
Microarchitectural Techniques for Power Gating
of Execution Units

Zhigang Hu, Alper Buyuktosunoglu, Viji Srinivasan,
Victor Zyuban, Hans Jacobson, Pradip Bose

IBM T. J. Watson Research Center

ABSTRACT
Leakage power is a major concern in current and future micropro-
cessor designs. In this paper, we explore the potential of architectural
techniques to reduce leakage through power-gating of execution units.
This paper first develops parameterized analytical equations that esti-
mate the break-even point for application of power-gating techniques.
The potential for power gating execution units is then evaluated, for
the range of relevant break-even points determined by the analyti-
cal equations, using a state-of-the-art out-of-order superscalar pro-
cessor model. The power gating potential of the floating-point and
fixed-point units of this processor is then evaluated using three differ-
ent techniques to detect opportunities for entering sleep mode; ideal,
time-based, and branch-misprediction-guided. Our results show that
using the time-based approach, floating-point units can be put to sleep
for up to 28% of the execution cycles at a performance loss of 2%. For
the more difficult to power-gate fixed-point units, the branch mispre-
diction guided technique allows the fixed-point units to be put to sleep
for up to 40% more of the execution cycles compared to the simpler
time-based technique, with similar performance impact. Overall, our
experiments demonstrate that architectural techniques can be used ef-
fectively in power-gating execution units.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles - Pipeline
processors

General Terms
Design, Performance

Keywords
low power, execution units, power-gating, microarchitecture

1. INTRODUCTION
The impact of CMOS technology scaling on power dissipation is

well known. In particular, due to the scaling down of the threshold
voltage, an exponential growth in subthreshold leakage current is ex-
pected with every crank of the technology wheel [1]. Similarly, scal-
ing down of gate (and in particular, oxide) geometries is resulting in
a very rapid growth of the gate leakage currents [6]. Without correc-
tive measures at the device, circuit and/or microarchitecture-level, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’04, August 9–11, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-929-2/04/0008 ...$5.00.

total standby (leakage) power may well become the dominant part of
the total power consumed by a microprocessor chip in future tech-
nologies.

Prior circuit-level approaches to leakage power reduction include:
body-bias control [4], dual-threshold domino circuits [10], input vec-
tor control [9] and power-gating [14]. Architecture-level leakage
power reduction techniques have focused primarily on SRAMs (the
caches and buffers). Some techniques [5, 11] rely on accurate pre-
dictions of idle periods for different sections of the storage structures,
and gate the supply voltage for these sections during the idle peri-
ods. Heo et al. [7] show that tristating the drivers of the bitlines
reduces the leakage power associated with bitlines. More recently,
Dropsho et.al [3] have explored analytical models to determine the
sleep-mode activation policies for the integer functional units using a
dual-threshold domino logic circuits. Rele et al. [15] use the compiler
to identify the onset long idle periods for different functional units,
and enable power gating for those units during these idle periods.

Many vendor products in the traditional “low power” embedded
space (e.g. [2]) provide power-gating support in the form of “sleep”
modes, typically under software (OS) control. The processor core, in
such a system, can be power-gated off when the operating system de-
tects a long idle loop. Exploiting workload phases and characteristics
to dynamically power-gate off/on selected units within a processor
pipeline, is a technique that to the best of our knowledge is not em-
ployed in any commercial processor yet.

In this paper we focus on this latter, hardware mechanism: namely,
workload-driven, dynamic power-gating. We first explain the mi-
croarchitecture and circuit-level design parameters that need to be
considered in investigating the overall power savings potential in such
an approach. Subsequently, we present experimental results, based on
detailed, cycle-accurate simulation with benchmark application pro-
grams, to quantify the power savings potential for a selected range
of the parameter values. In presenting these results we consider: (a)
the idealized maximum savings based on an “oracle” prediction of the
onset of idle and active periods of a given processor execution unit;
and (b) the actual savings, based on realistic overheads and two very
simple microarchitectural prediction heuristics to determine the onset
of “wakeup” or “power down”.

One of the simple predictors studied is a time-based technique to
power gate an execution unit after observing a pre-determined number
of idle cycles; and restarting the execution unit with a performance
penalty once a pending operation is detected. The other technique
studied uses the branch prediction mechanism to guide the gating of
execution units. An execution unit is turned off as soon as a branch
misprediction is detected.

2. POWER GATING

2.1 Fundamentals
Power gating is achieved by using a suitably sized header (Fig. 1) or

footer transistor for a circuit block that is deemed to be a power-gating

32

2.2

candidate. When the logic detects the onset of a sufficiently long idle
period of the target circuit block, a “sleep” signal is applied to the gate
of the header or footer transistor to turn-off the supply voltage to the
circuit block. Similarly, once it is determined that the circuit block is
being requested for use, the “sleep” signal is de-asserted to restore the
voltage at the virtual Vdd.

virtual Vdd (V)

0 1 01
C

capacitance
switching

S

C D

decoupling
capacitance

sleep
Vdd

Figure 1: Using headers for power gating
Figure 2 shows the key intervals of power gating, assuming power

gating with a header device. All derivations and results also apply to
the footer device implementation.

The interval of inactivity begins at t = 0, and at t = T1

(Tidle detect) the control circuit makes a decision to power-gate the
unit. Until this point the unit still operates in the active mode,
dissipating EL

cyc leakage energy every cycle. During the interval
[T1, T2] (T2 − T1 = Tidle delay) the “sleep” signal is re-buffered
and distributed to the header device incurring an overhead energy,
Eoverhead 1.

When the “sleep” signal is delivered to the gate of the header de-
vice at t = T2, the voltage at the virtual Vdd V starts going down.
If the leakage current were independent of the power supply, the volt-
age drop at the virtual Vdd would be linear in time, and savings in
the leakage energy would begin only after the virtual Vdd is totally
discharged (t = T4 = Tfull discharge). In reality, as the voltage at
the virtual Vdd goes down, the leakage current also reduces, and the
savings in leakage energy begins as soon as the “sleep” signal is as-
serted. As the voltage at the virtual Vdd goes down, the amount of
leakage energy saved per cycle increases, resulting in a super-linear
growth in the aggregate saved leakage energy.

At t = T4 = Tfull discharge the reduction in voltage at the virtual
Vdd saturates (not necessarily at zero, considering leakage through
the header device). This leads to a constant leakage energy dissipated
per cycle, and a linear growth in the aggregate saved leakage energy.

At t = T5 the control logic detects the next busy interval, and
the “sleep” signal is de-asserted, resulting in an energy overhead of
Eoverhead 2 dissipated for generating and driving the signal. At t =
T6 (T6−T5 = Tbusy delay) the header device is turned on, and during
the interval [T6, T7] (T7 − T6 = Twakeup) the virtual Vdd is charged
up to the Vdd level. As the virtual Vdd is charged up, the amount of
leakage energy savings per cycle gradually reduces, reaching zero at
T7.

The break-even point t = T3 (T3 − T2 = Tbreak even) is the
point when the aggregate leakage energy savings Eag saved equals
the energy overhead of switching on and off the header device,
Eoverhead = Eoverhead 1 + Eoverhead 2. Depending on the size of
the header device, the amount of decoupling capacitance, and other
parameters (discussed later), the break-even point may occur either
before or after the virtual Vdd is fully discharged.

Rather than giving simulation results specific to a particular CMOS
technology which are inevitably subject to the accuracy of the leakage
models, we derive analytical formulas expressing the key parameters
of the power gating mechanism through easy-to-understand terms.

0

T1 T2 T3 T4 T5 T6 T7

Eoverhead

voltage at virtual Vdd
saved energy per cycle
aggregate saved energy
overhead energy

Figure 2: Key intervals in the power gating cycle

We use the conventional formula for the average switching energy
dissipated per cycle in a particular macro or unit as

ES
cyc =

1

2
αCSVdd

2, (1)

where CS is the total switching capacitance, including gate, source
and drain capacitance of all transistors as well as wires; α is the
switching factor, averaged over the whole macro, over all cycles in-
cluding those when parts of the macro are clock-gated. The average
leakage energy dissipated per clock cycle when the macro is not Vdd-
gated off is EL

cyc = TILVdd, where T is the clock period, and IL

is the average leakage current through all leakage paths in the macro
or unit. For the following analysis we introduce the leakage factor L
as a ratio of the average leakage and switching energy dissipated per
cycle, L = EL

cyc/E
S
cyc.

When the power supply to the the macro is gated off, the voltage at
all internal nodes that are in logical ‘one’ state (Figure 1) is gradually
decreasing, tracking the voltage at the local supply distribution, V (t).
Assuming that on the average half of the internal nodes are in the state
of logical ‘one’, and the total capacitance at the local power supply is
CD, the total internal capacitance that loses charge is 1

2
CS + CD.

Notice that CD includes the total source capacitance of all transistors
connected to the local power supply (including the header), the wire
capacitance of the virtual Vdd distribution and the decoupling capac-
itance. Furthermore, suppose that while the macro is Vdd-gated, the
voltage V at the local power supply drops by �V i

cyc during cycle i.
Then the amount of energy needed to restore the voltage at the local
supply distribution to the Vdd level is

Ei
cyc = (CD +

1

2
CS)Vdd�V i

cyc. (2)

Notice that for the first cycle that the macro is Vdd-gated (i = 0),
E0

cyc ≈ EL
cyc since the voltage at the virtual Vdd changes by only a

small amount in one cycle, and therefore the leakage current during
the first cycle approximately equals the leakage current through the
macro while it is active. Assuming that there is no leakage through the
header device, and using (2) and (1) and the definition of the leakage
factor L, the voltage drop during the first cycle that the macro is Vdd-
gated can be expressed as

�V 0
cyc =

1

2
αLVdd

1

(1
2

+ CD
CS

)
. (3)

Since the leakage current depends on the voltage level at the local
power supply network, IL = IL(V), the voltage drop in subsequent
cycles i that the macro is Vdd-gated can be expressed as

�V i
cyc = �V 0

cyc
IL(V)

IL(Vdd)
. (4)

To qualitatively understand the dependence of leakage energy on
fundamental parameters of the CMOS technology and characteristics

33

of the microprocessor, we use the common expression for the sub-
threshold leakage current and the linear approximation for changes in
the threshold voltage which is applicable in the vicinity of the nominal
power supply:

IL(V) = I0 exp

(
−VT (V)

mVt

)
, (5)

VT (V) − VT (Vdd) = −DIBL(V − Vdd), (6)

where DIBL is the drain-induce barrier lowering factor, which is ‘typ-
ically’ close to the value of 0.1, Vt = kT/q ≈ 25mV is the thermal
voltage, and m ≈ 1.3. Then

�V i
cyc = �V 0

cyc exp

(
DIBL

mVt
(V (Ti) − Vdd)

)
, (7)

where V (Ti) is the voltage at the local power distribution network i
cycles after that the macro has been Vdd-gated,

V (Ti) = Vdd −
i−1∑
j=0

�V j
cyc. (8)

For typical technology parameters, stated earlier DIBL
mVt

≈ 3. Also,
assuming the typically quoted values for general purpose micropro-
cessors: α = 0.1, Vdd = 1.0V , L = 0.5, CD

CS
= 0.5, we estimate

�V 0
cyc in (3) to be 0.025. Then, for the first several cycles that the

macro has been Vdd-gated the argument of the exponent in (7) is
a small negative number (|x| < 0.25), and a linear approximation
exp(−x) ≈ 1 − x can be used. Then, using (8), expression (7) can
be re-written as:

�V i
cyc = �V 0

cyc

(
1 − DIBL

mVt

i−1∑
j=0

�V j
cyc

)
. (9)

Taking advantage of the small magnitude of DIBL
mVt

�V 0
cyc, and ne-

glecting second-order terms of the form
(

DIBL
mVt

�V 0
cyc

)2

, the above

expression for �V i
cyc can be reduced as follows:

�V i
cyc ≈ �V 0

cyc

(
1 − i

DIBL

mVt
�V 0

cyc

)
. (10)

This formula can only be used for small values of i, such that
�V i

cyc > 0. For i > Nfull discharge (marked as T4 in Figure 2),
the local supply distribution is fully discharged and �V i

cyc = 0.
Using expressions (2) and (10), the amount of energy saved during

cycle i due to Vdd-gating the macro can be expressed as

Ei
cyc saved = EL

cyc − Ei
cyc = EL

cyci
DIBL

mVt
�V 0

cyc. (11)

After the virtual Vdd is fully discharged, (i > Nfull discharge)
Ei

cyc saved = EL
cyc.

For N < Nfull discharge the total (aggregate) energy saved over N
cycles that the macro has been Vdd-gated can be expressed as

EN
ag saved =

N∑
i=0

Ei
cyc saved = EL

cyc
DIBL

mVt

N2

2

αLVdd

2(1
2

+ CD
CS

)
. (12)

For i > Nfull discharge the dependence of EN
ag saved on N becomes

linear, EN
ag saved = E

Nfull discharge
ag saved + (N −Nfull discharge)E

L
cyc.

We estimate the amount of switching energy dissipated in the re-
buffering network driving the header device, Eoverhead , as follows.
Let WH be the ratio of the total area of the header device to the area
of the clock-gated macro. Then, the gate capacitance of the header

device Cheader is approximately WH× the total gate capacitance of
all transistors in the macro (assuming the same density of gate area
in the header and the rest of the macro). The latter is responsible for
approximately half of the total switching capacitance in the macro
CS . Then in order to turn the header device on and off (to gate and
un-gate the macro), the energy overhead is:

Eoverhead = 2CheaderV
2
dd ≈ 2WH

1

2
CSV

2
dd = 2

WH

α
ES

cyc (13)

Using this result (note that the multiplier 2 takes care of the re-
buffering network to drive the header device.) and (12), the number
of cycle needed for the macro to be Vdd-gated to compensate for the
overhead of switching the header device, is found from EN

ag saved =
Eoverhead as:

Nbreak even = 2
1

Lα

√
mVtWH

Vdd · DIBL
(1 + 2

CD

CS
) (14)

For the typical technology parameters, stated earlier, and typically
quoted ratio of the size of the header device to the size of the macro,
WH = 0.1 we estimate the number of cycles until the break-even
point as Nbreak even ≈ 10. Notice that for the given assumptions the
“break-even” point occurs before the local power supply distribution
is fully discharged, Nbreak even < Nfulldischarge. Larger size of the
decoupling capacitance CD and the header transistors WH increase
Nbreak even, whereas, higher value of the DIBL effect factor and the
leakage factor L reduce Nbreak even.

2.2 Power Gating Potential for Execution Units
We now quantify the power gating potential for various execu-

tion units of a state-of-the-art out-of-order superscalar processor
model (details in Section 3) using several different applications from
SPEC2K suite. For this study we assume a perfect predictor that
can predict the idle intervals of these units with no delay (i.e.,
Tidledelay=0 and Tbusydelay=0). Note that the unit uses Twakeup (in-
terval T7 − T6 in Figure 2) cycles out of the idle period so that it is
ready for operation at the start of the busy period, thereby there is no
performance penalty incurred. The following equations are used to
estimate the fraction of cycles the units can be power-gated assuming
that Tidle is greater than Toverhead.

Toverhead = (Twakeup + Tbreakeven)

Oppcycles =
allidleintv∑

i=1

(T idlei − Toverhead)

PowerGatepot =
Oppcycles

totalexecutioncycles

For example, the sequence of activity bits of some unit
“11110000011111100001111000000111” has three idle intervals. As-
suming Toverhead = 3, the unit can be power-gated for 6 (calculated
as OppCycles = (5−3)+(4−3)+(6−3)) cycles out of a total ex-
ecution time of 32 cycles, thereby achieving a 19% PowerGatepot.

Figures 3 and 4 show the power gating potential for various ex-
ecution units using different Toverhead values averaged across a set
of SPEC2K benchmarks. As expected the floating point benchmarks
have more opportunity to power-gate the fixed point unit (fxu) com-
pared to the integer benchmarks. Similarly, the integer benchmarks do
not have any floating point operations and therefore the floating point
unit (fpu) can be power-gated for the entire run of the application.

Different execution units will require different Toverhead to effec-
tively power-gate their logic, and the total power gating potential can
be determined independently for each of the execution units. For
example, if the fxu requires 9 cycles and fpu requires 14 cycles of

34

0

10

20

30

40

50

60

70

80

90

100

fpu0 fpu1 fxu0 fxu1

Various Units

P
o

w
er

 G
at

in
g

 P
o

te
n

ti
al

 (
%

)

0 4 9 14 19 24

Figure 3: Power gating potential averaged across SPEC2K float-
ing point applications for various values of Toverhead. FPU: Float-
ing point unit, FXU: Fixed point unit.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

fxu0 fxu1

Various Units

P
o

w
er

 G
at

in
g

 P
o

te
n

ti
al

 (
%

)

0 4 9 14 19 24

Figure 4: Power gating potential averaged across SPEC2K inte-
ger applications for various values of Toverhead

Toverhead, we see from Figure 3 that we can achieve power gating
potential numbers of up to 60% each for the two fixed point units, and
over 30% for the floating point units.

3. EVALUATION METHODOLOGY
We use a generic, parameterized, out-of-order superscalar proces-

sor model called Turandot [13] with configuration shown in Table
1. The modeled microarchitecture is similar to a current genera-
tion POWER4 like microprocessor [16]. This research simulator
was calibrated against a pre-RTL, detailed, latch-accurate processor
model [12].

Processor Core
Decode rate 5 instructions per cycle
Issue queues fxu/lsu queue (2x20), fpu queue (2x10)
Functional Units 2 FXU, 2 FPU, 2 LSU, 1 BRU
Physical registers 128 GPR, 128 FPR
Branch predictor 16K-entry bimodal, 16K-entry gshare,

16K-entry selector, all with 1-bit entries
Memory Hierarchy

L1 Dcache Size 32KB, 2-way, 128B blocks
L1 Icache Size 64KB, 4-way, 128B blocks
L2 I/D 1MB, 4-way LRU, 128B blocks

9-cycle latency
Memory Latency 77 cycles

Table 1: Configuration of simulated processor

In this paper, we report experimental results based on PowerPC
traces of a set of 21 SPEC2000 benchmarks, namely, ammp, applu,
apsi, art, bzip2, crafty, equake, facerec, gap, gcc, gzip, lucas, mcf,
mesa, mgrid, perl, sixtrack, swim, twolf, vpr and wupwise. For all the
results, in reporting average statistics, we use geometric mean across
the corresponding benchmark suite (SPECINT and SPECFP). These
traces were generated using the tracing facility called Aria within the
MET toolkit [13]. The particular SPEC2000 trace repository used in
this study was created by using the full reference input set. However,

sampling was used to reduce the total trace length to 100 million in-
structions per benchmark program. A systematic validation study to
compare the sampled traces against the full traces was done in final-
izing the choice of exact sampling parameters [8].

4. TIME-BASED POWER GATING
In this and the following sections, we describe two techniques to

dynamically power-gate execution units at program runtime. For
ease of explanation, the Tidledelay component will be lumped into
Tbreakeven value. Similarly, the Tbusydelay will be lumped into
Twakeup value.

One simple technique to dynamically power gate execution units,
is to observe the state of a execution unit, and turn it off after seeing
a streak of idle cycles. Similar techniques have been used for cache
memories [11, 5] and have been shown to produce significant leakage
savings with minimal performance impact. To apply such a technique
to execution units, a state machine, as shown in Figure 5, can be logi-
cally associated with each execution unit. In normal execution mode,
the execution unit is in the idle detect state, fully-powered and ready
for execution. When it is detected that the number of consecutive idle
cycles seen exceeds the threshold Tidledetect cycles, the unit is power-
gated and transfers to an interim state denoted as uncompensated. If
the unit continues to stay idle for another Tbreakeven cycles, then it
will transfer to the compensated/ sleep state. A unit is power-gated
in both compensated and uncompensated states. However, only com-
pensated state sees net leakage savings, while the leakage savings in
uncompensated state are used to compensate the dynamic power over-
head of power-gating. Hence, in this study we measure the percentage
of cycles a unit stays in the compensated/ sleep mode as an indication
of net leakage savings with power-gating.

While in compensated or uncompensated state, an execution unit
must wake up to serve an instruction that becomes ready. This is
because in our simulated processor, each issue queue serves to one
particular execution unit 1. The number of cycles needed for an ex-
ecution unit to transfer from sleep mode to a transient state wakeup,
and finally to normal execution mode, is denoted as Twakeup. If the
unit is not yet fully powered-down (i.e., at the first several cycles of
sleep mode), the time it takes to wake up the unit will be less than the
full wakeup latency of Twakeup cycles. Also, some leakage savings
could be achieved in the wakeup process, before the unit is fully pow-
ered. In our experiment, we take a conservative approach by always
charging a full wakeup latency, and assuming there is no leakage sav-
ings during wakeup (T6 to T7 in Figure 2).

/

idle_detect

busy

wakeup

cycle count > t_wakeup

ready_insn_detectedsleep

cycle i+N

uncompensated

cycle i

idle_count > t_idledetect

idle_count > t_breakeven compensated

Figure 5: State machine of an execution unit when power gating
is engaged

From the above description it is clear that the effectiveness of a

1If the issue queue is shared between multiple execution units, when
a ready instruction is detected the issue queue has the option of not
waking up a powered-down unit and instead waiting for an already
powered-up one (which is busy at current cycle).

35

time-based dynamic power-gating technique hinges upon the value of
the three parameters, namely, Tbreakeven, Twakeup, and Tidledetect.
Tbreakeven represents number of cycles it takes to compensate for
the energy overhead of switching the header. Twakeup represents
the timing overhead of repowering a powered-down unit, and deter-
mines the performance impact of power-gating. Both Tbreakeven and
Twakeup are mainly decided by circuit design limits, the third param-
eter, Tidledetect, provide an architecture-level knob to fine tune the
trade-off between leakage saving opportunities and performance loss.
More specifically, with a large Tidledetect, idle intervals that are rel-
atively short are skipped by the power-gating mechanism, and conse-
quently some leakage savings opportunities are given up for reduced
performance loss.

Since the floating point applications stress the fpu, and the integer
applications stress the fxu, we present the percentage of cycles spent
in sleep mode by the fpu and the fxu using the floating point and inte-
ger applications, respectively. For the rest of the paper, the fraction of
cycles spent in the sleep mode by an execution unit of a given type is
determined as follows:

1

n ∗ total execution cycles
∗

i=n∑
i=0

(cycles in sleep mode)i

where n = number of units

Figures 6 and 7 show the tradeoff between leakage savings and per-
formance loss for the fpu. As we can see from the figures, the per-
centage of cycles spent in sleep mode for fpu, decreases roughly lin-
early with increasing Tidledetect values. This indicates that although
long idle periods occur less frequently compared to short idle peri-
ods, the total number of sleep cycles derived from the long and short
idle periods are roughly equal once these periods are weighted by
the length of their sleep cycles. The performance, on the other hand,
improves significantly when Tidledetect increases from 1 cycle to 6
cycles, and then gradually reaches the performance of the base case,
where power-gating is disabled. The big performance jump from 1
cycle to 6 cycles of Tidledetect indicates the presence of short idle
periods and these are not amenable for power gating. Though the
number of such idle periods are large, power-gating them causes a
significant performance loss since each of them will incur a timing
overhead of Twakeup cycles. This also explains the unexpected dip
at Tidledetect = 1 in Figure 6: though the absolute number of cycles
fpu in sleep mode is much larger at Tidledetect = 1 cycle compared to
that of 6 cycles, the large performance degradation causes much more
execution cycles leading to a much larger denominator in the above
equation.

In general, long idle periods coupled with smaller values of Tbreakeven

and Twakeup, help achieve large leakage reductions, and mitigate
the overall performance loss. Overall, a Tidledetect of 6 - 12 cycles
achieves a good balance between performance loss and power sav-
ings.

Figure 8 and Figure 9 show similar curves for fixed-point unit when
the SPEC2K integer benchmarks are run. Unlike Figure 6, where the
curves are roughly linear over the full range of Tidledetect, Figure
8 demonstrates a trend that can be divided into two segments at the
turn point of around 16 cycles. Before the turn point, the curve drops
very fast, indicating that very short idle periods dominate the total
length of idle periods in SPEC2K integer benchmarks. We know for
integer applications, loads/stores and branches typically occur once
every 4 or 5 instructions. This implies that the fixed point operations
which provide the source operands for these loads/stores and branches
ought to occur once every 4 or 5 instructions as well. We observe
that this frequency of fixed point operations correlates well with the
predominantly short idle times observed in Figure 8. The long idle

0%

5%

10%

15%

20%

25%

30%

1 6 11 16 21 26 31 36 41 46 51

Tidledetect

%
cy

cl
es

 f
p

u
 in

 s
le

ep
 m

o
d

e

Tbreakeven = 9 14 19 24

Figure 6: Percent of cycles in sleep mode for FPU (including FPU0
and FPU1) with different Tidledetect and Tbreakeven = one of 9, 14,
19, or 24 cycles. Twakeup is fixed at 3 cycles.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 6 11 16 21 26 31 36 41 46 51

Tidledetect

n
o

rm
al

iz
ed

 ip
c

Twakeup =3 6 9

Figure 7: Average IPC of SPECFP2K benchmarks with different
Tidledetect and Twakeup values. Tbreakeven is fixed at 9 cycles. IPC
is normalized to the base case where power gating is disabled.

periods are very rare, with majority of them observed soon after an
L2 miss is detected.

Overall, we found that using the same value of Twakeup the FXU
running SPEC2K integer benchmarks has not only less opportunities
for power-gating compared to the FPU running SPEC2K floating-
point benchmarks, but also incurrs much larger performance loss. In
the next section, we propose an architectural technique that achieves
a better tradeoff between performance loss and power savings in FXU
for integer benchmarks.

0%

2%

4%

6%

8%

10%

12%

14%

1 6 11 16 21 26 31

Tidledetect

%
cy

cl
es

 f
xu

 in
 s

le
ep

 m
o

d
e

Tbreakeven = 9 14 19 24

Figure 8: Percent of cycles in sleep mode for FXU (including
FXU0 and FXU1) with different Tidledetect and Tbreakeven val-
ues. Twakeup is fixed at 3 cycles. The four curves correspond to
Tbreakeven of 9, 14, 19, 24 cycles, respectively.

5. BRANCH PREDICTION GUIDED
POWER-GATING

In the previous section, we showed the effectiveness of a time-
based technique to power gate the fpu with only a small performance
impact. Our results also showed that since the fxu typically had short
idle periods, there weren’t many power gating opportunities using the
time-based technique. In this section, we augment the simple time-
based technique by using the outcome of branch prediction to guide

36

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 6 11 16 21 26 31 36 41 46 51

Tidledetect

n
o

rm
al

iz
ed

 ip
c

Twakeup = 3 6 9

Figure 9: Average IPC of SPECINT2K benchmarks with differ-
ent Tidledetect and Twakeup values. Tbreakeven is fixed at 9 cycles.

the power gating of the execution units, especially the fxu. Branch
mispredictions are well-known as highly disruptive events for the per-
formance of speculative out-of-order microprocessors; but, they also
create opportunities for employing energy saving techniques such as
power-gating of the execution units. In our processor model, we pre-
dict branches using a predictor, and continue execution along the pre-
dicted control flow path. When a branch is mispredicted, instructions
following the branch are flushed from the pipeline, and the fetch en-
gine is then re-directed to the correct path of execution. Hence, in
the cycles following a branch misprediction, a large part of the issue
queue is flushed and the execution units are likely to be idle (until the
instructions from the correct path are re-fetched). We propose a new
branch prediction guided power-gating technique, in which whenever
a branch misprediction is detected, all the fxus (if they are idle) are
transferred to uncompensated state immediately , instead of waiting
for the full Tidledetect period. In Figure 10, we compare such a tech-
nique with the baseline time-based technique described in the previ-
ous section. Relative to a time-based technique we observe higher
percent of cycles in sleep mode for a given performance loss, and
a smaller performance loss for any given percent of cycles in sleep
mode while using the branch prediction guided technique. Further-
more, the branch prediction guided technique effectively reduces the
value of Tidledetect by aggressively gating the fxu as soon as a mis-
prediction is detected. For example, in Figure 10 we see that the the
branch prediction guided technique has the same performance loss for
Tidledetect values ranging from 11 to 31 cycles. These results show
that similar techniques can be devised based on other architecture-
level events such as L2 cache misses, instruction cache misses, and
rejects of load instructions from the pipeline after data cache misses.
This is a promising venue that deserves further investigation.

0%

2%

4%

6%

8%

10%

12%

14%

0% 2% 4% 6% 8% 10% 12%

performance loss (%)

%
cy

cl
es

 f
xu

 in
 s

le
ep

 m
o

d
e

time_based

branch_guided

Figure 10: Percent of cycles FXUs are in sleep mode ver-
sus performance degradation for both techniques when running
SPECINT2K benchmarks. Tbreakeven and Twakeup are fixed at 9
and 3, respectively. Tidledetect varies from 1 (far right) to 31 (left).

6. CONCLUSION
This paper demonstrates the potential of power gating the exe-

cution units of a state-of-the-art out-of-order superscalar processor
model. A parameterized analytical model is derived that determines
the breakeven point for power gating, which, for a typical modern
technology, is shown to be close to 10 clock cycles at a static to dy-
namic power ratio of 33/67. This result indicates that there is ample
opportunity for power gating of execution units, where idle periods
of more than 10 cycles occur frequently. Two simple, yet effective,
architecture-level techniques to power gate execution units are pre-
sented. A time-based technique is shown to enable the floating-point
units to enter sleep-mode for up to 28% of the total execution cy-
cles in floating point benchmarks at a performance penalty of 2%. A
more sophisticated technique based on branch prediction is shown to
enable fix-point units to enter sleep-mode by up to 40% more for a
given performance in comparison to time-based technique. These ex-
periments demonstrate that a substantial leakage power reduction can
be achieved in processor execution units through power gating based
on architectural techniques.

7. REFERENCES
[1] BORKAR, S. Design Challenges of Technology Scaling. IEEE Micro

19, 4 (1999).
[2] CLARK, L., DEMMONS, S., DEUTSCHER, N., AND RICCI, F. Standby

Power Management for a 0.18um Microprocessor. In ISLPED (2002).
[3] DROPSHO, S., KURSUN, V., ALBONESI, D. H., DWARKADAS, S.,

AND FRIEDMAN, E. G. Managing Static Leakage Energy in
Microprocessor Functional Units. In MICRO (2002).

[4] DUARTE, D., TSAI, Y. F., VIJAYKRISHNAN, N., AND IRWIN, M. J.
Evaluating Run-Time Techniques for Leakage Power Reduction. In
ASPDAC (2002).

[5] FLAUTNER, K., KIM, N. S., MARTIN, S., BLAAUW, D., AND

MUDGE, T. Drowsy Caches: Simple Techniques for Reducing Leakage
Power. In ISCA (2002).

[6] HAMZAOGLU, F., AND STAN, M. R. Circuit-Level Techniques to
Control Gate Leakage for sub-100nm CMOS. In ISLPED (2002).

[7] HEO, S., BARR, K., HAMPTON, M., AND ASANOVIC, K. Dynamic
Fine-Grain Leakage Reduction Using Leakage-Biased Bitlines. In ISCA
(137-147, 2002).

[8] IYENGAR, V., TREVILLYAN, L. H., AND BOSE, P. Representative
Traces for Processor Models with Infinite Cache. In HPCA (1996).

[9] JOHNSON, M., SOMASEKHAR, D., CHIOU, L., AND ROY, K. Leakage
Control With Efficient Use of Transistor Stacks in Single Threshold
CMOS . IEEE Transactions on VLSI Systems 10 (2002).

[10] KAO, J., AND CHANDRAKASAN, A. Dual-Threshold Voltage
Techniques for Low-Power Digital Circuits. IEEE Journal of Solid State
Circuits 35 (2000).

[11] KAXIRAS, S., HU, Z., AND MARTONOSI, M. Cache Decay:
Exploiting Generational Behavior to Reduce Cache Leakage Power. In
ISCA (2001).

[12] MOUDGILL, M., BOSE, P., AND MORENO, J. H. Validation of
Turandot, a Fast Processor Model for Microarchitecture Exploration. In
IPCCC (1999).

[13] MOUDGILL, M., WELLMAN, J. D., AND MORENO, J. H.
Environment for PowerPC Microarchitecture Exploration. IEEE Micro
19, 3 (1999).

[14] POWELL, M., YANG, S., FALSAFI, B., ROY, K., AND VIJAYKUMAR,
T. Gated-Vdd: A Circuit Technique to Reduce Leakage in
Deep-Submicron Cache Memories. In ISLPED (2000).

[15] RELE, S., PANDE, S., ONDER, S., AND GUPTA, R. Optimizing Static
Power Dissipation by Functional Units in Superscalar Processors. In
Int’l Conf. on Compiler Construction (2002).

[16] TENDLER, J. M., DODSON, J. S., FIELDS, J. S., LE, H., AND

SINHAROY, B. POWER4 System Microarchitecture. IBM Journal
Research and Development 46, 1 (2002).

37

