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Abstract

Cryptanalysis is the science which evaluates the security of a cryptosystem and
detects its weaknesses and flaws. Initially confined to the black-box model, where
only the input and output data were considered, cryptanalysis is now broadened
to the security evaluation of the physical implementation of a cryptosystem. The
implementation attacks which compose physical cryptanalysis are divided into fault
attacks, exploiting the effect of disruption of the normal functioning of the device,
and side-channel attacks, exploiting the dependency between the instructions and
data (including key bits) processed by a device and its physical characteristics (e.g.
execution time, power consumption, electromagnetic (EM) radiations). In the scope
of this thesis, we particularly focus on the latter attacks.

“Every computation leaks information” and lowering the physical leakages of an
implementation is indeed a complex task both from cryptographic and engineering
viewpoints, especially when performance and cost enter the equation. The develop-
ment of adequate countermeasures necessitates a thorough knowledge of the various
vulnerabilities that the microcontroller induces. Although generic side-channel
attacks such as Differential Power Analysis (DPA) can generally retrieve the key
with weak assumptions on a cryptographic implementation, we show in this thesis
that the focus on specific components and properties from the architecture of the
target device may allow an adversary to yield better success in a key recovery and
sometimes to thwart DPA countermeasures.

First, we elaborate on attacks which deduce the cache activity of a device from
single side-channel traces and algebraically exploit this information to recover the
key. We propose different attacks against embedded software implementations of the
Advanced Encryption Standard (AES) in the chosen- and known-plaintext scenarios
and make them tolerant to environments where high noise or a partially preloaded
cache would normally introduce errors in the key recovery. Second, we discuss the
failure of standard DPA against the modular addition and propose a practical and
generic approach to circumvent it.

Third, we show that microarchitectural leakages and fault inductions can be
exploited in a constructive way when induced by hardware Trojans implemented on
general-purpose microprocessors. Such Trojans can either provide an adversary with
a backdoor access to the trojanized device executing an arbitrary cryptographic
software or serve to protect the Intellectual Property (IP) of the chip designer
through digital watermarking.

The last part concerns divide and conquer side-channel attacks such as DPA.
Testing different combinations of key chunk candidates turns out to be very complex
when the individual chunk recoveries are bounded in measurement complexity or
performed in noisy environments. We address the so-called key enumeration problem
with an efficient sorting method.
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Résumé

La cryptanalyse a pour but d’évaluer la sécurité d’un cryptosystème et de déceler
ses failles. D’abord cantonnée au modèle dit en boîte noire, où sont seulement
considérées les données en entrée et en sortie de l’algorithme, la cryptanalyse prend
maintenant également en compte l’implémentation physique d’un cryptosystème. Les
attaques d’implémentation qui constituent la cryptanalyse physique sont composées
d’une part des attaques par faute (exploitant les effets d’une perturbation du
fonctionnement de l’appareil) et d’autre part des attaques par canal auxiliaire
(exploitant les dépendances entre les instructions et données (dont la clé) traitées
par l’appareil et ses caractéristiques physiques (telles que le temps d’exécution, la
consommation électrique ou les émanations électromagnétiques). Dans le cadre de
cette thèse, nous nous intéressons particulièrement à ces dernières.

“Chaque calcul laisse fuir de l’information” et atténuer les fuites d’une implé-
mentation est en effet une tâche complexe tant d’un point de vue algorithmique que
technique, en particulier quand performance et coût entrent en considération. La
conception de contre-mesures adéquates nécessite une profonde connaissance des
diverses failles qu’un microcontrôleur peut induire. Bien que les attaques génériques
par canal auxiliaire permettent généralement de retrouver la clé avec peu de con-
naissances sur l’implémentation cryptographique visée, nous montrons dans cette
thèse que certains composants de l’architecture de l’appareil peuvent parfois per-
mettre à un adversaire de retrouver plus efficacement la clé et de contourner des
contre-mesures génériques.

En premier lieu, nous traitons des attaques qui déterminent l’activité du cache
d’un microprocesseur à partir de simples courbes de mesures et qui exploitent
cette information pour retrouver la clé. Nous proposons différentes attaques à
message choisi et à message connu sur des implémentations logicielles embarquées
d’AES et les adaptons à la présence de bruit dans les mesures ou au préchargement
partiel du cache. Ensuite nous abordons l’échec des attaques standard par analyse
différentielle de la consommation sur les additions modulaires et proposons une
approche générique et pratique pour y remédier.

D’un angle de vue différent, nous montrons que les fuites microarchitecturales
ainsi que les fautes peuvent être exploitées de façon constructive quand elles sont
induites par des chevaux de Troie physiques implémentés sur des microprocesseurs.
Ces chevaux de Troie peuvent fournir à un adversaire une porte dérobée vers les
clés secrètes de l’appareil ou bien protéger la propriété intellectuelle du concepteur
de la puce par un tatouage numérique.

La dernière partie concerne les attaques par canal auxiliaire diviser pour régner.
Trouver la bonne combinaison à partir de différents candidats pour chaque morceau
de clé peut s’avérer difficile voire impossible, en particulier quand le nombre de
mesures est limité ou quand les mesures comportent beaucoup de bruit. Nous
proposons une méthode efficace d’énumération des clés en solution à ce problème.
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Chapter 1

Introduction

More than a decade ago, side-channel attacks emerged, threatening the security
of embedded secure systems. They exploit physical measurements—during normal
functioning of the device and without requiring any alteration of it—so as to retrieve
the secret key involved; they require less calls to the target implementation than
classical cryptanalysis generally would. This thesis deals with these attacks and
information leakages emanating from microarchitectural features of the target device.
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1.1 The art of secret writing

Since time immemorial, man has been protecting his valuable possessions with doors,
locks and safes. Likewise, he has also been needing to prevent the acquaintance with
important written messages from undesired readers. Whereas restrained access to a
message could be ensured through physical protection or by information hiding1,
confidentiality had sometimes to be achieved via a code (i.e. word substitution onto

1The art of hiding information, called steganography, is as ancient as cryptography and has
been used in parallel or in addition to it in order not to attract attention. Steganography is
nowadays also part of information technology, providing techniques for covert communication or
digital watermarking.
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a different alphabet) or a cipher (i.e. letter substitution onto the same alphabet).
From Julius Caesar announcing his general who was besieged his imminent rescue
to Marie Stuart fomenting with her partisans her own escape from prison and the
assassination of her cousin Elisabeth I of England, from the foiled German assault
on Paris in June 1918 during the First World War to Alan Turing and his peers
breaking the code of the most complex cipher machine ever built—the famous
Enigma—thus precipitating the collapse of the Third Reich, the history of mankind
abounds with episodes in which cryptography and cryptanalysis—its “destructive”
counterpart—played a crucial role in the course of events.

1.1.1 Terminology and elementary concepts

In the simple scenario where two entities want to communicate without any third
party being able to understand the meaning of their exchange, cryptography aims
to ensure confidentiality, that is, it provides an encryption technique (parametrized
with a secret key) that the sender, Alice, will apply to her plaintext to obtain a
ciphertext. The ciphertext can be sent to Bob through any unsecure channel on
which an eavesdropper would be possibly acting. Bob, the legitimate receiver and
as such, in possession of the secret key, applies upon receipt the inverse mapping of
the encryption, i.e. the decryption routine, also parametrized by the secret key, so
as to retrieve the plaintext.

Ciphering techniques have evolved at a slow pace through the ages [104, 108].
The recurrent idea was to map the plain alphabet onto one enciphered alphabet
(e.g. Caesar’s cipher, which was formally broken with the development of frequency
analysis of the letters in the ciphertext by Al-Kindi in the 9th century [5]), then onto
several ones with polyalphabetic ciphers (e.g. Vigenère cipher in the 15th century,
more resistant to frequency analysis yet broken in the 19th century). The key
determinates which permutations of the alphabet are to be used for each letter of
the ciphertext (resp. plaintext).

The successful cryptanalysis of the Vigenère cipher and its variants shed light
on the necessity to rethink the very foundations of cryptography so as to come up
with truly secure and easy to use ciphers, at a period of time where telegraphy
was growing in popularity and the use of weak ciphers had already been proven
to be devastating during wars. In 1883, Kerckhoffs described such fundamental
principles [63]. We can retain these three:

1. the cipher must be practically, if not mathematically, secure.

2. the cipher structure and all details but the key can be disclosed without
jeopardizing the cipher security.

3. the system must be easy to use and should not require mental skills nor the
knowledge of complex rules from the user.

These principles are generally still in use in the conception of modern ciphers and
other cryptographic algorithms and systems.
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1.2 The science of confidentiality and trust

Starting in 1949 with Shannon’s information theory and the introduction of key con-
cepts like entropy (a quantification for information) and algorithmic complexity [103],
the modern era of cryptography is of high contrast with its dark age.

First, the wide deployment of computers and their high computing power enable
the execution of complex cryptographic algorithms in a fraction of a second without
requiring any skills from the user (which satisfies one of Kerckhoffs’ principles (3.)).
In the meantime, this high power is also available to the adversary, and Internet
and the rise of cloud computing increase complexity boundaries all the more that it
is hard to estimate what the adversary computing capabilities exactly are.

Second, from the art of secret writing, cryptography evolved to the science of
confidentiality and trust, ensuring more properties to electronic communications
than the sole message secrecy. Cryptography also provides:

• data integrity: Accidental errors during transmission may be detected and
corrected with error-correcting codes, but not deliberate alteration of the
message by a third-party, because error-correcting codes are not keyed algo-
rithms. However, cryptography develops signature schemes which produce a
signature based on the message content and the sender’s key, and Message
Authentication Codes (MACs), which produce a tag based on the message
content and the sender’s key. The validity of a signature or a tag, thus the
message integrity, can be verified by the receiver.

• authentication: In the same way as for data integrity, the verification of a
signature or a tag allows the receiver of a message to verify the message origin.

• non-repudiation: Cryptography ensures that the sender of a message cannot
later deny the message origin because only her has the ability to produce a
valid signature.

Third, the use of cryptography is not anymore confined to diplomatic and
military usage, but is now part of everyone’s everyday life. It is present in mobile
phones, smart cards, access tokens, car keys, biometric passports, Internet secure
web browsing, Virtual Private Networks (VPNs), various media supports for Digital
Rights Management (DRM) and many more applications. The purpose of modern
cryptography is to facilitate electronic transactions, access and key managements
(e.g. in complex logistic infrastructures) and ensure privacy of communications and
authentication of users. A more open world as ours means more connections between
nodes (natural persons or corporate bodies). Cryptography provides the modern
“locks” and “seals”, i.e. the confidentiality and trust that our communications require.

The fourth difference between ancient and modern cryptography is directly related
to the scope of this thesis. Since more than a decade, the security assessment of a
system has gone beyond the black-box model, where only plaintexts and ciphertexts,
that is, the inputs and outputs of the cipher were taken into account so as to find
the cipher weaknesses. The seminal work of Kocher [65] and many more publications
afterwards have shown that other information sources are available to an adversary if
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she considers the entire system instead of the cryptographic algorithm alone. Going
from a mathematical description of the cipher to the physical observation of its
implementation, more information channels appear: the execution timing, the power
consumption and the EM emanations are the most investigated side-channels, but
other ones may also be exploitable, e.g. photonic [96] and acoustic emissions [55,102],
thermal variations [28].

Encryption and authentication schemes divide into two classes: symmetric and
asymmetric cryptographies.

1.2.1 Symmetric cryptography

In symmetric cryptography, the sender Alice and the receiver Bob share the same
secret key. Alice uses the key to encrypt the message, and Bob uses the key to
decrypt it. The MAC serves as a proof for Bob that the sender is in possession of
the secret key and that the message has not been forged nor altered.

The first kind of symmetric encryption techniques are block ciphers, where a
deterministic algorithm, parametrized by the key, is applied to a fixed-length block
of plaintext bits. Widely used examples of block ciphers include the Data Encryption
Standard (DES) [41] and AES [42], announced resp. in 1976 and 2001 as Federal
Information Processing Standards (FIPSs). We describe the AES in Section 2.2.5.
Not addressed in this thesis, the other design for symmetric encryption are the
stream ciphers, where a pseudorandom bit stream is combined with the plaintext
bits.

1.2.2 Asymmetric cryptography

In 1976 and 1977, two major breakthroughs were made in the history of modern
cryptography and correspond to the emergence of asymmetric cryptography.

First, Diffie and Hellman invented the first key exchange protocol: assume two
parties have each their own secret key, it allows them to agree on a common secret
key without revealing each other their own secret key [38]. The commonly produced
key can then be used within a symmetric encryption scheme.

The second milestone was the development of RSA, the first asymmetric encryp-
tion scheme, named after their authors: Rivest, Shamir and Adleman [95]. In this
paragraph, we use RSA as a simple illustration of public-key cryptography. In RSA,
a public modulus N is defined as the product of two large primes p and q which
ought to be kept secret. A user is provided with a public key e and a private key d,
the latter is computed as the inverse of e modulo ϕ(N), where ϕ is Euler’s totient
function. When Alice wants to encrypt a plaintext m intended for Bob, she encrypts
it using Bob’s public key and obtains a ciphertext c in this way: c = me (mod N).
Upon receipt of c, Bob decrypts it using his private key d to retrieve m: m = cd

(mod N) = (me)d (mod N) = med (mod N) ≡ m (mod N), using Fermat’s little
theorem since ed ≡ 1 (mod ϕ(N)). Otherwise described, a public key is a “lock”
that anyone can use to protect a message; on the contrary, only the private key
opens the lock, therefore only the intended receiver of the message can open it.
The RSA signature works in the converse way: Alice signs the message using her
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own private key and then, using Alice’s public key (which is available to all users
including Bob), Bob verifies a signature that, if valid, can only have been produced
with Alice’s private key.

To date, RSA is still the most widely used algorithm for asymmetric encryption
and signatures.

1.2.3 Hash functions

In order to enhance both the security and performance of encryption and authenti-
cation routines (symmetric and asymmetric), cryptographic tools like hash functions
are required. From an input message of any length, these functions output a fixed
length hash. Whereas the hash function must be very fast to execute, it must be
practically infeasible to invert it, that is, to retrieve the input message from the
hash (preimage resistance). Other properties are desired in hash functions: from
a given message and its hash, it must be practically impossible to find another
message which has the same hash (second-preimage resistance); and also, it should
be practically impossible to find two messages whose hashes are the same (collision
resistance).

Hash functions are used in the generation of MACs, signatures and fingerprints,
for data integrity. The most widely used hash functions are the ones from the
Secure Hashing Algorithm (SHA) family: SHA-1 and SHA-2 [43] (although the
former is vulnerable to collision attacks). The U.S. National Institute of Standards
and Technology (NIST) recently launched the SHA-3 competition where worldwide
submissions were analysed in an open process by the cryptographic community (thus
satisfying one of Kierckhoffs’ principles (2.)). The hash function Keccak [13] has
been selected as the SHA-3 algorithm, but the hash function Skein [40], that serves
as a case study in Chapter 3, was one of the five finalists out of 51 candidates.

1.3 Side-channel analysis

In classical cryptanalysis, the inputs of a key recovery are functions of the input and
output data of the cryptographic algorithm. In physical cryptanalysis however, the
adversary also take into account sources of information emanating from the physical
implementation of the algorithm.

A cryptographic algorithm is a sequence of mathematical operations performed
on plaintexts or ciphertexts and parametrized by the key2. As cryptography is not
anymore performed with paper and pencil but with electronic integrated circuits
(general-purpose microprocessors, Field-Programmable Gate Arrays (FPGAs) or
Application-specific integrated circuits (ASICs)), the system aimed at executing the
cryptographic steps consumes power, emanates electromagnetic radiations and takes
a certain amount of time to complete the code execution. These characteristics
among others, which are physically observable and measurable, depend on the

2Hash functions are not keyed algorithms, but a side-channel attack against a hash function
can take place for example against a MAC construction or against the physical random number
generator used by the hash function.
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architecture details of the device, the instructions performed as well as the data
processed, which includes the secret key. As a consequence, based on assumptions
on the way the device behaves and leaks information through a side-channel, the
adversary can try to exploit the dependencies between the measurements and the
key value in play in order to gain information about the key.

The power consumption and the EM emanations are the most investigated and
powerful side-channel because they offer a more fine-grained observation of the
device activity than the timing (considered in Chapter 4), i.e. several points of time
can be independently observed and analysed. The EM side-channel (Chapter 2) is
an indirect measure of the power consumption through its EM field.

Side-channel analysis forms a diverse field of attacks which have in common to
be passive (the normal functioning of the device is not disrupted, as opposed to
fault attacks) and non-invasive (the device is not damaged during the attack, as
opposed to certain fault attacks, e.g. using a laser beam or requiring decapsulation
of the chip).

Simple side-channel analysis (Simple Power Analysis (SPA) or Simple Electro-
magnetic Analysis (SEMA)) is a direct interpretation on the key material used by
the target device from one or few power traces while it performs cryptographic
executions [66]. Indeed, when the execution of an instruction set is conditioned or
ordered by bits of the key, the different power patterns indicate information on the
key itself. Note that SPA and SEMA attacks require a detailed knowledge on the
algorithm implementation. Specific care has to be taken by a designer to prevent
these attacks [32]. On a different issue, simple side-channel analysis also helps a
reverse-engineer to get knowledge about the algorithm run by the device and the
details of its implementation. We provide in Chapter 2 an example of these attacks.

The classification we adopt for side-channel attacks is twofold: (1) the attacks
which build equations involving key bits from the side-channel traces and solve them,
which we denote analytic attacks; and (2) the attacks which recover the key chunk
by chunk, which we denote divide and conquer attacks.

1.3.1 Analytic attacks

Analytic side-channel attacks draw algebraic equations involving the key bits from the
observation or measurements of the side-channel, typically the power consumption
or the EM emanations. Otherwise described, the side-channel leakage induces
constraints on the key variables which allow to reduce the key space to a feasible
size for an exhaustive search. When the number of constraints and key variables is
large, SAT solvers can be applied.

A first example of analytic attacks are microarchitectural attacks [2, 3], which
exploit particular components or features of the processor such as data cache (as
described in Chapter 2), instruction cache or functional units (e.g. multipliers, as
described by Großschädl et al. [53] and in Chapter 4).

Collision attacks are more generic, that is, they have a smaller dependence to
the device architecture. They detect from the side-channel trace the similarities of
leakage when equal values are processed and allow an adversary to draw equalities



1.3 Side-channel analysis 7

from these values involving key bits [19–21,99,100].
Algebraic attacks first describe the block cipher with a system of equations in

Conjunctive Normal Form (CNF) with bit variables. In a second—online—stage,
this satisfiability problem is resolved with the additional information provided by
the side-channel measurements [92,93,124]. They typically have a low measurement
complexity and can easily deal with masking countermeasures. However, they are not
robust and heavily rely on the leakage model and the quality of the measurements.

1.3.2 Divide and conquer attacks

Divide and conquer side-channel attacks, with the notable example of DPA, take
advantage of the architectural and design constraints which make intermediate values
have a sufficiently low size to allow an adversary to examine all subkey hypothesis—
this is the divide stage, addressed in Chapter 3 against modular addition. The
other subkeys which by concatenation form the full key are recovered in the same
manner—this is the conquer stage, on which we bring a particular attention in
Chapter 5.

In the following, we give a brief overview of SPA and DPA attacks, using the
power consumption as the side-channel.

Differential power analysis

Inspired by the algorithmic description of DPA by Mangard et al. [76], a DPA attack
can be described with the following steps:

0. Device profiling (optional step)

A DPA attack can be made more efficient if the device leakage is profiled [31].
Suppose that the adversary possesses a similar device as the one under attack;
she can record the power consumption of the device for each subkey and each
data values and compute a template for each such pair. The templates are
later used for statistical comparison in Step 5 with the leakage from the device
under attack. A power model (Step 4) can be applied so as to further reduce
the number of templates to build.

1. Choice of target function

An intermediate value of the cipher implemented on the device under attack,
which has to be a function of key and data (plaintext or ciphertext) bits, is
chosen by the adversary. This intermediate value should be carefully chosen,
so that the offline complexity of the attack does not exceed the computing
capabilities of the adversary. On the other hand, the higher the non-linearity of
the target function, the better the success of the attack, as shown by Prouff [88].
In Chapter 3, we discuss the impact that the choice of a target function has in
the success of a DPA attack.
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2. Acquisition of power consumption

From the control interface of the device (e.g. a Personal Computer (PC)), the
adversary submits input data to the implementation and, if needed in the
attack, obtains in return the output data. When possible for the adversary, she
enables a trigger signal around the target operation. This will ensure that the
power traces are correctly aligned, that is, each point of time corresponds to
the same executed instruction in all recorded traces. The power measurements
are obtained via a measurement setup, as depicted in Figure 1.1.

3. Hypothetical intermediate values building

Based on the target function, the adversary builds hypothesis for the interme-
diate value for each subkey hypothesis and input data.

4. Power modelling

In this step (possibly omitted in a profiled attack), the intermediate values
are mapped to hypothetical power consumption values. It requires the choice
of an adequate power model. For example, one can assume that the dynamic
power consumption of a Complementary Metal–Oxide–Semiconductor (CMOS)
circuit is proportional to the number of set bits in the processed value, since a
set bit output by a cell requires this cell to be active, thus having a dynamic
power consumption; on the contrary, an unset bit indicates that the cell
is inactive, and that its power consumption is dropped to its static part.
Therefore, the power consumption of a processed value can be modelled as
its Hamming weight. The Hamming distance, taken between two states of a
register (Chapter 3), is also a common choice of power model since it captures
the transitions of state, which determine the dynamic power consumption of a
circuit.

5. Statistical comparison

In order to recover the subkey used by the device, the final step is to compare
the power traces acquired in Step 2 with the hypothetical power consumption
values obtained in Step 4 for different subkey candidates. Every time position
of the power traces is considered, and for the positions at which the target
intermediate value is processed, a strong relation to the hypothetical power
consumption values is expected. Common comparison functions are Pearson’s
correlation coefficient [27] and Kocher’s difference of means [66].

1.4 Contributions

In this thesis, we elaborate on side-channel attacks against software implementations
of cryptographic algorithms and the microarchitectural leakages induced by the
device architecture. The contributions are presented in chapters as follows:
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Figure 1.1: Diagram of a typical measurement setup for power or EM analysis attack

• In Chapter 2 we show that the activity of the cache memory of embedded
processors is observable on EM traces with experiments conducted on a 32-bit
ARM microcontroller. We develop efficient key recovery algorithms exploiting
the cache activity gained from power or EM measurements against symmetric
encryption algorithms such as AES, when implemented in software with lookup
tables. Our attacks can stand the presence of noise in the measurements (while
previous works were assuming perfect cache event detection) and the pre-
loading of AES data in the cache. We present a theoretical model for the
known plaintext attack and we confirm its soundness with simulations. We
discuss the relevance of common countermeasures against DPA in the scope of
trace-driven cache-collision attacks. The chapter is based on publications at
WISA and COSADE [47,48].

• In Chapter 3 we elaborate on DPA attacks against a modular addition. The
carry bits it produces make standard DPA attacks fail. While a more sophis-
ticated distinguisher has recently been proposed to circumvent this problem
in the Hamming weight power model, we focus on the target function and
experiment the recovery of key bits involved in a combination of two modular
additions. This practical approach is more generic with respect to the power
model and successfully recovers the key bits, at the expense of the number
of key hypothesis to deal with. To keep a feasible attack complexity, we put
forward a divide and conquer strategy. We verify the success of our methods
against a high performance implementation of the block cipher Threefish
on an 8-bit AVR microcontroller. The chapter is based on a publication at
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WESS [115].

• In Chapter 4 we introduce microarchitectural Trojans, which are tiny mod-
ifications of the hardware design of a processor so as to induce or amplify
a microarchitectural leakage or to insert a computational fault during the
execution of cryptographic algorithms. Such hardware Trojans can serve as a
backdoor for key recovery, while remaining undetected during normal func-
tioning of the device. We discuss the scenarios for a Trojan to be inserted by a
chip designer or manufacturer and we propose novel software-based activation
mechanisms, which renders the detection of a Trojan practically infeasible.
The disclosure of the key can take place through existing fault or side-channel
attacks. We describe two realistic scenarios where an attacker would be able
to recover the AES secret key and the RSA private key used by an OpenSSL
software. The chapter is based on a publication at INTRUST [46].

• In Chapter 5 we propose an algorithm for combining and sorting full key
hypothesis according to the PMF of a single chunk, resulting from a divide
and conquer attack such as DPA. It is based on pairwise multiplications of
the probability values. We show that an efficient enumeration of the full key
candidates speeds up the exhaustive search for the correct key at the end
of the attack. Similarly, we show that in a template-based DPA attack, an
optimized key enumeration allows an attacker to reduce the complexity of the
template-building phase.



Chapter 2

Side-channel trace-driven

cache-collision attacks

In this chapter we elaborate on the exploitation of information induced by the cache
mechanism and directly observable in a side-channel trace. We verify in practice
on a 32-bit ARM microcontroller that different cache events are distinguishable on
an EM trace. We describe in detail key recovery algorithms for embedded AES
software implementations and we show that it is possible to retrieve the 128 bits of
the key within 30 encryptions and a negligible offline computation on a standard PC.
Our attacks can stand the presence of high amounts of noise in the measurements
as well as the partial pre-loading of the cache with AES data. Furthermore, we
review several countermeasures in the scope of trace-driven cache-collision attacks
and we show that special care has to be taken in their implementations. The
measurement complexity of our attacks is theoretically estimated and a univariate
model is improved. Meanwhile, we show that only a multivariate model is sound.

This is a joint work with Ilya Kizhvatov and Michael Tunstall, published in the
proceedings of WISA 2010 [48] and with Ilya Kizhvatov, published in the proceedings
of COSADE 2011 [47].
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2.1 Introduction

Among the microarchitectural mechanisms a microprocessor may feature, caching is
one of the most common ones. It aims at increasing the speed at which instructions
are executed, by storing in a small but fast volatile memory data and instructions
which are susceptible of being required in the computation process in a close future.
Without the use of a cache memory, the processor has to wait for the required
data to be fetched from the (typically slow) non-volatile memory into the registers.
This latency represents a bottleneck in the computation flow. Not only the time
of execution is increased, but also a superior amount of energy is involved in the
operation.

On another issue, it has been noted that on some cryptographic implementations,
the execution time varies depending on the instructions and data processed, which
possibly allows an attacker to gain secret information while measuring the time
taken by an operation where the secret is involved [65]. Similarly, power analysis
attacks aim at recovering secret information processed during a computation through
the observation of the power consumption of the device under attack [27,66]. The
electromagnetic radiations emitted by the device have also shown a dependency
with the instructions executed and the data manipulated, potentially exploitable
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by an adversary [49, 90]. In the scope of this thesis, one can legitimately ask
whether caching also induces dependency between the secret data and the physically
observable characteristics of the microprocessor, and can caching be seen as a
microarchitectural side-channel.

The affirmative answer was first given a decade ago by Page [85]. Since then,
more evidence has been given with the devising of various ways for exploiting caching
as a microarchitectural side-channel, and different kinds of cache-collision attacks
have been put forward. Their applicable scenarios range from power analysis on
embedded devices to timing attacks on remote servers.

In this work, we elaborate on attacks that exploit the knowledge of (possibly cho-
sen) plaintexts with the corresponding side-channel trace (power or electromagnetic
trace) of their encryption under a target key. The activity profile of the cache is
derived from the observation of single traces: repetition of acquisitions and averaging
of the traces are not required, as we later show in Section 2.3, thus our attacks
are SPA. Equations involving bits of the key and the plaintexts are deduced from
the activity profile. The target key is recovered by the solving of these equations.
Such attacks are called trace-driven cache-collision attacks, and they also fit into
the wider class of side-channel attacks called analytic side-channel attacks.

2.1.1 Our contributions

In this work, we elaborate on cache-collision attacks that analyse the cache activity
of a device through the observation of a power or electromagnetic trace. Previous
work on these attacks [14, 45] have shown that the deduced equations allow an
adversary to gain information on the secret key. The study is presented at the
example of the AES-128 block cipher, but the attacks in this work are easy to adapt
to the other key lengths and block sizes available for AES.

We start with a description of our practical exploration of the microarchitectural
leakage induced by the cache on electromagnetic traces and show that the cache
activity of a chip can be easily monitored from a single trace (Section 2.3).

Then, we present a significant improvement to the chosen plaintext attack from
Fournier and Tunstall [45] which considerably enables an adversary to reduce the
entropy of the key by 60 bits within 14.5 traces instead of 127.5 in the original attack
(Section 2.4). Furthermore, we present a known plaintext attack that recovers the
entire AES-128 key within less than 30 traces and with a possible exhaustive search
over up to 10 key candidates (Section 2.5). This attack follows a similar approach as
Acıiçmez and Koç [1] and Bonneau [23], however we treat the case of conventional
256-byte S-box lookup tables (since such tables would be used in a constrained or
masked implementation) and precisely describe the full key recovery process. While
being comparable to DPA in terms of complexity, our attacks are able to overcome
certain countermeasures (Section 2.7).

Our main contribution is the adaptation of both chosen and known plaintext
attacks to noisy environments where the detection of the cache events may be
erroneous. We also make our key recoveries valid when the cache contains AES data
prior to encryption, which would normally cause the attacks to fail. Furthermore,
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we show with our simulations that the presented attacks tolerate well the presence
of these two “real-life” conditions (Section 2.6), requiring a reasonable number of
measurements even for significant probabilities of error and amounts of preloaded
data.

We discuss the relevance of some countermeasures commonly applied in embedded
implementations of block ciphers (Section 2.7). Interestingly, though Boolean mask-
ing and random delays are common countermeasures which increase the measurement
complexity of DPA attacks to thousands of traces, trace-driven cache-collision at-
tacks naturally defeat some of them without requiring more acquisitions than in
the absence of these two countermeasures. The shuffling of the lookups, however,
renders trace-driven cache-collision attacks rigorously impossible.

We scrutinize the theoretical model of the attacks and we show that while a
univariate model can be used to provide a rough estimation of the attack measurement
complexity, the real attack follows a multivariate model (Section 2.8). The results
of our simulations confirm the theoretical estimations.

2.2 Generalities

We discuss in this section the role of caching in a microarchitecture. We outline
the background of our contribution. We briefly present the AES algorithm used in
our study and its important features related to this chapter. We also describe our
assumptions about the cache mechanism and detail the notations used through the
rest of this chapter.

2.2.1 Caching and performance

For all sorts of microcontrollers, performance has always been a key issue and a
never-ending research direction. Even more, for most of the applications rapidity
of execution has been the major concern in the development of microprocessors
because of the growing demands for computing resources. In the early years of
modern computing, other concerns such as low cost design and security were of less
importance or simply not considered. To increase the performance of a processor,
numerous strategies have been put forward: instructions to be run in parallel;
instructions to be pipelined; and also, instructions and data to be stored in a fast
and volatile memory: the cache.

Driven by research in computing technology, CPUs have increased the speed at
which they process code and data. This results in a significantly higher “distance”
between the memory and the CPU because the data that the CPU has to process
takes relatively more time to be delivered, since the CPU is then waiting for data.

This “distance-based” description of the cache mechanism complies with the
average latencies of the different types of memories. The registers, which lie within
the CPU and form the quickest type of memory available, have an access time of 1
to 3 ns but have a costly design because of their custom CMOS technology, thus
allowing only a few bytes of capacity. The main memory of a system, which is a
DRAM, is on the other hand cheaper but has an access time of 10 to 60 ns. Between
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the quick, small and costly registers and the slower, cheaper but bigger DRAM, the
trade-off on speed, storage capacity and cost is the cache memory: it is an SRAM
memory, with an average access time comprised within 2 to 12 ns [109]. Caching
frequently used data significantly reduces the average latency of a system. For this
reason cache memories are present in all PC microprocessors and in a majority of
general purpose embedded microprocessors, such as the widespread ARM9 family
and the subsequent ARM families [6].

As depicted in Figure 2.1, the cache is a small and fast storage memory that
lies between the CPU and the main memory. Every time the CPU requires some
data, if first looks for it in the cache. If the data is present, it directly fetches it
from the cache and this results in a so-called cache hit. If not present, the line of
data holding this address is paged from the main memory into the cache and to the
CPU registers, because of the assumption that the data around the accessed address
is likely to be also accessed in the near future; this results in a cache miss. The
line of data then remains in the cache until, once full, being overwritten with other
lines. Cache hits and misses have different physical characteristics—in particular
execution time and power consumption—because of their different latencies and
amounts of energy required. These differences are what an adversary exploits in
cache-based attacks.

2.2.2 Cache attacks: related work and taxonomy

Following the pioneering articles of Kelsey et al. [62] and Page [85], several notorious
attacks have been published involving the cache mechanism and targeting AES.
These attacks fall into three types. We outline them in order of increasing means of an
adversary as it follows. Timing-driven attacks exploit the measured execution time a
system takes to run a cryptographic routine. Such a simple measurement setup makes
these attacks applicable even on PCs and remote servers. Notable examples are the
full key recovery attacks of Bernstein [12] and Bonneau and Mironov [24] against
standard and high-performance (i.e. table-driven) implementations of AES requiring
the encryption of about 213 to 228 plaintexts. Access-driven attacks use a spy process
run along the target process, both processes sharing the cache on the system. By
using the spy process to clear arbitrary data from the cache or on the contrary
to cache chosen data before triggering the target process, and then measuring the
corresponding the access time, the adversary can deduce whether this data was used
by the target process or not. Applications can be found in both embedded and
desktop systems and several attacks have already been published [78, 81]. Trace-
driven attacks require a fine-grained side-channel, e.g. power consumption or EM
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emanation, which allows an adversary to distinguish cache hits from cache misses at
each lookup. Namely, she is able to produce the sequence of cache events out of one
or few side-channel traces. These attacks particularly threaten embedded systems
since the latter are exposed to a high risk of power or electromagnetic analysis. In
this chapter, we elaborate on this type of attacks.

2.2.3 Cache attacks in the world of side-channel key recovery

Following the comparison of the different types of cache-based attacks, we broaden
the scope of study and give a description of trace-driven cache-collision attacks
among side-channel attacks.

Side-channel attacks divide into two classes: a) attacks that rely on the resolution
of algebraic equations, and b) attacks that rely on a divide and conquer approach.
DPA attacks fall in the second class. They aim at recovering for example one or two
bytes at a time, computing intermediate values and predicting the power consumption
for all key hypothesis, in a total of 28 and 216 hypothesis respectively [76].

On the other hand, analytic attacks exploit side-channel leakage to build equa-
tions on the key bits. The solving of these equations allows the recovery of the entire
key. Notable examples include collision attacks [19, 21, 99, 100], algebraic attacks
using SAT solvers [92,93] and trace-driven cache-collision attacks [1].

2.2.4 Definitions and notations

The four most (resp. least) significant bits of the eight bits of a byte are referred
to as its high (resp. low) nibble. The exclusive-or (XOR) operator is defined on
inputs of same length such as each output bit is the XOR result on each pair of
corresponding input bits. The bitwise XOR operation, stated as “one or the other
but not both” is a bitwise addition modulo 2 and has the following truth table:

input

a b output

0 0 0
0 1 1
1 0 1
1 1 0

Table 2.1: Truth table of the XOR operator.

Throughout this chapter, we denote:

• the high and low nibbles of a byte b with b̂ and qb respectively

• the input of the SubByte function in the first AES round as xi, equal to pi⊕ki,
where pi and ki respectively represent the plaintext byte and the corresponding
(first round) key byte, 0 ≤ i ≤ 15
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• the XOR addition with ⊕

• the multiplication over the Galois Field with 256 elements with •

• CT (i) refers to the i-th S-box cache event (in the encryption of the plaintext
P under the key K, implicitly stated). Its possible values are H and M for
cache hit and miss respectively.

We represent an exclusive disjunction of statements with

〈
, meaning that one

and only one of them is valid, whereas the conjunction of statements is expressed

with

{
, where all statements are valid.

We index the bytes row-wise and not column-wise as in the AES specification
[36, 42], i.e. in our notation, p0, p1, p2, p3 is the first row of a 16-byte plaintext
(we assume that in an embedded software AES implementation S-box lookups are
performed row-wise, so indexing bytes in the order of S-box computation simplifies
the description of our algorithms).

2.2.5 The Advanced Encryption Standard

In 2000, the Rijndael algorithm [42] was chosen by the NIST to replace the widely
deployed but ageing DES [41] and its more secure variant 3-DES as the block
cipher of reference, after a long selection process based on resistance to standard
cryptanalysis and efficiency of the design.

We outline below a few properties on the Rijndael structure that we utilize in
this chapter. The block cipher has a fixed size state of 128 bits and comes with
three possible key lengths: 128, 192 and 256 bits, the first one being the standard
one. The number of rounds are respectively 10, 12 and 14. The 16 bytes block is
treated as a 4 by 4 matrix. Each round is composed of four operations:

1. AddRoundKey: XORes the state with the round key (derived from the master
key K(0) via the key schedule).

2. SubBytes: A non-linear byte substitution: composing an affine transformation
with an inversion in the finite field with 256 elements. For performance reasons,
this more complex operation is often implemented as a 256-byte lookup table.

3. ShiftRows: The four rows of the state matrix are shifted by 0, 1, 2 and 3
positions respectively.

4. MixColumns: A fixed matrix is multiplied with the columns of the state matrix
modulo a fixed polynomial, whose bytes are again seen as elements of the finite
field with 256 elements.

In the last round, the MixColumns operation is skipped. The pseudo-code of the
AES-128 encryption routine is shown in Algorithm 1.
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Algorithm 1 Encryption with Rijndael – AES-128

Input: Plaintext, Key
1: r ∈ [0, 10], K(r) ← KeySchedule(Key)
2: State ← Plaintext
3: State ← AddRoundKey(State, K(0))
4: for r from 1 to 9 do
5: State ← SubBytes(State)
6: State ← ShiftRows(State)
7: State ← MixColumns(State)
8: State ← AddRoundKey(State, K(r))
9: end for

10: State ← SubBytes(State)
11: State ← ShiftRows(State)
12: Ciphertext ← AddRoundKey(State, K(10))
Output: Ciphertext

The key schedule, also called key expansion, is a bijective map recursively applied
to the master key to produce 10 more round keys K(1), . . . , K(10) (the first round
key K(0) being the master key). It is composed of the SubBytes function, some
word rotation and XOR additions. A detailed description of the key schedule can
be be found in the literature [36,42,76].

2.2.6 Our assumptions about the cache mechanism

Here we present our assumptions about the cache mechanism and the implementation
of the AES lookup table that will be used in our attacks. In general, we follow the
description made by Bonneau [23] and the assumptions of Fournier and Tunstall [45].

We assume that the AES implementation uses lookup tables of 256 entries. Let
b be the size of a table entry in bytes. In case of a standard S-Box implementation,
b = 1 (unless the 8-bit entries are stored as words of native length for the platform),
in case of T-tables used in optimized implementations [36], b = 4. Let l be the cache
line size in bytes. In modern embedded microcontrollers, common sizes are l = 16
and l = 32. Then, we have δ = l/b entries per cache line and m = 256 · b/l cache
blocks per lookup table (note that δm = 256). The value of δ (or, equivalently, m)
has effect on the attack complexity (described by Bonneau [23]) since cache events
are determined by equations and inequations of 8− log2 δ higher order bits of the
inputs to the lookups. We assume that the lookup table is aligned with the cache.
As shown by Zhao and Wang, the attack is also possible when lookup tables are
misaligned [123].

We present our attacks for the case b = 1, l = 16, which is a sensible configuration
in the case of a constrained device. The attacks are adaptable to other cache and
lookup table configurations. We carry out a theoretical analysis (Section 2.8) in
general for different cache line sizes, i.e. for different values of m.

We assume that in an embedded software AES implementation S-Box lookups are
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performed row-wise (and therefore our row-wise notation simplifies the description of
the attack algorithms). The adversary is dealing with a sequence of observed cache
events, misses or hits, occurred in the first two rounds of the implementation. We call
this sequence a cache trace. A cache trace can be recovered from a side-channel trace,
as we show in Section 2.3 with EM measurements on a 32-bit microcontroller. Since
there may be uncertainties in distinguishing a miss from a hit, we also introduce an
additional type of observed cache event: the uncertain event.

Like the attacks of Bonneau [23], our attacks do not necessarily require the cache
to be clean of lookup table entries prior to each run of the implementation, but can
be made more efficient under the clean cache assumption.

2.3 Cache events in side-channel leakage

In this section, we describe the experiments we conducted on a microcontroller ex-
ploring the influence of the cache mechanism on electromagnetic (EM) measurements
through a very simple setup.

The device we considered was an Olimex LPC-H2124 development board [80]
(Figure 2.2b) carrying the NXP LPC2124 [79], an ARM7 microcontroller. Though
ARM7 family devices do normally have a cache, this particular microcontroller
features a Memory Accelerator Module (MAM). The MAM is a 128 bits wide cache
that increases the latency of access to the onboard flash memory. In Figure 2.2a
we present the EM traces acquired while the microcontroller with MAM enabled
was performing a series of lookups in the AES S-box table that was stored in the
flash memory. The acquisition was performed with Langer RF-B 0.3-3 H-field probe,
Langer PA 203 20 dB pre-amplifier and LeCroy WaveMaster 104MXi oscilloscope.
The CPU clock frequency of the microcontroller was 59 MHz, the sampling rate of
the Digital Sampling Oscilloscope (DSO) was set to 5 GS/s (5 billion samples per
second). The probe was fixed by a lab stand with the probe tip touching the surface
of the microcontroller package; the precise position of the probe was determined
experimentally.

The top trace shows a sequence of 3 cache misses, whereas the bottom trace
shows a miss-hit-miss sequence. Cache misses can be seen as distinguished peaks.
Note also the timing differences: Figure 2.2a suggests that the cache hit takes 2
CPU clock cycles less than the cache miss. We would like to stress that the traces
were acquired without averaging in an unshielded setup depicted in Figure 2.2b.

Since the MAM is a single-line cache, the attacks we propose in this chapter
cannot be implemented with this microcontroller, as opposed to the original chosen
plaintext attack [45]. Still, our experiments are a sound example of cache event
leakage for an ARM microcontroller, which has not been considered in earlier works
except by Rebeiro and Mukhopadhyay [91], exploiting cache event leakage in the
power consumption of a PowerPC processor within a Xilinx Virtex-II FPGA to
mount an attack against CLEFIA.
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Figure 2.2: (a) EM traces of an ARM7 microcontroller with distinguishable cache
event sequences: miss-miss-miss (top) versus miss-hit-miss (bottom); (b) the µC
with the passive EM probe

2.4 Chosen plaintext attacks

In this section, we present two attacks where the adversary is able to submit
plaintexts of his choice to an AES encryption running on the target device. The
plaintexts are adaptively chosen after each encryption depending on the previous
plaintexts and obtained cache sequences. The first attack presented in this section
is from Tunstall and Fournier [45]. The second attack is our improved attack which
takes significantly less measurements than the original one. We finally explain the
limitations of these adaptive strategies. Throughout this section, the attacks are
described assuming error-free measurements and a clean cache.

2.4.1 Adaptive chosen plaintext attack of ACISP’06

From the description of the AES (Section 2.2.5) and our assumptions (Section 2.2.6),
we observe that the first lookup to the S-box table occurs in the first AES round
and is indexed by the value p0 ⊕ k0. Because the cache is clean, we know that a
cache hit (H) will occur at the second lookup CT (1) only if the upper nibble of
p1 ⊕ k1 equals that of p0 ⊕ k0. Using our notations, CT (1) = H implies

p̂1 ⊕ k1 = p̂0 ⊕ k0

We can rearrange the terms in the latter equality to obtain

k̂0 ⊕ k1 = p̂0 ⊕ p1

The high nibble p̂1 that generates a cache hit at the second lookup can be quickly
identified because there exists only one value out of 16 which can generate a cache
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hit (as only one line is loaded in the cache). This high nibble will come up after
an average number of

∑16
i=1

i
16 = 8.5 acquisitions. Once the desired p̂1 is found, the

adversary can reiterate the process for the third and subsequent lookups, generating
a cache sequence being MH . . . H. At the end of this first round stage, she then
knows the values (p̂i)1≤i≤15 such that:

∀i ∈ [0, 15], k̂0 ⊕ ki = p̂0 ⊕ pi

The steps of the attack are detailed in Algorithm 2.

Algorithm 2 Chosen plaintext attack from ACISP’06 [45]

1: P = (p0, p1, . . . , p15)← (0, 0, 0, . . . , 0) ⊲ Plaintext
2: i← 1
3: while i < 16 do
4: CT ← AESk(P ) ⊲ Acquisition
5: if CT (i) = H then
6: i++
7: else
8: p̂i++
9: end if

10: end while
Output: P

We can express p̂i as a function of p̂0:

p̂i = p̂0 ⊕ k̂i ⊕ k̂0

Thus for clarity in the description, Algorithm 2 arbitrary begins with the zero
plaintext.

Following this strategy an adversary deduces 15× 4 = 60 bits of information in
the first round, reducing the entropy of the key from 128 to 68. The best, average
and worst number of plaintexts (traces) required are respectively 1, 15× 8.5 = 127.5
and 16× 15 = 240. The distribution of the number of inputs is plotted in Figure
2.3, obtained from a simulation carried out over 105 random keys. We show below
how to improve these figures.

2.4.2 Our improvement

Recall that in a chosen plaintext approach, the adversary aims at finding a plaintext
block that generates a cache miss immediately followed by a series of cache hits.
In other words, all lookups performed in the first round must correspond to the
same cache line. In the attack from ACISP’06, only one lookup is exploited for each
query, although more information is contained in the subsequent lookups. Amongst
them, a second cache miss indeed refers to another loaded line in the cache, thus the
corresponding plaintext nibble should be updated because only one loaded cache
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line is desired. On the other hand, a cache hit may or may not refer to the first
loaded line, thus the adversary cannot draw any information from a cache hit.

We now explain how to build up constraints on the plaintext bytes from all cache
misses so as to come up with the desired plaintext with only a few acquisitions.

For two given distinct positions i and j where cache misses (denoted by M)
occur, we have p̂i ⊕ ki 6= p̂j ⊕ kj . As a result, the adversary must set aside all
plaintexts with the particular difference δ = p̂i ⊕ pj as such plaintexts induce a hit.
That is, she can evict the value δ (out of 16 initially) for the upper nibble of the
XOR difference between pi and pj . Proceeding, a set of constraints on the plaintext
nibbles can be built.

The steps of our improved attack are detailed in Algorithm 3. The constraints
on every pair of plaintext nibbles i and j, j > i, are represented with a triangular
matrix ∆ that we fill with the values to avoid for the upper nibble of one XOR
difference p̂i ⊕ pj . The subroutine SelectNextPlaintext updates the plaintext P

according to the constraints ∆. Namely, it updates the nibble values verifying that
the value δ = p̂i ⊕ pj is not forbidden, thus going much faster than in the attack from
ACISP’06. As one can see, Algorithm 3 resembles Algorithm 2 with an additional
for loop at lines 7–15 that builds up the constraints on p̂i ⊕ pj .

Algorithm 3 Improved chosen plaintext trace-driven cache-collision attack

1: P = (p0, p1, . . . , p15)← (0, 0, . . . , 0) ⊲ Plaintext
2: ∆ = {∆i,j}1≤i≤15

1≤j≤i

← {∅}1≤i≤15
1≤j≤i

⊲ Constraints

3: i← 1
4: while i < 16 do
5: P ← SelectNextPlaintext(i, P , ∆)
6: CT ← AESk(P ) ⊲ Acquisition
7: for j from i to 15 do
8: if CT (j) = M then
9: for l from 0 to j − 1 do

10: if CT (l) = M then
11: ∆j,l ← ∆j,l ∪ p̂j ⊕ pl

12: end if
13: end for
14: end if
15: end for
16: while (CT (i) = H) ∧ (i < 16) do
17: i++
18: end while
19: end while
Output: P

We have simulated this attack with 105 random keys. From the original attack [45]
to our improved method, the average number of required inputs to obtain a 60-bit
reduction of the key entropy significantly decreases: from 127.5 to 14.5.
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Figure 2.3: Distribution of the number of plaintexts required to obtain a 60-bit
reduction of the key search space

2.4.3 Drawback of the chosen plaintext strategy

The main disadvantage of a chosen plaintext attack resides in its high complexity to
exploit the second round lookups.

To recover the remaining 68 bits of the key, the analysis of the second round
lookups also follows a chosen plaintext strategy, continuing to look for plaintexts
leading to cache hits in the first lookups of the second round, as proposed by Fournier
and Tunstall [45]. In the second round, k̂0 and the low key nibbles are involved in
the lookup addresses (their detailed expressions are given in Section 2.5.2), hence
resolving these equations further reduces the key entropy.

Nevertheless, a high number of measurements is required to sufficiently reduce
the search space. At the first lookup of the second round, 6 unknown nibbles are
involved, which means that 6 equations are needed to find the correct combination
of nibbles. A cache hit occurs with probability 1/16, thus 96 measurements are
required on average. The key entropy is then reduced to 68− 24 = 44.

At the second lookup, the 5 unknown nibbles can be recovered in the same
manner, but a consecutive cache hit will only occur with probability 1/256, which
means that the average number of acquisitions required is now 1280. Thereafter, an
exhaustive search over 224 key hypotheses remain.

Unlike the first round stage, this cannot be improved: one cannot introduce an
efficient way of inducing constraints on the plaintexts due to the non-linearity of
the equations emerging from the second round lookups. Hence, our improvement on
the first round has an insignificant effect on the overall complexity of the original
plaintext attack. Therefore, we had to come up with a known plaintext attack which
we describe in the next section.

2.5 Known plaintext attack

Studying the attack of ACISP’06 and our proposed improvement, several questions
arise:
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• How can an adversary gain information from both cache hits and misses?

• How can the second round lookups be better exploited?

• Can trace-driven cache attacks be applied to a known plaintext scenario?

As an answer to these questions, we put forward a known plaintext attack that
exploits all cache events including hits and the four first second round lookups. We
make the same implementation assumptions on the table width (16 bytes) and on
the S-box size (256 bytes).

Two distinct phases, first online, second offline, compose the attack. First, N
random plaintexts1 are submitted to the target device for an AES encryption under
the unknown key and the side-channel traces are converted to cache traces. Second,
the cache events of the first round and the first four lookups of the second round
are analysed.

Throughout this section, we assume that: (1) the cache is clean prior to encryp-
tion, which can be ensured by resetting the device; (2) no mistake is made in the
conversion of side-channel traces to cache traces. We later release these constraints
in Section 2.6.

2.5.1 Analysis of the first round

Our analysis of the first round can be viewed as a sieve, i.e. an algorithm that
gradually reduces for each variable the number of possible candidates to one, as
long as enough information is provided in the acquisitions. The sieve takes as input
the N plaintexts (denoted P

(q) = (pi)
(q)
0≤i≤15) that served in the online phase for the

encryptions under the unknown key K = (k0, k1, . . . , k15) and the N cache traces
converted from the side-channel measurements (denoted CT

(q) = (CTi)
(q)
0≤i≤15). The

sieve outputs a set of linear equations in the high nibbles of ki (0 ≤ i ≤ 15) that
decreases the entropy of the key search space by 15× 4 = 60 bits.

We recall that a cache miss allows an adversary to know that the accessed line
is different from all the lines previously accessed in the encryption. Because in our
framework the table lines are indexed by the high nibble of an S-box input, a cache
miss at the i-th lookup is algebraically expressed by the following inequations:

∀j ∈ Γ, k̂i ⊕ pi 6= k̂j ⊕ pj (2.1)

where Γ denotes the set of indexes where a cache miss occurred previously in
the encryption.

Analogically, a cache hit allows an adversary to know that the accessed line
belongs to one of the lines previously accessed in the encryption. Therefore, a cache
hit at the i-th lookup induces the following equations:

∃!j ∈ Γ, k̂i ⊕ pi = k̂j ⊕ pj (2.2)

1The attack will work in the same manner against an AES decryption, with the submission of
random ciphertexts.



2.5 Known plaintext attack 25

The two statements (2.1) and (2.2) can also be written as follows:

CTi = M =⇒ ∀j ∈ Γ, k̂i ⊕ kj 6= p̂i ⊕ pj (2.3)

and
CTi = H =⇒ ∃!j ∈ Γ, k̂i ⊕ kj = p̂i ⊕ pj (2.4)

Furthermore, we have the following triangular relation:

k̂i ⊕ kj = k̂i ⊕ k0 ⊕ k̂j ⊕ k0 (2.5)

We inject (2.5) in the statements (2.3) and (2.4) so as to finally obtain:

CTi = M =⇒ ∀j ∈ Γ, k̂i ⊕ k0 6= p̂i ⊕ pj ⊕ k̂j ⊕ k0 (2.6)

and
CTi = H =⇒ ∃!j ∈ Γ, k̂i ⊕ k0 = p̂i ⊕ pj ⊕ k̂j ⊕ k0 (2.7)

On the right-hand sides of statements (2.6) and (2.7), p̂i ⊕ pj is known and if k̂j ⊕ k0

were known too, information on k̂i ⊕ k0 would be easily deduced.
This suggests to process the cache traces position-wise, instead of acquisition-wise

as in the described chosen plaintext attacks. That is, starting from position i = 1,
an adversary should use the statements (2.6) and (2.7) along with as many cache
traces as necessary to retrieve the correct value of k̂i ⊕ k0. Only then, she can carry
on to the next position and repeat the process until i = 15.

The advantage of this strategy for an adversary is the capability, once the set
of possibilities for a XOR difference has been reduced to a singleton, to reuse this
information while analysing the successive lookups. Compared to the adaptive
strategies, the complexity of the attack is drastically reduced in terms of memory
and time because we aim at retrieving the value of k̂i ⊕ k0 only once k̂j ⊕ k0 are
known for every j < i. Here, every atom of information on k̂j ⊕ ki directly reduces
the set of candidates for k̂0 ⊕ ki.

Our sieve is formally detailed in Algorithm 4. The set κi denotes the set of
possible values for k̂i ⊕ k0, initiated to {0, . . . , 15}.

Finally, the high nibbles of the key bytes form a system of 15 linearly independent
equations, reducing the entropy of the key down to 128− 4× 15 = 68 bits.

We estimated the required number of acquisitions out of 105 simulated attacks
each with a random key. Our results are illustrated in Figure 2.4. For each
experiment, the number of required inputs is the maximum number of inputs
required for recovering the nibble differences k̂0 ⊕ ki. The average number of inputs
allowing a 68-bit recovery was 19.43, which is notably less than the 127.5 inputs of
the original chosen plaintext attack [45] described in Section 2.4.1.

Interestingly, our method also works if cache hits are not taken into account in
the analysis, that is, if the set κi remains unchanged after the observation of a cache
hit at position i. The execution of the sieve then requires more inputs, namely 54.19
to achieve the 60-bit reduction. However, it was shown by Bonneau [23] that using
only misses allows an adversary to conduct a trace-driven cache attack even if the
cache already contains S-box lookup table lines prior to the encryption. We will
elaborate on this in Section 2.6.4.
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Algorithm 4 Known plaintext analysis of the first round

Input: (P (q), CT
(q)) = (p

(q)
i , CT

(q)
i )0≤i≤15, q ∈ [1, N ]

1: κi ← {0, . . . , 15}, 1 ≤ i ≤ 15
2: for i← 1 to 15 do
3: q ← 0
4: while |κi| > 1 do
5: q ← q + 1
6: κ

′ ← ∅
7: for j ← 0 to i− 1 do

8: if CT
(q)
j = M then

9: κ
′ ← κ

′ ∪
{

̂
p

(q)
i ⊕ p

(q)
j ⊕ κj

}

10: end if
11: end for
12: if CT

(q)
i = M then

13: κi ← κi \ κ
′

14: else
15: κi ← κi ∩ κ

′

16: end if
17: end while
18: end for
Output: κi, i ∈ [1, 15]

2.5.2 Analysis of the second round

In this section, we show that the first four lookups of the second round can also be
exploited in a known plaintext scenario and the key entropy further reduced. Our
approach is a natural extension to the one performed in the first round, but finding
the correct lookup indexes requires significantly more computational effort. Our
approach was briefly sketched by Acıiçmez and Koç [1], but they did not present the
analysis of the number of acquisitions required, whereas we perform a theoretical
analysis in Section 2.8. In the following description, we assume that the round
keys are pre-computed and pre-stored, thus no access to the S-box lookup table is
performed between the encryption rounds2.

The second round analysis reuses the plaintexts and cache traces from the first
round analysis, but in most cases more inputs are required. The five steps of this
second stage are the analysis of the first four lookups and possibly finish with a
little exhaustive search:

1. from the first lookup, recover k̂0, qk0, qk5, qk7, qk10, qk15, 24 bits in total;

2Note that the strategy we propose here would be straightforward to adapt to an AES imple-
mentation with an on-the-fly key schedule. Similarly, the xtimes operation in the AES MixColumn

can also be taken into account in case the former is implemented as a lookup table (Fournier and
Tunstall also presented a chosen plaintext attack exploiting the xtimes lookup table).
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Figure 2.4: Distribution of the number of plaintexts required to obtain a 60-bit
reduction of the key space in the known plaintext attack, considering hits and misses
(a) and misses only (b)

2. from the second lookup, recover qk1, qk6, qk11, qk12, 16 bits in total;

3. from the third lookup, recover (qk2, qk8, qk13), 12 bits in total;

4. from the fourth lookup, recover (qk3, qk4, qk9, qk14), 16 bits in total;

5. at this point, between 1 and 10 entire key candidates remain. The correct one
may have to be identified using a known plaintext-ciphertext pair.

Indeed, it can happen that several full key candidates pass the steps 1–4, although
all the key nibbles are involved in the corresponding equations. This is due to
the properties of the AES S-box: for some input high nibble, there can exist up
to 4 output values which have the same high nibble. Hence, these values are
indistinguishable in our equations because only the high nibble of an S-box input
determines whether the cache event is a miss or a hit. We experimentally observed
that the “finalists” that reach the fifth stage of the second round are at the number
of 1 to 10.

We clarify the five steps of the second round analysis.

First lookup of the second round

The first lookup is indexed by:

y0 = 2 • s(x0)⊕ 3 • s(x5)⊕ s(x10)⊕ s(x15)⊕ s(k7)⊕ k0 ⊕ 1.

Therefore, if the first lookup of the second round is a miss, i.e. the cache is of
the form M ∗ ∗ . . . ∗ |M , the following system of inequations holds:





ŷ0 6= x̂j1

...
ŷ0 6= x̂jL

, j1, . . . , jL ∈ Γ,
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where Γ is the set of indices of misses observed in the 16 lookups of the first round,
L = |Γ|. We can rearrange the inequations as below:

̂2 • s(x0)⊕ 3 • s(x5)⊕ s(x10)⊕ s(x15)⊕ s(k7) 6=





α̂j1

...
α̂jL

, j1, . . . , jL ∈ Γ, (2.8)

where α̂j are known values which depend on the plaintext bytes and the XOR
differences of key nibbles recovered in the first part of the analysis. Similarly, a case
this first lookup is a cache hit, i.e. for a cache trace of the form M ∗ ∗ . . . ∗ |H, we
have:

〈 ŷ0 = x̂j1

...
ŷ0 = x̂jL

, j1, . . . , jL ∈ Γ,

which becomes after rearrangement:

̂2 • s(x0)⊕ 3 • s(x5)⊕ s(x10)⊕ s(x15)⊕ s(k7) =

〈 α̂j1

...
α̂jL

, j1, . . . , jL ∈ Γ. (2.9)

In the left part of (2.8) and (2.9), the nibbles k̂0, qk0, qk5, qk7, qk10, qk15 are
unknown, for a total of 24 unknown bits. Solving (2.8) or (2.9) for a single trace
by exhaustive search over the 224 combinations of these nibbles leaves us with a
fraction of possibilities. Another trace provides another system of (in)equations on
the unknown nibbles and further reduces the amount of candidates.

After several traces, we will remain with the key bytes k0, k5, k10 and k15 fully
recovered. However, as explained before, the AES S-box is such that depending on
the input high nibble, 1, 2, 3 or 4 output values may have the same high nibble.
Therefore, when the S-box input is only indexed by the key and not mixed with
a plaintext byte, as for k7 in (2.8) and (2.9), an adversary cannot distinguish the
correct candidate for qk7 among these up to 4 possibilities and has to take into
account this multiplicity of candidates for qk7 through the rest of the analysis. Only
an exhaustive search conducted over full key candidates will determine the correct
value of qk7.

2.5.3 Second lookup of the second round

Once done with the analysis of the first lookup, we proceed with the analysis of the
second lookup. This lookup is indexed by:

y1 = 2 • s(x1)⊕ 3 • s(x6)⊕ s(x11)⊕ s(x12)⊕ s(k7)⊕ k0 ⊕ k1 ⊕ 1

Similarly, the nature of the corresponding cache event either leads to a system
of inequations if it is a cache miss (after rearranging the terms):

̂2 • s(x1)⊕ 3 • s(x6)⊕ s(x11)⊕ s(x12) 6=





α̂j1

...
α̂jR

, j1, . . . , jR ∈ Γ, (2.10)
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either to a system of equations if the lookup is a cache hit:

̂2 • s(x1)⊕ 3 • s(x6)⊕ s(x11)⊕ s(x12) =

〈 α̂j1

...
α̂jR

, j1, . . . , jR ∈ Γ, (2.11)

where Γ is the set of indexes of misses observed in the 17 previous lookups (i.e. in
the first round and in the first lookup of the second round), with R = |Γ| and α̂j are
some known values depending on the plaintext bytes and the previously recovered
nibbles of the key bytes. The only difference with the analysis of the first lookup
arises in case the first lookup of the second round is a miss, where the (in)equations
in (2.10) or (2.11) include either ŷ1 6= ŷ0 or ŷ1 = ŷ0. However, the value of y0 is
known from the analysis of the first lookup, thus this (in)equation can be considered.

We have only 16 unknown bits in (2.10) and (2.11), namely in the nibbles qk1,
qk6, qk11 and qk12, the rest having been recovered in the previous steps. By solving
the equations for several traces like in the analysis of the first lookup, we will get
a single candidate for these unknown nibbles, notwithstanding the multiplicity of
candidates coming from k7 in the first lookup. We note that this multiplicity is not
further increased here because the S-box inputs all include a plaintext byte.

After the analysis of the first two lookups of the second round, the key chunks
qk2, qk3, qk4, qk8, qk9, qk13 and qk14 remain unknown. They comprise 28 bits. Considering
up to 4 possible values for k7, the key space is now reduced to 230 elements. An
exhaustive search can already be launched. However, analysing the two subsequent
lookups has a lower computational complexity and reveals all the unknown bits,
except for qk7.

2.5.4 Third and fourth lookups of the second round

The third lookup is indexed by:

y2 = 2 • s(x2)⊕ 3 • s(x7)⊕ s(x8)⊕ s(x13)⊕ s(k7)⊕ k0 ⊕ k1 ⊕ k2 ⊕ 1

where the nibbles qk2, qk8 and qk13, thus 12 bits, are unknown. Like for the first two
lookups, an adversary can run through the possible combinations of these nibbles
and, after several traces, retain the only candidate that satisfies the systems of
(in)equations. Again, ŷ0 and ŷ1 are possibly involved but known from the previous
steps.

The fourth lookup is indexed by:

y3 = 2 • s(x3)⊕ 3 • s(x4)⊕ s(x9)⊕ s(x14)⊕ s(k7)⊕ k0 ⊕ k1 ⊕ k2 ⊕ k3 ⊕ 1

where the unknown nibbles (qk3, qk4, qk9, qk14), 16 bits in total, are determined in the
same manner.

Finally, the correct key is recovered with a search among up to 10 key candidates,
requiring the knowledge of a valid plaintext-ciphertext pair.

Like the first round analysis, the second round analysis can exploit only the
cache misses so as to be robust to the pre-loaded cache condition.
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2.5.5 Attack complexity

The complexity of the first round analysis is negligible. As we already described in
Section 2.5.1, it takes on average 19 measurements and the solving of the sieve is
instantaneous on a PC.

In the second round analysis, we have to evaluate expressions like in (2.8) O(224)
times for each required trace, times the multiplicity of k7. The required number of
traces has been estimated through simulations; it is about 29 traces (reusing the
traces from the first round part) in case both hits and misses are used. This part
runs in less than a minute on a PC.

The final exhaustive search has a negligible complexity.
We will present a more detailed estimation of the attack complexity after in-

troducing our adaptations to real-life conditions in the next section. We will also
present the theoretical model for determining the measurement complexity (Section
2.8), which is confirmed by our simulations.

2.6 Error tolerance

In this section, we elaborate on the adaptations of our attacks in order to make
them resistant to errors. We begin with a description of our approach to deal with
detection uncertainties and we present the modifications brought to our attacks.
Then we explain how to treat cache information generated with partially pre-loaded
cache and finally we present the results of our simulations considering different levels
of these real-life complications.

2.6.1 General approach to distinguishing cache events

The generation of a cache sequence from a power trace is a task that eventually needs
to be automated in case of treating a high number of acquisitions. Moreover, although
our experiments have exhibited clear differences of amplitude and timing from the
two kinds of cache events and an obvious ability for an attacker to distinguish
between them on an EM trace, the cache events may happen to be more tricky to
distinguish on other platforms and measurement setups.

For these two reasons, we introduce a treatment of the side-channel traces which
uses a statistic (e.g. the absolute value of the trace, if necessary averaged over
a defined interval) to convert them to cache sequences with a tolerance to noise.
According to our experiments, we can reasonably assume this statistic to be smaller
in case of a cache hit and larger in case of a cache miss. Moreover, as the noise is
generally Gaussian, cache hits and misses are also expected to follow a Gaussian
distribution. Hence, the task for the adversary is to distinguish between two normal
distributions.

Setting a single threshold to dissociate them will unavoidably induce the detection
of a hit for a miss and vice-versa, also called in statistics Type I and Type II errors.
However, our algorithms do not hold in presence of these errors as the latter would
introduce false equations and inequations. Hence it is necessary to define two
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thresholds in the detection and a resulting third kind of event, called “uncertain”.
In the rest of the section, we describe how to adapt our algorithms so that they also
deal with the “uncertain” event, determined by the two thresholds tH and tM as
follows:

1. If the statistic is smaller than tH , the event is considered as a hit.

2. If the statistic is greater than tM , the event is considered as a miss.

3. If the statistic falls between tH and tM , the event is considered as uncertain.
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Figure 2.5: Probability density functions of cache hits (H) and misses (M)

tH and tM are chosen so that it is very unlikely that a miss is interpreted as a miss
and the other way around. In Figure 2.5, typical probability density functions for
the statistic of power traces of a cache hit (H) or a cache miss (M) are represented
along with the thresholds tH and tM . Obviously, the greater the probability that
the statistic of a cache event falls between these thresholds, the more acquisitions
are required to retrieve the key, as we verify in our simulations in Section 2.6.5.

2.6.2 Error-tolerant chosen plaintext attack

The improved chosen plaintext attack (Algorithm 3) naturally adapts itself to the
presence of uncertain events. For the cache event being analysed, the occurrence of
an uncertain event forces an attacker to drop the analysis of the trace and repeat the
acquisition. In the analysis of the subsequent positions, cache misses can nevertheless
be taken into account in the constraints, whereas uncertain events occurring at these
positions have to be treated as hits so that no false equation is added to the set of
constraints.

To observe the influence of this third type of cache event, we simulated the
error-tolerant attack for random 104 keys. The results show that our chosen plaintext
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attack stands well the presence of error. On average, 22.6 traces were required when
the occurrence frequency of an uncertain event was 0.2. When this frequency was
0.5, an average number of 47.2 traces was required. Note that this measurement
complexity is lower than for the original adaptive algorithm without error resilience
given by Fournier and Tunstall [45].

2.6.3 Error-tolerant known plaintext attack

We show below how to adapt the first and second stages of our known plaintext
attack to take into account uncertain events along with cache misses and hits.

Adaptation of the first round

Analysing the lookup at position i, three cases may now occur:

1. CTi is a cache miss. An uncertain event occurring in the same acquisition
before position i should not be taken as misses, as they might lead to a false
inequation on k̂0 ⊕ ki, evicting the correct value out of κi. Therefore, uncertain
events occurring before position i have to be treated as hits. Otherwise stated,
κi is updated to κi \ {k̂0 ⊕ kj | j ∈ Γ}, where Γ refers to the set of indices
where previously occurred a cache miss.

2. CTi is a cache hit. An uncertain event occurring in the same acquisition before
position i should be treated as a miss, otherwise a false equation on k̂0 ⊕ ki

might reduce κi to a set excluding the correct value for k̂0 ⊕ ki. Therefore,
uncertain events occurring before position i have to be treated as misses.
Otherwise stated, κi is updated to κi ∩ {k̂0 ⊕ kj | j ∈ Γ ∪Υ}, where Υ refers
to the set of indices where previously occurred an uncertain event.

3. CTi is an uncertain event. No action can be taken, κi is left as is.

This strategy for the first round is formally expressed in Algorithm 5.

Adaptation of the second round

The second round adapts itself in the same manner. Here we denote Γr and Υr

as the sets of indexes where previously occurred respectively a cache miss and an
uncertain event, in round r = 1, 2. When analysing the lookup at position i ∈ [0, 3]
in the second round, the adversary faces three possibilities:

1. CTi is a cache miss. For every possible combination of unknown nibbles
involved in the computation of yi:

ŷi /∈ {k̂0 ⊕ k̂0 ⊕ kj ⊕ p̂j |j ∈ Γ1} ∪ {ŷj |j ∈ Γ2}

2. CTi is a cache hit. For every possible combination of unknown nibbles involved
in the computation of yi:

ŷi ∈ {k̂0 ⊕ k̂0 ⊕ kj ⊕ p̂j |j ∈ Γ1 ∪Υ1} ∪ {ŷj |j ∈ Γ2 ∪Υ2}
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Algorithm 5 Known plaintext analysis of the first round with uncertain cache
events

Input: (P (q), CT
(q)) = (p

(q)
i , CT

(q)
i )0≤i≤15, q ∈ [1, N ]

1: κi ← {0, . . . , 15}, 1 ≤ i ≤ 15
2: for i← 1 to 15 do
3: q ← 0
4: while |κi| > 1 do
5: q ← q + 1
6: κ

′, κ
∗ ← ∅

7: for j ← 0 to i− 1 do

8: if CT
(q)
j = M then

9: κ
′ ← κ

′ ∪
{

̂
p

(q)
i ⊕ p

(q)
j ⊕ κj

}

10: else if CT
(q)
j = U then

11: κ
∗ ← κ

∗ ∪
{

̂
p

(q)
i ⊕ p

(q)
j ⊕ κj

}

12: end if
13: end for
14: if CT

(q)
i = M then

15: κi ← κi \ κ
′

16: else if CT
(q)
i = H then

17: κi ← κi ∩ (κ′ ∪ κ
∗)

18: end if
19: end while
20: end for
Output: κi, i ∈ [1, 15]

3. CTi is an uncertain event. No action can be taken to reduce the number of
combinations of unknown nibbles leading to yi.

The results of our simulations of the full attack are presented in Section 2.6.5.

2.6.4 Partially preloaded cache

Prior to an AES encryption, it may happen that some S-box elements are still
present in the cache from a previous execution of the routine. Then, although a
cache miss at position j still indicates that the values kj ⊕ pj or yj—in the first and
second round respectively—were not already present in the cache, a cache hit may
refer to a line that was loaded during a previous AES encryption. Therefore, in case
of a cache hit, no equation can be drawn as the correct hypothesis may be excluded
from the set of possibilities. For this reason, an analysis solely exploiting the cache
misses has to be adopted when the cache is partially preloaded. This strategy was
also adopted by Bonneau [23].
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The chosen plaintext attack (Section 2.4.2) is naturally suited for this setting
since it only exploits cache misses.

In the known plaintext attack (Section 2.5), the analysis of the cache hits has
to be skipped in order not to exclude the correct hypothesis. This adaptation to
a partially pre-loaded cache is fully compatible with our error resilient strategy
(Section 2.6.3), though requiring a higher number of inputs. The figures of our
simulations are plotted below for different values of these two “real-life” parameters.

2.6.5 Simulation results

In Figure 2.6, we present the results of our simulated attacks against AES-128
for different values of the uncertainty rate (along the x-axis) and the number of
preloaded lines (different colors on the graph) with 104 random 16-byte keys in each
of the 20 cases.
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Figure 2.6: Average number of traces required for the full AES key recovery

In these simulations, we gave the same uncertainty rate to the 19 analysed
lookups in a cache trace. We believe it accurately models the reality since all cache
lookups of a round are performed with the same load instruction. If it were not
the case, it would be clear that a more uncertainty-prone lookup would represent a
bottleneck of the key recovery algorithm.

As we can see, the presence of errors is well tolerated as well the partial pre-
loading of the cache. In the first case, when only 20% of the events are firmly
identified, the attack requires less than 160 acquisitions on average. In the second,
when half of the lookup table is pre-loaded, an average number of 300 of inputs are
required. The combination of these two scenarios highly increases the measurement
complexity, yet within a feasible range.
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2.7 Countermeasures

In this section we discuss the efficiency against trace-driven cache-collision attacks
of countermeasures commonly applied to AES embedded implementations. We also
present specific countermeasures that can be adopted to thwart these attacks.

Countermeasures against power analysis attacks have either one or the other
objective: masking and hiding. The goal of a masking countermeasure is to make
the power consumption independent from the intermediate value, whereas a hiding
countermeasure may be the obfuscation of the implementation details in time by
shuffling the operations and inserting random delays. A combination of masking
and hiding countermeasures provides the best protection against DPA [56].

2.7.1 Masking

First-order masking applies one random map (thus unknown to the attacker) to
every sensitive variable (i.e. which depends on the key) so that even if a masked
value is recovered, no secret information is disclosed. Therefore, first-order masking
schemes provide resistance against first-order DPA attacks.

This secret sharing scheme can also be extended to the general case, where the
sensitive information is concealed within n + 1 shares. The knowledge of up to
n shares cannot reveal a single bit of the secret. Therefore, such a scheme is in
principle resistant to n-th order DPA attacks.

There exist different types of masking schemes, including Boolean, arithmetic and
multiplicative masking. Some schemes suit more some operations, but conveniently,
the AES only needs Boolean masking for all of its operations. Several random values,
called masks, are required so that the security of the scheme is not exposed when
two consecutive values are XORed. Herbst et al. [56] have shown that 6 random
masks are sufficient to provide an efficient first-order DPA resistance to a smart
card implementation of AES.

The S-box is a non-linear operation. Thus, S(x⊕m) 6= S(x)⊕ S(m). In order
to keep track of the mask value, so as to be able to remove it after encryption, a
masked table S′ has to be computed for a pair (m, m′) of input and output masks,
such that: S′(x⊕m) = S(x)⊕m′. Therefore, when implementing the S-box with
lookup tables, one pair of input and output masks implies the computation of one
lookup table.

Before each encryption run, random masks are generated and the corresponding
masked lookup table S′ is precomputed. On constrained devices such as smart cards,
a designer will generally keep the complexity of the AES implementation low enough
with the pre-computation of a single masked lookup table S′. Therefore, there is a
single mask value m XORed with every input value x of the SubBytes operation.
Against standard DPA, this does not represent a threat because such input values
are not added with each other, thus their masks do not cancel out. Nevertheless,
it does represent a threat against trace-driven cache-collision attacks because such
adversary artificially builds XOR relations between S-box inputs. In these relations,
the masks cancel each other out which makes the equations and inequations of the
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attack remain valid. We verified this reasoning with simulations: the attack success
is identical as with a plain AES code.

2.7.2 Hiding

In time dimension, hiding countermeasures randomize the execution flow of an
algorithm by shuffling the order in which operations are performed or by inserting
random delays or dummy operations.

Shuffling

Following our description of a trace-driven cache-collision attack, it is always assumed
that the adversary knows the order in which the S-box lookups are performed. In
the first round of AES, 16! possible permutations can be applied to the order
of the S-box lookups. If we also consider the two first lookups of the second
round, and assuming that a new permutation is applied, we can also multiply the
number of possible permutations by 16 × 15. As a consequence, the application
of a random permutation to the order of the S-box lookups renders a trace-driven
cache-collision attack practically impossible, at the cost of the generation of a few
random permutations.

Insertion of random delays or dummy operations

Random delays aim at breaking the synchronization of the power or EM traces in a
DPA attack, thus increasing the measurement complexity [35]. In the context of
SPA, the adversary is assumed to be able to identify the specific operation she is
looking for. Hence, if the random delays are easy enough to distinguish from cache
hits and cache misses, their insertion within the execution flow of the encryption
algorithm is not a good protection against SPA, including trace-driven cache-collision
attacks.

2.7.3 Specific countermeasures

Given the high number of S-box lookups required in an AES run (160 in our
description), it is very likely that all S-box table lines will be accessed. Hence, a
sensible implementation of the cipher would pre-fetch the entire S-box lookup table.
In this manner, all cache events occurring during the algorithm execution become
cache hits and take the same amount of time, thus an adversary cannot draw any
information from them.

A less performance-oriented protected implementation would disable the cache
mechanism so as to prevent all microarchitectural leakages induced by the cache.
All instructions would take the same amount of time to execute, thus defeating the
described attacks.
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2.8 Theoretical model

In this section we present a theoretical estimation of the number of traces required
for the known plaintext attack.

In the work of Acıiçmez and Koç, a theoretical model was already provided to
estimate the number of traces required for the analysis of the 15 cache events in the
first round [1]. However, this model did not take into consideration the dependency
between the cache events and assumed an error-free cache event detection.

First, we describe a sound model to obtain the number of traces required for the
error-tolerant analysis of each of the cache events individually, both for the first and
second rounds. This model takes error detection into consideration. Then, we show
that this model, being univariate, still does not estimate the number of traces for
the full attack precisely due to the statistical dependency between the cache events.
The distribution in the multivariate model is however too complex to be expressed
theoretically, hence we present some illustrations based on our simulations.

2.8.1 Univariate model for the error-tolerant attack

The model we develop in this section provides an expected number of traces ENi

required for the analysis of the i-th lookup, 1 ≤ i ≤ 15 in the first round and
16 ≤ i ≤ 19 in the second round (i.e. the enumeration of the cache events continues
in the second round, so as to simplify the formulae), for arbitrary uncertainty rate ρ
(per lookup) and number of cache lines per S-box lookup table m. We will implicitly
assume that the inputs to the second round lookups are statistically independent of
the inputs to the first round lookups. Strictly speaking, this is not true. However,
the statistical dependency in this case is not significant and so can be omitted for
practical reasons; this is verified by the empirical results that we obtain running
attack simulations.

We start with obtaining the expectation ERi for the fraction of candidates Ri

remaining after analysing lookup i of a single cache trace. This expectation is
expressed as

ERi =
i∑

s=1

Pr(Ti = s) ·R(s)
i , i ≥ 1 (2.12)

where Tk is the number of lookup table lines in cache (i.e. |Γ|) after k lookups, and
R

(s)
i is the fraction of the key candidates remaining after analysis of the i-th lookup

of a single cache trace when the number of lines previously loaded into cache is s.
Note that the expression (2.12) works for the second round lookups as well.

The distribution Pr(Tk = s) is a classical allocation problem [67]. We have:

Pr(Tk = s) =

(
m

m− s

)(
s

m

)k

Pr0
k(s) (2.13)

where

Pr0
k(s) =

s∑

l=0

(
s

l

)
(−1)l

(
1− l

s

)k
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Note that this distribution describes the process within the device and not the
attacker’s observations and therefore does not depend on the error probability ρ.

The fraction R
(s)
i is expressed as the sum of the products of the conditional

probabilities of the three possible cache event observations (miss, hit, uncertain)
with the corresponding remaining fractions R

(s)
i,M , R

(s)
i,H , R

(s)
i,U ) (so, strictly speaking,

this fraction is the expected value under a fixed s):

R
(s)
i = Pr(CTi = M | Ti = s) ·R(s)

i,M

+ Pr(CTi = H | Ti = s) ·R(s)
i,H

+ Pr(CTi = U) ·R(s)
i,U

(2.14)

where the three probabilities are expressed as follows:

Pr(CTi = M | Ti = s) =
(1− ρ)(m− s)

m

Pr(CTi = H | Ti = s) =
(1− ρ) s

m
Pr(CTi = U) = ρ

and, recalling the error-tolerant attack description in Section 2.6.3, the fractions for
the cases of a miss, a hit and an uncertain event are expressed as:

R
(s)
i,M =

m− (1− ρ) s

m

R
(s)
i,H =

s + ρ (i− s)

m

R
(s)
i,U = 1

Finally, from Equations (2.12), (2.13) and (2.14) we can obtain ERi for 1 ≤ i ≤ 19,
i.e. both for the first and second round round lookups.

Knowing ERi, we can estimate the expected number of traces ENi required for
the analysis of an i-th lookup. We recall from Section 2.5.1 that in the analysis
of each lookup in the first round (1 ≤ i ≤ 15), we want to reduce the number of
candidates for the corresponding XOR difference of the key nibbles from m to 1.
The traces are statistically independent if the inputs are independent (which is the
assumption of our known plaintext attack), and each trace leaves us with a fraction
ERi of the remaining candidates, so we have:

m · (ERi)
Ni ≤ 1 ,

ENi ≈ − logERi
m .

We obtain ERi and estimate ENi for all the lookups of the first round being
analysed assuming m = 16. The values for the case there are no errors in detection,
i.e. ρ = 0, are shown in Table 2.2. Note that these values are larger than the ones
obtained by Acıiçmez and Koç [1] (denoted there by Rk

expected, k being i in our terms)
since in our model we have correctly considered the dependency of the analysis
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i 1 2 3 4 5

ERi 0.882813 0.787598 0.711151 0.650698 0.603836
ENi 22.24 11.61 8.13 6.45 5.50

i 6 7 8 9 10

ERi 0.568490 0.542866 0.525418 0.514812 0.509903
ENi 4.91 4.54 4.31 4.18 4.12

i 11 12 13 14 15

ERi 0.509705 0.513373 0.520184 0.529519 0.540853
ENi 4.11 4.16 4.24 4.36 4.51

Table 2.2: Expected ratios of the remaining candidates and expected numbers of
traces for the first round lookups, m = 16, ρ = 0.

of an i-th lookup on the events in the previous i lookups (recall that the lookup
enumeration starts from 0).

In Figure 2.7, we compare the theoretical estimates for the first round events
with the empirical results that we obtained in attack simulations for the cases ρ = 0,
ρ = 0.25 and ρ = 0.5. One can see that our model captures well the behaviour of
the attack and the effect of the errors.

In the theoretical figures as well as in the empirical ones, the average number of
required inputs quickly decrease in the first lookups as we move to the next one, and
tend to increase in the last lookups. This is due to the fact that at the beginning
of the round, cache hits, more informative than cache misses for small values of
s, are less likely to appear and cache misses are more frequent but reduce the set
of hypothesis more slowly than cache hits. Around the 12th lookup (the cache is
half-filled), cache hits and misses are equally informative and likely to appear, and
give the quickest reduction of hypothesis. At the end of the round, cache hits are
more frequent but less likely to reduce the set of hypothesis, and reciprocally for
cache misses, which increase the number of required inputs.

Similarly, for the lookups of the second round (16 ≤ i ≤ 19) the numbers of
traces can be estimated from the inequality

zi · (ERi)
Ni ≤ 1 ,

where zi is the initial number of candidates in the system of (in)equations for the
lookup i. From Section 2.5.2 we recall that z16 = 224, z17 = 216, z18 = 212 and
z19 = 216. The theoretical estimates of ERi and ENi for the second round, for the
case m = 16, ρ = 0, are given in Table 2.3. The numbers of traces observed in
our experiments are correspondingly 26.86, 19.47, 15.02 and 20.36, thus perfectly
matching the theoretical figures.
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Figure 2.7: Expected number of traces for the lookups of the first round. Theoretical
and empirical figures for different error probabilities ρ are shown.

i 16 17 18 19

ERi 0.553737 0.567792 0.582699 0.598187
ENi 28.15 19.59 15.40 21.58

Table 2.3: Theoretical estimates for the second round lookups, m = 16, ρ = 0

The model is also easily adjustable for the miss-only analysis in the case of
partially preloaded cache.

2.8.2 Multivariate model

The full attack measurement complexity is determined by the maximum number of
traces required for the analysis of each lookup. If the cache events were statistically
independent, the expectation for the maximum number of traces E(maxi Ni) would
be equal to the maximal expected number of traces among each of the lookups
maxi(ENi), so one could use the model described above.

However, the cache events are dependent, therefore:

E(max
i

Ni) 6= max
i

(ENi) ,

and so the univariate model is not applicable for the estimation of the full attack
complexity. This is well shown by the results of attack simulations: for example,
in case ρ = 0 for the first round in the univariate model we observed maxi(ENi) =
EN1 = 15, whereas E(maxi Ni) = 19. The same holds for the second round, though
not as explicit: the observed average maximum number of traces for the full analysis
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of the second round is 29, whereas the observed maximal number of traces for an
individual lookup is 27.

Therefore, to estimate the number of traces required for the full attack, one has
to consider the distribution of maxi Ni for the case of statistically dependent random
variables Ni, which requires the multivariate distribution for (N1, N2, . . . , N19). This
multivariate distribution is hard to express analytically, it is easier to simulate it
carrying out the attack and sampling the values of maxi Ni. This is what we do to
obtain the results presented in Section 2.6.5.

To better illustrate the behaviour of the attack, in Figure 2.8a we present the
empirical bivariate distribution for the case of the second and third lookups in the
first round. In Figure 2.8b we show the distribution for max(N1, N2) against the
independent distributions for N1 and N2. The mean of the former is 18.04. One can
see that it is greater than the maximum of the means for N1 and N2 and is actually
quite close to the number of traces required for the analysis of all the 15 lookups in
the first round.
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Figure 2.8: (a) empirical bivariate distribution for (N1, N2); (b) empirical uni-
variate distributions for N1, N2, and for max(N1, N2), dashed lines showing the
corresponding means

Nevertheless, the univariate model provides an estimate for the lower bound for
the number of traces required for the full attack, so it can be still applied when one
requires this bound.

2.9 Conclusion

In this chapter, we have elaborated on attacks which exploit the cache activity of a
device derived from side-channel traces. In particular, we have conducted practical
explorations of this microarchitectural leakage with EM measurements performed
on a 32-bit ARM microcontroller and have shown clear distinctions between cache
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hits and cache misses.
Targeting AES embedded implementations for such devices, we have improved

the chosen plaintext strategy of Fournier and Tunstall against [45] and we have
devised a known plaintext approach. We have shown that monitoring the cache
activity of a device of about 30 AES encryptions of known plaintexts by the mean
of electromagnetic measurements can allow an adversary to recover the entire key
when the S-box is implemented as a 256-byte lookup table. We have adapted our
attacks so that they can tolerate the presence of noise in the measurements and
S-box data in the cache prior to the encryption. We have presented the theoretical
model of the attacks.

We discussed the relevance of common DPA countermeasures applied to embed-
ded implementations of AES and concluded that certain Boolean masking techniques
and the insertion of random delays have no effect to prevent trace-driven cache-
collision attacks. As a result, trace-driven attacks can defeat protected implementa-
tions requiring the encryption of about 30 known plaintexts, where second-order
DPA would typically take thousands of acquisitions. However, simple and lightweight
countermeasures such as lookup shuffling or pre-caching of the entire S-box table
make the attack practically infeasible. The offline complexity, i.e. the execution of
the sieve, takes a few seconds on a standard PC.



Chapter 3

Side-channel analysis of the

modular addition

The modular addition is present in numerous symmetric schemes, in particular in
ARX constructions. This operation is in essence more resistant to DPA attacks
than S-boxes and as a result, standard DPA fails to recover all the key bits. We
put forward a generic and practical approach that is applicable against many
constructions: we choose a more complex target function such as the combination of
two modular additions. To deal with the high number of key bits involved, we apply
a further divide and conquer approach. The number of key hypothesis consequently
remains within a feasible range at the expense of the amplitude of the correlation
coefficients. We verify the validity of our approach with experiments on an 8-bit
AVR microcontroller. Additionally, we carry out the recovery of the entire key from
a recommended implementation of Threefish on the same board.

This is a joint work with Arnab Roy and Praveen Kumar Vadnala, published in
the proceedings of WESS 2012 [115].
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3.1 Introduction

In a DPA attack, three critical parameters have to be considered: the target
operation, the power model and the statistical distinguisher. They need to be chosen
according to the cipher under attack along with its implementation details and
the target device architecture. Note that in practice, the attention brought to the
measurement setup is also crucial and in particular, proper values for the device
clock frequency and the DSO sampling rate can help reduce the various amounts of
noise present in the power or EM traces.

When a block cipher algorithm features a key-dependent S-box, its output is
a natural target for a DPA attack. Indeed, the role of an S-box is precisely to
provide confusion through its non-linearity so as to improve the resistance of the
block cipher against linear and differential cryptanalysis. However, Prouff gave
a mathematical evidence that the more non-linear an S-box is, the more it helps
a side-channel adversary to recover the key [88]. Besides the prevalence of DES
and AES in symmetric cryptographic applications nowadays, another reason why a
majority of published DPA attacks target these ciphers is that S-box-based block
ciphers clearly illustrate the efficiency of DPA attacks. In an attempt to thwart
these attacks, the S-box operation can be implemented in a resistant way against
first- or higher-order DPA attacks in software through masking [82] or in hardware
through secure logic style [111].

Benoît and Peyrin simulated DPA attacks in the Hamming weight power model
and using the correlation coefficient as the statistical distinguisher against six SHA-3
candidates [11]. In accordance with Prouff, they showed that the correct key used in
an AES S-box—highly non-linear—, is more easily distinguishable from the wrong
key hypothesis than in a modular addition—less non-linear than the AES S-box.
The XOR operation—which is linear—, leads to higher correlation coefficients for
wrong keys hypothesis and is therefore the most difficult operation to retrieve the
correct key from in a DPA attack scenario.

But as previously mentioned, a high confusion is an absolute necessity for a
block cipher and attention has recently been given to alternatives to S-box-based
block ciphers. ARX constructions for example are composed of three operations:
modular addition, bit rotation and exclusive-or, the only non-linear one being the
modular addition. They are fast in both software and hardware, hence the weak
non-linearity of the modular addition can be compensated with a high number of
rounds.
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In a side-channel attack against an ARX block cipher or hash function (as used
in a MAC algorithm), the natural target operation is the modular addition because
it is the only non-linear operation. Practical attacks in the Hamming weight power
model have been reported. Lemke et al. against IDEA [70] and Boura et al. against
Skein [25] provide ambivalent conclusions: standard DPA does not always output
the correct key, regardless of the measurement complexity. Against Skein, Zohner
et al. exploit the particular distribution of the correlation coefficients among the
key candidates in the Hamming weight power model to gain information about the
correct key [125,126].

The scope of this work is the study of the side-channel resistance of the modular
addition and the application of DPA attacks against this operation.

3.1.1 Contributions

In this work, we apply practical and generic methods to circumvent the difficulties
that arise in a DPA attack on modular addition. Our experiments are carried out on
an AVR 8-bit microcontroller with a typical DPA measurement setup. Our methods
are tested against a fast implementation of the Threefish block cipher for AVR
microcontrollers recommended by the designers of Skein.

3.1.2 Terminology

Throughout this chapter, the operations are performed on blocks of b bits and
modular additions are modulo 2b. The key is represented as a concatenation of
blocks: k = k1‖k2‖ . . . ‖k#b

, where ‖ is the concatenation operator and #b is the
number of blocks. Similarly, the plaintext is denoted by p = p1‖p2‖ . . . ‖p#b

. Thus,
the key (resp. plaintext) size is #b · b. The word length of the device is w bits, and
we sensibly assume w ≤ b. The number of registers required to store each block is
thus #w = b

w
. When required, we will also include the register count as second index

so that a key (resp. plaintext) block is represented as: ki = ki,1‖ki,2‖ . . . ‖ki,#w
(resp.

pi = pi,1‖pi,2‖ . . . ‖pi,#w
). When truncating further the key and plaintext words (as

we do in Section 3.4.2), the key (resp. plaintext) word is divided into #d chunks
of length d = w

#d
and the chunk count written as third index, so that a key (resp.

plaintext) word is represented as kib,iw = kib,iw,1‖kib,iw,2‖ . . . ‖kib,iw,#d
.

3.2 Background

In this section we describe Threefish, the block cipher on which we carry out our
experiments (Section 3.6).

3.2.1 The Threefish block cipher

The block cipher Threefish is at the core of the Skein hash function [40], which
was one of the five finalists of the SHA-3 competition launched by the American
National Institute of Standards and Technology in the quest for a new hash function
standard. Threefish is tweakable, which means that it takes an extra parameter
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called the tweak along with the key and the plaintext or ciphertext. This aims
at providing additional security to a hash function when the latter is based on a
block cipher. Threefish is only composed of the ARX operations: modular addition,
rotation and exclusive-or. These simple operations are efficiently implemented in
both software and hardware, which allows for a higher number of rounds in the
block cipher construction in comparison with block ciphers using S-boxes (AES has
10, 12 or 14 rounds depending on the key length)—Threefish takes 72 to 80 rounds.
In the meantime, the high number of rounds in an ARX block cipher is necessary to
achieve a good diffusion and non-linearity.

Threefish has three available block sizes: 256, 512 and 1024 bits. Threefish-256,
the algorithm we target in the application of our attacks in Section 3.6, is ideally
suited for constrained devices such as our 8-bit AVR ATMega128 microcontroller.
The key length is the same as the block size and the tweak is 128 bits long, irrespective
of the size of the block. The Threefish operations are performed on 64-bit words.
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Figure 3.1: Structure of Threefish-256

The subkeys are obtained from the master key and the tweak via the key schedule
(which we do not describe here). Every four rounds, new subkeys are added to the
64-bit states (initialized to the plaintext words). A round transformation consists
of a MIX function, composed of a modular addition, a bit-rotation and an XOR; a
permutation of the words is then applied. In Threefish-256, 72 round transformations
are executed, involving the master key plus 18 subkeys.

The non-linearity of Threefish comes from the modular addition in the MIX
function, more precisely from the produced carry bits. This non-linearity helps a
side-channel adversary to identify the correct key from the correlation, but in the
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meantime the carry bits leads to discrepancies in the key recovery, as described in
the next section.

3.3 Attacks on the modular addition

In this section, we describe some general considerations of a DPA attack against
modular addition.

DPA attacks targeting arithmetic operations were theoretically considered during
the AES competition [30] and also within the New European Schemes for Signatures,
Integrity and Encryption (NESSIE) project [83]. Practical attacks on the XOR, the
modular multiplication and the modular addition were first conducted by Lemke
et al. [70]. Concerning the modular operation, they observed a singularity in the
ranking of the key candidates in their simulations in the Hamming weight model:
although the correct key hypothesis leads as expected to the highest correlation in
absolute value, the key hypothesis differing from the correct key only by its most
significant bit (MSBi) is ranked second, the two key hypothesis differing from the
first and second candidates only by the two MSBis are ranked third and fourth, and
so on.

We confirm the observation of this phenomenon with the computation of the
correlation coefficients for the byte modular addition between the Hamming weights
of intermediate values depending on the correct key on the one hand, and on all key
hypothesis on the other hand. In Figure 3.2, the top four key candidates are indeed,
in order of decreasing correlation:

1. the correct key k = 50 = 0b00110010,

2. k + 128 = 0b10110010

3.

4.

}
k + 64 = 114 = 0b01110010 and k − 64 ≡ 242 (mod 256) = 0b11110010

The correlation corresponding to the other candidates follows the same classifi-
cation with respect to their MSBis. This particular distribution of the correlation
coefficients among the key hypothesis can be explained by the carry bit propagation.
If a carry difference between an hypothesis and the correct intermediate value occurs
at the MSBi, it will have no effect on the bits under attack, but on the the subsequent
ones. On the opposite, if a carry difference occurs at the least significant bit (LSBi)
of the intermediate value, the carry effect will be propagated on a number of the
bits under attack.

A consequence of this classification of the correlation coefficients among the
key candidates is the symmetry of the distribution. As we observe in Figure 3.2,
the correlation coefficients are symmetric with respect to the correct key k and
its counterpart differing from its MSBi, respectively 50 and 178 in the figure.
Algebraically, these symmetries are expressed as:

r(k + 128i− j (mod 256)) = r(k + 128i + j (mod 256)), i, j ∈ Z,
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Figure 3.2: Simulated correlation coefficients for all key hypothesis involved in a
modular addition. The correct key value is 50.

where r(k∗) is Pearson’s correlation coefficient computed for the Hamming weight
of the intermediate value for an hypothetical key value k∗ and the actual key value
k: r(s) = ρ(WH(k∗ + M (mod 28)), WH(k + M (mod 28))) and M is the plaintext
random variable taken from a uniform distribution.

3.3.1 Practical attacks on single modular addition

Boura et al. applied conventional correlation-based DPA techniques in the Ham-
ming weight model against Skein in MAC constructions and encountered the same
discrepancies in the key recovery [25].

In Section 3.5 we provide the results of our own experiments and confirm the
failure of the recovery of some of the key bytes.

3.3.2 The butterfly attack

Based on the observation that the correct key k is the point of origin of symmetric
correlation coefficients, as described by the relation:

r(k − j (mod 256)) = r(k + j (mod 256)), j ∈ Z,

Zohner et al. proposed an attack which exploits this inherent property of the modular
addition to identify the correct key with higher success [125]. Their so-called
butterfly attack computes the intermediate values based on key hypothesis, applies
the Hamming weight as power model and computes the correlation coefficients, thus
following a conventional DPA approach. Then, the butterfly attack executes an
additional step which aims at determining the point of origin of the most accurate
symmetry in the correlation coefficients with a least square approach. Namely, for
each key candidate k∗, the method accumulates the square of the Euclidean distance
between the correlations of k∗ and any other candidate j:

lsq(k∗) =
255∑

j=1

(r(k∗ + j (mod 256))− r(k∗ − j (mod 256)))2.
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Clearly, in a noise-free environment, the least square approach returns 0 for k∗ = k
because the symmetry of the correlation coefficients is centred in k. However,
k∗ = k + 128 (mod 256) is also a point of origin of the symmetry of the correlation
coefficients, therefore its sum of squared distances is also 0. The butterfly attack
applied to our simulated data clearly outputs two top candidates, as depicted in
Figure 3.3.
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Figure 3.3: Butterfly attack applied to simulated (noise-free) data. The correct key
value is 50.

The least square approach is an additional step to correlation-based DPA attacks
against modular addition which efficiently reduces to 2 the number of key candidates—
200 power measurements on an 8-bit AVR ATMega 2561 microcontroller were
necessary. However, this duplicity of candidates on key chunks can be problematic
against constructions with large block sizes: Threefish-256 would eventually take an
exhaustive search over 232 full key candidates and Skein-1024 up to 2128 which is
clearly infeasible. Note that sorting algorithms like the ones presented in Chapter 5
will not be relevant since the probabilities of the top two candidates are strictly the
same. Zohner et al. put forward the overlapping of key bits in two target key chunks
to circumvent this difficulty at the cost of a higher number of key chunks—thus
yielding a DPA attack of higher offline complexity.

The approach we present in Section 3.4 is more generic because it applies to a
broader class of devices, not only devices that leak in the Hamming weight model.

3.4 Practical approaches

In this section we propose practical approaches for a DPA attack against modular
addition. Similar strategies have been applied for key recovery against AES hardware
implementations by Batina et al. [8] and Kizhvatov [64].

We first describe a standard DPA attack against modular addition. Let us
consider the following operation:

r ← p ⊞ k (3.1)
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where the result of the addition of the plaintext p and the key k modulo 2n are stored
in the register r. The plaintexts p are chosen from a random enough distribution and
the power consumption induced by this operation on the target device is acquired.
Then the results of the modular addition are predicted over all key candidates
and these intermediate values are mapped to power consumption values using a
power model. Finally, for every key candidate the predicted power consumption is
confronted with the actual one through a statistical distinguisher. The candidate
which matches best the power consumption of the target device is expected to be
the correct key.

However, this straightforward approach fails to recover all the bytes used in
a modular addition, as shown by previous attacks in the Hamming weight power
model (Section 3.3) and by our own experiments (Section 3.5), using the Hamming
distance as power model. Namely, we were able to recover correctly only 48 out of
the 64 bits of the key.

As previously mentioned, the leakage induced by a single modular addition is not
enough to recover the entire key. However, subsequent operations in the cipher may
also leak information about the key. The attacker can choose to exploit a sequence
of instructions instead of a single one so as to capture more relevant leakage. For
example, let us consider as in Figure 3.4 the following two modular additions: pi ⊞ki

and pj ⊞ kj , and the combination of the corresponding instructions within a third
one: (pi ⊞ ki) ⊙ (pj ⊞ kj), where the ⊙ operator can either refer to the modular
addition or the XOR.

ki,t kj,t

pi,t pj,t

Figure 3.4: Application of operation ⊙ on the result of two modular additions
involving two key blocks.

At the instruction level, assuming that the registers ra and rb are initialized to
pi and pj respectively, three steps are performed:

ra ← ra ⊞ ki

rb ← rb ⊞ kj

ra ← ra ⊙ rb

From attacking one to three combined operations, the number of key bits to
recover is doubled, which quadratically increases the number of hypothesis to
compute and thus, the cost of the offline phase of the attack. However, such attack
still falls into the class of first-order DPA attacks since a single instance of time is
considered, unlike second-order DPA for example where preprocessing of the power
traces is necessary.
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The success of a DPA attack against this combined modular additions depend
on the nature of the combining ⊙ operation.

Such combination of two modular additions is found in various block ciphers,
such as TEA [119], FEAL [68] and Threefish [40], on which we test our methods in
Section 3.6.

Algorithm 6 Computation of an n-bit output by successive application of modular
addition followed by ⊙ on 2n-bit plaintext and key

Input: Plaintext blocks: pi and pj — Key blocks: ki and kj .
1: Out← zeros(n)
2: Interm← zeros(2n)
3: Interm(1 : n)← pi ⊞ ki

4: Interm(n + 1 : 2n)← pj ⊞ kj

5: Out(1 : n)← Interm(1 : n)⊙ Interm(n + 1 : 2n)
Output: (pi ⊞ ki)⊙ (pj ⊞ kj)

3.4.1 First approach: Guessing two blocks at a time

We now describe the successive states of the registers during the execution of
Algorithm 6, where two key blocks pi and pj are added with two key blocks ki and
kj .

The registers are initially configured as follows:

r1 ← pi,1 r#w+1 ← pj,1

r2 ← pi,2 r#w+2 ← pj,2

...
...

r#w−1 ← pi,#w−1 r2#w−1
← pj,#w−1

r#w
← pi,#w

r2#w
← pj,#w

During the execution of the modular addition instruction, i.e. steps 3 and 4 of
Algorithm 6, the contents of the registers are updated in this way:

r1 ← pi,1 ⊞ ki,1 r#w+1 ← pj,1 ⊞ kj,1

r2 ← pi,2 ⊞ ki,2 ⊞ ci,1 r#w+2 ← pj,2 ⊞ kj,2 ⊞ cj,1

...
...

r#w−1 ← pi,#w−1 ⊞ ki,#w−1 ⊞ ci,#w−2 r2#w−1 ← pj,#w−1 ⊞ kj,#w−1 ⊞ cj,#w−2

r#w
← pi,#w

⊞ ki,#w
⊞ ci,#w−1 r2#w

← pj,#w
⊞ kj,#w

⊞ cj,#w−1

(3.2)

where ci,t refers to the carry produced from the word t of block i and the modular
addition ⊞ is modulo 256.

Note that here the carries produced by the additions performed inside the block
are considered, but the addition at the block level is modulo 2n. Finally during the
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application of step 5 of the algorithm, the registers are configured in the following
way:

r1 ← (pi,1 ⊞ ki,1)⊙ (pj,1 ⊞ kj,1)

r2 ← (pi,2 ⊞ ki,2 ⊞ ci,1)⊙ (pj,2 ⊞ kj,2 ⊞ cj,1)

...

rNr−1
← (pi,Nr−1

⊞ ki,Nr−1
⊞ ci,Nr−2

)⊙ (pj,Nr−1
⊞ kj,Nr−1

⊞ cj,Nr−2
)

r#w
← (pi,#w

⊞ ki,#w
⊞ ci,#w−1)⊙ (pj,#w

⊞ kj,#w
⊞ cj,#w−1)

Assuming that the device leaks in the Hamming distance model, we map these
intermediate values in the registers after step 5 of Algorithm 6 to the following
leakages values as follows:

l1 = WH((pi,1 ⊞ ki,1)⊕ ((pi,1 ⊞ ki,1)⊙ (pj,1 ⊞ kj,1))) (3.3)

l2 = WH((pi,2 ⊞ ki,2 ⊞ ci,1)⊕ ((pi,2 ⊞ ki,2 ⊞ ci,1)⊙ (pj,2 ⊞ kj,2 ⊞ cj,1)))

...

l#w−1 = WH((pi,#w−1 ⊞ ki,#w−1 ⊞ ci,#w−2)

⊕ ((pi,#w−1 ⊞ ki,#w−1 ⊞ ci,#w−2)⊙ (pj,#w−1 ⊞ kj,#w−1 ⊞ cj,#w−2)))

l#w
= WH((pi,#w

⊞ ki,#w
⊞ ci,#w−1)

⊕ ((pi,#w
⊞ ki,#w

)⊙ (pj,#w
⊞ kj,#w

⊞ cj,#w−1)))

where WH(x) refers to the Hamming weight of x.
The key recovery follows a conventional DPA attack approach using the com-

bination of two modular additions as intermediate value. Because of the carry bit
involved in the subsequent intermediate values, the attacker proceeds from the least
to the most significant words of the block, recovering one word at a time. For each
word of intermediate value, the key hypothesis to be computed and checked against
the measurements are all possible pairs of key words ki,t and kj,t, 1 ≤ t ≤ #w. The
key pair hypothesis which yields the highest correlation coefficient is the correct one,
as shown by our experiments in Section 3.5.2.

The correct word for an intermediate value is iteratively recovered, allowing the
attacker to predict the two carry bits ci,t and cj,t used in the next word. At the end,
all the key words are recovered.

Attack complexity

We describe here the attack complexity in terms of the number of hypothesis
considered. For each pair of key words (of length w bits), 22w key pair hypothesis are
considered. As two key blocks are composed in total of 2#w words, the complexity
of the full key recovery is equal to #b#w22w−1. As we can see, the attack complexity
turns out to be very high for devices with a word length w larger than 16 bits. In
the next section, we propose an improvement to our strategy so as to render it
practical for such devices.



3.4 Practical approaches 53

3.4.2 Approach 2: Using divide and conquer

The modular addition is generally performed bitwise and serially (although more
complex adders may feature special improvements, such as the carry look-ahead
adder which calculates the carry bits in advance [84]). Since the operation has to
be divided depending on the device architecture, the attacker can decide to divide
further the number of key bits to be recovered at a time. According to Tunstall et
al. [113] and Brier et al. [27], there exists a linear relation between the correlation
coefficients ρn computed on data of size n bits and the correlation coefficients ρm

computed on an m-bit truncation of these data, m ≤ n:

ρm = ρn

√
m

n
(3.4)

We use this relation to enhance the feasibility of our attack against devices with
large block sizes. We divide each key word kib,iw (1 ≤ ib ≤ #b and 1 ≤ iw ≤ #w)
in #d chunks of length d = w

#d
and denote a chunk as: kib,iw,id

with 1 ≤ id ≤ #d.
Hence, the leakages corresponding to the first chunks of two key blocks ki and kj in
the #w registers will be:

l1 = WH((pi,1,1 ⊞ ki,1,1) (3.5)

⊕ ((pi,1,1 ⊞ ki,1,1)⊙ (pj,1,1 ⊞ kj,1,1))) (3.6)

l2 = WH((pi,2,1 ⊞ ki,2,1 ⊞ ci,1,1)

⊕ ((pi,2,1 ⊞ ki,2,1 ⊞ ci,1,1)

⊙ (pj,2,1 ⊞ kj,2,1 ⊞ cj,1,1)))

...

l#w−1 = WH((pi,#w−1,1 ⊞ ki,#w−1,1 ⊞ ci,#w−2,1)

⊕ ((pi,#w−1,1 ⊞ ki,#w−1,1 ⊞ ci,#w−2,1)

⊙ (pj,#w−1,1 ⊞ kj,#w−1,1 ⊞ cj,#w−2,1)))

l#w
= WH((pi,#w,1 ⊞ ki,#w,1 ⊞ ci,#w−1,1)

⊕ ((pi,#w,1 ⊞ ki,#w,1)

⊙ (pj,#w,1 ⊞ kj,#w,1 ⊞ cj,#w−1,1)))

We start by recovering ki,1,1 and kj,1,1 from the leakage l1 in Equation (3.5) and then
continue with the recovery of ki,2,1 and kj,2,1 from the leakage l2 in Equation (3.6)
and so on, for each of the #w registers. By iteratively applying these steps for each
of the #d chunks of the words, an attacker is able to recover the entire blocks ki

and kj . Finally, the iteration of these steps for all the key blocks allow an attacker
to recover the entire key.

Attack complexity

As before, we express the complexity of the attack in terms of the number of key
chunk hypothesis. A correct pair of key chunks is found among 22d chunk hypothesis.
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Thus, a correct pair of key words is retrieved among #d22d chunk hypothesis. A
correct pair of key blocks ki and kj is found among #w#d22d chunk hypothesis and
in total, the entire key recovery necessitates #b

2 #w#d22d hypothesis (the 1
2 comes

from that the key blocks are recovered pairwise).

3.4.3 One block is known

Some ciphers feature a combination of modular addition with a constant, as depicted
in Figure 3.4.3. In the block cipher TEA [119] and its variant XTEA [120] for
example, it is possible to target the XOR of two modular additions, only one of
them involving a key block. The same methods as in the previous sections can be
applied, at a lower cost in terms of key hypothesis. Let us denote by ξ the constant
value (of same length as the plaintext and key). As before, ξ is divided into #b

blocks, and each block is further divided into #w words, respectively denoted as
first and second indexes. This approach is a straightforward correlation-based DPA
attack, yet the slightly higher complexity of the intermediate value yields successful
key recoveries as we show in Section 3.5.

ki,t

pi,t

ξ

Figure 3.5: Combination of operation ⊙ on the result of a modular addition and a
constant value

Assuming that the device leaks in the Hamming distance power model, the
leakages of the registers can be expressed as:

l1 = WH((pi,1 ⊞ ki,1)⊕ ((pi,1 ⊞ ki,1)⊙ ξi,1))

l2 = WH((pi,2 ⊞ ki,2 ⊞ ci,1)

⊕ ((pi,2 ⊞ ki,2 ⊞ ci,1)⊙ ξj,2))

...

l#w−1 = WH((pi,#w−1 ⊞ ki,#w−1 ⊞ ci,#w−2)

⊕ ((pi,#w−1 ⊞ ki,#w−1 ⊞ ci,#w−2)⊙ ξj,#w−1))

l#w
= WH((pi,#w

⊞ ki,#w
⊞ ci,#w−1)

⊕ ((pi,#w
⊞ ki,#w

)⊙ ξj,#w
))

The leakage values l1, computed for every key word hypothesis ki,1, is checked
against the actual power values, through the measure of the correlation, and so on,
for each of the #w key words. The same is done for each of the #b key blocks, so as
to recover the entire key. The complexity of this method can be further reduced by
applying the divide and conquer approach described in the previous section.
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Attack complexity

The recovery of a key word takes 2w guesses, the recovery of a key block #w2w

guesses and the recovery of the entire key #b#w2w guesses in total. Similarly, the
application of the divide and conquer method will take #b#w#d2d.

3.5 Experimental results

In this section, we present the results of our experiments in the application of our
methods described in Section 3.4. Our experiments were conducted on two different
8-bit RISC-based AVR microcontrollers built based on the Advanced Harvard
Architecture. The measurements were taken with a Lecroy Waverunner 104MXi
DSO. The power consumption was captured at 500 MS/s.

Our experiments include the recovery of two 64-bit key blocks in a single modular
addition; we present both the successful and unsuccessful outcomes (Section 3.5.1).
Then we move on to the experiments of a DPA attack against a combination of
modular operations for two cases: (1) the combination operation is the modular
addition and the power model is the Hamming distance; (2) the combination
operation is the XOR and the power model is the Hamming weight (Section 3.5.2).
We also present experiments of the divide and conquer approach by recovering parts
of the involved key bits (Section 3.5.3). Finally, we show the results of key recovery
against a combination of operation where one block is known (Section 3.5.4).

3.5.1 Single modular addition

The key recovery against a single modular addition is set up as follows: the key is
128-bit long, and 5000 plaintexts of same length are randomly generated. The key
and plaintexts are divided into two blocks of 64-bit length. The key and plaintext
blocks are added modulo 264 while the power consumption of the device leaking the
Hamming distance is acquired. The plaintext bytes are stored in 16 registers and
the results of the modular addition are stored back in the same registers. Hence,
the hypothetical values are chosen as the Hamming distance between a plaintext
byte and the corresponding result of the operation. The correlation coefficients are
calculated from these hypothetical power values with the power traces. For each of
the key blocks, we are able to recover all the key bytes but the first and last (8th)
ones, that is, we recover 96 out of the 128 bits of the full key.

The correlation corresponding to the 1st byte of a key block is plotted in Figure 3.6.
One can see that the correct key does not yield the highest peak, nor is it ranked
in the top ten candidates. The same conclusion applies to the observation of the
correlation trace obtained in the recovery of the last byte of a block, as it is plotted
in Figure 3.7. For all figures, the black plot corresponds to the correct key.

However, we are successful in recovering the other bytes in a key block. A
thousand power traces are enough, since the amplitude of the correlation coefficients
does not evolve much with more traces. The amplitude of the highest peak of all
candidates in the recovery of the 2nd byte in a key block is plotted in Figure 3.8 in
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Figure 3.6: Unsuccessful recovery of the first byte in a key block

relation to the number of traces.

3.5.2 Combination of operations

We present below the results of our experiments in the application of the method
we describe in Section 3.4.1, that is, targeting the combination of two modular
additions.

In a first case, the combination (⊙ in Figure 3.4) is the modular addition and
the device under attack has shown to leak in the Hamming distance power model.
Therefore, the correlation traces are calculated based on the Hamming distance
between the result of the first addition and the third one. In this scenario, all the
128 bits of the key are successfully recovered. In Figure 3.9a, the correlation trace
corresponding to the correct key is quite easily distinguishable from the other traces.
As shown in Figure 3.9b, 1500 traces are enough to identify the correct key.

In a second case, we apply this approach when the combination of two modular
additions is the XOR and the device under attack leaks in the Hamming weight
power model. As shown by the correlation traces in Figure 3.10, the pair of first
bytes in two key blocks is successfully recovered. The subsequent bytes in a block
yield comparable success.

3.5.3 Divide and conquer strategy

As described in Section 3.4.2, the number of key hypothesis (a measure of the offline
phase of the attack complexity) can be reduced at the cost of the amplitude of the
correlation traces using a divide and conquer approach.

The same implementation as in the first case of Section 3.5.2 is considered: the
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Figure 3.7: Unsuccessful recovery of the 8th byte in a key block

third operation is a modular addition and the device leaks in the Hamming distance
power model. The only difference with the latter case is that nibbles in the key words
are targeted instead of bytes. According to Equation (3.4), the relation between the
correlation coefficients of the two cases is linear and the correlation for nibbles is a
factor of

√
8
16 ≈ 0.707 less than for bytes. This is verified in Figure 3.11, where the

correct key can be identified from the power traces.

The second key nibbles yield a little more amplitude in the correlation trace, as
shown in Figure 3.12.

3.5.4 One block is known

The same implementation as in the two last sections is considered, with the modular
addition as combination operation and the Hamming distance as power model.
However, the second of the two blocks is known, thus halving the number of
hypothesis. The key was again correctly retrieved. The correlation traces are plotted
in Figure 3.13.

3.6 Application to Threefish

We present in this section the results of the experiments of our described methods
against the Threefish block cipher. The implementation of the Threefish algorithm
for our 8-bit AVR microcontroller is presented below.
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Figure 3.8: Amplitude of the highest correlation peak in relation to the number of
traces in the recovery of the 2nd byte

The Fhreefish library

Fhreefish, the cryptographic library for 8-bit AVR platforms we chose for our
experiments, is recommended by the designers of Skein on their website for its high
efficiency [118]. It is developed by Jörg Walter of Syntax-K for Threefish and Skein
for the 256-bit block size and is written in assembler.

3.6.1 Experimental results

As represented in Figure 3.1, each of the key and plaintexts are 256-bit long and
divided into four 64-bit blocks. The plaintext is loaded into 32 registers. Then, the
plaintext blocks are added with the key blocks and stored in the same registers.
During the MIX function, the resulting blocks of these additions are pairwise added
with each other and the results stored back in the registers. This is the result of
this modular addition, which happens inside the MIX function, that we choose to
target in our experiments.

As shown by the correlation traces in Figure 3.14a, we can successfully identify
the two key nibbles involved in this addition. The correlation peak of the correct
key stands out after the analysis of 2500 power traces, as we show in Figure 3.14b.
If we target a pair of key bytes instead of nibbles, that is, without use of the divide
and conquer method described in Section 3.4.2, the correlation coefficient of the
correct key byte is larger and stands out more quickly—1500 traces are required—,
but the number of pairs of key byte hypothesis jumps from 28 to 216, and the total
number of hypothesis considered in the full attack of Threefish-256 increases from
4× 8× 2× 22×4−1 = 213 pairs of nibbles to 4× 8× 22×8−1 = 220 pairs of bytes.
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Figure 3.9: Recovery of a pair of bytes in two key blocks with modular addition as
combination

3.7 Conclusion

The subject of this chapter was the application of DPA attacks on the modular
addition. This operation, found in a number of block ciphers and hash functions, is
inherently a more resistant target function in DPA attacks than the S-box due to its
weaker non-linearity and the carry bits which are propagated over the intermediate
value.

Conventional DPA attacks fail to recover all the key bits involved in a modular
addition because of the carry bit propagation. While Zohner et al. put forward
a more sophisticated statistical distinguisher to circumvent the problem in the
Hamming weight power model, we propose to target a more complex operation than
a simple modular addition, that is, the combination of two additions by a third one
or by an XOR. This practical approach has the advantage of being more generic
with respect to the power model, but it also has the disadvantage of targeting twice
as many bits of the key (except in some cases as for the block cipher TEA and its
variants), which quadratically increases the number of key hypothesis. We propose
to apply a divide and conquer approach to maintain the attack complexity at a
feasible level, at the cost of a factor of amplitude in the correlation traces.

We provide practical evidences of the efficiency of our methods with experi-
ments on simple operations, and verify that they still hold for a high performance
implementation of Threefish on an 8-bit AVR microcontroller.

This practical investigation suggests that the choice of a more complex target
function may help increase the non-linearity (thus make the correlation coefficient
of the correct key more clearly stand out from the other coefficients) and decrease
the discrepancies induced by the carry bits in the modular addition.
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Figure 3.10: Successful recovery of a pair of bytes in two key blocks with XOR as
combination
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Figure 3.11: Successful recovery of first key nibbles
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Figure 3.12: Successful recovery of second key nibbles
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Figure 3.13: Successful recovery of the first byte when one block is known

0 10 20 30 40 50 60 70
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Time (µs)

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t 
(ρ

)

(a) Correlation traces
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Figure 3.14: Recovery of the first nibbles in two key bytes in Threefish





Chapter 4

Microarchitectural Trojans

Hardware Trojans are tiny modifications of the design of a chip which may provide
a covert communication channel with an adversary, as well as control of the device
or disruption of its normal functioning. In this work we study a particular class of
hardware Trojans which can be implemented in a chip in order to induce a side-
channel leakage or to inject a computational fault during the execution of arbitrary
cryptographic software in order to convey secret key material to the attacker. We
discuss various software-based activation mechanisms and the different ways in
which a fault or side-channel attack exploiting the Trojan effect would allow an
adversary to recover secret or private key material. Finally, we describe two practical
scenarios respectively in symmetric (against AES) and asymmetric (against RSA)
schemes where an adversary would be able to mount an implementation attack with
minimal knowledge on the target software based on the vulnerability introduced by
the Trojan.

This is a joint work with Johann Großschädl, Neil Hanley, Markus Kasper,
Marcel Medwed, Francesco Regazzoni, Jörn-Marc Schmidt, Stefan Tillich, Marcin
Wójcik, published in the proceedings of INTRUST 2010 [46]. Part of this work will
also be included in the Ph.D. thesis of Markus Kasper and Marcin Wójcik.
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4.1 Generalities

Side-channel leakage is information unintentionally present in the physical character-
istics of a device while performing computation. Whereas this leakage weakens the
security of a physical cryptographic implementation and therefore is aimed to be min-
imized by a chip designer, conversely the latter also has the capability to deliberately
introduce or amplify, on demand, the side-channel leakage of information meant to
be kept secret. Likewise, while a chip designer aims at producing a chip as reliable
as possible, she may also want her chip to inject, on demand, a computational fault.
These two mechanisms can serve as a backdoor to cryptographic implementations
and can be seen as a “constructive” use of implementation attacks. We refer to
these two sorts of hardware Trojans as microarchitectural Trojans, because they are
nested within the device circuitry. In this chapter, we elaborate on possible designs
and specificities of microarchitectural Trojans.

It is important to remark that microarchitectural Trojans can be the initiative
not only of a malicious designer, but also that of a malicious manufacturer, as chip
fabrication is nowadays outsourced to worldwide third parties. Since the multipli-
cation of actors in the fabrication process from design to system manufacturing
implies more threats to the security of a system, the malicious modifications of a
hardware design as well as the techniques to detect them have motivated intensive
research both from academia and industry [4,44,57,122]. Microarchitectural Trojans
can encompass various malicious activities, such as the deactivation of the chip,
the production of erroneous results, provide access to the system through a secret
backdoor, or the transmission of information through covert channels (this chapter
covers microarchitectural Trojans using the side-channel leakage as a covert channel).
A Trojan Side-Channel (TSC), as defined by Lin et al. [73, 74], is the modification
of a design that uses the physical leakage of a device as a covert channel to convey
secret information. A classification of different Trojan types is given by Tehranipoor
and Koushanfar [110].

The security of numerous embedded cryptographic applications may be at risk
in presence of microarchitectural Trojans, including smart cards, Trusted Platform
Modules (TPMs) and other security tokens. A TPM for example serves in Trusted
Computing (TC) as a root of trust1 (or root anchor). If a microarchitectural Trojan
is inserted in a TPM, the entire security and trustworthiness of the system is at risk.
However, a TPM-functionality can also be implemented in software and run on a

1The Trusted Computing Group (TCG) defines a root of trust as “a component that must
always behave in the expected manner, because its misbehaviour cannot be detected” [54]
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trojanized processor. As emphasized by Waksman and Sethumadhavan [117], if the
processor can not be trusted, no security guarantee can be provided by the system.

Hardware Trojans are by nature very difficult to detect, while possibly being
able to cause large damages to the security of a chip or a network: identity fraud
and communication eavesdropping and more specifically to programmable chips
(FPGAs): IP theft, re-programming or reverse engineering. The different approaches
for hardware Trojan detection investigated in the last years fall into three categories.
First, the full-reverse engineering of the chip, where by the mean of a thorough
analysis of the functionalities the design details are recovered, can be carried
out [112]. However, this expensive and time-consuming scrutinizing will not work
if the Trojan is present in some of the deployed chips but not in the one under
investigation. Second, as already largely performed by the designers themselves after
chip fabrication, the chips can be run on a large set of test vectors and their responses
be compared with the expected ones [122]. Fuzzing techniques may also be applied.
However, the complexity of nowadays architectures renders impossible the exhaustive
verification of all the device states. Moreover, testing the outputs will not reveal
a Trojan intended to leak information through side-channels. The third approach
is to perform a DPA analysis on the test vectors [4, 58] against golden samples.
This approach can help detect any abnormalities in a given side-channel which
emanates from the device. However, the complexity of such analysis remains highly
time-prohibitive and dependent to the precision of the measurement setup. Very
recently, Skorobogatov and Woods introduced a new technique for DPA processing
called Pipeline Emission Analysis (PEA) [106] to extract the AES key from a secure
FPGA chip. Their patented technique allowed them to scan the silicon layer of the
chip and find out the existence of an undocumented backdoor for accessing and
rewriting the configuration file of the FPGA chip [105].

Throughout this chapter, we term as attacker an adversary whose goal is to
recover the key or try to make the device behave in an unintended way. Although the
attacker may be aware of the presence of the Trojan and know the special activation
pattern, from a cryptographic point of view such key recovery is illegitimate.

4.1.1 Contributions

In Section 4.2, we present different implementation attacks which can inspire the
design of a microarchitectural Trojan: induced fault attacks, latent fault (or bug)
attacks and side-channel attacks exploiting the early-terminating multiplication
feature present on some microprocessors. In Section 4.3, we explain the purpose and
detail the design possibilities of an activation system in a Trojan. In Section 4.4, we
elaborate on the second component of a Trojan: its payload section, of which the
goal is to perform the devious action of the Trojan (secret information transmission
or fault injection). In Section 4.5, we give the details of two realistic scenarios which
suit our Trojans’ descriptions. We conclude in Section 4.6.
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4.2 Related attacks

In this section we present implementation attacks which can inspire the design of
microarchitectural Trojans: induced fault attacks, latent fault (or bug) attacks and
microarchitectural side-channel attacks via early-terminating multiplications. The
purpose of a microarchitectural Trojan is to create (or amplify) the applicability of
these attacks.

4.2.1 Fault attacks

Fault attacks are implementation attacks, where the normal functioning of a device
is disturbed by an intentional fault injection in the first stage of the attack. In a
second—offline—stage, the effect of the malfunction is analysed. In most cases, the
faulty output is considered, if necessary in comparison with a correct output obtained
from the same input. Fault attacks are active implementation attacks, because the
computation flow is disrupted by the attacker, as opposed to side-channel attacks,
which are passive implementation attacks because the monitoring of the device is
made during normal functioning.

There exist many ways of disturbing the normal behaviour of a device. Non-
invasive ways, i.e. which do not require a physical alteration of the device, include
the sudden change of voltage in the power supply line (called a spike) or of the clock
frequency (referred to as a glitch). Their insertion during a computation can affect
the data transmitted over the bus, and usually leads to data corruption or skipping
of instruction [7].

Optical fault injection require the decapsulation of the chip and thus are referred
to as invasive attacks. At a particular space location, the injection of a light flash
or a laser beam can also disturb the computation process. The advantage of the
laser is the capability of accurately positioning the fault injection, compared to light
flashes or spikes and glitches [97].

The fault type (spike, glitch, light flash, laser beam), the time and location of
the fault injection and, if predictable, the fault effect on the computation (bit flips
on certain data, instruction skip) define a fault model. A fault model can induce a
key recovery from the exploitation of the faulty output. For an attack to work in
practice, the choice of a realistic fault model is crucial.

On secret-key schemes, fault attacks can be differential, that is, the differences
between the correct and the faulty outputs are analysed [16]. Fault attacks on
secret-key schemes can also be non-differential, skipping individual rounds (thus
reducing their number and decreasing the complexity of the cipher) [33] or deleting
the S-box table [98].

On public-key schemes, fault attacks do not require the result of a correct
encryption. In the well-known example of the Bellcore attack [22] (described later
in Section 4.2.2), only one faulty output is required to retrieve the factorization of
the RSA public modulus. Its simplicity makes the Bellcore attack relevant for the
design of a microarchitectural Trojan inducing a fault.
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4.2.2 Bug attacks

In 2008, Biham et al. introduced a new type of attack against public- and secret-
key schemes, the bug attacks, which exploit an accidental erroneous result of
a microprocessor occurring while it multiplies a specific pair of operands [15].
Such unexpected behaviour notoriously happened with the Pentium processor and
its division bug in the mid 1990’s. With the increasing complexity of modern
microprocessors, the functional testing which aims to detect such bugs is made more
difficult, and it is likely that more bugs will slip through. In this context, the insertion
of microarchitectural Trojans is also likely to remain more easily undetected.

Biham et al. present different attacks carried out on a processor which outputs an
erroneous result for the multiplication of the two words a and b, which are assumed
to be known to the attacker.

The first attack presented, targeting RSA-CRT, retrieves the factorisation of the
public modulus following the steps of the Bellcore attack [22], and is of great interest
for the design of a Trojan injecting a fault, because it requires only one ciphertext
to retrieve the factorization of the RSA public modulus. We outline its steps.

The Bellcore attack

The RSA modulus is N = pq where the secret factors p and q are two large primes,
and we state without loss of generality that p < q. The pair of secret and public
keys used by the target processor is (d, e).

First, a ciphertext C is selected by the attacker such that: (1) it is comprised
between p and q (without knowledge of the secret factors, i.e. it has to be close to√

N); and (2), the squaring of C occurring during the decryption routine involves the
multiplication of a by b, known to the attacker, resulting in an incorrect decrypted
message M̃ . We describe later in Section 4.3.2 how to select such ciphertext.

Second, the ciphertext is submitted to decryption on the target buggy micropro-
cessor. In RSA-CRT, the deciphered message M is obtained by the mean of two
exponentiations to the power of d modulo p and q. The first step of decryption is to
reduce C modulo the secret factors.

Cp = C mod p

Cq = C mod q = C (remember that C < q)

In the second step of an RSA decryption, as part of the square-and-multiply algo-
rithm used for exponentiation, Cp and Cq are squared, possibly multiplied if the
corresponding bit of the exponent is set, and so on iteratively, for all the bits of the
exponent. The values Mp and Mq are obtained.

Mp = Cdp
p mod p

Mq = Cdq
q mod q = Cdq mod q

where dp = d mod p− 1 and dq = d mod q − 1. Two integers µ and ν, such that:
{

µ ≡ 0 (mod p)

µ ≡ 1 (mod q)
and

{
ν ≡ 1 (mod p)

ν ≡ 0 (mod q)



68 Microarchitectural Trojans

exist and are easy to compute. Because µ and ν are coprime, the decrypted message
can be reconstructed as follows:

M = µMp + νMq (mod N)

The use of the Chinese Remainder Theorem speeds up by a factor of 4 the RSA
decryption and signature algorithms, which explains its prevalence in RSA imple-
mentations.

Now, recall that the decryption is performed on a processor that erroneously
compute the multiplication of a by b, and that C is such that the squaring of C
involves this multiplication. Therefore,

Cd mod q = M̃q 6= Mq

thus
M̃ = µMp + νM̃q (mod N) 6= M.

However,
M − M̃ ≡ ν(Mq − M̃q) (mod N),

hence, since ν | q, ν ∤ p and (with very high probability) p ∤ M − M̃ , the secret factor
q can be retrieved by computing:

q = gcd(M − M̃, N)

From this equality, we note that M ≡ M̃ (mod q), and thus: C = M e ≡ M̃ e

(mod q). Therefore, the knowledge of a correctly decrypted ciphertext M is not
required, as it was shown by Lenstra [71], which is particularly interesting in our
context:

q = gcd(C − M̃ e, N)

Other attacks exploiting a computational bug

Biham et al. present other attacks with higher time complexity and number of
required ciphertexts: against the Pohlig-Hellman cipher [87], against RSA decryption
with and without use of the Chinese Remainder Theorem (CRT) and RSA decryption
along with OAEP [10]. These attacks assume left to right (LTOR) exponentiations,
i.e. running from the MSBi to the LSBi of the secret exponent. On right to left
(RTOL) exponentiations, i.e. the opposite case, attacks are presented also targeting
Pohlig-Hellman and RSA decryption.

In some sense, since a computational bug is a sort of hidden feature of a processor
which in some circumstances is capable of leaking secret information, it can be seen
as an accidental microarchitectural Trojan.

4.2.3 Early-terminating multiplications

On a high number of 32-bit processors, a (32×32)-bit multiplication a×b is executed
in an iterative manner, processing the multiplicand a with 8 bits of the multiplier b
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at a time. The intermediate product is then shifted and added to the intermediate
result. When the remaining bytes of b are zero, the multiplication terminates “early”
and the 64-bit result is written back to the registers. Most applications, in particular
in the field of Digital Signal Processing (DSP) and multimedia, heavily rely on
multiplication operations, and the early termination of the mul and umul operations
significantly improves the performance of the processor.

On the ARM7TDMI processor, as an intermediate multiplication takes one clock
cycle, a full multiplication a×b takes from 2 to 5 clock cycles to complete, depending
on the multiplier b, including one clock cycle of constant latency [72]. When (1)
the three most significant bytes (MSBys) of b are zero, (2) the two MSBy of b are
zero and its third MSBy is non-zero, (3) the MSBy of b is zero and its second MSBy
is non-zero, or (4) the MSBy of b is non-zero, the multiplication is executed in
respectively 2, 3, 4 and 5 clock cycles. The ARM7TDMI has an instruction pipeline
composed of the following stages: Fetch, Decode and Execute, taking each one clock
cycle. When a multiplication instruction takes from 2 to 5 clock cycles, the pipeline
is stalled during 1 to 4 clock cycles because the Fetch and Decode stages are waiting
for the Execute stage to complete, inducing a decreasing power consumption of the
chip. The pipeline stalls are clearly observable on power measurements, and thus
the different early-terminations clearly distinguishable, as shown in Figure 4.1.

This induced microarchitectural side-channel is the security cost of the perfor-
mance improvement provided by the early terminations when running cryptographic
software. Großschädl et al. have shown that the different latencies depending on
the multiplier b allow an attacker to deduce information in a “coarse-grained” way
through the timing of the multiplication, which eventually allows the attack to
be mounted remotely, even over the Internet. The leakage is also observable in
a “fine-grained” way through the power consumption, which is suitable for em-
bedded devices [53]. Like the ARM7TDMI, other processors are also subject to
an early-terminating multiplication attack, such as the StrongARM SA-1100, the
MIPS32 4Km and certain PowerPC models.

In some sense, the early-termination mechanism can be seen as an unintentional
microarchitectural Trojan.

4.3 Activation mechanisms

We suggest in this section how a microarchitectural Trojan can be activated so as to
perform its malicious activity with minimal chance of being discovered. Additionally,
we explain how and why to input a parameter along with the activation pattern.

Following the Trojan taxonomy suggested by Wolff et al. [122], a Trojan divides
into two parts: the activation mechanism, also called trigger, and the payload section.
To remain undetected in particular during the functional testing of the chip, a
microarchitectural Trojan features a mechanism that triggers its functionalities. The
trigger of a hardware Trojan can be subject to external or internal conditions [110].
A Trojan is externally triggered in response of a signal received through an antenna
or some sensor. A Trojan is internally triggered when the activation conditions
happen inside the chip. These internal conditions can be for example pre-defined
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Figure 4.1: Overlaid (left) and individual (right) power consumption traces showing
ARM7 multiplications that take 2, 3, 4 and 5 clock cycles (top left to bottom
right) [46].

input values, a time, clock cycle or execution count or the sequence of some special
logic values. As internal activation does not require any peripheral as opposed to
external activation, the former can be implemented with only a set of combinatorial
gates and will take only a very low area and performance overhead. In the rest of
the chapter we focus on internal activation mechanisms, for their greater relevance
in the design of a hidden functionality.

An internal activation should be carefully chosen so that the Trojan is not
enabled during the functional testing of the chip, nor is it enabled by mistake by
the user. In the following, we present two methods for an internal activation of the
Trojan. In the first one the chip snoops the data bus waiting for a pre-defined input
value while in the second the operands of a certain instruction are snooped. In both
cases, a pre-defined value initiates the activity of the Trojan. This value should be
long enough and possibly authorize the passing of a parameter which for example
allows an attacker to define during which execution the payload section should occur.
We show later why it is necessary, especially against block cipher implementations.

4.3.1 Method 1: Snooping the data bus

In this first activation method, a comparison module (which is part of the Trojan)
lies between the CPU and the data cache, snooping all data transmitted over the
bus. This module simply compares the data blocks against a pre-defined value,
which can be hard-wired (and thus cannot be changed) for a minimal area overhead
and insignificant latency.

Because of the application to AES we present in Section 4.5, we suggest the
activation pattern to be of length 16 bytes, possibly divided into 12 bytes for the
activation of the Trojan and 4 bytes for its parametrization. A random sequence of 12
bytes has an entropy of 96 bits and is quite unlikely to appear in the ASCII characters
which are intended to be passed on over the data bus. Accidental activation can
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be even more cautiously obviated if a counter is set, that requires the activation
pattern to be input a certain number of times before triggering the behaviour of the
Trojan.

We suggest that the same pattern is used for both activation and deactivation
so as to keep the area overhead minimal.

The activation of the Trojan can eventually take place within a challenge-response
authentication protocol, in which two parts interact: a verifier and a prover. The
former wants the latter to prove that she is in possession of a secret key without
publicly disclosing it. For this purpose, the verifier sends the prover a nonce, the
prover receives it in its register file, encrypts it under the secret key and sends it
back to the verifier. Let us assume that the prover’s AES code runs on a trojanized
processor. Then, an attacker can play the role of a verifier and sends the activation
pattern as a nonce, several times if specified, and monitor the side-channel leakage
induced or amplified by the Trojan.

4.3.2 Method 2: Snooping operands of instructions

Public-key cryptosystems involve the execution of numerous long-integer arithmetic
operations, like a modular multiplication, such as in an RSA exponentiation or
in a point multiplication on an elliptic curve defined over a large prime field.
Besides its prevalence in asymmetric cryptography, the modular multiplication is
also found in many block ciphers, such as RC6 [94], IDEA [69], DFC [50], MARS [29],
MultiSwap [101] and Nimbus [75], in the stream cipher Rabbit [18] and in the message
authentication code UMAC [17]. Also, the mul instruction is used in the optimized
software implementation of the AES by Gladman [52] to speed up the execution of
the MixColumns transformation.

In this second method for the Trojan activation, the operands of a specific
instruction, here at the example of the mul instruction, are compared against pre-
defined values. The mul instruction takes as input two integers a and b, each of
length 32 or 64 bits depending on the size of the registers. Architectures with
smaller sizes are not considered since a full functional testing of the processor would
then reach a feasible complexity. On a 32-bit processor, the chance of accidentally
activating the Trojan would be 2−32−32 = 2−64. We observe that in case of the
squaring of a long integer composed of the words a and b, both multiplications
a× b and b× a are involved. Hence, the chance of accidental activation is almost
doubled, yet remaining sufficiently low: less than 2−63 and 2−127 on 32- and 64-bit
architectures respectively.

A scenario where an attacker has the ability of feeding the processor with a
pair of operands of his choice so as to activate the Trojan is described by Biham et
al. [15]. We explain here how a ciphertext can be chosen so as to involve a desired
multiplication a × b which in our scenario triggers the Trojan. Let us assume a
CRT-based RSA decryption running on a trojanized processor. P and Q are the
secret factors (unknown by the attacker) of the (known) modulus N , and we state
without loss of generality that P < Q. The integer ⌊

√
N⌋ is comprised between P

and Q, and any integer close to ⌊
√

N⌋ satisfies this condition. The attacker replaces
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the two least significant words of ⌊
√

N⌋ by a and b to form a “poisonous” ciphertext
C, which she submits to the trojanized processor. Upon fectching C in its registers,
the multiplier reduces C modulo P and Q. Note that C mod Q = C because C < Q.
Then, the reduced ciphertexts are squared modulo P and Q respectively. The
squaring of C modulo Q involves the multiplications of a by b and b by a, and one
of which fires the trigger. To summarize, the adversary can activate the Trojan by
feeding the decryption function a carefully manipulated ciphertext.

4.4 Effects of the Trojan

Following the description of the possible activation methods, we now elaborate on
the second component of a Trojan: the payload section. Once activated, the Trojan
can be designed to perform various devious actions, which divide into two sorts: the
injection of one or several computational faults and the insertion of a side-channel
leakage. Whereas the first kind makes the cryptographic routine output an erroneous
result, the second leaves the output correct but requires an access for an attacker to
the observation of a side-channel leakage: execution time, power consumption or
electromagnetic radiations.

The conveyance of secret information is carried out by one trojanized instruction,
but its malicious action should not occur every time the instruction is called once
the Trojan is activated. In order to keep the Trojan hidden, especially when it
inserts a fault, its devious activity should occur only at the points dictated by the
attacker. We count three possible action scenarios.

• Only one call to the trojanized instruction is corrupted upon activation.
This can be the same call as the one which triggered the Trojan, or the
instruction can wait for a specific count of this instruction or a certain number
of clock cycles before enabling the payload section. All other executions of
the trojanized instruction are performed normally. We note that a trojanized
mul instruction which, upon reception of the pre-defined activation operands
a and b in its two input registers, flips a bit of the product a× b in the output
register, is similar to the setup of a bug attack [15].

• A certain number of calls to the trojanized instruction are affected upon acti-
vation. This number of leaking instructions is either pre-defined or determined
by the attacker through the parametrization of the Trojan, possibly supported
in the activation phase. The first artificially leaking instruction can occur
after a certain number of executions or clock cycles, again either pre-defined
or requested by the attacker through parametrization. In Section 4.4.1, we
show how such a Trojan operating in 16 consecutive calls to a xor or a load

instruction can recover the key in an AES implementation.

• The Trojan operates as long as it is activated until deactivation. We recall
that deactivation is processed in the same manner as activation, using the
same pre-defined input. Every call to the trojanized function artificially leaks
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information, hence this Trojan is suitable in the context of timing and power
analysis attacks, as we show in Sections 4.4.2 and 4.4.3.

We now give detailed examples on how a trojanized instruction can disclose
secret information through the insertion of a computational fault in Section 4.4.1
and through the induction of a side-channel, in Sections 4.4.2 and 4.4.3.

4.4.1 Fault induction

Fault inductions is the simplest way in which a microarchitectural Trojan can leak
information. In the following, we present two designs of fault induction that a
Trojan can follow to recover the key. In a first one, suitable against block cipher
implementations, the lookup table returns zero instead of the actual entry value. In
the second design, suitable against RSA implementations, a trojanized instruction
flips one bit of the result.

Zero lookups

Let us consider a software implementation of the AES that uses a lookup table for
the S-box. In the following example, the microarchitectural Trojan is embedded in
the load instruction, but a similar attack could be devised with the xor instruction.
Here, the load instruction is designed to return zero for the 16 bytes of the final
SubByte function (the cipher structure is outlined in Section 2.2.5). Note that setting
a function to a known value during the execution of a block cipher is equivalent to
reducing its number of rounds to the number of rounds performed after these zero
lookups. In our example, after the final SubByte function, the remaining operations
are ShiftRows and AddRoundKey. Therefore, if the final SubByte function returns
zero, the final round key is directly output as the ciphertext, allowing the attacker
to deduce the master key with a reverse application of KeySchedule. Unlike the
usual fault attacks against the AES, namely differential fault attacks, no correct
encryption is needed in this setup.

Meanwhile, in a practical implementation of this zero lookup attack, an adversary
would have to deal with two main issues. First, the activation of the Trojan takes
place at the beginning of the encryption, upon matching of the plaintext value with
a hard-wired pre-defined activation pattern. But as explained in Section 4.2.1, the
fault has to be inserted in the final round of encryption. The implementation details
may be unknown by the attacker, hence the count of load instructions for which
the activation of the Trojan has to be delayed after triggering may also be unknown.
This issue can be overcome with the passing of a parameter along with the activation
pattern, as described in Section 4.3.1, and some “trial and error” session, unless the
attacker knows the details of the AES software running on the target processor.

A second issue an attacker would have to deal with in practice are context switches,
which occur in multitasking environments and where different processes interleave
with each other. With context switches, the count of load or xor executions becomes
more difficult to predict.
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Single bit-flip in instruction execution

A trojanized instruction can be designed so as to flip one or several bits of the
instruction output upon activation. In this case, the injected fault meets the models
of differential fault attacks on symmetric ciphers [16, 39, 114], and as well that of
RSA in the bug attacks [15].

Against AES implementations, the xor instruction is a good choice of function
to trojanize because it directly manipulates the round key in the AddRoundKey

function. Tunstall et al. [114] presented a differential fault attack on AES that
allows an adversary to reduce the key entropy from 128 down to 8 bits (i.e. 256 key
candidates) with a single pair of correct and faulty ciphertexts, assuming that a
random byte fault is injected at a known position of the state in the 8th round. Like
in Section 4.4.1, the Trojan inserts a fault several executions of xor instructions
after recognition of the activation sequence, thus the attacker should be able to
define the delay length through parametrization.

Against implementations of RSA [95] and that of other public-key cryptosystems,
the natural candidate for implementing the trigger mechanism is the mul instruction,
where two pre-defined 32-bit operands can activate the Trojan in an RSA decryption.
Section 4.3.2 details how to construct such activation ciphertext. Unlike Trojans
targeting block cipher implementations, a Trojan against RSA implementations can
use the mul instruction for the activation and the payload, i.e. the bit flip in the
result of a multiplication. This scenario would meet the conditions described by
Biham et al. for a CRT-based implementation of RSA [15] and allow an attacker
to retrieve the key used in a decryption operation with a single chosen ciphertext.
The key recovery follows the steps of the Bellcore attack [22] that we outlined in
Section 4.2.2.

Against implementations of block ciphers which use multiplications, such as
IDEA [69], RC6 [94] and DFC [50], the injection of a fault in the mul instruction
may also allow an attacker to gain information on the round key multiplied with a
known intermediate value.

4.4.2 Timing variation

Besides the injection of a fault during the computation, a Trojan can also be
designed to make the latency vary depending on the key bytes being manipulated.
Otherwise stated, it can introduce an artificial side-channel, observable through
the timing of execution. The monitoring of the execution time does not require a
physical access to the device and can even be performed over a network, including
the Internet. A microarchitectural Trojan can introduce a delay in essentially two
ways: (1) it can stall the pipeline for a certain number of clock cycles; or (2) it
can flush the cache memory, for a less predictable number of clock cycles of delay.
Nevertheless, both methods significantly increase the dependency between the key
and the execution time, in addition to the possibly inherent timing side-channel
induced by the implementation. Therefore, a chosen plaintext strategy like the
timing-driven cache-based attack of Bernstein [12] can be applied. In the following,
we explain how a microarchitectural Trojan can reveal information about the secret
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key used in software implementations of the AES and RSA via a manipulation of
the latency of the xor and mul instructions respectively. As previously, we consider
a 32-bit architecture.

AES and other secret-key schemes

Recall that in the AES, the plaintext is first added with the key, by the use of the
xor operator. Against AES implementations, the xor instruction is thus a natural
candidate for a Trojan implementation. Among the 4 bytes output by the xor call,
if the least significant byte (LSBy) is zero, that is, if the LSBys of the 32-bit key
and plaintext words are equal, the Trojan stalls the pipeline by one clock cycle.
Analogously, the pipeline is stalled by 2 and 4 clock cycles if the second and third
output LSBys are equal to zero; and finally, the pipeline is stalled by 8 clock cycles
if the MSBy of the output is equal to zero. The number of clock cycles taken by the
execution of this xor call ranges from 1 to 16, and each amount of delay determines
which of the four output bytes are zero. For each zero output byte, a key byte
is identified. Consequently, once the Trojan activated, the attacker can submit
plaintexts of his choice to identify the key bytes input in an AES AddRoundKey

function. The number of clock cycles 1, 2, 4 and 8 for which the pipeline is stalled
are given as examples, but note that any superincreasing sequence, i.e. where each
term is greater or equal to the sum of the previous terms, fulfils the requirement,
namely: an adversary is able to identify the zero bytes output by the xor instruction
from the variations of latency.

For each 4-byte word, about 204 submissions are required on average, according to
simulations. Therefore, since the recoveries of the four 4-byte words are independent,
about 816 submissions to the trojanized device are required. Parametrization, here,
can help the attacker target only one AddRoundKey function and recover only one
4-byte key word at a time.

RSA and other public-key schemes

Against RSA and other public-key schemes implementations, a similar attack can
be mounted when the Trojan increases the latency of the mul instruction depending
on the magnitude of one of the two operands. The Trojan stalls the pipeline when
the LSBy of the 32-bit multiplicand is zero (and the three other bytes are non-zero),
and similarly, the Trojan stalls the pipeline for 2 and 4 cycles when the second and
respectively third LSBys of the multiplicand are zero (other bytes being non-zero).
And finally, when the MSBy is the only byte of the multiplicand being zero, the
Trojan stalls the pipeline for 8 clock cycles. The number of clock cycles of the
additional latency of the mul instruction ranges from 0 when none of the multiplicand
bytes are zero, to 15, when the entire multiplicand is zero. This can be seen as the
inverse of the early-termination effect presented in Section 4.2.3 and may be referred
to as late-termination effect. This artificial side-channel can help an adversary
deduce the sequence of modular multiplications and modular squaring operations
which compose an exponentiation and, if the exponent is secret, allow an adversary
to recover its bits. Note that this approach works for “textbook” RSA as well as for
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optimized implementations, including when the plaintext or ciphertext is padded
according to PKCS #1 [53,59].

4.4.3 Power variation

If an attacker is able to monitor the power consumption taken by the trojanized
microprocessor during an artificially leaking instruction as the xor and mul described
in the previous section, she will directly observe the different latencies induced by
the Trojan. On power traces, not only the overall execution time is measurable, but
the periods of artificial inactivity induced by the Trojan are distinguishable from
the periods of activity of the microprocessor. Indeed, at the circuit level, the power
consumption of a gate is composed of a static component (which is constant and
typically low) and a dynamic component (which is relatively much higher). The
latter is determined by the switchings occuring at the outputs of the gates [76]. When
little switching activity occurs (due to the pipeline stall), the power consumption
of the processor drops down to its static part, as an attacker would easily observe
using a typical measurement setup for power analysis. Therefore, the information
leaked via the power consumption of the xor and mul instructions is the different
latencies of individual executions of these instructions, which an attacker can use to
mount the attacks described in the previous section.

Note that a microarchitectural Trojan may also be used in a “constructive way”
for digital watermarking of a microprocessor core [9]. Like in our example of Trojan
for the mul instruction, an integer multiplier can be designed such that for one
particular pair of operands, the pipeline is stalled for a number of clock cycles.
Such a pair of numbers is hard to guess on microarchitectures of more than 16
bits, and thus allows a processor designer to reliably identify his IP using a typical
measurement setup. The IP owner (or any other entity knowing the correct operand
pair) just has to observe the power profile and if necessary compare the execution
time taken by the integer multiplication of the pre-defined pair of operands with any
other pair of operands. Identifying an IP block through side-channel observations
with the help of a digital watermark is considerably cheaper than a full reverse
engineering.

4.5 Case studies

In this section, we put forward two realistic scenarios where a suitably designed and
implemented Trojan in a general-purpose microcontroller can allow an attacker to
recover the AES secret key of a server on the one hand, and the RSA private key of
a server on the other hand.

4.5.1 AES

In the following, an attack is mounted against an AES implementation running on a
trojanized processor. We use a simple AES-based challenge-response authentication
protocol (Figure 4.2), where one entity, the verifier sends a nonce, or challenge, to
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the other entity, the prover. The prover receives the challenge, encrypts it under the
secret key and sends the result back to the verifier, thereby proving that she is in
possession of the secret key. In our context, the prover is running on a trojanized
processor and the verifier plays the role of an attacker, aware of the Trojan’s presence
and the activation sequence. The attacker’s goal is to recover the secret AES key
used by the server. The attacker first sends a nonce containing the pre-defined
activation pattern to the prover. At some point in time, the prover loads the nonce
into the registers, which activates the Trojan, as described in Section 4.3.1.

Verifier (attacker) Prover (trojanized)nonce

AESK(nonce)

Figure 4.2: Challenge-response protocol, in a Trojan-based attack

Once activated, the Trojan induces variations in the latency of the xor instruction,
as explained in Section 4.4.2, which can be measured and compared via timing
measurements, or directly observed, via power measurements. We assume that the
attacker is able to monitor the power consumption of the prover’s device. In order
to recover a 4-uple of key bytes (referred to as a key word), the attacker sends up to
256 different nonces to the target device, each word containing the same 4 bytes.
For each query and for each byte, she aims at finding out the correct key byte, that
is, the one that makes the pipeline stall. The number of clock cycles for which the
pipeline is stalled during the target xor instruction, ranging from 0 to 15, directly
tells the attacker which of the nonce bytes were equal to the corresponding key bytes.
Within an average number of 204 queries, she will have recovered the 4 bytes of the
key word. Then, she moves on to the next key word. An average number of 816
nonce submissions is required for the attacker to retrieve the entire key.

4.5.2 RSA

In the following, we assume an SSL (or TLS) server running on a trojanized processor.
The SSL software is using a CRT-based implementation of RSA to perform operations
involving the secret key, i.e. decryption and signature generation [95]. In our example,
the attacker plays the role of a client wishing to establish a secure connection with
the SSL or TLS server. His goal is to obtain the secret key used by the server for
key establishment. The possession of this secret key would allow an attacker to
decrypt all encrypted communications between the server and other clients, and to
impersonate the server while communicating with its clients. In essence, the SSL
protocol is composed of two sub-protocols, one of which is the handshake protocol
for authentication and key establishment. When using an RSA-based cipher suite,
the secret key shared between a client and a server is established via key transport:
The client generates a random number, encrypts it under the server’s public RSA
key, and sends the result to the server. Then, the server performs an RSA decryption
and obtains the shared secret.
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Client (attacker) Server (trojanized)C = re(N)

M̃ =RSA-decryptd(C)

Figure 4.3: Key establishment, in a Trojan-based attack.

In order to activate the Trojan, the attacker sends a “manipulated” ciphertext
to the server, instead of an encrypted random number. This manipulated ciphertext
has to be constructed according to the description in Section 4.3.2. In short, the
manipulated ciphertext is an integer C corresponding to the square root of the
public modulus N (rounded to the nearest integer), in which the two least significant
32-bit words are replaced by the two operands a and b that trigger the Trojan when
a mul instruction is executed on them. Once activated, depending on its design
the Trojan can inject a fault in the result of the mul instruction, in which case
the attack procedure is similar to Biham et al.’s bug attack [15]. On the other
hand, the Trojan can cause variations in the latency and power consumption of
the mul instruction. Hence, with an attack like the side-channel key recovery via
early-terminating multiplications [53], the key can be successfully recovered.

4.6 Conclusions

In this chapter, we have introduced microarchitectural Trojans, a new class of
hardware Trojans specifically designed to induce (or amplify) side-channel leakage
emanated by a general-purpose microprocessor when running cryptographic software.
We have defined these Trojans along with their “malicious” or “constructive” purpose
(interpretations may vary); we have investigated the various possibilities for a chip
designer or manufacturer to insert them in the chip, either during the chip design or
during the chip fabrication. We have also proposed novel software-based activation
mechanisms, and we have elaborated on various methods for a Trojan to reveal
the secret key: either by inserting a computational fault (ranging from a single bit
flip to a zero lookup), either by increasing side-channel leakages (execution time or
power consumption) by the mean of pipeline stalls. We have described two “real
world” scenarios where an attacker aware of the Trojan’s presence and the activation
pattern is able to recover the AES secret key and RSA private key used by an
OpenSSL software.

The strength of microarchitectural Trojans is their capability to attack arbitrary
cryptographic software (AES and RSA among others), even in presence of sophisti-
cated countermeasures against SPA and DPA attacks that would normally defeat
these attacks on genuine microprocessors. Microarchitectural Trojans are also highly
difficult to detect through functional testing especially because of the activation
mechanism, and through reverse engineering because of their small area overhead.



Chapter 5

Key enumeration in

side-channel attacks

In a side-channel divide and conquer attack such as DPA, the key is recovered
chunk by chunk in a divide stage, and the chunk candidates are combined to
form full key candidates, which are tested against a valid pair of plaintext and
ciphertext, in a conquer stage. Although it has not drawn a lot of attention from
the side-channel community, the complexity of this latter stage can quickly reach an
infeasible range when the top chunk candidates are not always output first and thus
render the recovery of the entire key impossible. In this chapter we address this
so-called key enumeration problem and propose to build a full key Probability Mass
Function (PMF) out of the individual chunk PMF using pairwise multiplications
and a recursive decomposition of the problem. We show the advantage of this
enumeration over a straightforward approach. Additionally, we show that it allows
an adversary to achieve comparable or better success with lower measurement
complexity in the building phase of a template-based DPA attack.

This is an unpublished joint work with Ilya Kizhvatov and Andrey Bogdanov.
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5.1 Introduction

The common target of a side-channel attack is the recovery of the secret key stored
within an embedded device implementing a cryptographic algorithm. The most
practical key recovery side-channel attacks—DPA and template attacks—are divide
and conquer attacks. In these attacks, the physical leakage of an implementation
enables an adversary to build a distinguisher for the individual small chunks of the
secret key. The individually recovered chunks are then combined to get the full key.

5.1.1 Motivation

The majority of work published on side-channel attacks focuses on improving the
physical and algorithmic part of the attack, that is, the divide part of the attack,
which aims at recovering a single chunk of the key. It is assumed that one can either
a) have enough measurements to obtain a single candidate for each chunk or b) if
there are several candidates for some of the chunks, run an exhaustive search among
all the possible combinations of the chunk candidates. In a realistic situation where
noisy measurement environment is combined with a small allowed measurement
count, the resulting number of full key candidates can be very large, such that the
exhaustive search can be practically infeasible. The problem of how to deal with
multiple full key candidates to reduce the overall attack complexity was typically
overlooked.

5.1.2 Our contribution

In this chapter, we present an algorithm for obtaining a sorted list of full key
candidates using pairwise computations, as we describe in Section 5.5. Our algorithm
significantly improves the overall efficiency of DPA. We use a template-based DPA
attack to get information about the distribution of the position of the correct guess
in the sorted lists for the individual key chunks, because these attacks in particular
allow an adversary to derive a PMF of this distribution. From this chunk PMF,
the algorithm outputs the PMF of the full key in correspondence with a list of full
key candidates sorted by their likelihood. We show the advantage of our algorithm
in practice at the example of template-based DPA attacks in comparison with
a lexicographical sorting. We demonstrate that an optimized sorting enables an
attacker to reduce the profiling stage complexity while keeping the same online
attack complexity.

5.2 Related work

Junod and Vaudenay devised an optimal sorting method [61] for Matsui’s linear
cryptanalysis [77] with lists of small cardinality.

The key enumeration problem in a side-channel attack was first addressed in
the work of Dichtl [37] for the particular case of an ad-hoc template attack against
an embedded software implementation of DES [41]. The algorithm exploited the
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probabilities of individual bits to be correct (previously known from a profiling stage)
and resulted in an optimal list of full key candidates. It is however not applicable
to standard DPA or template-based attacks because information on the key was
recovered bitwise.

More recently, Standaert et al. [116] explained how an optimal key enumeration
algorithm developed by Pan et al. [86] having a high memory and time complexity
can be made applicable through a recursive decomposition of the problem. In the
present work, which was done prior to the publication of Standaert et al., the same
recursive decomposition of the problem is applied, however our method is not as
efficient and requires more computation. We describe later their sorting method in
Section 5.7.

5.3 Complexity of divide and conquer attacks

In this section, we present the measures that we use to compare the different
enumeration methods.

In the case of AES-128, the target of a full DPA attack is the 16-byte key:
K = (k0, k1, . . . , k15). The result of the “divide” part of DPA are 16 sorted lists of
256 bytes each, in correspondance with the 256 probability values ζj of the PMF.
The result of the “conquer” part is a list of 2128 full key candidates sorted with
respect to their probabilities:

Z(i0, i1, . . . , i15) =
16∏

j=1

ζ
(ij)
j ,

where ij is the rank of the correct subkey in the j-th 256-byte list as obtained by
a DPA adversary and ζj is the probability for the correct j-th byte of the key to
appear at rank ij in the 256-byte list. Examples of subkey PMFs we obtained in
our experiments are plotted in Figure 5.1.

A complete enumeration would output 2128 candidates sorted by descending
values of probability Z(i0, i1, . . . , i15), which is the probability that in each subkey
list, the correct subkey is at position i0, i1, . . . i15 respectively. Thus, the more
probable full key candidates are output first. Note that many key candidates will
have equal probabilities Z.

A side-channel adversary outputs a list of key chunk candidates, sorted according
to their probability of being the correct subkey k. More likely candidates appear
first, and each candidate appears only once in the list.

In the Unified Framework introduced by Standaert et al. [107], two metrics are
proposed to assess the strength of a side-channel adversary:

1. the o-th order success rate SR0 is the probability that the correct subkey
appears at position less or equal to o. If k is always ranked first, then for any
o ≥ 1, SRo = 1.

2. the guessing entropy E is the expected rank of the correct subkey. Therefore,
it is the average number of subkeys to be tried out before the correct subkey
is identified. Again if k is always output first, then E = 1.
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Figure 5.1: Empirical PMF for the rank i of the correct key byte candidate in the
DPA sorted list. The DPA is performed using N traces.

These metrics also apply to full key PMFs. Therefore we can use them to
compare our enumeration methods.

5.4 Lexicographical key enumeration

The straightforward strategy an adversary can adopt to combine subkey candidates
is the lexicographical ordering, i.e. the order in which words are listed in a dictionary.

Assume V is a set of n-dimensional vectors: we have v = (v1, v2, . . . , vn) ∈ V
and each component vi is defined over an ordered set. To keep the analogy with the
dictionary and without loss of generality, we state that the larger the index i, the
less significant the position in this ordering. We formally define the lexicographical

order
lex≻ with the following statement for two vectors u, v ∈ V:

u
lex≻ v ⇐⇒ ∃i ∈ J1, nK, ∀j < i, (ui < vi) ∧ (uj = vj)

In the context of key enumeration, this ordering imposes us to restrain the search
space from the start, otherwise the list of full candidates would be of the size of the
search space which would not be sensible with lexicographical ordering (as we see
later with extreme cases). Thus, we choose to consider only the top m candidates
from every chunk distribution and a chunk candidate has a rank comprised between
1 and m. Since we deal with ranking vectors, V is the Cartesian product J1, mKn
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where J1, mK is a subset of N, thus it is an ordered set. The order relation
lex≻ between

two ranking vectors means: “is more likely than”.
For example, we have

(1, 1, . . . , 1, m)
lex≻ (1, 1, . . . , 1, 2, 1)

and

(1, 1, . . . , 1, m− 1, m, m)
lex≻ (1, 1, . . . , 1, m, 1, 1)

If we look at an extreme case such that:

(1, m, m, . . . , m)
lex≻ (2, 1, 1, . . . , 1)

this ordering may seem inappropriate for sorting key candidates by likelihood,
especially when m is a bit large. However, the space complexity, namely O(mn) key
candidates, increases so fast that only very small values for m are acceptable (in
Section 5.6, our computation are limited to m = 3). In fact, when devising a sorting
method, it turns out that a more efficient sorting is quickly more complex than the
lexicographical ordering. For this reason, we keep it as our reference method for
comparison.

Note that this ordering does not take into account the values of the PMF, only
the ranks are considered.

5.5 Key enumeration using pairwise multiplications

In this section we present our method for key enumeration in a DPA attack. For
simplicity in the description, we make the assumption that the position of the correct
subkey will follow the same distribution for all subkeys (the key values change but
the probability values remain the same).

In order to obtain a list of pairs of subkeys sorted according to the PMF of a
single chunk of the key, we perform the following iterative steps:

1. Multiply the values of the subkey PMF pairwise (Figure 5.2). The obtained
list is quadratically larger.

2. Sort this list.

3. If the list has become larger than a certain number T (dictated by the com-
puting memory available), reduce the list to T elements.

The key values are tracked and combined along with the probability values. By iter-
ating these steps, a list of full key candidates, sorted according to their likelihood, is
eventually obtained. The steps of our key enumeration are described in Algorithm 7.
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Figure 5.2: Pairwise computation of Z × Z

Algorithm 7 Sorting of AES-128 key candidates using pairwise multiplications

Input: Subkey PMF Z
1: for r from 1 to 5 do
2: for i from 1 to |Z| do
3: for j from 1 to |Z| do
4: ηi,j = ζi × ζj ⊲ Multiplicate
5: end for
6: end for
7: Z ← Sort({ηi,j}) ⊲ Sort
8: if r < 5 then
9: Z ← (ζ1, . . . , ζT ) ⊲ Truncate

10: end if
11: end for
Output: Full key PMF Z
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t 1-byte lex prw

7 1.1828 1662500 17497
14 1.0124 266890 4.4721
21 1.0011 23677 1.1584
28 1.0002 4305.7 1.0275

Table 5.1: Expected rank of the correct key in single byte PMF (1-byte), in a
16-byte PMF sorted in lexicographical order (lex) and with pairwise multiplications
(prw).

5.6 Experimental results

We implemented and applied our method in template-based DPA attacks against
AES-128, in comparison with the lexicographical ordering.

The computation of the expected rank of the correct key in the PMF is indicated
in Table 5.1. The number t = 7, 14, 21 or 28 corresponds to the number of power
traces involved in the building phase of each template. For each of the lists of full
key candidates, the success rate is always 1. Therefore, only the guessing entropy is
relevant for comparison. The sizes of the considered lists are:

• in a single byte PMF: 28 = 256

• in the lexicographical ordering: 316 = 43 046 721

• in the pairwise multiplication algorithm: 226 = 67 108 864.

We observe as expected that the guessing entropy when the prw algorithm is
applied and t = 14 is much less than the guessing entropy when the lex ordering
is applied and t = 28. Therefore, the application of an efficient sorting algorithm
allows a reduction of the complexity of the building phase in a template-based DPA
attack in comparison with a simple ordering.

5.7 Optimal key enumeration

A more efficient key enumeration method than our pairwise multiplication method
was published by Standaert et al. [116]. We outline it in this section.

The method starts with the merging of two PMFs Z1 and Z2 which are in
correspondence with two sorted lists of key bytes (k

(1)
1 , k

(2)
1 , . . . , k

(256)
1 ) and (k

(1)
2 , k

(2)
2 ,

. . . , k
(256)
2 ).

1. The most likely pair of bytes is naturally the pair of first elements from each
list k

(1)
1 and k

(1)
2 . It is the first pair of subkeys of the result list.

2. From it, a frontier set of pairs is built, composed of (k
(2)
1 , k

(1)
2 ) and (k

(1)
1 , k

(2)
2 ).

The second most likely pair belongs to this set because the probabilities of the
pairs in the frontier set will anyhow be higher than that of any subsequent
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pairs. The two respective probabilities of the pairs in the frontier set are
computed to determine which one must be the second element of the resulting
list.

3. A new frontier set is built adjoining the result list, but composed of a single
pair per line and column. In each row and column, the available element with
the highest rank is always preferred. After multiplication of the probabilities
among the pairs in the frontier set, the most likely pair is chosen as the third
element of the result list.

4. In the further steps, Step 3 is iterated until the frontier set is empty, i.e. all
possible pairs have been added to the result list.

In order to obtain a sorted list of full key candidates, the process is recursively
applied. In the case of AES-128, it would be as follows:

1. The lists of 2-byte subkeys are obtained by merging two lists of single byte
subkeys.

2. The lists of 4-byte subkeys are obtained by merging two lists of 2-byte subkeys.

3. The lists of 8-byte subkeys are obtained by merging two lists of 4-byte subkeys.

4. The lists of full keys are obtained by merging two lists of 8-byte subkeys.

For other key lengths, the process can be further applied or adapted.
We remark that, as for our method using pairwise computation, the enumeration

is optimal (in the sense that no subkeys are omitted) as long as the intermediate lists
are not truncated, which is not avoidable in practice. Although it is not possible to
store a list with 2128 elements, the lists can be large enough for the probability of
omitting the correct key to be negligible.

5.8 Conclusion

In this chapter we addressed the key enumeration problem in a divide and conquer
side-channel attack: how to form full key candidates from the knowledge of the
PMFs of the n key chunks. We put forward a key enumeration based on pairwise
multiplication and recursive application. In comparison with a simple algorithm such
as the lexicographical ordering, our method significantly improves the complexity
of the “conquer” part of a template-based DPA attack. Otherwise presented, our
method yields a comparable success in the overall template attack with a less complex
template-building phase.
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