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This review explores the use of microalgae for nutrient removal in municipal wastewater treatment, considering recent
improvements in the understanding of removal mechanisms and developments of both suspended and non-suspended
systems. Nutrient removal is associated to both direct and indirect uptake, with the former associated to the biomass con-
centration and growth environment (reactor). Importantly, direct uptake is influenced by the Nitrogen:Phosphorus content
in both the cells and the surrounding wastewater, with opposite trends observed for N and P. Comparison of suspended
and non-suspended systems revealed that whilst all were capable of achieving high levels of nutrient removal, only non-
suspended immobilized systems could do so with reduced hydraulic retention times of less than 1 day. As microalgae are
photosynthetic organisms, the metabolic processes associated with nutrient assimilation are driven by light. Optimization of
light delivery remains a key area of development with examples of improved mixing in suspended systems and the use of
pulsating lights to enhance light utilization and reduce costs. Recent data provide increased confidence in the use of microal-
gae for nutrient removal in municipal wastewater treatment, enabling effluent discharges below 1 mg L−1 to be met whilst
generating added value in terms of bioproducts for energy production or nutrient recovery. Ultimately, the review suggests
that future research should focus on non-suspended systems and the determination of the added value potential. In so doing,
it is predicted that microalgae systems will be significant in the delivery of the circular economy.

Keywords: nitrogen; phosphorus; bioreactor; suspended; non-suspended

Introduction

The potential for remediation of inorganic nitrogen and
phosphorus from wastewater by microalgae is well doc-
umented [1–9] and considered an environmental approach
to nutrient polishing.[10,11] In addition to enabling low
nutrient discharges, a number of added benefits have been
described: (a) sequestering of CO2 from the atmosphere
during photosynthesis [12]; (b) oxygenating the treated
effluent [13]; (c) unlike alternative biological treatment
processes, a compulsory inorganic carbon source is unnec-
essary to optimize treatment [8,13] and (d) removal of trace
organic micropollutants. Furthermore, following treat-
ment, the algal biomass can be processed for the production
of low-value products within human and animal nutri-
tion, cosmetics and biofuels, including biomethane through
anaerobic digestion of the residual biomass.[14,15]

Microalgae are ubiquitous to wastewater environments
[16] albeit at dilute concentrations, confirming the nutri-
ent characteristics of such environments are suitable for
growth [17], with microalgae demonstrating the abil-
ity to remediate effluents at concentrations commonly
encountered post-secondary treatment.[18] Microalgae are

*Corresponding author. Email: b.jefferson@cranfield.ac.uk

therefore considered as prospective candidates for tertiary
wastewater treatment.[19–21]

The desired features for a microalgal solution for ter-
tiary treatment include performance reaching the required
level of remediation within a practical hydraulic retention
time (HRT). The longest HRTs typically encountered
in tertiary treatment are related to constructed wet-
lands extending up to 1 day.[22] Current operation of
microalgae treatment is most commonly achieved in high
rate algal ponds (HRAP) with HRTs of 4–10 days.
Accordingly, uptake is predominately reported in loca-
tions where land availability is not restrictive (e.g. USA
[23]) but represents a research challenge to broaden
uptake.

The combination of microalgae being able to meet low
nutrient discharges (e.g. sub 1.0 mg L−1 total phospho-
rus) and the generation of added value components (e.g.
biomethane feedstock material) have resulted in refreshed
consideration of the need and benefits of microalgae over
traditional nutrient removal options (e.g. chemical dos-
ing for phosphorus), which offer no added value. Illus-
tration of this is seen in regard to phosphorus, where a
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range of new technologies being implemented to meet
sub 1.0 mg L−1 discharges are all based on chemical dos-
ing and clarification (e.g. BluePro, CoMag), resulting in
an increase in coagulant use and residual sludge pro-
duction. Additional issues arise at sites that previously
did not incorporate chemical dosing such as small rural
works. In such cases, the chemical-dosing-based options
generate additional challenges due to the need for bet-
ter infrastructure around transport (roads) and health and
safety, including supply of potable water safety show-
ers and chemical storage facilities.[24] Accordingly, there
is a need for microalgae treatment options that offer a
real alternative to the chemical-dosing-based technologies
beyond sites where use of HRAP is appropriate.[25,26]
This has seen a growth in research around application to
more nutrient-limited environments such as tertiary treat-
ment [19] coupled with new insights and trials of alter-
native technologies.[27,28] This review aims to appraise
the new insights and technologies to consider the impact
on the future potential for microalgae systems for tertiary
treatment.

Overview of microalgal nutrient remediation

mechanisms

Direct (biological) remediation of nitrogen and

phosphate and microalgal species’ nitrogen:phosphorus

composition

Nutrient remediation with microalgae occurs through one
of two pathways (Figure 1). Direct remediation is the
most commonly discussed mechanism of remediation and
is achieved through interconnected biochemical pathways
for the uptake of the target nutrients into the biomass
for storage,[29,30] or assimilation into nucleic acids and
proteins for biomass growth [23] (Figure 1).

Inorganic nitrogen – that is, nitrite (NO−

2 ), nitrate
(NO−

3 )and ammonium (NH+

4 ) – are translocated across the
cell membrane [23] in the preference of NH+

4 > NO−

3 >

Org − N.[31] These oxidized nitrogen species are sub-
sequently reduced to NH+

4 and assimilated into amino
acids for the formation of proteins (Figure 1), with NH+

4
uptake preferred due to the reduced energy requirement
necessary for reduction and assimilation.[23] Accordingly,
microalgae can be utilized for total nitrogen (TN) removal

Figure 1. Schematic diagram of a microalgal cell summarising the biochemical pathways of nitrogen and phosphorus remediation,
including indirect mechanisms (highlighted within a dashed box). © Represents co-transportation.
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(nitrification and denitrification), with NO−

3 assimilation
observed following the near-complete exhaustion of NH+

4
[32] from the source wastewater.

Phosphate, in the preferred form of H2PO−

4 and HPO2−

4 ,
is transported across the cell membrane via energized
transport [13,23] and assimilated into nucleotides follow-
ing phosphorylation for the synthesis of ribosomal RNA
[33] (Figure 1). A nitrogen source is therefore required for
the synthesis of proteins to enable the assimilation of phos-
phorus, with a limitation of either nutrient resulting in a
low cell-protein content and reduced biomass growth.[33]
Furthermore, in high-phosphate environments, microalgae
can consume excess phosphate through a luxury uptake
pathway [29,34] for storage as an acid-insoluble polyphos-
phate granule [29] (Figure 1) for future use in times
when the external phosphate concentration may become
limiting.

Nutrient uptake by microalgae depends on the asso-
ciated concentration in the microalgae biomass such
that phosphorus removal is consistently lower than
nitrogen (Table 1) due to a greater microalgal nitro-
gen biomass content.[42] Freshwater microalgae biomass
nitrogen:phosphorus (N:P) molar concentrations range
between 8:1 and 45:1, indicating the importance of species
selection when optimizing treatment.[43] In addition,
microalgae are known to adjust the N and P concentration
in their biomass in relation to the levels in the surrounding
medium.[33,44] For example, when cultured in mediums
of varying N:P, internal N:P contents of 8.5–32 and 4.1–
32 have been reported for the freshwater species Chlorella

vulgaris and Scenedesmus obliquus.[33,45,46]
The remediation of nitrogen and phosphate is generally

correlated to an increase in both the biomass volume [17]
and the internal nutrient content within the biomass.[33,47]
Biomass productivity (growth) decreases with an increas-
ing external N:P concentration as illustrated in the case of
C. vulgaris, with a maximum growth rate of 2.97 g L−1

d−1 at N:P (mg mg−1) > 10 demonstrated through a transi-
tion from N to P limitation.[44] In relation to phosphorus,
an inverse relationship between a species internal content
and specific uptake rate is reported.[30,44] This results
in reduced nutrient removal as illustrated with a culture
of C. vulgaris, where phosphorus remediation decreased
from > 80% with an increasing phosphorus cellular con-
tent when treating wastewater with an N:P up to 20 mg
mg−1 down to only 20% when treating a wastewater
with a nutrient ratio of > 50 N:P.[44] Similarly, Ruiz-
Martínez [30] found an increased phosphate uptake rate
of ∼ 3.3 mgPO4-P gTSS−1 h−1 in comparison to ∼ 0.7
mgPO4-P gTSS−1 h−1 for Scenedesmus sp. with internal
P concentrations of ∼ 0.6% and 1% (w/w), respectively.
An internal phosphate concentration of < 1% character-
izes growth within phosphorus-limited environments,[48]
whereas > 1% is indicative of microalga luxuriously con-
suming phosphate for growth and storage for future use

in conditions of limitation.[29] Observations from these
studies suggest that an increased specific uptake rate for
phosphorus is a result of either a limiting external concen-
tration or an initially reduced internal content, with both
conditions representing times of stress when phosphorus
assimilation is necessary for the continued metabolic pro-
cesses and growth of a culture. The opposite has been
demonstrated for nitrogen assimilation, with a cellular
content of ∼ 0.02 mgN mgVSS−1 for C. vulgaris when
remediating an influent profiled by an N:P (mg mg−1)
of 30 in comparison to 0.2 mgN mgVSS−1 at an N:P of
80 [44] corresponding with phosphorus limitation. Simi-
larly, the nitrogen removal efficiency of Scenedesmus sp.
has been reported to decrease significantly when the N:P
ratio exceeds 12:1.[17] Whilst no significant link has been
observed between P removal and carbon concentrations,
below a C:N of 10, nitrate uptake has been observed to be
reduced in the case of Chlorella sp. [51].

The ability of a range of microalgae to remove nutri-
ents from wastewater and synthetic wastewater has been
analysed extensively within laboratory trials. The major-
ity of research to date has been conducted on unicellular
chlorophyceae,[50] in particular on the members from the
Chlorella and Scenedesmus families (Table 1). Species
from these families are largely used due to their domi-
nance in freshwater environments,[51] the ease with which
they are cultured and reproduce [20,36] and their ability
to efficiently remove nutrients.[51] Recent comparisons
of a range of algae have largely confirmed the suit-
ability of Scenedesmus sp. for use in tertiary treatment
applications.[20]

However, unicellular algae are difficult to harvest,
resulting in recent research into non-planktonic algae,
especially filamentous species such as Oedogonium sp. and
Tribonema sp.[52,53] For instance, Liu and Vyverman [54]
reported that for the filamentous algae trialled, Cladophora

sp. was most efficient under low N:P ratio wastewa-
ter whilst Pseudanabaena sp. was better for removing
nitrogen from high N:P ratio wastewater. In compari-
son to research on these identified species, fewer studies
exist on other chlorophyceae as well as other taxa such
as cyanobacteria and diatoms. The potential for nutri-
ent removal by other chlorophyceae species in addition
to diatoms and cyanobacteria are not as widely investi-
gated, but are known to populate wastewater treatment
works [55,56] and demonstrate beneficial characteristics.
Cyanobacteria, for example, contain accessory pigments
and an enhanced concentration of chlorophyll in com-
parison to chlorophyceae, enabling a more efficient use
of available light.[57] In addition, species isolated from
colder climates, for example, Phormidium bohneri, have
shown acceptable growth and nutrient removal rates at
cooler temperatures, demonstrating removal rates between
2.4 and 19.9 mg L−1 d−1 for NH+

4 and 1.6 and 13.8 mg
L−1 d−1 for total phosphorus (TP) within secondary
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Table 1. Ammonium and phosphorus removal by microalgal cultures for varying waste streams.

Design parameters Test conditions Influent conc. (mg L−1)

Removal
efficiency (%);

Uptake rate

Algae
Concen-
tration

HRT (d);
Flow

velocity;
Scale (m3) Aeration

Test waters;
Temp. (°C);

pH

Irradiance
(μmol m−2

s−1)a; Day
length (h) NH+

4 TP NH+

4 TP

Specific
growth rate

(d−1);
Effluent pH References

Chlorophyceae
Botryococcus braunii 9

Batch
50 mL min−1

CO2

Secondary
effluent

– 0.17 0.04 99.9b 75.0 – [35]

– 0.003 – – – – –
7.6

Botryococcus braunii 7
Batch

50 mL min−1

CO2

Secondary
effluent

– < 0.1 0.39 99.8b 97.4 – [35]

– 0.003 – – – –
7.7

C. vulgaris 9
Batch

– Wastewater
effluent

100.8 7.7 0.9 55.8 – – [36]

253 mg L−1 – – 16 – ∼ 10
7

C. vulgaris 2
Batch

Air bubbling Wastewater
effluent

135 – – 74.3 70.2d 0.186 [37]

– 0.0025 25 –
0.134 μg

h−1
·10−6cells

0.134 μg
h−1

·10−6cells 9.0–9.5
–

C. vulgaris 9
Batch

Air bubbling Agro-industrial
wastewater

60 – – – 55.0d – [38]

2 × 106 cells mL−1 0.002 20 – –
–

C. vulgaris 10
Batch

0.5 v.v.m filtered
air

Primary settled
sewage

58a 35.5 3.9 74.1 63.8 0.274 [31]

5 × 105 cells mL−1 – 24
7.1

16 – – –

C. vulgaris 10
Batch

0.5 v.v.m filtered
air

Primary settled
sewage

58a 35.5 3.9 97.8 87.0 0.277 [31]

1 × 106 cells mL−1 – 24 16 – – –
7.1

(Continued).
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Table 1. Continued.

C. vulgaris 10
Batch

0.5 v.v.m
filtered air

Primary settled
sewage

58a 35.5 3.9 89.7 66.1 – [31]

5 × 106 cells mL−1 – 24 16 – –
7.1

C. vulgaris 10
Batch

0.5 v.v.m
filtered air

Primary settled
sewage

58a 35.5 3.9 99.9 78.7 – [31]

1 × 107 cells mL−1 – 24
7.1

16 – –

7.1
Scenedesmus
dimorphis

9
Batch

Air bubbling Agro-industrial
wastewater

60 – – – 55.0d – [38]

2 × 106 cells mL−1 0.002 20 24 – –
– 24

S. obliquus 7.9
Batch

160 mL min−1 Wastewater
effluent

152a 27.4 11.8a 94 98.0 0.686 [39]

14 mg L−1 (dm) 0.001 20
9.3

24 – – –

S. obliquus 7.9
Batch

160 mL min−1 Wastewater
effluent

152a 27.4 11.8a 99 98.0 0.768 [39]

14 mg L−1 (dm) 0.001 25
9.3

24 – – –

S. obliquus 7.9
Batch

160 mL min−1 Wastewater
effluent

152a 27.4 11.8a 99 94.0 1.051 [39]

14 mg L−1 (dm) 0.001 30 24 – – –
9.3

(Continued).
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Table 1. Continued.

Design parameters Test conditions Influent conc. (mg L−1)

Removal
efficiency (%);

Uptake rate

Algae
Concen-
tration

HRT (d);
Flow

velocity;
Scale (m3) Aeration

Test waters;
Temp. (°C);

pH

Irradiance
(μmol m−2

s−1)a; Day
length (h) NH+

4 TP NH+

4 TP

Specific
growth rate

(d−1);
Effluent pH References

S. obliquus 7.9
Batch

160 mL min−1 Wastewater
effluent

152a 27.4 11.8a 79 54.0 0.458 [39]

14 mg L−1 (dm) 0.001 35
9.3

24 – – –

S. obliquus 2.1
Batch

Air bubbling Wastewater
effluent

135 32.5 2.5a 100c 60.0 0.285 [37]

– 0.0025 25 – 0.180 μg
h−1

·10−6cells
0.036 μg
h−1

·10−6cells
9.0–9.5

– –
Cyanobacteria
P. bohneri 5

Batch
0.1 v.v.m Secondary

effluent
– – – – – 0.190–0.490 [40]

100 mg L−1 (dm) 0.02 – – 2.4–19.9 mg
L−1 d−1

1.6–13.8 mg
L−1 d−1

8.5–11.1

–

a Irradiance units converted to μmol m−2 s−1 using conversion guidelines within.[41]
b Total nitrogen.
c Nitrate.
d Orthophosphate
(dm) Dry mass.
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effluent.[40] In comparison, optimum nitrogen removal of
77.5 mg L−1 d−1 was observed for S. obliquus at 31°C
with no treatment predicted below 8.8°C based on fitting
the observed data to the cordinal temperature model with
inflexion.[30]

Mono-culture growth of a species is achieved commer-
cially by operating at favourable loading rates, retention
times and environmental parameters [57] (e.g. for the
growth of Chlorella, Spirulina and Dunaliella [58]); or by
the selective recycling of species.[59] However, species
control within a wastewater environment is challenging
as microalgae are opportunistic [60], and attempts to con-
trol the community have failed due to contamination from
native algal species.[61]

Indirect nitrogen (volitisation) and phosphate

(precipitation) remediation

A by-product of direct remediation and growth is the
alkalization of the localized environment through: (1)
production of hydroxyl radicals (OH−) during photosyn-
thetic consumption of inorganic carbon such as bicarbonate
(HCO−

3 )[42,36,62] and (2) a net uptake of protons (H+)
from the dissociation of H2O for co-transportation of NO−

3
and PO−

4 through the microalgal cell membrane [62,63]
(Figure 1). The modification of the physiochemical envi-
ronment through pH [42] facilitates the indirect removal
method. In the case of NH+

4 , at pH values greater than 7,
there is an equilibrium shift within the kinetic equilibria for
NH+

4 and ammonia (NH3) towards the production of NH3

(gas) [39], which is subsequently volatized and stripped
from the solution. The mechanism of indirect removal
of ammonium has been shown to contribute greatly to
total NH4-N remediation, with removal percentages of 38–
100% reported for the cyanobacteria P. bohneri [64] and
53–82% for S. obliquus under varying temperatures and
mixing regimes.[39]

Unlike ammonium, phosphate cannot exist in a gaseous
state and precipitates with metal ions (e.g. Ca, Mg and Fe)
within the effluent , at elevated pH and high dissolved oxy-
gen concentrations [23,29], with a removal efficiency of
16–63% reported for Monoraphidium species upon treat-
ing sterile-filtered wastewater.[62] The indirect removal
mechanisms are not specifically monitored in the oper-
ation of microalgal bioreactors in the vast majority of
cases. However, increases from an influent pH ranging
between 7 and 9.3 to a final effluent pH between 8.5
and 11.1 are documented during the operation of those
bioreactors were the pH is uncontrolled (Supplementary
information). Once pH increases beyond 10.5, phosphate
precipitation decreases due to a switch towards calcium
carbonate formation as a result of the relative change in
precipitation kinetics between calcium and phosphate or
carbonate.[65]

Microalgal bioreactor configurations for wastewater

nutrient remediation

The assimilation of nutrients for growth is facilitated by the
process of photosynthesis, which is driven by the supply of
inorganic carbon, light and temperature (Figure 1). Inor-
ganic carbon, however, is often regarded as non-limiting
[57,64] within wastewater effluent and expressed indirectly
as the chemical oxygen demand.[57] It is the external
factors of light and temperature, as opposed to the concen-
tration of target nutrients, which have the greatest influence
on growth and productivity [64] and are considered the key
design features in the operation of a microalgal bioreactor
with studies focusing on light [66–68]; temperature [64,69]
in addition to species selection [20,54,70] to optimize
performance.

Various bioreactor designs are available to enhance
growth and facilitate biomass removal following treat-
ment, which include suspended and non-suspended sys-
tems [11,71], with sub-categories of either open to the
environment or enclosed (Figure 2).

Suspended cultures enable the microscopic algal cells
to move freely within a body of water in dilute concen-
trations [28] and are most commonly used in microal-
gal wastewater treatment.[11] The biomass concentrations
of suspended systems are reasonably low ( < 2 g L−1)
(Table 2) but can exceed 4.5 g L−1 in intensified sys-
tems when treating industrial sources.[81] If not efficiently
removed (harvested) post-treatment, the biomass has been
reported to contribute to an increase in suspended solids
content and 60–90% of the effluent biological oxygen
demand.[82]

Harvesting is challenging and expensive and described
as the defining factor of overall affordability [28] repre-
senting 20–30% of the production cost.[54] The microalgal
cell surface is negatively charged,[83] with cells repulsed
from one another and maintained in suspension. Harvesting
typically involves dosing a positively charged metal coag-
ulant to neutralize the surface charge, allowing the cells to
aggregate together, creating flocs.[83] Subsequent removal
of the flocs is through filtration, sedimentation, centrifuga-
tion or dissolved air flotation (DAF),[84] with DAF taking
advantage of the natural tendency of algae to float by rais-
ing the biomass to the surface, where it is skimmed off and
recovered. Harvesting thorough centrifugation and DAF
represent significant chemical and energy costs [85,15,86]
and require additional assets within the process flow-sheet
representing further capital and operational expenditure.

Figure 2. Categories of microalgal bioreactors for wastewater
remediation.
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Table 2. Summary of microalgal bioreactor designs, operating parameters and performance.

Solution Configuration Scale

Algal biomass
concentration dry

mass (g L−1) Algal community HRT (d) References

HRAP Raceway pond Full 0.3–1.0 Mixed 4–10 [11,42,72,73]
PBR Tubular Pilot 1.0–2.0 Mono 1–7 [11,74,75]

Panel Lab 2–5
Biofilms Floway Full 130(g m−2) Mixed 6–16 [6,60,76–78]

Submerged Pilot 6
Matrix-immobilization Packed bed Lab 0.9–3.3 Mono or mixed 0.2–3 [50,79,80]

Recommendations to overcome the challenges associ-
ated with harvesting suspended cultures include the use of
species known to self-flocculate, thereby aiding in removal
by sedimentation or flotation,[5] or alternatively through
the selection and growth of a non-suspended/filamentous
culture.[54] Filamentous species naturally attach together
in addition to other particles (i.e. suspended material and
other biological entities), forming a biofilm layer on a sur-
face interface.[56] This interface can be the surface of
the reactor (i.e. floor, walls and baffles), or intentionally
submerged substrates (e.g. polyurethane and polystyrene
foam [79,87]) can be used to increase the available attach-
ment surface area. Harvesting is achieved through phys-
ically scrapping the attachment surface to remove the
biofilm, thereby eliminating the costs associated with har-
vesting suspended biomass.[88] Non-suspended systems
can be further categorized into matrix-immobilization with
microalgal biomass encapsulated in a hydrophilic polymer,
whilst reducing the challenges associated with harvesting
increases issues related to cellular access to CO2, nutrients
and photons.[89] Such systems are considerably less estab-
lished than the suspended systems and questions remain
around their suitability and affordability for municipal
wastewater treatment.

The suspended and non-suspended bioreactors are
then further categorized into open and closed systems.
Open systems rely on the external environmental con-
ditions to facilitate growth, characterized by the use
of solar irradiance with sunlight hours and intensity
affecting biomass productivity. Open systems are fur-
ther influenced by external conditions, including tem-
perature, rainfall (instigating culture dilution) and con-
tamination by opportunistic species resulting in variabil-
ity in annual performance. Alternatively, closed systems
contain the biomass within the reactor, thereby minimis-
ing the opportunity for contamination [90] and support-
ing the culture of a mono-community through separa-
tion of the biomass from a potentially growth inhibiting
environment.[91] An enclosed system offers greater con-
trol of the parameters to optimize growth [71,90] (e.g.
irradiance, temperature, evapotranspiration, O2, CO2 and
pH) and encourages increased specific growth, but requires
greater infrastructure and operational costs, limiting their
scalability.

The choice of bioreactor is evaluated upon performance
at an economically accepted cost,[58] with examples
including (but not limited to) HRAP, photobioreac-
tors (PBRs), attached microalgal biofilms and matrix-
immobilization (Figure 2).

High rate algal pond

A HRAP is a raceway-configured open pond mixed via
a paddle wheel to circulate the algal culture and pre-
vent settlement.[72,92] Sunlight is the primary method
of irradiation and as such, culture depths of 20–60 cm
are typical [58,72,73] to enable optimal light penetra-
tion and maximize growth. A HRAP supports a sym-
biotic community of microalgae and bacteria for the
assimilation of nutrients and organic matter [59], sup-
porting dilute microalgal biomass concentrations of up to
1 g(DW) L−1.[11] Operational retention times of 4–10
days [73] are required to enable sufficient contact time
with the biomass to achieve the required level of reme-
diation (Table 2), resulting in large footprints.[27] Of the
bioreactors available, HRAPs have received the most atten-
tion [11] and can be found operational at full scale with
a demonstration plant located in New Zealand with indi-
vidual pond footprints of 1.25 ha.[93,94] Further larger
demonstration plants will be constructed in California,
New Mexico, Hawaii and Florida with the primary focus
on biomass production for biofuels.[23]

Photobioreactor

A PBR is an example of a closed, suspended system and
are available in various configurations, including horizon-
tal or vertical tubular photobioreactor (TPBR) or flat panel
reactors.[58,90,95,96] A PBR encloses the culture in a
series of narrow tubes (e.g. < 4 cm diameter [27]) or pan-
els illuminated by sunlight and/or artificial sources.[90]
Enclosing the culture enables a greater control of growth
conditions (i.e. light, CO2, O2 and pH [11]) and permits
the growth of a target species through optimized growth
parameters, facilitating an increased biomass concentra-
tion in comparison to a HRAP of up to 2.0 g L−1 (Table 2)
when cultured/remediating domestic wastewater effluents.
The culture is circulated through the reactor by pumping
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and degassing/bubbling processes (additionally releasing
excess O2 produced through photosynthesis). As a conse-
quence of the sophistication of control, PBRs are expensive
to install and operate [27] and are typically only employed
in wastewater treatment as a plentiful source of low-cost
culture medium for growth of a species for the return of a
high-value product [27,97] to cover the cost of operation.
High biomass production PBRs of up to 4000 L in capacity
are operational and utilized for the cultivation of an inocu-
lum species for HRAPs with the ultimate goal of biofuel
production.[23]

Microalgal biofilms

Two types of microalgal biofilm processes exist; these
include the use of an inclined floway (aka algal turf
scrubber) with biofilm attachment to a surface [76,98] or
submersion of a substrate to support biofilm growth and
development [77,99,100] with practical examples includ-
ing rotating algal biofilm reactors (RABR) [78] (Table 2).
Biomass communities are heterogenous and multi-layered
[56,101] and change seasonally [92] with reported biomass
productivity of up to 60.9 g m−2 d−1 [76] and demon-
strating enhanced metabolic activity.[102] Floway systems
have been operated at full scale in Florida and California
[60,103] with footprints up to 1012 m2 treating a flow of
109–1336 m3 d−1.

Matrix-immobilisation

Matrix-immobilization is a variant of the attachment theme
of reactors through the entrapment of living microal-
gae cells within a natural or artificial resin.[104] These
resins are hydrophilic in nature with small pores to enable
the diffusion of wastewater to the entrapped microal-
gal cells.[105] Immobilization enables intensification of a
biomass concentration greater than a suspended bioreac-
tor with concentrations up to 3.3 g L−1 reported (Table 2).
The resin used to immobilize the microalgal biomass can
provide additional remediation with the natural resin algi-
nate found to contribute approximately 5% remediation
efficiency of ammonium from a synthetic wastewater [37]
through a chemical bond between the ammonium ions and
the carboxyl groups of the resin.[37,106] This bond not
only removes the ammonium from the source water but
concentrates the nutrient for assimilation by the entrapped
microalgae cells.[37] Further benefits of immobilising a
microalgal culture includes the creation of a barrier around
the selected species which prevents penetration by other
organisms, which could inhibit productivity or outcompete
the selected species [89,107]; and following treatment, the
biomass can be harvested through the low-costing option of
gravity settlement, eliminating chemical and energy costs
associated with suspended systems. However, reduced
space for mobility within the matrix leads to high shear
stresses, with the matrix imposing additional hindrance

to photon accessibility being an area of concern along
with the cost of the polymeric matrix when considered
at full scale.[92,28] Of the microalgal reactors available,
the immobilization technology for nutrient remediation
is within its infancy with the majority of research and
knowledge gained to date through lab-scale activities with
bioreactors of up to 5 L in volume [106] (Table 2, see Table
6 at online supplemental data at doi:10.1080/21622515.
2015.1105308).

Influence of operational parameters and bioreactor

design on remediation performance

Influent nutrient concentration and treatment period

The final effluent concentration and treatment period are
key criteria when assessing the performance of microal-
gal bioreactors for wastewater nutrient remediation. Euro-
pean regulations within the Urban Wastewater Treatment
Directive require a final effluent concentration prior to dis-
charge of 15 or 10 mg L−1 TN and 2 or 1 mg L−1 TP for
works treating a population equivalence of either 10–100
k or > 100 k, respectively,[108] with further site specific
reductions in phosphorus to ∼ 0.1 mg L−1 proposed with
the onset of the water framework directive in 2015. Fur-
thermore, the inclusion of an additional asset within a
flow sheet to satisfy the required discharge concentrations
must complement upstream processes to enable a constant
output and flow. Microalgal bioreactors have been anal-
ysed for the treatment of a variety of wastewater streams,
including primary and secondary domestic effluent, dairy
manure wastewater, agricultural run-off and centrate (Sup-
plementary information) with remediation data available
for a wide range of influent concentration from 3.3 to
309 mg L−1 for ammonium and 0.04 to 770 mg L−1 for
phosphorus (Figure 3).

When comparing microalgal bioreactor options for
ammonium remediation, the influent and effluent con-
centrations show no clear relationship (Figure 3(a)) with
effluent concentrations ranging from 0.11 to 140.9 mg
L−1. Those showing enhanced remediation performance
include a TPBR with a 99.7% removal efficiency and
effluent concentration of 0.11 mg L−1,[74] in addition
to a polystyrene submersion system achieving 99.9%
removal and an effluent concentration of 0.3 mg L−1 [99]
(Figure 3(a)). These systems were either inoculated or
naturally dominated by species of chlorophyceae well
known for their nutrient remediation abilities, namely
Chlorella sp. (TPBR) and Scenedesmus sp. (biofilm).
Both systems demonstrated high biomass yields and
productivities with a specific growth rate of 0.39 d−1

for Scenedesmus sp. and an increase in biomass con-
centration from 0.4 to 2 g L−1 (approximate maximum
biomass concentration reported for a TPBR configuration
[11]) and Chlorella sp. with a biomass concentration of
30–35 g(dry mass) m−2 equivalent to a productivity of
2–4 g m−2 d−1.[99]

http://dx.doi.org/10.1080/21622515.2015.1105308
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(b)(a)

(d)(c)

Figure 3. Influent concentration versus effluent concentration for (a) ammonium and (b) phosphate; and treatment period versus reme-
diation efficiency for (c) ammonium and (d) phosphate for all bioreactors. HRAP (�), biofilms (♦), matrix-immobilization (�), PBR (◦)
and parity line (- -).

Those bioreactors which did not perform as well
belonged to the biofilm category of reactors with an algal
turf scrubber demonstrating a 24.2% removal and effluent
concentration of 2.5 mg L−1 [98] and a PBR contain-
ing rough surfaces to facilitate biofilm attachment with
a removal efficiency of 45.8% and an effluent concentra-
tion of 26.0 mg L−1.[109] Although the algal turf scrubber
reported an extremely high yearly biomass productivity
of 35 g m−2 d−1, the biofilm contained a significant pro-
portion of bacterial matter, particulates and cyanobacteria
with the chlorophyceae Chlorella sp. and Scenedesmus

sp. reported as only ‘present’ or ‘few’.[98] Findings from
these studies demonstrate the importance of species selec-
tion in addition to biomass concentration for the enhanced
remediation of ammonium. Performance could therefore
be improved by an increased biomass concentration or
longer contact time with the available biomass to facilitate
remediation through the direct mechanisms.

Whereas for phosphorus, a reasonable log–log rela-
tionship (r2

= 0.84) is observed for all bioreactors
(Figure 3(b)) with a lower influent concentration result-
ing in lower effluent concentration despite vast differences
in operating parameters, including biomass concentration,
treatment time and irradiance. This relationship suggests
that unlike ammonium, mechanisms other than direct
remediation are primarily responsible for the remedia-
tion of phosphate with treated effluent concentrations of
< 1 mg L−1 possible at influent concentrations < 10 mg

L−1 (Figure 3(b)) providing there is an adequate supply of
nitrogen.[33]

In terms of treatment period, performance data for
NH4-N removal exhibit a more defined relationship with
performance efficiency and treatment period, in compari-
son to those for PO4-P (Figure 3(c),(d)). The enclosed and
more-intensive reactors remediate > 80% NH4-N within
less than 2 days (Figure 3(c)) with HRTs > 3 days required
by HRAPs through the necessary increased contact period
with the reduced biomass concentration. The biofilm solu-
tions are characterized by a high biomass concentration
but require a HRT > 10 days for a > 90% NH4-N
removal[99]; however, this is a necessary design feature
as increasing the flow velocity (hence reducing the HRT)
creates increased shear stress, reducing biofilm coloniza-
tion [110] with impacts on remediation performance and
increased suspended solids within the treated effluent.

In comparison, PBRs and matrix-immobilization can
achieve > 99% NH4-N remediation efficiency within
HRT < 2 days through an increased biomass con-
centration and protection from biomass washout with
increased flows. For example, a matrix-immobilized sys-
tem with an algal concentration of 106 cells bead−1 and
11.7 beads mL−1 was shown to remediate 100% NH4-
N within 24 h,[106] in addition to a TPBR with a 2 g
L−1 biomass concentrations achieving a 99.7% NH4-N
remediation.[74] The remediation of ammonium is a func-
tion of biomass concentration and contact time, with those
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bioreactors with a dilute biomass concentration requiring a
greater treatment period in comparison to bioreactors with
high biomass concentrations, with biofilms an exception
through operational limits.

A relationship between HRT and TP removal efficiency
is not as clear as NH4-N (Figure 3(d)) further support-
ing previous assumptions that an alternative mechanism
other than direct remediation significantly contributes to
the removal of phosphate. Phosphorus removal efficiencies
are generally < 69% for HRAPs with removal of approx-
imately 40% seen in the majority of studies (see Table
3 at online supplemental data at doi:10.1080/21622515.
2015.1105308). The cases where > 90% removal are
observed involve the modification of parameters to
enhance the performance of a HRAP for phosphorus
removal. For example, a 99% PO3−

4 removal efficiency
and a residual of 0.07 mg L−1 (see Table 3 at online sup-
plemental data at doi:10.1080/21622515.2015.1105308)
are achieved through the addition of lime (CaO) to pro-
mote autoflocculation and the precipitation of phosphorus
(equivalent to the indirect mechanism),[42] with a consen-
sus that the role of indirect removal plays a more significant
role than that of direct in HRAPs systems.[72,111]

Light, temperature and biomass productivity

As microalgae are photosynthetic organisms, metabolic
processes associated with nutrient assimilation through
growth are driven by light, [91,112] with light described
as a key parameter of microalgal reactors.[90,91,112] The
required light intensity for optimal growth is species spe-
cific with an example range of 150–400 μmol m−2 s−1

reported for Scenedesmus sp.[113,114] Light intensities
below a species threshold range are associated with a
reduction in biomass productivity [113] and can be gen-
erated through light limitation as a result of high-density
microalgal cultures creating self-shading [115] and/or light
attenuation and reduction with an increasing transmit-
tance pathway.[115] Intensities beyond a species’ preferred
range results in oxidative damage through photoinhibition
associated with a reduction in biomass productivity with
the dissipation of the excess photons into heat.[116] To
illustrate, Di Termini et al. [74] observed a specific growth
rate of 0.39 d−1 and a remediation efficiency of > 98%
for NH4-N and PO4-P for an autochthonous culture of
Scenedesmus sp. when grown within an indoor TPBR with
a constant light intensity of 200 μmol m−2 s−1 in com-
parison to a reduced growth rate of 0.02 d−1 and < 80%
NH4-N and PO4-P removal efficiency within an outdoor
TPBR with a variable light intensity reaching a daylight
maximum of 1300 μmol m−2 s−1.

As a consequence of biomass concentration, incident
light intensity and culture depth (hence light transmittance
depth), multiple ‘light zones’ are simultaneously evident
within microalgal bioreactors.[117] These zones can be
described as light inhibited, saturated, limited and no light

with the zones determined by the increasing depth from the
culture surface, with a changing profile as a consequence
of the incident light intensity and biomass concentration
[118] estimated through the Beer–Lambert law.[91,119]
The challenge of microalgal bioreactors is to maintain the
culture within the light saturating zone to enable optimal
productivity and the associated direct remediation of the
target nutrients. This can be achieved through (1) reduc-
ing the light transmittance pathway (short depths),[27] (2)
increasing culture circulation through mixing to ensure the
microalgal cells move within the saturation zone [94] and
(3) maximising the surface to volume ratio [11,112,115] to
ensure sufficient light reaches the culture surface.

Outdoor systems are typically exposed to variable
levels of light intensities through seasonal (and daily)
changes in the available solar radiation. Intensities during
the summer months of > 1200 μmol m−2 s−1 in compar-
ison to 170–685 μmol m−2 s−1 are reported in the win-
ter months (see Table 3 at online supplemental data
at doi:10.1080/21622515.2015.1105308). However, only
50% of the radiation provided by sunlight is available
to the microalgae for use as photosynthetically active
radiation (PAR) (400–700 nm) [120] with open systems
demonstrating poor photosynthetic efficiency in the con-
version of solar energy into chemical energy of approxi-
mately 1.5%.[121] The variabilities in light intensities are
reflected in fluctuating biomass productivities with ranges
between 4.4 and 11.5 g m−2 d−1 observed in a 5 ha demon-
stration HRAP plant with removal efficiencies for NH4-N
and dissolved reactive phosphorus (DRP) between approx-
imately 40–80% and 10–50%, respectively, mirroring the
pattern in seasonal biomass productivity.[93]

Artificially lit reactors are employed to overcome the
variability in biomass productivities and the associated
treatment profiles, with generally lower intensities in the
range of ∼ 200–400 μmol m−2 s−1 reported for commer-
cial PBRs.[116] Exposure to lower intensities are possi-
ble through design optimization (e.g. surface to volume
ratio) to enable effective use of the provided light with
increased photosynthetic efficiencies of 3–5% for PBRs
[121] and/or the selection of a light source with a specific
wavelength within the PAR to enable a more efficient use
of the provided light, particularly as light is supplied at an
operational cost. For instance, within PAR the microalgal
chlorophyll molecules absorb light more efficiently within
the blue ( ∼ 400 nm) and red ( ∼ 600–700 nm) region of the
spectrum, with exposure to these wavelengths improving
the photosynthetic efficiency and enhancing biochemical
processes aligned to nitrogen and phosphorus remedia-
tion. For example, growth under a blue light regime is
associated with increased phosphorus remediation through
the activation of protein synthesis,[122] demonstrated by
a culture of Scenedesmus sp. with a 45% increase in
removal rate under a blue light regime of 1.8 mg L−1 d−1

in comparison to 1 mg L−1 d−1 when grown under white
light (400–700 nm).[66] Furthermore, red light is known
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to enhance microalgal growth rate, with a 38% increase in
the specific growth rate of a culture of Spirulina platensis

in comparison to growth of the same species within white
light.[123]

The use of constant artificial light can represent a sig-
nificant proportion of the total operational costs. Strategies
are employed to improve the efficiency of artificial light
which can be reflected within these costs and include
(as discussed) the selection of an appropriate intensity to
minimize wasted photons and the application of a light
source with a suitable wavelength (i.e. LEDs) to elimi-
nate energy use on unutilized wavelengths.[124] However,
the antenna structure of the microalgal light-harvesting
complex is unable to absorb all the photons provided
under constant light [125], offering a further option of cost
reduction and increased photosynthetic efficiency through
reduced photoperiods and flashing/pulsating light regimes.
For instance, under a flashing light regime of 37 kHz,
the cell concentration of a culture of C. vulgaris was
20% greater than that of the same species grown under a
constant light regime.[125]

Overall, artificial lighting offers a variety of options
for increasing biomass productivity and associated reme-
diation of nutrients through lighting regimes, which can-
not be benefitted from within open systems. Advances
made within LED industry resulting in increased bulb life,
associated energy savings and predicted reduction in unit
cost over time [126] make the use of artificial lighting
a more attractive option for intensifying the remediation
performance of microalgal reactors.

Microalgae exhibit a similar relationship to temperature
as light, profiled by an increase in biomass productivity
(and associated nutrient remediation) with increasing tem-
perature [127] until reaching a critical temperature, beyond
which has a negative effect on growth. For instance, Mar-
tinez et al. [69] documented an increase in specific growth
rate of 0.69 d−1–1.10 d−1 for Scenedesmus sp. grown
within secondary wastewater effluent with an increasing
temperature from 20°C to 30°C coupled with > 90%
remediation of nitrogen and phosphorus. At 35°C, the spe-
cific growth rate decreased to 0.46 d−1 with a remediation
efficiency of 79% and 54% for nitrogen and phospho-
rus, respectively. A temperature range between 15 and
30°C [71,127] are believed optimal for microalgal biore-
actors, with maximum critical temperatures being species-
specific, providing the external nutrient concentration and
light provision are not limiting.[127]

Maintenance of a constant temperature is challenging
within open reactors [127] with seasonal variations from
7.2°C to 25°C documented (see Table 3 at online sup-
plemental data at doi:10.1080/21622515.2015.1105308)
and extreme lows of 5°C and highs > 30°C reported
for HRAPs.[42] Application of open systems are there-
fore favoured within locations with suitable annual cli-
mates to facilitate biomass productivity and achieve the
required level of remediation throughout the year; for

example, a floway periphyton scrubber located in the
Florida Everglades with an daily mean air temperature of
19°C corresponding to a water temperature ranging from
18.1°C to 27.2°C.[60] Furthermore, microalgae within
low-temperature environments are more susceptible to
photoinhibition, which can constrain the use of open reac-
tors in countries with a cold climate,[71] particularly
with winter light intensities of up to 600 μmol m−2 s−1

reported.[72] Temperature maintenance in closed reactors
(and systems located indoors) is easier to control with doc-
umented temperatures of 20°C–30°C (see Tables 4–6 at
online supplemental data at doi:10.1080/21622515.2015.
1105308), corresponding to the range of temperatures asso-
ciated with enhanced growth and nutrient remediation and
more suited to locations with a cooler annual climate.

Conclusions and key remaining challenges

Algal treatment of wastewater, realized through a combina-
tion of direct uptake and indirect removal associated with
elevated pH, provides a potential alternative to traditional
tertiary treatment options for nutrient removal. Recent
advancement in the understanding of both the mechanisms
by which algae remediate nutrients in wastewater and
specifically non-suspended algae treatment systems attests
to the suggestions outlined by Hoffmann [92]. Accordingly,
the ability of algal-based wastewater treatment to meet
future challenges can be viewed with greater confidence.
The most pressing illustration of which is associated with
compliance to emerging sub 1 mg L−1 phosphorus dis-
charge standards. Further, developments in non-suspended
systems have significantly reduced the required HRT of
such systems to mirror existing passive tertiary treatment
technologies. Consequently, consideration of the use of
microalgal treatment can more reliably extend to sites
where previously the lack of availability of sufficient inex-
pensive land was seen as a barrier to uptake of HRAP.

Future research will likely focus on the remaining chal-
lenges that require resolution before widespread use of
algae can be realized. The costs associated with either
harvesting of suspended systems, irradiance of closed sys-
tems and/or the chemicals associated with either harvesting
and matrix- immobilization require better understanding
and optimization to truly established the relative merit of
microalgal systems compared to alternative tertiary treat-
ment systems. As part of that better refinement is required
with respect to the understanding of the added value
algae systems can offer (in terms of associated bioenergy
production, biofuels and bioproducts). This will become
increasingly important in positioning microalgae treatment
options as part of the delivery of the circular economy,
which is expected to increasingly shape future investment
consideration. Furthermore, the associated removal of haz-
ardous chemicals and the ability for total nutrient removal
need exploring in detail so that they can be properly val-
ued. In addition, technical challenges remain associated
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with intensification and seasonal stability (HRAP), scala-
bility and light utilization (PBRs and non-suspended) and
selection of better strains/mixtures to match the target
wastewater and maximize biomass growth and by-product
yields (all systems). Whilst development and increased
uptake of all reactors types should be expected, it is per-
haps in relation to non-suspended systems that the greatest
advancements can be anticipated. Increasing demonstra-
tion of non-suspended systems will better enable appro-
priate comparison to be made with HRAP and PBRs and
practical optimization achieved. Ultimately this will enable
the potential for such systems to be considered in places
where HRAPs are either not practical or desirable such
as small wastewater treatment works with limited land
availability.
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