Microarchitecture and Design Challenges for Gigascale Integration

Shekhar Borkar Intel Corp. December 6, 2004

Outline

- Process technology scaling & near term challenges
- μArchitecture & Design solutions
- Upcoming paradigm shifts
- Long term outlook & challenges
- Summary

Goal: 1TIPS by 2010

How do you get there?

Technology Scaling

Dimensions scale down by 30%	Doubles transistor density
Oxide thickness scales down	Faster transistor, higher performance
Vdd & Vt scaling	Lower active power

Scaling will continue, but with challenges!

Technology Outlook

High Volume Manufacturing
Technology Node (nm)
Integration Capacity (BT)
Delay = CV/I scaling
Energy/Logic Op scaling
Bulk Planar CMOS
Alternate, 3G etc
Variability
ILD (K)
RC Delay
Metal Layers

2012	2014	2016	2018		
22	16	11	8		
32	64	128	256		
ay scaling will slow down					
gy scaling will slow down					
Low Probability					
High Probability					
h Very High					
ce slowly towards 2-2.5					
1	1	1	1		
to 1 lay	er per	generat	tion		

The Leakage(s)....

Projected Power (unconstrained)

Active and Leakage power will become prohibitive

Product Cost Pressure

Shrinking ASP, and shrinking \$ budget for power

Must Fit in Power Envelope

Technology, Circuits, and Architecture to constrain the power

Between Now and Then—

- Move away from Frequency alone to deliver performance
- More on-die memory
- Multi-everywhere
 - -Multi-threading
 - -Chip level multi-processing
- Throughput oriented designs
- Valued performance by higher level of integration
 - -Monolithic & Polylithic

Leakage Solutions

Planar Transistor

Gate

1.2 nm SiO

Silicon substrate

For a few generations, then what?

3.0nm High-k

Silicon substrate

Active Power Reduction

Multiple Supply Voltages

Throughput Oriented Designs


```
Freq = 1
Vdd = 1
Throughput = 1
Power = 1
Area = 1
Pwr Den = 1
```


Freq = 0.5 Vdd = 0.5 Throughput = 1 Power = 0.25 Area = 2 Pwr Den = 0.125

Leakage Control

Optimum Frequency

Maximum performance with

- Optimum pipeline depth
- Optimum frequency

µArchitecture Techniques

Multi-threading

Improved performance, no impact on thermals & power delivery

Chip Multi-processing

Special Purpose Hardware

TCP/IP Offload Engine

Opportunities: Network processing engines

MPEG Encode/Decode engines. Speech engines

Special purpose HW and extreme integration

Sources of Variations

Random Dopant Fluctuations

Impact of Static Variations Today...

Frequency ~30%

Leakage Power ~5-10X

Adaptive Body Bias--Experiment

Technology	150nm CMOS
Number of subsites per die	21
Body bias range	0.5V FBB to 0.5V RBB
Bias resolution	32 mV

1.6 X 0.24 mm, 21 sites per die 150nm CMOS

Die frequency: $Min(F_1..F_{21})$ Die power: $Sum(P_1..P_{21})$

Adaptive Body Bias--Results

For given Freq and Power density

- 100% yield with ABB
- 97% highest freq bin with ABB for within die variability

Circuit Design Tradeoffs

Higher probability of target frequency with:

- 1. Larger transistor sizes
- 2. Higher Low-Vt usage But with power penalty

Impact of Critical Paths

- With increasing # of critical paths
 - -Both σ and μ become smaller
 - Lower mean frequency

Impact of Logic Depth

Logic depth: 16			
NMOS Ion	Delay		
σ/μ	σ/μ	σ/μ	
5.6%	3.0%	4.2%	

µArchitecture Tradeoffs

Higher target frequency with:

- 1. Shallow logic depth
- 2. Larger number of critical paths
 But with lower probability

Variation-tolerant Design

- power
- target
 frequency
 probability

Balance power & frequency with variation tolerance

- frequency
- target frequency probability

Probabilistic Design

Deterministic design techniques inadequate in the future

Shift in Design Paradigm

- Multi-variable design optimization for:
 - Yield and bin splits
 - Parameter variations
 - Active and leakage power
 - Performance

Today:
Local Optimization
Single Variable

Tomorrow:
Global Optimization
Multi-variate

Today's Freelance Layout

No layout restrictions

Transistor Orientation Restrictions

Transistor orientation restricted to improve manufacturing control

Transistor Width Quantization

Today's Unrestricted Routing

Future Metal Restrictions

Today's Metric: Maximizing Transistor Density

Dense layout causes hot-spots

Tomorrow's Metric: Optimizing Transistor & Power Density

Balanced Design

Implications to Design

- Design fabric will be Regular
- Will look like Sea-of-transistors interconnected with regular interconnect fabric
- Shift in the design efficiency metric
 - From Transistor Density to Balanced Design

Technology Outlook

High Volume Manufacturing	2004	2006	2008	2010
Technology Node (nm)	90	65	45	32
Integration Capacity (BT)	2	4	8	16
Delay = CV/I scaling	0.7	~0.7	>0.7	Dela
Energy/Logic Op scaling	>0.35	>0.5	>0.5	Ener
Bulk Planar CMOS	High Probability			
Alternate, 3G etc	Low Probability			
Variability	Medium Hig			
ILD (K)	~3	<3		Redu
RC Delay	1	1	1	1
Metal Layers	6-7	7-8	8-9	0.5

Reliability

Implications to Reliability

- Extreme variations (Static & Dynamic) will result in unreliable components
- Impossible to design reliable system as we know today
 - -Transient errors (Soft Errors)
 - -Gradual errors (Variations)
 - -Time dependent (Degradation)

Reliable systems with unreliable components

—Resilient µArchitectures

Implications to Test

- One-time-factory testing will be out
- Burn-in to catch chip infant-mortality will not be practical
- Test HW will be part of the design
- Dynamically self-test, detect errors, reconfigure, & adapt

In a Nut-shell....

100 BT integration capacity20 BT unusable (variations)10 BT will fail over timeIntermittent failures

Yet, deliver high performance in the power & cost envelope

Summary (of Challenges)

Near term:

- Optimum frequency & μArchitecture
- Lots of memory & Multi—everywhere
- Valued performance with higher integration

Paradigm shift:

- From deterministic to probabilistic design, with multi-variate optimization
- Evolution of regular design fabric

Long term:

- Reliable systems with unreliable components
- Dynamic self-test, detect, reconfigure, & adapt