
Microarchitecture-Aware Floorplanning Using a
Statistical Design of Experiments Approach∗

Vidyasagar Nookala Ying Chen David J. Lilja Sachin S. Sapatnekar
Department of Electrical and Computer Engineering

University of Minnesota, Minneapolis, MN

{vidya,wildfire,lilja,sachin}@ece.umn.edu

ABSTRACT
Since across-chip interconnect delays can exceed a clock cycle in
nanometer technologies, it has become essential in high perfor-
mance designs to add flip-flops on wires with multi-cycle delays.
Although such a wire pipelining strategy allows higher operating
frequencies, it can reduce the delivered performance of a microar-
chitecture, since the extra flip-flops inserted may increase the oper-
ation latencies and stall cycles. Moreover, the addition of latencies
on some wires can have a large impact on the overall performance
while other wires are relatively insensitive to additional latencies.
This varying sensitivity suggests the need for a throughput-aware
strategy for pipelining the interconnects that interacts closely with
the physical design step, which determines the lengths of these mul-
ticycle wires. We use a statistical design of experiments strategy
based on a multifactorial design, which intelligently uses a limited
number of simulations to rank the importance of the wires. When
applied at the floorplanning level, our results show improvements
both in the overall system performance and in the total wire length
when compared with an existing technique.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits—Design Aids

General Terms
Performance, Experimentation

Keywords
Wire pipelining, Microarchitecture, Floorplanning

1. INTRODUCTION
Industry trends indicate that the operating frequencies of leading-

edge microprocessors have been doubling with every process gen-
eration [1], having broken the gigahertz barrier several years ago.
These improvements in the clock frequency are complicated by the
fact that even under aggressive optimization, the delay of a long
inter-block interconnect may exceed the system clock cycle. To

∗This work was supported in part by a gift from Intel Corporation, by the
NSF under award CCCR-0205227, by the Minnesota Supercomputing In-
stitute, and by the University of Minnesota Digital Technology center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

ensure that the system operates at the right frequency, the delay of
such a global wire is distributed over several clock cycles by in-
serting memory elements such as edge-triggered flip-flops [2, 3].
However, it has been noted that this approach, which is referred to
as wire-pipelining henceforth, can alter the functionality of a cir-
cuit [4] by arbitrarily changing the latency differentials along the
paths in the circuit. Even if these differentials are corrected, an ad-
ditional concern is the reduction in the throughput of the circuit due
to the increase in the number of clock cycles per computation. In
the microprocessor context, this can be explained as follows. The
execution time of a particular program on a microprocessor can be
expressed as the product of two terms:

Texec = Ncycles · Tclk (1)

where Ncycles is number of clock cycles required to execute the
instruction sequence of the program, and Tclk is the clock cycle
time. The effects of pipelining the buses of a microprocessor can
cause changes in data arrival times, which can be absorbed inter-
nally by the processor through, for instance, stalls in the instruction
pipeline. This may result in an increase in some operation latencies,
branch misprediction and cache miss penalties, etc., thus increas-
ing Ncycles. This penalty depends on the locations at which these
extra latencies are added: increasing the latencies on some buses
can impact the throughput more than on others. This reduction in
the system throughput is a concern that can negate the advantage of
operating at higher frequencies.

For better throughput, it is imperative to reduce the extent of
pipelining required by the critical buses, and therefore, physical
design must focus on keeping the throughput-critical buses as short
as possible. Traditional physical design, which typically focuses on
minimizing the area and total wire length, can lead to throughput-
suboptimal processor layouts in the wire-pipelining regime. There-
fore, a throughput-aware strategy [5], which identifies and opti-
mizes throughput-critical buses, particularly at early stages of the
physical design flow, where the system bus delays are determined,
is the need of the hour.

The clear bottleneck in the design flow is the estimation of Ncycles,
or alternatively, the estimation of the throughput, which is inversely
proportional to Ncycles. For a particular combination of bus la-
tencies, this can be computed using cycle-accurate simulations on
simulators such as SimpleScalar [6], on widely-used benchmark
programs such as SPEC [7]. However, cycle-accurate simulations
are inherently slow, and in extreme cases, a single run can take sev-
eral days to complete. This, coupled with the large search space
explored during physical design optimizations, makes it virtually
impossible to use simulations for each layout that is to be evaluated.
Specifically, if each of n wires on a layout can have k possible la-
tencies, then the cycle-accurate simulator may have to perform up
to nk simulations to fully explore the search space.

579

35.1

There have been some recent attempts [8, 9] towards throughput-
aware design at the floorplanning level. In [8], a throughput look-
up table (LUT), indexed by the set of bus latencies, is constructed
using cycle-accurate simulations. For a given layout (and the corre-
sponding bus latencies), the throughput is evaluated from the LUT
using some distance metrics. In contrast, the approach in [9] as-
signs weights to each of the system buses that are proportional to
the amount of traffic seen on the buses, operating under the notion
that the more often a bus is accessed, the more critical it is. The
objective of the floorplanner then is to minimize a weighted sum of
bus latencies, where the weights depend on the amount of traffic.
While the two approaches indicate welcome progress in the quest
for throughput-aware design, the accuracy of the strategies used
to optimize the throughput-critical wires shows room for improve-
ment. For instance, estimating the throughput of the thousands of
layouts evaluated during floorplanning from an LUT of about 50
entries may not be accurate enough, no matter how well the LUT
entries are chosen. In addition, the LUT has to be reconstructed
if a different frequency is chosen. On the other hand, bus access
frequencies may not exactly capture the quantitative impact of the
bus latencies on the throughput. Specifically, the effect of extra la-
tencies on the execution path of a particular operation is primarily
determined by the dependencies the following instructions have on
the data generated by that operation. Another recent work [10] uses
a “one-at-a-time” approach to build throughput sensitivity models
for a few selected critical paths, and these models guide the floor-
planner to optimize the system throughput. However, such one-
at-a-time approaches may not provide an effective sampling that
captures the essence of a large solution search space.

The exponentially large search space prompts us to consider a
design of experiments [11] strategy, a well-established approach
that is particularly efficient at extracting the basic characteristics of
a large design space through a small number of samples. Specifi-
cally, this paper proposes a strategy, based on a multifactorial de-
sign, to accurately identify the throughput-critical wires to be op-
timized in physical design, and then applies the methodology to
floorplanning. The advantage of this approach is that the total num-
ber of simulations required to sample the space is proportional to
n, compared to the O(nk) possible combinations of bus latencies.
The throughput-critical wires are explicitly identified and appropri-
ately weighted in the objective function for floorplanning. A vital
ingredient of our approach that speeds up our design of experiments
approach is a fast method for cycle-accurate simulation using the
MinneSPEC reduced input sets [12].

The remainder of the paper is organized as follows. Section 2
describes the design flow, the wire-pipelining models used and the
simulation strategy. Section 3 presents the experimental results ob-
tained, along with a comparison with the access frequency based
approach of [9], when our methodology is used at the floorplan-
ning level. We conclude the paper in section 4.

2. THROUGHPUT-AWARE
FLOORPLANNING

To incorporate wire-pipelining issues into floorplanning, we de-
velop a design flow for throughput-awareness, as depicted in Fig-
ure 1. The first step is to quantify the impact of each system bus
on the performance for each of the chosen benchmark programs,
and accordingly assign weights to these wires. The weights may
differ across the benchmarks, depending upon the instruction mix
executed. The concept of using these weights is similar to [9], but
the precise manner in which we choose these weights is different.
A comparison between the two approaches is shown in Section 3.

The weights are then fed to the floorplanner, along with a tar-

µ-arch

benchmarks benchmarks

Floorplanning
frequency

weights

Simulation

Simulations

Methodology

latencies

Figure 1: Throughput-aware floorplanning: design flow.

get frequency. The objective of the floorplanner is to determine the
positions of the blocks such that a weighted sum of bus latencies,
in addition to traditional objectives such as area and aspect ratio,
is minimized. The performance of the resultant layout is then es-
timated from cycle-accurate simulations. If frequency is a design
variable, then the floorplanning may be repeated for several fre-
quencies until an optimum design point or performance objective
is achieved. In addition, the entire design flow of Figure 1 may
be repeated for several microarchitectural block configurations to
identify the optimal configuration [13]. For a general case, the
weights to be used in floorplanning may be obtained by combining
the weights obtained from optimizing the processor performance
on a set of benchmarks. The rest of this section explains each step
of the flow in detail.

2.1 Wire-pipelining models and simulator

fet dec

ruureg

itlb dtlb

dl1

il1

l2

bpred

iadd1

iadd2

iadd3

imult

fadd

fmult

lsq

Figure 2: Microarchitecture and buses.

In this paper, we utilize SimpleScalar, a widely-used out-of-order
superscalar processor simulator that implements the DLX architec-
ture. The microarchitecture of the processor that we use is shown
in Figure 2. The instruction fetch and decode blocks are shown as
fet and dec, respectively, while il1 and dl1 are the level-1 instruc-
tion and data caches, respectively. The instruction and data trans-
lation look-aside buffers (TLB) are indicated as itlb and dtlb, re-
spectively, while l2 represents the unified level-2 cache. The block
ruu is the register update unit, which contains the reservation sta-
tions and instruction issue logic, while the block lsq represents the
load store queue. The system register file is represented by reg,
whereas bpred consists of the branch predictor and the target buffer
(BTB), which predict the direction and target address for a branch
instruction, respectively. The blocks iadd1, iadd2, iadd3, imult,
fadd and fmult are the functional units that execute arithmetic
and logic instructions. The figure also shows the 22 system buses
that can impact the processor performance, when pipelined.

The simulator is modified to include extra latencies on these
buses as additional delays. To achieve this, we use 19 factors to
model the 22 buses, as shown in Table 1. As can be seen in Table
1, most of the factors directly model the buses with the same name.
The first exception is the factor extra fet, which models the sum
of the latencies of three buses, as shown in Table 1. This factor rep-
resents the number of extra stages to be inserted in the fetch stage of

580

Bus Parameter ID
fet il1

il1 bpred extra fet 1
fet bpred
fet itlb fet itlb 2
itlb l2 itlb l2 3

ruu reg ruu reg 4
ruu lsq ruu lsq 5

ruu iadd1 iadd add1 6
ruu iadd2 ruu iadd2 7
ruu iadd3 ruu iadd3 8
ruu imult ruu imult 9
ruu fadd ruu fadd 10
ruu fmult ruu fmult 11

lsq dl1 lsq dl1 12
dtlb l2 dtlb l2 13
lsq dtlb lsq dtlb 14
il1 l2 il1 l2 15
dl1 l2 dl1 l2 16

dec reg dec reg 17
fet dec fet dec 18
dec ruu
dec lsq max lsq ruu 19

Table 1: Buses and factors.

the pipeline of the processor. The second and last exception is the
factor max lsq ruu, which represents the maximum of the laten-
cies of the buses dec ruu and dec lsq. We omit the details of the
wire-pipeline models due to space constraints. Each of the factors
is made completely configurable by modifying the SimpleScalar
configuration file.

2.2 Simulation methodology
The benchmarks that are used in this work are selected from the

SPEC 2000 benchmark suite. However, it is well known that the
simulation of these benchmarks is very compute-intensive: for in-
stance, the reported simulation time for the benchmark 177.mesa,
when the reference input set used is about 3000 hours on a SPARC
333MHz machine. For our purposes, since the results of the sim-
ulation are used for purposes of optimization, we require fidelity
rather than absolute accuracy1. The MinneSPEC reduced input
sets [12] constitute a representative workload for the SPEC bench-
marks, which correlates well with the full input set for these bench-
marks and captures their global characteristics. The advantage of
these test sets over conventional simulation speedup techniques such
as fast-forwarding is the high accuracy in capturing the behavior
of the reference input sets. Specifically, the throughput variation
across different microarchitectural configurations for the reference
input sets is most likely to be retained when MinneSPEC sets are
used, while dramatically reducing the simulation times. The sim-
ulation time for 177.mesa, for instance, reduces to about 7 hours.
Therefore, MinneSPEC is ideal for our purposes where fast sim-
ulation with high fidelity is adequate to determine the weights of
various system buses.

We choose a set of nine benchmarks, which, along with the
type and instruction count, are shown in Table 2. The benchmarks
were chosen because of their distinct instruction mixes. For in-
stance, 177.mesa has a high percentage of conditional branches,
while 181.mcf has a very large number of memory operations, par-
ticularly “store” instructions. All benchmarks are complied at op-

1In the context of physical design, this concept is not new: the Elmore delay
metric has been used widely because of its ability to determine the relative
impact of a change, even though the absolute accuracy may be limited.

timization level O3 using the SimpleScalar version of the gcc com-
piler and are run to completion.

Benchmark Type Instr. count (M)
164.gzip Integer 1065
175.vpr Integer 217
176.gcc Integer 693

177.mesa Floating-point 309
179.art Floating-point 7700

181.mcf Integer 175
183.equake Floating-point 716
197.parser Integer 914
256.bzip2 Integer 3800

Table 2: Benchmarks from the MinneSPEC suite.

2.3 Our design of experiments based strategy
Statistical design of experiments is a design approach to charac-

terize the response of a system in terms of changes in the factors
which influence the system. The basic idea is to conduct a set of
experiments, according to a given prescription, in which all fac-
tors are varied systematically over a specified range of acceptable
values, such that the experiments provide an appropriate sampling
of the entire search space. The subsequent analysis of the result-
ing experimental data will identify the critical factors, the presence
of interactions between the factors, etc. The influence of the in-
dividual factors is expressed as main effects, while interaction ef-
fects describe the influence of interactions. For a system affected
by N factors, there are N main effects,

`
N
2

´
two-factor interaction

effects, and so on. In all, there are 2N − 1 effects that must be
estimated. The simplest design, commonly referred to as full fac-
torial design, permits estimation of all of the main and interaction
effects. However, such a design involves experimenting over all
combinations of the possible values subscribed by the factors. As
noted earlier, the number of possible bus latency configurations in
floorplanning is an exponential function of the number of factors.
Even though the number of factors N is relatively small (N = 19)
for this microarchitecture, given the high simulation times (even
under MinneSPEC), it is impractical to use cycle-accurate simula-
tions for each of the allowable configurations to determine the re-
sponse, which in this case is the number of clock cycles to execute a
program, that needs to be minimized (to maximize the throughput,
its reciprocal).

We address the problem of reducing the number of simulations
with a few assumptions. Each of the factors is restricted to have
two levels : the minimum and the maximum possible values for the
factor, thereby permitting us to employ a two-level factorial design.
The idea is that, by stimulating the system with inputs at their ex-
treme values, we provoke the greatest response for each input. The
assumption is that the system response is a monotone function of
changes in the inputs (factor levels). While this assumption can-
not be guaranteed in these types of systems, it works quite well in
practice2. Besides, higher level designs exhibit a complex effect
structure and require more simulations, which make them unrea-
sonable for studies like ours. As is shown in [14], the two-level
approach can be effectively used to design simulation strategies for
microarchitectural optimizations. Since the factor levels represent
bus latencies, the extreme (high and low) values can be obtained by
assuming worst-case and best-case scenarios for the corresponding
wire lengths. The high/low value for a bus latency may be deter-
mined by placing the connecting blocks as far/close as possible. A

2Although this is not a proof, it seems intuitively acceptable to believe that
increasing the latency of a bus will decrease the system throughput.

581

valid assignment may, for example, be 0 for the low value, and the
latency corresponding to a corner-to-corner connection across the
chip for the high value.
Interactions: We have identified a few potential significant inter-
actions, which resulted from the nature of wire-pipelining models
integrated into the simulator.

• We have incorporated functional unit scheduling in the sim-
ulator. Specifically, the number of latencies inserted on the
three buses ruu iadd1, ruu iadd2 and ruu iadd3 can be
different, and while issuing an integer add instruction, of all
the available units, the one with the least latency is chosen.
This indicates possible significant (two and three factor) in-
teractions, which need to be estimated.

• In the decode stage, the number of extra pipeline stages to
be inserted is modeled as a maximum function of three fac-
tors dec ruu, max lsq ruu and ruu reg (refer to Table 1).
Such a nonlinear function can result in significant (two and
three) factor interactions among these three factors.

We assume that all of the other interactions are negligible, al-
lowing us to utilize a resolution III fractional factorial design [11],
which provides the logically minimum number of experiments to
determine the main effects of the factors. For N factors, the num-
ber of experiments required is equal to the nearest highest power of
2, which turns out to be 32 for our work, since N = 19. The design
is captured by a simulation matrix M of size 32xN , where each of
the 32 rows corresponds to a simulation run. In general, in a two-
level design, the two levels of each factor are represented as {+1, –
1}, and the idea is to estimate the effect of changing the level of the
factor from “+1” to “–1”. Each level (±1) is contained in exactly
half of the simulation runs, indicating that each column (which cor-
responds to a factor) of M has 16 “+1”s and 16 “–1”s. The effect of
a factor is determined as the difference of the responses where its
level is “+1” and those where its level is “–1”. We refer the reader
to [11] for further details.

Although, a resolution III design is useful only for cases where
there are no interactions, due to the aliasing of the main effects
with the interaction effects, a few flexibilities permit us to estimate
a few selected interactions, such as those of the previous paragraph.
Specifically, a resolution III design of size (number of experiments)
32 can actually be used for up to 31 factors. Since we only have
19 factors, the remaining 12 can be treated as dummy factors. The
desired interaction effects can be estimated by aliasing them with
some of the dummy factors, which typically have negligible (or
zero) effects. In addition, it can be noted that the two-factor in-
teraction effects of {ruu iadd1, ruu iadd2, ruu iadd3} must be
equal due to symmetry. Therefore, estimating one of them will suf-
fice, and this is true for the corresponding main effects as well.

The advantage of fractional factorial resolution III designs over
other screening designs such as Plackett and Burman (PB) [15],
which is employed in [14], is the well defined aliasing structure.
This attribute can be used to estimate a few required interactions,
as is done in this project, at the expense of a few additional simu-
lations3. Finally, if more interactions need to be considered in the
design, and the number of dummy factors is inadequate, then one
option is to perform appropriate additional orthogonal runs [16]. If
this is not sufficient, then a higher resolution (IV or more) design
can be utilized, if the associated simulation cost4 can be tolerated.
3For N factors, the number of experiments required in a PB design is equal
to the next highest multiple of 4 (20 for 19 factors in this work), unlike the
nearest highest power of 2 in a resolution III fractional factorial design used
in this work.
4A resolution IV fractional factorial design for the microarchitecture of this
work has a minimum size of 64.

2.4 Floorplanning
The factor and interaction effects obtained from the approach de-

scribed in the previous section are now inserted as factor weights
into the floorplanner to obtain an arrangement of blocks that op-
timizes the throughput. Since floorplanning plays a major role in
determining of the global wire lengths for a design, this is an ideal
phase at which these weights may be used. The throughput-aware
floorplanner must have the ability to pipeline the buses if the delays
exceed the system clock cycle, which is provided as input.

Our implementation uses PARQUET [17], a simulated annealing
(SA) based floorplanner available in the public domain. The advan-
tage of this SA-based approach is that it allows easy integration of
our weights into the cost function. The original cost function im-
plemented in PARQUET is a weighted sum of area (Area), total
wire length (TWL), and aspect ratio (AR), as shown below, where
WA, WWL, and WAR are user defined weights for Area, TWL,
and AR, respectively.

cost = WA · Area + WAR · AR + WWL · TWL (2)

For throughput-aware floorplanning, we replace TWL with the
new cost, weighted sum of factor latencies, WSFL, which also
considers interactions. For each interaction, its weight is multi-
plied with minimum of the latencies of the involving factors, since
the influence of latencies other than the minimum on the system
performance must be attributed to the individual factor effects. If
J is the set of interactions, then,

cost = WA · Area + WAR · AR + WWL · WSFL

WSFL =

19X

i=1

(wi · lat(i)) +
X

j∈J
(wj · min(j)) (3)

where lat(i) and wi are the latency and the weight, of factor i,
respectively, wj is the weight of interaction j ∈ J , and min(j) is
the minimum of the latencies of its associated factors.

For the factor extra fet, the latency lat() is computed as the
sum of the buses fet il1, fet bpred, il1 bpred, as shown in Table
1, and the latency of max lsq ruu is the maximum of the latencies
of dec ruu and dec lsq buses. For all other factors, which directly
model the buses with the same name, the latencies of the buses are
used directly.

Parameter Value
Fetch width 4 instrs/cycle
Issue width 4 instrs/cycle

Commit width 4 instrs/cycle
RUU entries 64
LSQ entries 32
IFQ entries 8

bimod, 4K table
Branch pred 2-lev 1K table, 10-bit

4K BHT
IL1 64K, 32B, 4-way

LRU, latency: 1
DL1 64K, 32B, 4-way

LRU, latency: 1
L2 2M, 64B, 8-way

latency: 12
ITLB, DTLB 128 entries

Miss latency: 30

Table 3: Block configuration of the processor.

582

3.0 3.5 4.0 4.5 5.0
0.4

0.5

0.6

0.7

0.8

0.9

1

gzip
N

or
m

al
iz

ed
 e

xe
cu

tio
n

tim
e

Frequency (GHz)
3.0 3.5 4.0 4.5 5.0

0.4

0.5

0.6

0.7

0.8

0.9

1

vpr

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Frequency (GHz)
3.0 3.5 4.0 4.5 5.0

0.4

0.5

0.6

0.7

0.8

0.9

1

gcc

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Frequency (GHz)

3.0 3.5 4.0 4.5 5.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mesa

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Frequency (GHz)
3.0 3.5 4.0 4.5 5.0

0.4

0.6

0.8

1

1.2

art

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Frequency (GHz)
3.0 3.5 4.0 4.5 5.0

0.4

0.5

0.6

0.7

0.8

0.9

1

mcf

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Frequency (GHz)

3.0 3.5 4.0 4.5 5.0
0.4

0.5

0.6

0.7

0.8

0.9

1

equake

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Frequency (GHz)
3.0 3.5 4.0 4.5 5.0

0.4

0.5

0.6

0.7

0.8

0.9

1

parser

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Frequency (GHz)
3.0 3.5 4.0 4.5 5.0

0.4

0.5

0.6

0.7

0.8

0.9

1

bzip2

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Frequency (GHz)

SFP
acc
minWL
SFP−comb
acc−comb

;

Figure 3: Results for nine benchmarks for five different frequencies. The execution times are normalized to the baseline case, where
wire-pipelining is not employed and the frequency cannot exceed 1.6GHz, and this indicated by the horizontal line in each graph.

3. EXPERIMENTAL RESULTS
The configuration of the parameters and functional units for the

microarchitecture is listed in Table 3 for the set of blocks shown in
Figure 2. The configuration, as well as the areas of the individual
blocks, are taken from [8]. The low value for a bus latency is chosen
to be 0, depicting the best case placement of the connecting blocks.
For the high value, we pick the corner-to-corner latency in the chip,
which is found to be 10 clock cycles for a frequency of 5.0GHz in
65nm technology, based on projections from [18]. For each of the
nine MinneSPEC benchmarks of Table 2, 32 cycle-accurate simu-
lations are performed, for the resolution III design employed. Al-
though the floorplan can be optimized for each of the individual
benchmarks, in reality, one must generate a single floorplan for the
processor that is, on average, optimal over all benchmarks. For this
case, referred to as “comb” henceforth, the factor and interaction
weights are determined by combining the weights5 of the factors
across all nine benchmarks.

The weights, both for the individual benchmarks and the com-
bined case, thus obtained are used to guide our Statistical Floor-
Planner (SFP), which uses a resolution III fractional factorial de-

5Normalized to the maximum of the factor (and interaction) weights for
that benchmark.

sign methodology to obtain the weights. We present results for a
number of clock frequencies, ranging from 3.0GHz to 5.0GHz. The
weights can be used for each of these frequencies, since the bus la-
tency ranges are valid for all of the frequencies less than or equal
to 5.0GHz. We compare the results of SFP with those of traditional
floorplanning, where the cost function to be minimized is the total
wire length, and we refer to this floorplanner as minWL. In addi-
tion, we also compare our results with the access frequency-based
floorplanning of [9], which will be referred to as acc henceforth.
Based on [19], we have implemented the algorithm in [9] that gath-
ers the bus access information by incorporating access counters for
each bus in SimpleScalar.

We assume that the operating frequency of the chip is constrained
only by the bus delays, and the maximum of the delays of the buses
is the minimum possible clock period when wire-pipelining is not
employed. The corresponding maximum frequency, obtained by
minimizing the maximum of wire lengths of the global wires in the
floorplanner, is determined to be about 1.6GHz, and this forms the
baseline unpipelined design.

Figure 3 presents the results obtained from floorplanning for
the nine MinneSPEC benchmarks. The graphs plot the execution

583

times6 of the programs for five different frequencies ranging from
3.0GHz to 5.0GHz. As mentioned earlier, the baseline processor
with no wire-pipelining operates at 1.6GHz. All execution times
are normalized to that of this baseline processor, which is shown
as a horizontal line in each of the plots. The bars “SFP-ind” and
“acc-ind” represent the cases, respectively, for SFP and acc, where
the floorplan is specifically optimized for a benchmark using the
corresponding weights. The corresponding general cases, where
the weights across all benchmarks are combined to obtain a sin-
gle floorplan for the processor, are represented as “SFP-comb” and
“acc-comb”, respectively.

The figures indicate that, for most cases, as expected, individ-
ual weights result in floorplans with better performance than when
the combined weights are used. The graphs show that “SFP-comb”
outperforms “minWL” by a large margin for each benchmark over
all, particularly high, frequencies. In addition, “SFP-comb” per-
forms better than “acc-comb” for almost all frequencies. On an
average, as compared to “acc-comb”, “SFP-comb” reduces the ex-
ecution time by 2%-4% for the nine benchmarks. It must be noted
that the lower improvements (execution time reductions) are due to
the contribution of the smaller frequencies such as 3GHz, where
the relatively less amount of pipelining indicates less reductions in
the execution times. For higher frequencies such as 5GHz, a good
amount of improvements are observed. For instance, improvements
of about 10% and 7% are obtained for 177.mesa and 197.parser, re-
spectively. Besides, the results obtained from floorplanning using
individual weights, i.e., the cases “SFP-ind” and “acc-ind”, indi-
cate similar improvements for SFP in the execution time. The av-
erage improvements seen are in the range 4%-6%, while improve-
ments are on the higher side for higher frequencies (the maximum
and minimum improvements of about 18% and 4% can be seen for
177.mesa and 179.art, respectively, for a frequency of 5GHz.). It
can be observed that the execution times decrease as the frequency
increases for all benchmarks, except for 175.vpr, where it increases
slightly for the case “SFP-ind”, as the frequency increases from
4.5GHz to 5GHz. In addition, the “minWL” solution for 179.art
results in highly inferior layouts, with higher execution times than
the baseline case for most frequencies. The reason behind this is
that one of the most critical buses, ruu fadd, is penalized (kept
long) in the floorplanning solution, in the process of minimizing
the total wire length.

3.0 3.5 4.0 4.5 5.0
0.9

1

1.1

1.2

1.3

1.4

1.5
Total wire length comparison

Frequency (GHz)

N
or

m
al

iz
ed

 W
L

SFP−comb
acc−comb

Figure 4: Total wire lengths for “SFP-comb” and “acc-comb”
cases. The wire lengths are normalized to the “minWL” case,
which is shown by the horizontal line.

Besides maximizing throughput, another equally important issue
is the wire length associated with each design. Even if the objective
6Given as Texec in (1). The term Ncycles is the reciprocal of through-
put that is optimized by the floorplanner, and Tclk is the corresponding
frequency.

at the floorplanning level is to maximize performance, higher wire
lengths may not be desirable as they can lead to problems such as
congestion and detours in the later stages of physical design. Since
both SFP and acc minimize the weighted sum of bus latencies, it is
possible that the floorplanning results in layouts where the lengths
of some low ranked wires, because of their low weights, are signif-
icantly increased. Figure 4 shows the total wire length trends, nor-
malized to the “minWL” case, for the “SFP-comb” and “acc-comb”
approaches. For all frequencies, “SFP-comb” results in lower total
wire lengths as compared to “acc-comb”. On an average, “SFP-
comb” results in layouts with about 10% less wire lengths than
“acc-comb”. We believe that the reason for this is that the magni-
tudes of the low ranked factors in the access ratios based approach
are far less than those of the SFP approach, forcing the floorplanner
to treat those wires as free variables.

4. CONCLUSION AND FUTURE WORK
This paper proposed a methodology to based on a statistical de-

sign of experiments approach to identify the performance critical
buses in a microarchitecture. The performance impact of each bus
and is quantified by assigning weights, and the approach is applied
at the floorplanning level. A comparison of the results with an
existing approach, which uses bus access frequencies as weights,
indicates that our proposed methodology produces better perfor-
mance with a lower total wire length. As future work, we intend to
further optimize the approach, and incorporate other critical objec-
tives such as power consumption.

5. REFERENCES
[1] S. Borkar, “Obeying Moore’s law beyond 0.18 micron,” in Proc. IEEE

ASIC/SOC, pp. 26–31, Sep. 2000.
[2] P. Cocchini, “Concurrent flip-flop and repeater insertion for high performance

integrated circuits,” in Proc. IEEE/ACM ICCAD, pp. 268–273, Nov. 2002.
[3] S. Hassoun et al., “Optimal buffered routing path constructions for single and

multiple clock domain systems,” in Proc. IEEE/ACM ICCAD, pp. 247–253, Nov.
2002.

[4] V. Nookala and S. S. Sapatnekar, “Correcting the functionality of a wire-
pipelined circuit,” in Proc. ACM/IEEE DAC, pp. 570–575, Jun. 2004.

[5] L. Scheffer, “Methodologies and tools for pipelined on-chip interconnect,” in
Proc. IEEE ICCD, pp. 152–157, Oct. 2002.

[6] D. C. Burger and T. M. Austin, “The SimpleScalar tool set, version 2.0,” Techni-
cal Report CS-TR-97-1342, The University of Wisconsin, Madison, Jun. 1997.

[7] J. L. Henning, “SPEC CPU 2000: Measuring CPU performance in the new mil-
lennium,” IEEE Computers, vol. 33, pp. 28–55, Jul. 2000.

[8] C. Long et al., “Floorplanning optimization with trajectory piecewise-linear
model for pipelined interconnects,” in Proc. ACM/IEEE DAC, pp. 640–645, Jun.
2004.

[9] M. Ekpanyapong et al., “Profile-guided microarchitectural floorplanning for
deep submicron processor design,” in Proc. ACM/IEEE DAC, pp. 634–639, Jun.
2004.

[10] A. Jagannathan et al., “Microarchitecture evaluation with floorplanning and in-
terconnect pipelining,” in Proc. ACM/IEEE ASPDAC, pp. 32–35, Jan. 2005.

[11] D. C. Montgomery, Design and analysis of experiments. New York, NY: John
Wiley, 1991.

[12] A. J. KleinOsowski and D. J. Lilja, “MinneSPEC: A new SPEC benchmark
workload for simulation-based computer architecture research,” IEEE Computer
Architecture Letters, vol. 1, Jun. 2002.

[13] J. Cong et al., “Microarchitecture evaluation with physical planning,” in Proc.
ACM/IEEE DAC, pp. 32–35, Jun. 2003.

[14] J. Yi et al., “A statistically rigorous approach for improving simulation method-
ology,” in Proc. ACM HPCA, pp. 281–291, Feb. 2003.

[15] R. Plackett and J. Burman, “The design of optimum multifactorial experiments,”
Biometrika, vol. 33, pp. 305–325, Jun. 1956.

[16] C. F. J. Wu and M. Hamada, Experiments: Planning, analysis, and parameter
design optimization. New York, NY: John Wiley, 2000.

[17] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning through better local
search,” in Proc. IEEE ICCD, pp. 228–334, Oct. 2001.

[18] J. Cong, “An interconnect-centric design flow for nanometer technologies,”
Proc. IEEE, vol. 89, pp. 505–528, Apr. 2001.

[19] M. Ekpanyapong. Private communication, 2004.

584

