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OutlineOutline

Process technology scaling & near Process technology scaling & near 
term challengesterm challenges

µµArchitectureArchitecture & Design solutions& Design solutions

Upcoming paradigm shiftsUpcoming paradigm shifts

Long term outlook & challengesLong term outlook & challenges

SummarySummary
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Goal: 1TIPS by 2010Goal: 1TIPS by 2010
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Technology ScalingTechnology Scaling
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Scaling will continue, but with challenges!Scaling will continue, but with challenges!Scaling will continue, but with challenges!
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Technology OutlookTechnology Outlook

Medium                  High                  Very HighMedium                  High                  Very HighVariabilityVariability

Energy scaling will slow downEnergy scaling will slow down>0.5>0.5>0.5>0.5>0.35>0.35Energy/Logic Op Energy/Logic Op 
scalingscaling

0.5 to 1 layer per generation0.5 to 1 layer per generation88--9977--8866--77Metal LayersMetal Layers

1111111111111111RC DelayRC Delay

Reduce slowly towards 2Reduce slowly towards 2--2.52.5<3<3~3~3ILD (K)ILD (K)

Low Probability                                  High ProbabilitLow Probability                                  High ProbabilityyAlternate, 3G etcAlternate, 3G etc
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20162016

High Probability                                  Low ProbabilitHigh Probability                                  Low ProbabilityyBulk Planar CMOSBulk Planar CMOS

Delay scaling will slow downDelay scaling will slow down>0.7>0.7~0.7~0.70.70.7Delay = CV/I Delay = CV/I 
scalingscaling

256643216842Integration Integration 
Capacity (BT)Capacity (BT)

88161622223232454565659090Technology Node Technology Node 
(nm)(nm)

20182018201420142012201220102010200820082006200620042004High Volume High Volume 

ManufacturingManufacturing
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The The Leakage(sLeakage(s))……
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Projected Power Projected Power (unconstrained)(unconstrained)
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Product Cost PressureProduct Cost Pressure

Shrinking ASP, and shrinking $ budget for powerShrinking ASP, and shrinking $ budget for powerShrinking ASP, and shrinking $ budget for power
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Must Fit in Power EnvelopeMust Fit in Power Envelope
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Between Now and ThenBetween Now and Then——

Move away from Frequency alone to Move away from Frequency alone to 
deliver performancedeliver performance

More onMore on--die memorydie memory

MultiMulti--everywhereeverywhere

––MultiMulti--threadingthreading

––Chip level multiChip level multi--processingprocessing

Throughput oriented designsThroughput oriented designs

Valued performance by higher level of Valued performance by higher level of 
integrationintegration

––Monolithic & Monolithic & PolylithicPolylithic
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Leakage SolutionsLeakage Solutions
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Active Power ReductionActive Power Reduction

Slow Fast Slow
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Leakage ControlLeakage Control
Body Bias
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Optimum FrequencyOptimum Frequency

Maximum performance withMaximum performance with

�� Optimum pipeline depth Optimum pipeline depth 

�� Optimum frequencyOptimum frequency
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µµArchitectureArchitecture TechniquesTechniques
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Special Purpose HardwareSpecial Purpose Hardware
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Sources of VariationsSources of Variations
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Impact of Static VariationsImpact of Static Variations
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Resistor 

Network
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Adaptive Body BiasAdaptive Body Bias----ResultsResults
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Circuit Design TradeoffsCircuit Design Tradeoffs
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Impact of Critical PathsImpact of Critical Paths
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Impact of Logic DepthImpact of Logic Depth
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VariationVariation--tolerant Designtolerant Design
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Leakage PowerLeakage Power

F
re

q
u

e
n

c
y

F
re

q
u

e
n

c
y DeterministicDeterministic

ProbabilisticProbabilistic

10X variation 10X variation 

~50% total power~50% total power

Probabilistic DesignProbabilistic Design

DelayDelay

Path DelayPath Delay P
ro

b
a

b
il

it
y

P
ro

b
a

b
il

it
y

Deterministic design techniques inadequate in the futureDeterministic design techniques inadequate in the futureDeterministic design techniques inadequate in the future

Due to Due to 

variations in:variations in:

VVdddd, V, Vtt, and , and 

TempTemp

Delay TargetDelay Target

#
 o

f 
P

a
th

s
#
 o

f 
P

a
th

s

DeterministicDeterministic

Delay TargetDelay Target

#
 o

f 
P

a
th

s
#
 o

f 
P

a
th

s
ProbabilisticProbabilistic



29

Shift in Design ParadigmShift in Design Paradigm

MultiMulti--variable design optimization for:variable design optimization for:

–– Yield and bin splits Yield and bin splits 

–– Parameter variations Parameter variations 

–– Active and leakage powerActive and leakage power

–– Performance Performance 

Tomorrow:Tomorrow:
Global OptimizationGlobal Optimization

MultiMulti--variatevariate

Today:Today:
Local OptimizationLocal Optimization

Single VariableSingle Variable
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TodayToday’’s Freelance Layouts Freelance Layout
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Transistor Orientation RestrictionsTransistor Orientation Restrictions

Vss
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Transistor orientation restricted to improve 
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Transistor orientation restricted to improve Transistor orientation restricted to improve 

manufacturing controlmanufacturing control
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TodayToday’’s Unrestricted s Unrestricted 
RoutingRouting



35

Future Metal RestrictionsFuture Metal Restrictions



36

TodayToday’’s Metric: s Metric: 
Maximizing Transistor DensityMaximizing Transistor Density

Dense layout causes hot-spotsDense layout causes hotDense layout causes hot--spotsspots
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TomorrowTomorrow’’s Metric: s Metric: 
Optimizing Transistor & Power DensityOptimizing Transistor & Power Density

Balanced DesignBalanced DesignBalanced Design
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Implications to DesignImplications to Design

Design fabric will be Design fabric will be RegularRegular

Will look like Will look like SeaSea--ofof--transistorstransistors

interconnected with regular interconnected with regular 
interconnect fabricinterconnect fabric

Shift in the design efficiency metricShift in the design efficiency metric

–– From From Transistor DensityTransistor Density to to Balanced Balanced 

DesignDesign
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Technology OutlookTechnology Outlook

Medium                  High                  Very HighMedium                  High                  Very HighVariabilityVariability

Energy scaling will slow downEnergy scaling will slow down>0.5>0.5>0.5>0.5>0.35>0.35Energy/Logic Op Energy/Logic Op 
scalingscaling

0.5 to 1 layer per generation0.5 to 1 layer per generation88--9977--8866--77Metal LayersMetal Layers

1111111111111111RC DelayRC Delay

Reduce slowly towards 2Reduce slowly towards 2--2.52.5<3<3~3~3ILD (K)ILD (K)

Low Probability                                  High ProbabilitLow Probability                                  High ProbabilityyAlternate, 3G etcAlternate, 3G etc
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20162016

High Probability                                  Low ProbabilitHigh Probability                                  Low ProbabilityyBulk Planar CMOSBulk Planar CMOS

Delay scaling will slow downDelay scaling will slow down>0.7>0.7~0.7~0.70.70.7Delay = CV/I Delay = CV/I 
scalingscaling

256643216842Integration Integration 
Capacity (BT)Capacity (BT)

88161622223232454565659090Technology Node Technology Node 
(nm)(nm)

20182018201420142012201220102010200820082006200620042004High Volume High Volume 

ManufacturingManufacturing
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ReliabilityReliability

Soft Error FIT/Chip (Logic & Mem)

0

50

100

150

18
0

13
0 90 65 45 32 22 16

R
e

la
ti

v
e

~8% degradation/bit/generation

Time dependent device degradation

0

1

1 2 3 4 5 6 7 8 9 10

Time

Io
n

 R
e

la
ti

v
e

Burn-in may phase out…?

1

10

100

1000

10000

180 90 45 22

J
o

x
 (

R
e

la
ti

v
e

)

Hi-K?

Extreme device variations

0

50

100

100 120 140 160 180 200

Vt(mV)

R
e

la
ti

v
e

Wider



42

Implications to ReliabilityImplications to Reliability

Extreme variations (Static & Dynamic) Extreme variations (Static & Dynamic) 
will result in unreliable componentswill result in unreliable components

Impossible to design reliable system Impossible to design reliable system 
as we know todayas we know today

––Transient errors (Soft Errors) Transient errors (Soft Errors) 

––Gradual errors (Variations)Gradual errors (Variations)

––Time dependent (Degradation)Time dependent (Degradation)

Reliable systems with unreliable components 
—Resilient µArchitectures

Reliable systems with unreliable components Reliable systems with unreliable components 

——Resilient Resilient µµArchitecturesArchitectures
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Implications to TestImplications to Test

OneOne--timetime--factory testing will be outfactory testing will be out

BurnBurn--in to catch chip infantin to catch chip infant--mortality mortality 
will not be practicalwill not be practical

Test HW will be part of the designTest HW will be part of the design

Dynamically selfDynamically self--test, detect errors, test, detect errors, 
reconfigure, & adaptreconfigure, & adapt
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In a NutIn a Nut--shellshell……

100 
Billion

Transistors

100 BT integration capacity

20 BT unusable (variations)

10 BT will fail over time

Yet, deliver high performance in the power & 
cost envelope

Yet, deliver high performance in the power & Yet, deliver high performance in the power & 

cost envelopecost envelope

Intermittent failures
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Summary (of Challenges)Summary (of Challenges)
Near term:Near term:

–– Optimum frequency & Optimum frequency & µµArchitectureArchitecture

–– Lots of memory & MultiLots of memory & Multi——everywhereeverywhere

–– Valued performance with higher integrationValued performance with higher integration

Paradigm shift:Paradigm shift:

–– From deterministic to probabilistic design, with From deterministic to probabilistic design, with 
multimulti--variatevariate optimizationoptimization

–– Evolution of regular design fabricEvolution of regular design fabric

Long term:Long term:

–– Reliable systems with unreliable componentsReliable systems with unreliable components

–– Dynamic selfDynamic self--test, detect, reconfigure, & adapttest, detect, reconfigure, & adapt


