck coefficient is expected.

The phase of a lock-in amplifier signal showed an expected phase delay as the e-beam was more distant from 
the thermocouple junction (Fig. 5(c)). The phase delay of a heat wave generated by e-beam ∼ .0 5 µm-diameter heat 
source at the f = 27 Hz is expected to follow θ π β∆ = − −f a d/ , where a [m2/s] is temperature diffusivity, d is 
the distance between the heat source and thermocouple, and β is instrument constant11. Temperature diffusivity of 
a 600-nm-thick SiN-membrane was measured and a = 1.3 × 10−6 m2/s value was determined12 while that of gold 
is ∼ . × −1 2 10 4 m2/s and ∼ . × −0 2 10 4 m2/s for Ni. The linear expression between phase and distance is valid at 
larger separation between the heat source and the temperature measurement point (see line (1) in (c)); detailed 
modeling of thermal transport for the used thermocouple on the membrane is presented in Supplementary mate-
rial section. The fit was achieved for a ∼ .47 7 times larger temperature diffusivity a = 0.62 × 10−4 m2/s than that of 

Figure 4. Temporal response of thermocouple on a 30-nm-thick SiN-membrane to a square-wave optical 
excitation. (a) Video image of a tightly-focused laser beam onto thermocouple with ∼10 µm spot diameter; 
λ = 830 nm. (b) Temporal response of thermocouples: (i) to a 3.6 mW laser power at repetition rate f = 2 kHz with 
a thermocouple on a slide glass and (ii) to 1.8 mW power with thermocouple on a 30-nm-thick SiN-membrane at 
f = 2, 5, 10 kHz; note different x-axis scales in (b). The fastest switching time was τ = RC = 10 µs with ohmic 
resistance of thermocouple R = 500 Ω and C = 20 nF. Electronic pre-amplifier of 100× was used for a direct 
observation by oscilloscope. The estimated max-min ∆T span was 16 K (30.7-to-14.7 K above RT of 22 °C) for the 
thermocouple on glass and ∆T = 4.1 K for 30 nm SiN-membrane (31.3-to-27.2 K) at 2 kHz; at higher 5 and 10 kHz 
frequencies the max temperature increase was similar ∆Tmax = 30.5 K and min-max span of ∼4 K.

Figure 5. Response of micro-thermocouple to back-side electron irradiation. (a) SEM image of thermocouple on 
30 nm SiN-membrane by back-scattered (in lens) and secondary (large angle scattered) electrons. (b,c) Measured 
amplitude and phase response of the Au-Ni thermocouple to a diagonal scan (dashed line in the inset in (b)) with 
∼7 µm steps measured with a lock-in amplifier. Thermocouple voltage was normalised to the transmitted 
electron current measured by the Faraday cup using an additional lock-in amplifier; e-beam blanking frequency 
was 27 Hz. The slope of line (1) in (c) corresponds to the best fit by a linear ∼ ×Phase Const d dependence, 
where d is the distance between heat source and measurement point (only valid at large separations); the 
temperature diffusivity was a = 0.62 × 10−4 m2/s or 47.7 times larger than that of SiN12.
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SiN12. This value is higher than a typical value for Ni and approximately twice lower than that of gold. The electron 
beam induced heating is one of the contributions to the detected signal in addition to the charge injection which 
has a strong impact onto an effective thermopower of the metallic segments of thermocouple.

Discussion
Sensitivity of micro-thermocouple to heating by light and electron beam are demonstrated with the same device. 
Photo-sensitivity of Ni-Ni junction was observed and was much higher than Au-Au which was used for the 
reference. This is caused by formation of Schottky junction and oxidation of Ni, e.g., optically transparent Ni 
films sputtered on Si creates a solar cell13. Future studies and calibration of Ni-NiO, Au-Cr, and rectenna14 
metal-insulator-metal structures for temperature detection are strongly required.

The results of e-beam irradiation of thermocouple from the back-side through the SiN-membrane showed 
anomalous behavior of a smaller amplitude (voltage) with irradiation point closer to the thermocouple with a 
minimum when the e-beam is focused onto the junction (Fig. 5(b)). During the measurements it was observed 
that a longer equilibration time (minutes) was necessary for the amplitude and phase to be stable when e-beam 
was irradiated on the junction. Lower amplitude (voltage) would be equivalent to the smaller temperature for the 
fixed value of Seebeck coefficient (thermopower). However, injection of electrons into the junction is equivalent 
to creation a more conductive region with a higher electron density. The higher the density, the more negative 
values of Seebeck coefficient are expected as for the free electron gas. The phase signal (Fig. 5(c)) at larger sepa-
ration of the e-beam irradiation from thermocouple is consistent with the temperature diffusivity of gold rather 
than SiN-membrane as determined above (Secs. Results and Supplement material). An electron injection into 
micro-junctions by direct e-beam irradiation is a complex and not well controlled phenomenon which can be 
investigated with the miniaturised thermocouples made for this study. Separation of the pure thermal phenom-
enon from a dynamic change of thermopower under increased electron density revealed in this study needs fur-
ther investigation. The thermal modeling of the fabricated thermocouple on a membrane (Supplement) shows 
a frequency response and the signal (proportional to temperature) detected by lock-in-amplifier and predicts 
dissipation of heat dominated by SiN membrane. In experiments (Fig. 5(b,c)) however, the faster dissipation was 
observed corroborating contribution of electron injection and dissipation through metallic leads of thermocouple.

Conclusions
Thermocouple made of micrometer-wide Au-Ni electrodes on a 30-nm-thick SiN membrane show sensitivity to 
optical and electron beam excitation and can be used for direct measurement of temperature. Nano-membrane 
decreases a secondary electron generation which excites a considerably larger sub-surface volume with 1–2 µm 
cross sections in bulk samples as measured by Au-Ni micro-thermocouple under e-beam exposure1. The minia-
turised heat source by a tightly focused laser beam or e-beam accompanied with a miniaturised thermocouple 
opens a new toolbox for investigation of heat transport at micro- and nano-scales. For the absolute tempera-
ture measurements, a dedicated calibration of sensitivity is required1. In this study, a fast temporal response was 
demonstrated with thermocouple-on-a-membrane.

The demonstrated thermocouple on a nano-membrane can also be used in optical microscopy applications 
where thermal registration is decoupled from the sample, e.g., cells in a buffer solution on the opposite side of the 
membrane. Recently, an electron-beam excited fluorescence from a cell on transparent membrane was optically 
mapped with resolution down to 50 nm15 and a direct measurement of the thermal conditions at the nanoscale 
could further enhance versatility of such technique. In synchrotron radiation experiments, SiN-membranes are 
common sample support platforms which could have a thermometer function embedded for in situ monitoring 
of the temperature of the sample.

Methods
Membranes of Si3N4 with different thicknesses of 1 µm and 30 nm (Norcada Ltd.) were used as substrates for 
fabrication of thermocouples; thermocouples were also made on slide glass for reference. Micro-thermocouples 
were made by electron beam lithography (EBL) using a simple scanning electron microscope (ACE-7000/EBU, 
Sanyu Electron Ltd.). Lithography steps started with definition of a 2.5 µm-wide Au segment of thermocouple in 
ZEP520A resist. After development, a 5 nm Cr adhesion layer was evaporated followed with deposition of 50 nm 
of Au. Then, lift-off was performed in developer. Second step exposure of the Ni segment of the thermocouple was 
made in ZEP520A. Evaporation of 50 nm of Ni followed by the lift-off. The resulting Au-Ni junction had ∼ .6 3 
µm2 area, which is smaller than a typical CCD pixel.

Laser-scribed optical mask was made for definition of secondary contact pads. The mask was superimposed 
with the lithographically defined thermocouple pattern for evaporation of 10 nm of Cr followed with 90 nm of 
Au. Electrical bonding was made with a silver paste. Ohmic resistance of Au-Ni thermocouple was typically 500 
Ω and 90 Ω for Au-Au wire junction of the same geometry. Final device is shown in Fig. 1(c) on a glass sub-
strate. We used the established calibration constant of 10.1 µV/K for Au-Ni thermocouple of similar dimensions1. 
Calibration of a particular thermocouple can be made using Au-Au (or Ni-Ni) junction fabricated at the close 
proximity on the same substrate and by measuring ohmic resistance. This measurement is then compared with 
the direct resistance measurement at the known temperature1. Design of the thermocouple pattern used in this 
study does not have a resistance heater which is placed equidistantly from the thermocouple and reference wires 
(Au-Au, Ni-Ni). Hence, such calibration was not carried out and we relied on the reported sensitivity1. Calibration 
of thermocouple for determination of the absolute temperature are important when films of several nanometers 
are used due to strong differences in Seebeck coefficient (thermopower): it changes from −4 to +14 µV/K when 
the film of Cr is increasing in thickness from 5 to 10 nm16 (the scale is defined with Platinum having the Seebeck 
coefficient S = 0, S = −15 (Ni), S = +6.5 µV/K (Au)). The bulk Cr has thermopower S = 21.8 µV/K16.
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