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Abstract

This paper proposes the use of empirical modeling
techniques for building microarchitecture sensitive mod-
els for compiler optimizations. The models we build re-
late program performance to settings of compiler opti-
mization flags, associated heuristics and key microarchi-
tectural parameters. Unlike traditional analytical model-
ing methods, this relationship is learned entirely from data
obtained by measuring performance at a small number
of carefully selected compiler/microarchitecture configura-
tions. We evaluate three different learning techniques in this
context viz. linear regression, adaptive regression splines
and radial basis function networks. We use the gener-
ated models to a) predict program performance at arbitrary
compiler/microarchitecture configurations, b) quantify the
significance of complex interactions between optimizations
and the microarchitecture, and c) efficiently search for op-
timal’ settings of optimization flags and heuristics for any
given microarchitectural configuration.

Our evaluation using benchmarks from the SPEC
CPU2000 suits suggests that accurate models (< 5% av-
erage error in prediction) can be generated using a reason-
able number of simulations. We also find that using com-
piler settings prescribed by a model-based search can im-
prove program performance by as much as 19% (with an
average of 9.5%) over highly optimized binaries.

1. Introduction

High performance processors and optimizing compil-
ers are arguably the two most critical building blocks of
high performance computing systems. With access to
large parts of program code and abundant computational
resources, modern optimizing compilers employ sophisti-
cated program analyzes to identify optimization opportu-
nities and drive several code and data transformations that
can improve program performance. On their part, proces-
sors rely on a number of aggressive microarchitectural opti-
mizations that exploit dynamic properties of code and data
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and speedup programs by facilitating the execution of in-
structions in parallel. It is therefore not surprising that
most compiler and micro-architectural optimizations inter-
act with each other i.e. the effect of an optimization is de-
termined by the presence of other optimizations and cannot
be measured in isolation. Understanding the nature of these
optimizations and their interactions is critical for problems
such as phase ordering[2, 10] and important for the design
of efficient compilers in general.

Despite several research efforts, an accurate and scalable
method of characterizing compiler optimizations and their
interactions remains elusive. The difficulty in developing
such methods stems from the sheer complexity of modern
compilers and hardware. A typical compiler consists of a
large number of potentially interacting optimizations, each
parametrized by a number of independent heuristics, thresh-
olds and flags. Moreover, optimizations such as compiler-
directed prefetching, procedure inlining and loop unrolling
involve complex cost-benefit trade-offs that cannot be ac-
curately captured by simple models. Modern superscalar
processors add to the complexity of analysis by employing
several hard-to-analyze dynamic optimizations of their own
- out-of-order execution, branch prediction and multi-level
caching are prime examples of such optimizations.

Although the dynamics of interactions between opti-
mizations are not well understood, existing compilers are
not entirely oblivious to the presence of these interactions.
In fact, most compiler optimizations rely on carefully de-
signed heuristics based on some abstraction or model of the
underlying hardware, to maximize the benefits of the opti-
mization and guard against negative interactions that may
hurt performance. Although not without its advantages, the
use of such hardware models and manually designed com-
piler heuristics has the following key drawbacks.

e Unknown interactions. In the absence of accurate
methods for quantifying compiler and hardware in-
teractions, the compiler writer must speculate on the
magnitude and nature of interactions and identify in-
teractions that are most likely to effect performance.
Any oversight or error on the compiler writer’s part
may result in heuristics that focus on the wrong inter-
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Figure 1. Overview of empirical model building process

actions, leading to sub-optimal performance. For in-
stance, while designing heuristics that determine the
unroll factor, a compiler writer may have modeled the
increase in code size but ignored the positive effects
of unrolling on the optimizations that follow. As a re-
sult, loops may be conservatively unrolled and the full
benefits of unrolling may not materialize.

e Imprecise hardware models. Programs may also per-
form sub-optimally if the heuristics use an imprecise
model of the hardware. For instance, if the compiler
inserts prefetches ignoring secondary effects such as
cache pollution or an increase in bus contention, the
eventual performance of the optimized program may
be lower than expected.

e Microarchitecture dependence. It is often the case
that models and related heuristics are manually tuned
to work well over a small range of microarchitectural
configurations and may not be optimal for a different
microarchitecture.

We believe that the key to solving these problems lies in
the design of precise, scalable and micro-architecture sen-
sitive models for compiler optimizations. While traditional
analytical models may eventually evolve to meet these re-
quirements, we propose an alternative approach based on a
combination of experimental design and empirical model-
ing techniques. Unlike analytical models, empirical mod-
eling techniques treat the underlying system as a black box
and assume that the system response y is described by a
function f of one or more predictor variables {x;}} defined
over a domain of interest D (Equation 1).

Yy = f(xlaan"'axn)+€ (1)

Here, the component e reflects the dependence of the re-
sponse y on quantities other than {x;}7 that are not con-
sidered for modeling. The goal of empirical modeling is to
derive a function f which satisfactorily approximates f over

the domain D. Constructing empirical models is an iterative
process (Figure 1) that consists of the following basic steps:

1. Identify the predictor variables x1, s, ..., x, and the
domain (x1, xa,...x,) € D C R™ of interest.

2. Determine the mathematical form of the function f .

3. Determine the response y at carefully selected design
points. Here, each design point is a vector representing
an assignment of values to the predictor variables.

4. Estimate (the unknown parameters of) the function f
using data collected in Step 2. Also estimate the model
error.

5. Repeat steps 3 and 4 until a model with desired accu-
racy is obtained.

This simple methodology offers several advantages over
analytical modeling techniques. Building empirical models
is an automatic process that requires minimal user interven-
tion and does not rely on any prior knowledge about the re-
lationship between the predictor variables and the response.
Due to the iterative nature of the process, empirical models
with a desired level of accuracy can be built simply by col-
lecting more data as shown in Figure 1. Empirical models
can also discover arbitrarily complex interactions between
predictor variables. As a result, empirical models have a
fair amount of interpretive value and can reveal interesting
characteristics of the underlying system. Furthermore, these
models can be used to predict system response at arbitrary
points in the design space, enabling efficient exploration of
the design space.

In this paper, we illustrate the use of this methodology
by building application-specific empirical models for com-
piler optimizations. Figure 2 depicts the components and
parameters of the system we model. The empirical models
we build relate a program’s execution time to a set of pre-
dictor variables that include compiler optimizations flags,



Settings of heuristics Program input

[ ] ]

NS SN

Program
execution
Program fime
Optimizing Binary Processor
compiler

b o
| |

Compiler optimization Micro-architectural
flags parameters

Figure 2. Components and parameters of the
system we model.

numerically encoded heuristics and parameters that repre-
sent the microarchitectural configuration. The design points
at which we measure system response are determined us-
ing a variant of a commonly used experimental design tech-
nique called D-optimal designs. We evaluate three different
regression modeling techniques, linear regression models,
Multivariate Adaptive Regression Splines (MARS) [5] and
Radial Basis Function (RBF) networks [3] as approxima-
tions for the functional nature of this relationship.

To evaluate the modeling process, we built empirical
models for 14 optimizations and related heuristics imple-
mented in the gcc compiler, and 11 key microarchitectural
parameters. We find that reasonably accurate models (< 5%
error in prediction on average) can be automatically gener-
ated using data from a small number of design points. Using
these models, we were able to identify compiler heuristics
that had the largest impact on performance. Furthermore,
we find that these models can be used to search for *opti-
mal’ settings of the compiler optimizations flags and asso-
ciated heuristics for any given micro-architectural configu-
ration, absolving developers from the tedious task of tuning
these flags and heuristics for different platforms. Our evalu-
ation shows that using these settings improves program per-
formance by 10% on average and upto 19% for a typical
micro-architectural configuration.

The paper is organized as follows. We first discuss var-
ious issues involved in the process of identifying predictor
variables and their domain in Section 2. In Section 3, we
briefly describe the method we use to select design points
and explain the rationale behind our choice. We describe
the empirical modeling techniques we use in Section 4 and
discuss their relative strengths and weaknesses. The frame-
work we used to evaluate model building process is de-
scribed in Section 5. The results of our evaluation, which
involved testing the models for their predictive accuracy and
assessing the suitability of the models in searching for op-

timal compiler settings, are presented in Section 6. We sur-
vey some of the related work in Section 7 and conclude with
Section 8.

2. Preliminaries
2.1. Definitions

We first define a few terms that we will use through
out the text. Most predictor variables can be classified
as discrete, continuous or categorical. A categorical vari-
able takes on discrete values with no natural order. For
instance, a binary categorical variable takes on two values
(0/1, true/false etc). Given a set of k predictor variables and
their ranges, a design point is a k-dimensional vector that
represents an assignment of values to each of the predictor
variables from within their ranges. The term design space
or domain refers to the set of all possible design points. A
design matrix or a sample is a set of n specific design points
chosen for an experiment. The training data set refers to the
set of design points at which the system has been sampled.
Empirical modeling procedures use this data set to estimate
the unknown function f(x). It is also common to use an
independently generated fest data set to assess the quality
of a model.

2.2. Identifying response and predictor
variables

A compiler writer/developer initiates the model building
process by identifying the response and predictor variables.
Since the focus of this paper is building performance mod-
els, we use the absolute execution time (measured in cycles
using a cycle-accurate simulator) as the response. However,
models can also be built for other metrics such as power
consumption or code size. In fact, multivariate modeling
techniques such as MARS (Section 4.2) allow several re-
sponse variables to be modeled together.

The selection of predictor variables is more involved and
depends on the eventual use of the model. If the goal is
to identify significant parameters and interactions, then the
designer should select all variables that can potentially in-
fluence the response. However, if the goal is to optimize
the response over a constrained space, a smaller set of vari-
ables may be selected for modeling. Empirical modeling
does restrict the selection to variables that can be numeri-
cally expressed or encoded and are bounded. The following
non-exhaustive list enumerates different kinds of variables
that a compiler writer may be interested in modeling.

Compiler optimization flags. Most compilers support
command line flags that can be used to enable/disable
individual optimizations. Each flag can be encoded
as a binary categorical variable that takes two values,



0/1, which indicate whether the optimization is
disabled/enabled.

Microarchitectural parameters. Parameters such as
buffer sizes, cache sizes, number of functional units,
number of registers, latencies etc. are naturally
expressed as ordinary discrete variables whereas
others including inorder/out-of-order issue can be
represented as binary categorical variables.

Compiler heuristics. We find that several compiler opti-
mizations rely on one or more numeric parameters that
are used to determine where and how to apply the opti-
mization. Consider the following optimizations in gcc:

e Function inlining and loop unrolling: Inlining is
driven by a number of threshold based heuristics
such as the maximum number of instructions in
the callee and the maximum permissible increase
in code size of the caller; these heuristics help
protect against thrashing in the instruction cache.
The inliner also uses an estimate of the relative
cost of a call to exclude call sites that are un-
likely to yield significant benefits. A similar set
of thresholds governs loop unrolling and peeling.

o Trace scheduling: This optimization relies heav-
ily on heuristics to determine how traces are
formed. For instance, the optimizer decides to
extend an existing trace only if the following
branch has a bias greater than a threshold. The
optimizer can also be tuned to limit the increase
in code size due to tail duplication.

Apart from these numeric parameters, other non-numeric
variables that influence the behavior of an optimization may
also be considered for modeling. For instance, a set of pri-
ority functions [16] can be represented by a single categori-
cal variable. A complete list of variables we chose to model
is presented in Section 5.

2.3. Defining predictor variable ranges, lev-
els and transformations

The compiler writer/developer is also required to spec-
ify the operating range of values for each non-categorical
predictor variable. Since empirical models are known to be
inaccurate around the edges of the chosen design space, it
is advisable to select a range of values that is slightly wider
than the operating ranges. Furthermore, our experiments
show that varying each predictor variables at as many lev-
els as possible tends to increase the accuracy of the result-
ing models. However, certain predictor variables such as
cache sizes and buffer sizes that can only vary in powers of
2. Such variables can be transformed into linear predictor
variables using functions such as log or tnverse.

3. Design of Experiments

Having identified the response and the predictor vari-
ables, the next step in empirical model building is to select
a set of design points in the domain of interest at which
the response will be measured. Such a selection is neces-
sitated because the total number of points in the domain is
usually very large (exponential in the number of predictor
variables) and measuring the response at all points is in-
feasible. It is important to note that the choice of design
points is closely related to the accuracy and cost of building
empirical models. For instance, models generated using a
set of design points that are clustered in one region are un-
likely to be accurate over the entire domain. Experimental
design techniques address this problem by selecting design
points based on certain criteria; the resulting designs are
more amenable for analysis and likely to generate models
with higher accuracy. For reasons discussed below, we use
an experimental design technique known as D-optimal de-
sign [11] for selecting design points.

A D-optimal design of a specified size can be generated
by first generating a set of candidate design points (either
randomly or through methods such as latin hypercube sam-
pling) and then solving the following optimization problem.

D-optimal design problem. Given a set of m candidate
design points Z (an m x k matrix, where k is the number
of predictor variables), choose a set of n design points (an
n X k matrix X) from Z such that the determinant of the
information matrix det(X’X) is maximized.

It can be shown that maximizing the criteria det(X’X)
is roughly equivalent to increasing the confidence in the em-
pirical models generated using the design. Algorithms for
generating D-optimal designs are available in most statisti-
cal packages. D-optimal designs are extensible i.e. an ex-
isting D-optimal design can be easily augmented with ad-
ditional design points. This is useful in scenarios where an
initial design proves to be insufficient and additional data
is required. Furthermore, D-optimal designs are compatible
with almost all empirical modeling techniques.

4. Empirical Modeling Techniques

The goal of empirical modeling is to learn the relation-
ship between the response and the predictor variables using
samples from the system. We first describe three techniques
that are commonly used to accomplish this task. We then
address the problem of overfitting, which commonly occurs
in over-trained empirical models.



4.1. Linear regression models

Linear regression belongs to a class of global, paramet-
ric regression techniques where the nature of the functional
relationship between the response and the predictor vari-
ables is assumed to be known a priori and the specific pa-
rameters of the relationship are determined from the data.
In the specific instance of linear models, we assume that the
response y is linearly related to predictor variables {z; }7.
In its simplest form, a linear regression model is represented
as follows:

y = 50+Zﬂi$i+€

=1

Here, the coefficients {3;}{, also known as partial regres-
sion coefficients, reflect the effect or significance of the cor-
responding predictor variable on the response. Linear mod-
els can easily be extended to model interactions between
predictor variables. For instance, the following model in-
cludes terms that represent two-factor interactions.

y = Bo+ Y Bimi+ Y Byriite ()
i=1

i=1 j=i

Building linear models. Linear regression models are rela-
tively easy and quick to compute. Given a linear model with
k terms and a training data set consisting of a design matrix
X and the response vector y, the least squares estimates of

the partial regression coefficients 3 = (8o, 31, - - ., Bk—1)
are computed as follows:
B = X'X)X'y 3)

This estimate is known as the least squares estimate because
it minimizes the sum of squares training error SSE.

Z (f(xi) = :)° “)

i=1

SSE =

where p is the number of samples in the training data set.

Adequacy of linear models. Although global paramet-
ric models are easy to build and interpret, they are ac-
curate only if the specified parametric model is a reason-
able approximation for the underlying function. Consider
the response in Figure 3, which plots the variation in ex-
ecution time of the benchmark art (train input) from the
SPEC CPU2000 suite for different maximum unroll factors
(a heuristic in gcc, see Table 1 for description) and instruc-
tion cache sizes. As expected, the execution time first de-
creases with increasing unroll factors. However, no further
improvements in execution times are observed if the unroll
factor is increased beyond a threshold. Any further increase
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Figure 3. Variation in execution time of the art
benchmark for different maximum unroll fac-
tor and instruction cache sizes. Also shown
is a linear model approximation of perfor-
mance for the 8KB icache.

in the unroll factor causes the program to slowdown, possi-
bly due to increased register pressure. The figure also shows
the execution times predicted by a simple linear model for a
configuration with an 8KB instruction cache. It is clear that
the simple model does not approximate the response accu-
rately. A positive slope of the predicted response even sug-
gests that increasing the unroll factor has an overall negative
influence on performance, which is clearly not the case.

In scenarios where simple parametric models are inade-
quate, non-parametric procedures may be used. Unlike their
parametric counterparts, non-parametric methods make no
prior assumptions about the nature of the relationship be-
tween the response and the predictor variables. Instead,
both the nature and the parameters of the function f are
determined from experimental data. We describe two such
methods in the following sections.

4.2. Multivariate Adaptive
Splines (MARS)

Regression

MARS [5] belongs to a class of recursive partitioning
based regression techniques that use a divide and conquer
approach to derive functions that approximate arbitrarily
complex relationships. Instead of attempting to find one
global parametric function that explains the response, these
techniques recursively partition the domain into disjoint re-
gions until the response in each region can be accurately de-
scribed using simple functions of predictor variables. The
final model is simply a linear combination of these basis
functions.
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Figure 4. A typical three-layered RBF network

Formally, assume that the domain D of predictor vari-
ables is divided into M disjoint regions { R, }?!. Then the
response f(x) at a design point x is obtained as follows

if X € Ry, then f(X) = wmBm(x) (5)

Here, the basis functions B, are simple parametric func-
tions that describe the response in the region R,,, and w,,
are the regression coefficients. The following equation rep-
resents the resulting model.

M
m=1

Unlike traditional recursive partitioning procedures,
MARS uses g-order splines [5] as basis functions. The key
aspect of the MARS algorithm is that all parameters of the
model, i.e. the region boundaries and the regression coef-
ficients w,,, are determined using experimental data. Fur-
thermore, a MARS model (Equation 6) can be re-written
into a form in which the terms corresponding to predictor
variables and their interactions are associated with their own
coefficients (much like Equation 2). These coefficients are
estimates of the influence of the variables/interactions on
the response. Due to these features, models produced by
MARS are not only more accurate but also interpretable.

4.3. Radial Basis Function Networks

An RBF network, shown in Figure 4, is a three-layered
neural network widely used for regression and interpola-
tion. Like MARS, RBF networks are non-parametric; they
model the response as a weighted sum of basis functions:

N
fx) = wo+ ) wihi(x) (7
i=1

The basis functions are transfer functions of the hidden RBF
units in the network. However, unlike MARS, which uses
splines as basis functions, RBF networks use localized ra-
dial basis functions h;(x) of the form

hi(x) = K(|x—x|))

where the function K is known as a kernel. Each RBF is
characterized by two parameters, a center xi and a radius
r;. The key property of RBFs is that the response of an
RBF to an input x varies smoothly and monotonically with
the distance between the input and the RBF center. The
radius r; determines the rate with which the response of the
RBF increases or decreases with the distance. Equation 8
shows two of the most commonly used kernel functions, the
Gaussian and the inverse multi-quadratic function.

[Gaussian])K;(x) = e(*”x*xi\lz/%?) 8)

, 1/2
(=< P2+ 1)
Training RBF networks. Given a training data set consist-
ing of a design matrix X and a response vector y, the goal
of the training process is to determine the number of RBF
neurons, and the center points, radii and weights of the neu-
rons such that the resulting RBF model (Equation 7) is a
good approximation of the real response function.

The choice of the number and centers of RBF neurons
can be made in several ways. An obvious method is to
use the design points in the training data set as RBF cen-
ters. However, as discussed in Section 4.4, the resulting
RBF network, with as many neurons as the size of the train-
ing data set, is likely to overfit, specially for small sample
sizes. Therefore, most RBF network implementations sup-
port other data centric approaches such as clustering or re-
gression trees for choosing the number and centers of RBF
neurons. For instance, the regression tree based approach
uses training data to recursively partition the design space
into regions with uniform response. The design point clos-
est to the center of each such region is selected as an RBF
center. Once the number of RBF neurons and their centers
have been determined, the least squares approximation of
the weights w can easily be derived using Equation 3.

[multiquad] K;(x) =

4.4. Overfitting

Overfitting is a common problem that plagues many em-
pirical modeling techniques. Overfitting occurs when a rel-
atively small training data set is used to learn a model with
high complexity (measured in terms of the number of un-
known parameters). An overfit model fits the training data
almost perfectly but fails to generalize and predict the re-
sponse at other design points. Usually, overfitting can be
avoided if a large enough sample is used for training. How-
ever, since we rely on simulations to generate training data,
large sample sizes are prohibitively expensive.



# Parameter Description Low High | #levels
Value | Value

1 -finline-functions Inline simple functions into their callers 0 1 2

2 -funroll-loops Unroll loops whose number of iterations can be determined statically or at loop | 0 1 2
entry

3 -fschedule-insns2 Reorder instructions to eliminate execution stalls. Perform before and after | 0 1 2
register allocation

4 -floop-optimize Perform simple loop optimizations such as moving constant expressions, sim- | 0 1 2
plify test conditions etc.

5 -fgcse Perform GCSE pass, also perform constant and copy propagation 0 1 2

6 -fstrength-reduce Perform loop strength reduction and elimination of induction variables 0 1 2

7 -fomit-frame-pointer Do not keep the frame pointer in a register if not required 0 1 2

8 -freorder-blocks Reorder block to reduce number of taken branches and improve code locality 0 1 2

9 -fprefetch-loop-arrays | Generate prefetch instructions in loops that access large arrays 0 1 2

10 | max-inline-insns-auto | Maximum number of instructions (in GCC IR) in a single function for it to be | 50 150 11
considered for inlining

11 | inline-unit-growth Maximum overall growth of a compilation unit due to inlining 25 75 11

12 | inline-call-cost Cost of a call relative to a simple computation; used to identify beneficial call | 12 20 9
sites

13 | max-unroll-times Maximum number of times a single loop can be unrolled 4 12 9

14 | max-unrolled-insns Maximum number of instructions a loop can have for it to be considered for | 100 300 21
unrolling

Table 1. Compiler flags and heuristics considered for empirical modeling. Also listed are the pa-
rameter ranges and the number of levels for each parameter. All compiler parameters are linearly

transformed to a scale -1 to 1 for modeling.

Overfitting can also be avoided by constraining model
complexity using metrics that estimate the ability of a model
to generalize. Over the years, many such metrics have been
developed. One such metric is the Bayesian Information
Criteria (BIC) defined by the following relation.

p+ (In(p) — 1)WSSE ©)
p(p—7)

BIC =
Here, SSE is the sum of squares error on the training data
(Equation 4), p is the number of samples in the training
data set and + is the number of parameters in the model. In
essence, the BIC is a version of the SSE that also accounts
for the model’s complexity. Other metrics such as the GCV
(Generalized Cross Validation) are also commonly used.

5. Experimental Framework

We now describe the framework we used to test the
model building procedure and evaluate the accuracy,
scalability and utility of the performance models.

Parameter selection. We model a set of optimizations
in the gcc compiler infrastructure (version 4.0.1). The
choice of the compiler was governed by two factors - its
widespread use, and support for a backend for which a val-
idated simulator was available. Table 1 enumerates the set
of 14 optimizations and associated heuristics we chose to
model, their ranges (defined by the low and high values)
and the number of levels. All optimization flags are binary

encoded categorical variables, whereas the 5 heuristics are
numeric variables that control inlining and unrolling.

The microarchitectural parameters we considered for
modeling are listed in Table 2 along with the respective
ranges and levels. The list primarily comprises of pa-
rameters related to the processor core and the memory
subsystem. Previous studies [8] have shown that many of
these parameters have a high influence on performance.
Furthermore, the microarchitectural design space defined
by these parameter ranges covers the configurations of most
modern superscalar processors. Two of these parameters
deserve special mention. Since the number of functional
units is usually dependent on the issue width, we use the
issue width parameter to determine the functional unit
configuration. Also, the branch predictor size parameter
refers to the size of the predictor tables in a combined
branch predictor consisting of a bimodal predictor and a
2-level predictor of equal sizes. We note that this selection
of compiler optimizations and microarchitectural parame-
ters is by no means exhaustive. However, this selection is
large enough to demonstrate the efficacy of our approach.
Modeling this set of parameters is already beyond the
capabilities of traditional analytical methods [21].

Generating experimental designs. We used the AlgDe-
sign package in the R statistical tool to generate D-optimal
designs for the space defined by 25 parameters. We
conservatively chose a design of size 400 as our training
data set and an independently generated design of size 100



# Parameter Low High #

Value Value | Levels
15 | Issue width 2 4 2
16 | Branch predictor size* 512 8192 5
17 | Register update unit size* 16 128 4
18 | Instruction cache size* 8KB 128KB 5
19 | Data cache size* 8KB 128KB 5
20 | Data cache associativity 1 2 2
21 | Data cache latency 1 3 3
22 | Unified 12 cache size* 256KB 8MB 6
23 | Unified 12 cache associativity* 1 8 4
24 | Unified 12 cache latency 6 16 11
25 | Memory latency 50 150 21

Table 2. Micro-architectural parameters con-
sidered for empirical modeling. All parame-
ters marked ”*” are log transformed.

as our test data set.

Generating program binaries. The first step in measuring
program performance at a given design point is to generate
a program binary that corresponds to the settings of
variables at the design point. This is achieved by compiling
the program with a set of command line flags and param-
eters determined by the design point. However, certain
microarchitectural parameters may need special treatment.
For instance, the machine description used by the compiler
to guide instruction scheduling must be consistent with
the functional unit configuration used at the design point.
In our setup, we compiled several versions of gcc for the
Alpha backend, one for every possible functional unit
configuration and use an appropriate version to compile the
program.

Simulation methodology. We use a modified version of
Simplescalar, a detailed, cycle accurate processor simulator
for the Alpha architecture, to measure the response (execu-
tion time in cycles) at selected design points. Our simulator
models the memory system in detail. Specifically, the simu-
lator accurately models store buffers, buses and the DRAM.

However, measuring program performance using de-
tailed cycle accurate simulation is expensive. The prob-
lem is further exacerbated for the following reasons: a) the
number of simulations required to build models (the size of
the training data set) is likely to be large, and b) each de-
sign point may correspond to a different program binary.
As a result, IPC is no longer a valid performance metric
and traditional simulation time reduction techniques such
as Simpoint [14] cannot be used. In this paper, we address
this problem by using SMARTS based methodology [19]
for simulation. SMARTS relies on statistical sampling to
reduce simulation time by several orders of magnitude, al-
lowing programs to be simulated to completion. Further-

Benchmark-Input Linear model | MARS | RBF-RT
164.gzip-graphic 444 3.17 2.90
175.vpr-route 7.69 3.78 1.84
177.mesa 20.15 8.78 7.31
179.art 26.44 14.20 4.63
181.mcf 11.25 4.85 3.99
255.vortex-lendian1 9.69 6.95 5.15
256.bzip2-graphic 4.81 2.80 3.02
Average 12.07 6.35 4.13

Table 3. Average prediction error obtained
using three modeling techniques.

more, SMARTS provides estimates of the potential error in
measurement due to sampling. These estimates can be used
to tune the sampling parameters and repeat the simulation
until a desired level of accuracy is obtained.

For the purpose of this study, we chose the sampling
window size (# number of instructions sampled in one
window) of 1000 and a sampling interval of 1000 (1 in
every 1000 windows is sampled). Our experiments show
that this choice of sampling parameters results in < 1%
error (with 99.7% confidence) in estimating execution time
for all programs we tested. This reduces the simulation
time from several months to a few hours.

Building models. We use the iterative procedure illus-
trated in Figure 1 to build models for a given program-input
pair. The linear models we build incorporate individual
effects between parameters and two-factor interactions be-
tween them. The cost of building a large training data set
prevents us from including higher order interactions. We
construct the MARS models using the polspline package in
R, which supports the use of the GCV measure to avoid
overfitting. The RBF network models we build rely on re-
gression trees [12] for choosing the number and centers of
RBF neurons. We evaluated several kernel functions and
found that models based on the multi-quadratic kernel to be
the most accurate. The linear and RBF modeling procedures
also use the BIC criteria to avoid overfitting.

6. Experimental Results
6.1. Model Diagnostics

We estimate the accuracy of the program-specific mod-
els by using the models to predict the performance at the
design points in an independently generated test data set of
size 100. Table 3 shows the average percentage error in
prediction achieved by the three modeling techniques for 7
programs from the SPEC CPU2000 suite. Clearly, the mod-
els based on RBF networks outperform the other modeling
techniques across all programs, achieving an average error
of < 5% for all programs. Also note that the MARS models
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Figure 5. Effect of size of the training data set on model accuracy for benchmarks from the SPEC
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variance o.

compare well with the RBF network models for some of the
programs we tested. However, linear models are plagued by
high errors, which suggests that program performance may
not vary linearly over large regions of the design space.

Figure 5 illustrates the effect of the training data set size
on the accuracy of RBF network models. As expected, the
average error in prediction tends to decrease with increasing
sample sizes. Most exceptions to this rule occurs when very
small sample sizes (< 100) are used. We observe that the
number of samples required for the error to stabilize below
the threshold of 5% varies from program to program. For
a majority of the programs, this error threshold is reached
between 100-200 simulation runs. Also note that the vari-
ance in error (indicated by the gray region which represents
1 £ o) also decreases with increasing sample sizes. How-
ever, increasing the sample size beyond this threshold yields
incremental benefits.

Figure 6 throws more light on the predictive capabilities
of the RBF models. Here, we plot the actual execution time
vs. the predicted execution time at 100 design points in the
test data set for three programs with relatively high error.

We observe that all models capture high level trends in per-
formance and no outliers are observed.

6.2. Interpreting models

Although RBF models prove to be more accurate than
the MARS models, they suffer from the lack of inter-
pretability. Therefore, MARS models may in fact be pre-
ferred in cases where they are sufficiently accurate. As
aforementioned, MARS models can be represented in a
form in which each predictor variable/interaction is asso-
ciated with a single coefficient, which represents its signif-
icance over the entire design space. Table 4 shows the key
parameters/interactions and their coefficients as inferred
from the simplified form of the MARS models for program-
input pairs we tested. In these models, the co-efficient value
of a predictor variable/interaction is equal to one-half the
change in execution time (measured in billions on cycles)
caused by changing the variable(s) from their low to high
value. This listing reveals several interesting insights. First,
we note that the micro-architectural parameters and inter-
actions dominate program performance, whereas compiler
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Figure 6. The actual vs. predicted execution
times for three programs, art, vortex and mcf
using RBF network based models.

optimizations have a smaller role to play. Surprisingly, the
omit-frame-pointer and inlining appear to be the most sig-
nificant compiler optimizations in their own right; these op-
timizations improve performance significantly for virtually
all programs. We also find that loop optimizations (repre-
sented by the -floop-optimize flag) can hurt performance.
Also, the significant positive interaction between inlining
and the RUU size in mcf suggests that inlining is less benefi-
cial for a microarchitecture with large reorder buffer. On the
other hand, both unrolling (specifically the heuristic max-
unroll-factor) and omit-frame-pointer are more beneficial
when the reorder buffer is large. Also of interest are the in-
teractions between inlining and omitting the frame pointer
and between block reordering and L2 cache latency. Fi-
nally, we note that no two programs respond to compiler
optimizations in similar ways i.e. the set of optimizations
that improve performance varies from one program to the
other. MARS models can be used to obtain a comprehen-
sive listing of all such effects.

6.3. Model-based search for platform-
specific optimization settings

Apart from their usefulness in breaking down and ana-
lyzing performance, empirical models can serve many other
purposes. For instance, empirical models can predict the
response at arbitrary design points at virtually no computa-
tion cost. Such a model enables efficient and systematic de-
sign space exploration, a task traditionally associated with
high costs. We evaluated this feature by using our models to
search for near optimal compiler and heuristic settings for
a given microarchitectural configuration. If a search of this

Parameter Constrained | Typical | Aggressive
Issue width 2 4 4
Branch predictor size 512 2048 8192
Register update unit size 16 64 128
Instruction cache size 8KB 32KB 128KB
Data cache size 8KB 32KB 128KB
Data cache associativity 1 1 2
Data cache latency 1 2 3
Unified 12 cache size 256KB 1IMB 8MB
Unified 12 cache associativity 2 4 8
Unified 12 cache latency 6 10 16
Memory latency 50 100 150

Table 5. Micro-architectural configurations
for which models were used to search for op-
timal compiler and heuristic settings.

nature can be performed efficiently, it is conceivable that an
empirical model (developed offline for all platforms) can be
packaged with a program’s compilation system. When the
program is installed on a specific platform, the empirical
model could be parametrized with the platform’s configu-
ration and used to search for the optimal optimization flags
and heuristic settings, which would then be used to compile
the program.

For our evaluation, we selected three different microar-
chitectural configurations that represent a large spectrum of
the microarchitectural design space. These configurations,
listed in Table S, are referred to as constrained, typical and
aggressive. The constrained and the aggressive configu-
rations are specifically chosen to test the accuracy of the
models at the edges of the design space.

We used a genetic algorithm to search for the optimal
platform-specific settings of compiler flags and heuristics.
Given an empirical model, we freeze the microarchitectural
parameters in the model and then allow the GA to explore
the rest of the design space. The GA starts with an ini-
tial, randomly generated population of optimization flags
and heuristic settings. It uses the empirical model to pre-
dict performance at all design points in the population and
uses this measure to eliminate “unfit’ design points and re-
tain the fittest ones. The GA then uses the usual crossover
and mutation operators to create a new generation of candi-
date points and repeats the process. The GA terminates ei-
ther when the optimal design point is reached or the number
of generations exceeds a user specified threshold, in which
case the best available design point is reported.

Table 6 lists the best settings of optimizations flags
and heuristics we obtained using the genetic algorithm for
the three micro-architectural configurations. We observe
that the optimal settings are highly program and micro-
architecture dependent. These settings are also significantly
different from the default O3 settings.

Figure 7 shows the speedups (over -O2) obtained by us-



Parameter/interaction 181.mcf | 256.bzip2 | 175.vpr | 255.vortex | 164.gzip | 179.art | 177.mesa
constant (o) 439.30 132.84 177.28 142.85 75.52 123.40 226.72
issue width 0.00 -18.77 -7.27 -17.79 -11.73 0.00 -39.06
RUU Size 0.00 -11.05 -39.56 -16.69 -4.25 -48.03 -25.56
ul2 latency 5.54 1.91 2.90 15.32 3.40 0.00 29.33
dll size 0.00 -1.94 -4.09 -4.61 -2.55 0.00 -6.69
dll latency 0.00 2.77 2.63 3.44 1.98 0.00 0.00
dl1 assoc 0.00 0.48 -1.43 -3.07 -1.18 0.00 0.00
ill size 0.00 -1.82 0.00 -24.17 -1.75 0.00 -50.22
ul2 size -155.91 -12.92 -12.93 -9.74 0.00 -88.99 -5.19
ul2 assoc 8.51 0.87 -2.67 -4.23 0.00 0.00 0.00
memory latency 81.46 7.66 10.95 0.00 0.99 37.95 71.78
issue width * RUU size 0.00 -1.97 -1.93 0.00 -2.42 0.00 0.00
RUU Size * dll latency 0.00 -1.82 -1.59 -5.10 -1.83 0.00 0.00
RUU Size * ul2 size 0.00 3.08 7.29 0.00 0.00 42.42 0.00
RUU Size * memory latency 0.00 0.00 -4.23 0.00 0.00 -20.02 0.00
ill size * ul2 latency 0.00 0.00 0.00 -14.74 -1.31 0.00 -33.38
ul2 size * memory latency -79.05 -6.55 -6.44 4.25 0.00 -42.13 0.00
ul2 size * ul2 assoc -8.60 1.25 1.83 7.25 0.00 0.00 0.00
ul2 assoc * memory latency 8.18 0.00 -1.77 0.00 0.00 0.00 0.00
inlining -16.62 -0.90 -3.28 -2.17 -0.53 0.00 -5.81
unrolling 0.00 -0.86 0.00 0.00 -0.93 0.00 0.00
loop optimize 0.00 0.00 0.00 0.00 0.56 0.00 4.47
reorder blocks 0.00 -0.73 0.00 0.00 0.00 0.00 -3.84
gcse 0.00 0.00 0.00 -1.92 0.00 0.00 0.00
omit frame pointer -7.82 -2.01 -2.23 -4.41 -1.27 0.00 -5.60
max-inline-insns 0.00 0.00 -2.13 0.00 1.18 0.00 0.00
max-unroll-factor 0.00 0.00 0.00 0.00 0.00 0.00 5.04
inlining * RUU Size 10.33 0.00 0.00 0.00 0.00 0.00 0.00
inlining * omit frame pointer 6.29 0.00 0.00 0.00 0.00 0.00 0.00
inlining * ul2 latency 2.17 0.00 0.00 0.00 0.00 0.00 0.00
omit frame pointer * issue width 0.00 0.76 0.00 0.00 0.69 0.00 0.00
scheduling * ill size 0.00 -0.71 0.00 0.00 0.00 0.00 0.00
omit frame pointer * RUU Size 0.00 0.00 1.48 0.00 0.00 0.00 -8.20
reorder blocks * ul2 latency 0.00 0.00 0.00 0.00 0.00 0.00 -6.32
max-unroll-factor * RUU Size 0.00 0.00 0.00 0.00 0.00 0.00 -8.33

Table 4. Coefficients of key parameters and interactions inferred from the MARS models. The coeffi-
cients represent execution time in billion of cycles.

Program-Input | 1 2 3 4 5 6 7 8 9 10 11 12 13 14

gzip-graphic 1/1/1 | 1/1/1 | 0/0/0 | 0/0/0 | 0/1/0 | 0/0/1 | 1/1/1 | 1/1/1 | 1/0/0 | 134/128/126 | 25/43/36 | 15/16/16 | 10/09/09 | 200/200/200
vpr-route 1/1/1 | 1/0/0 | 0/0/0 | 1/0/1 | 0/0/0 | 0/0/0 | 1/1/1 | 1/1/1 | 1/1/1 | 138/141/137 | 48/47/47 | 12/12/19 | 11/04/12 | 300/300/300
mesa-ref 1/1/1 | 0/0/1 | 1/0/0 | 0/0/0 | 1/0/1 | 1/1/0 | 1/1/1 | 1/1/1 | 0/0/1 | 108/108/105 | 75/75/55 | 16/16/16 | 08/08/08 | 151/152/166
art-ref 1/0/0 | 1/1/1 | 1/1/0 | 1/1/1 | 1/1/1 | 1/1/1 | 0/0/0 | 0/0/1 | 1/1/1 | 100/050/050 | 55/75/75 | 16/12/20 | 08/12/04 | 206/300/300
mcf-ref 1/1/1 | 1/1/1 | 1/1/1 | 0/0/1 | 0/1/1 | 1/1/1 | 1/1/1 | 0/0/1 | 0/0/1 | 080/050/050 | 50/50/75 | 16/16/12 | 08/08/12 | 200/200/100
vortex-lendianl | 1/1/1 | 1/0/0 | 0/0/0 | 0/0/0 | 1/1/1 | 1/1/1 | 1/1/1 | 1/1/0 | 1/0/0 | 100/100/100 | 25/25/25 | 18/18/18 | 10/10/09 | 200/200/200
bzip2-graphic 1/1/1 | 1/1/1 | 0/0/0 | 0/0/1 | 0/0/0 | 0/0/1 | 1/1/1 | 1/1/1 | 0/0/0 | 100/100/100 | 58/62/60 | 16/16/16 | 10/12/09 | 300/299/216
default O3 1/1/1 | 0/0/0 | 1/1/1 | 1/1/1 | 1/1/1 | /1/1 | 1/1/1 | 1/1/1 | 1/1/1 | 100/100/100 | 50/50/50 | 16/16/16 | 08/08/08 | 200/200/200

Table 6. Optimization flag and heuristic settings prescribed by model-based search using RBF mod-
els for the conservative/typical/aggressive micro-architectural configurations.
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Figure 7. Predicted and actual speedup in ex-
ecution time for flag and heuristic settings
determined using RBF models for three dif-
ferent microarchitectural configurations.

ing the optimal settings prescribed by model-based search.
First, we observe that the speedup in performance due to -
03 optimizations is fairly small across programs and micro-
architectural configurations. In fact, O3 optimizations result
in an average slowdown of 2% on the typical configuration.
On the other hand, at the optimization settings prescribed
by the model-based search, RBF models predict significant
improvements over -O2 (an average of 14% for the typi-
cal configuration). Our experiments also indicate that the
actual speedup at these design points is close to the pre-

Train Actual speedup over 02 (%)
Program |input | Constrained Typical Aggressive
164.gzip | graphic 2.22 6.24 3.12
175.vpr route 8.17 5.23 4.19
177.mesa | train -1.89 -4.76 26.54
179.art train 16.78 18.07 -0.01
181.mcf | train 17.37 2140 2.43
255.vortex | lendian -1.38  -13.45 -8.32
256.bzip2 | graphic -0.20 -2.78 1.88
Average 5.87 4.28 4.26

Table 7. Speedups obtained using model
based search in a typical profile-guided opti-
mization scenario for three different microar-
chitectural configurations.

dicted speedup (9.5% on average with a maximum of 19%
over O3). This observation also holds for the constrained
configuration, although the actual speedups are compara-
tively lower. However, we find that the model prediction
errors are higher for the aggressive configuration. Here,
the actual speedups at design points prescribed by the GA
differ from the predicted speedups. This is to be expected
since this design point lies at the edge of the design space,
where empirical models are known to have low predictive
accuracy [7]. For the other configurations, we attribute the
speedups to the judicious, program-specific selection of op-
timization flags and heuristic values that takes into account
both positive and negative interactions between optimiza-
tions and the hardware.

We also tested the model-based search in a typical
profile-guided optimization scenario, where the model is
built for a ’representative’ input and used to identify opti-
mization flag and heuristic settings for future runs of the
program. Table 7 shows the resulting speedups (over -O2)
for the three micro-architectural configurations. We find
that while performance for most programs improves at set-
tings prescribed using the train inputs (art and mcf being
prime examples), a few programs are adversely affected.
We speculate that this effect may be caused by the differ-
ence between the reference and the training inputs; a more
detailed analysis is left for future work.

7. Related Work

The influence of interactions between optimizations and
hardware on performance has long been known by compiler
writers and researchers. Several researchers have proposed
techniques that make compilers interaction aware; these
techniques analytically model the costs and benefits of in-
dividual optimizations and potential interactions [18, 13, 9,
20]. The most generic of these proposals is the profit-driven
framework developed by Zhao et al [21], which proposes
mechanisms for modeling the influence of optimizations on



code and machine resources. These methods typically an-
alyze optimization sites in isolation and make several sim-
plifying assumptions such as the additive nature of costs
and benefits and the lack of interactions between optimiza-
tions and hardware components such as the reorder buffer
or branch predictors.

Several researchers have recognized the inherent com-
plexity of understanding and modeling interactions between
optimizations and opted for the use of statistical and ma-
chine learning techniques to address these problems instead.
Haneda et al [6] propose the use of statistical inference tech-
niques for selection of optimal optimization flags on a given
platform. Search and learning techniques have been used to
to identify efficient compilation sequences [17, 2, 10, 1].
and to improve optimization specific heuristics [15]. Many
of these techniques are based on the key idea that the ef-
fect of compiler optimizations on a program is related to
certain key program features. Cazavos et al [4] propose the
use of neural networks and reaction-based modeling tech-
niques to build empirical models for compiler optimiza-
tions. Their modeling technique is based on the assumption
that a program can be characterized by the way it responds
to a set of characteristic optimizations. In contrast to these
approaches, our models are platform independent but spe-
cific to each program-input pair. Our models are designed
to generalize across a complex and important but often ig-
nored micro-architectural design space.

8. Conclusions

In this paper, we proposed the use of empirical mod-
eling techniques to build application-specific performance
models for compiler optimizations. The key feature of our
modeling process is the ability to simultaneously capture
the effects and interactions between several compiler opti-
mizations, associated heuristics and microarchitectural pa-
rameters without any prior knowledge about their behavior.
We show that empirical models can be effective tools in the
hands of compiler writers. The models assist a compiler
writer in identifying key effects and interactions that have a
high impact on performance, and thus provide information
useful for designing better analytical models and optimiza-
tion heuristics. The models also enable efficient searches
over parts of the design space, as illustrated by our use of
the models for searching optimal compiler flags and heuris-
tics for any arbitrary hardware platform.
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