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The mechanical properties of open-cell metallic foams and periodic lattice materials are explained by a structural analysis
of their parent pin-jointed truss structures. A matrix method of analysis is presented in order to elucidate whether a periodic
truss structure can collapse by macroscopic strain producing mechanisms, or by periodic collapse mechanisms which induce
zero macroscopic strain to first order. It is shown that the planar Kagome truss is of the latter type, and is consequently stiff.
The in-plane stiffness of the 2D Kagome grid and the bending stiffness of the 3D Kagome double-layer grid (KDLG) are
determined for elastic members. An alternative, statically determinate, double-layer grid is derived from the octet truss, and
is referred to as the modified octet truss (MOT). This structure has faces comprising a hexagonal grid and a semi-regular
triangular grid, and is much less stiff than the Kagome double-layer grid. Both structures have morphing capability due to
their static and kinematic determinacy.
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1 Introduction

Cellular solids of low relative density can be considered to have the microarchitecture of an assembly of welded struts.
The recent study of Deshpande, Ashby, and Fleck [4,5] reveals that the macroscopic properties are largely dictated by the
connectivity of joints rather than by the regularity of the microstructure. Consider the case of open-cell metallic foams,
as reviewed by Ashby et al. [1]. They are manufactured mostly from the melt by the expansion of gas bubbles, and the
expansion process is driven by the minimisation of surface energy. Consequently, they have microstructures which, although
stochastic, have a low nodal connectivity of 3–4 adjoining bars per joint. (The parent pin-jointed structure contains collapse
mechanisms.) The stiffness and strength of these 3D structures relies upon the bending stiffness of the bars, and they are
consequently referred to as bending dominated structures. Define the relative density ρ̄ as the ratio of the density of the porous
solid to that of the solid from which it is derived. Then, it follows by straightforward beam-bending theory and dimensional
analysis that theYoung’s modulus E of open-cell foams scales with that of the fully dense solid ES according to E ≈ ρ̄2ES .
The yield strength σY scales with ρ̄ and with the yield strength of the parent solid σY S according to σY ≈ 0.3ρ̄3/2σY S .
Both relations are supported by a wealth of experimental data, see Ashby et al. [1] and the recent conference proceedings
edited by Banhart, Fleck, and Mortensen [2]. The recently developed lattice materials such as the octet truss have a nodal
connectivity (co-ordination number) of 12 and are stretching dominated structures. These cellular solids have the virtue
that the stiffness and strength scale linearly with the relative density and thereby out-perform metallic foams; their parent
pin-jointed trusses are highly redundant. A variety of fabrication routes have evolved to construct these periodic lattices, see
Wadley et al. [16].

There is increasing interest in the development of morphing materials which are stiff to external loads but have the ability
to undergo large changes of shape upon actuation by lengthening (or shortening) some part of the material. One strategy
for identifying useful morphing materials is to consider periodic, pin-jointed trusses.† If the pin-jointed structure is both
kinematically determinate (no internal mechanisms) and statically determinate (no internal states of self-stress), it will be
stiff to passive loads. Now replace one bar by an actuator and treat this actuator as external to the modified structure. The
modified structure behaves as a mechanism with a single degree of freedom, and this mechanism is activated by elongation of

∗ Corresponding author, e-mail: naf1@eng.cam.ac.uk, phone: +44 (0)1223 332650, fax: +44 (0)1223 332662
† Throughout this paper, properly arranged external constraints (3 for 2D trusses and 6 for 3D space trusses) are applied. They provide a statically

determinate support for a rigid body: A rigid body with these constraints forms a statically determinate structure.
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(a) (b)

(c)

Fig. 1 a Finite “patched” planar Kagome grid. b Topology of
Kagome double-layer grid (KDLG) including patching scheme.
c Topology of Kagome double-layer grid (KDLG) with trans-
lated mid-nodes to disrupt the reflective symmetry.

the actuator. It is anticipated that the rigid-jointed version of a statically and kinematically determinate pin-jointed structure
will inherit a morphing capability.

The hunt for a periodic, statically and kinematically determinate, 2D or 3D structure is a challenging task. Recently, Guest
and Hutchinson [6] have proved that no such infinite periodic structure exists. However, we shall show that finite versions of
periodic 2D and 3D structures can be made statically and kinematically determinate by minor modifications. For example,
the finite planar Kagome grid, with suitable patch bars on the periphery, is both statically and kinematically determinate,
see Fig. 1a. The pin-jointed version of the finite Kagome double-layer grid (KDLG), with peripheral patch bars as shown
in Fig. 1b, contains states of self-stress. However, the structure can be made statically and kinematically determinate by
a symmetry breaking operation: The position of the mid-plane nodes are perturbed to introduce asymmetry, see Fig. 1c.
The double-layer grid exists as a plate-like structure, or can be distorted into a shell-like structure with single or double
curvature, as discussed by Symons et al. [15]. An alternative statically and kinematically determinate double-layer lattice is
introduced in this paper: The modified octet truss (MOT). Recall that the parent (3D) octet truss is near optimal in stiffness
but is redundant due to its high average connectivity of 12. Thus the question arises: How can the octet truss be modified
to a statically and kinematically determinate form? We address this question below, and then derive the properties of the
modified octet truss. The main finding is that the modified octet truss is much less stiff in axial extension and in bending
than the Kagome double-layer grid.

2 Matrix analysis of periodic truss structures

We begin by considering the equilibrium and kinematics of periodic pin-jointed trusses with extensional bars, in terms of the
matrix methods developed by Pellegrino and Calladine [12]. A truss is statically determinate when the tension in every bar
can be determined solely from the equilibrium equations for a given set of external force components applied to each joint
(or node); the number of equations is equal to the number of unknowns. A truss is kinematically determinate if the location
of each joint is uniquely determined by the length of each bar. We first introduce the equilibrium matrix A. Consider a planar
truss (dimension N = 2) or a spatial truss (dimension N = 3) consisting of j total joints connected by b bars and constrained
by k kinematic constraints to rigid foundations. Then, one can identify the following static and kinematic variables: b bar
tensions assembled into a vector t, Nj − k components of external force assembled into the vector f , b bar elongations
assembled into the vector e, and Nj − k displacement components assembled into the vector d. Joint equilibrium dictates
the matrix relation

A · t = f (1)

between bar tensions and joint forces, in terms of a rectangular equilibrium matrix A, of dimension Nj − k by b. Similarly,
compatibility of bar extensions and joint displacements dictates that

B · d = e (2)
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where the kinematic matrix B is of dimension b by Nj − k. Straightforward application of the principle of virtual work
reveals that A and B are connected directly by B = AT where the superscript T denotes the transpose.

To generalise Maxwell’s rule, Pellegrino and Calladine [12] derived the following relations:

s = b − rA (3)

m = Nj − k − rA (4)

where s ≥ 0 is the number of independent states of self-stress, rA is the rank of the equilibrium matrix A (denoted
rank(A)), m ≥ 0 is the number of independent inextensional mechanisms, j is the total number of joints, and k is the
number of kinematic constraints to a rigid foundation. Note that s can be qualitatively described as the number of redundant
bars (see [3,12]). The relations (3) and (4) may be justified through examination of the four fundamental subspaces of A:
Row(A), Col(A), Nul(A), and Nul

(
AT)

, see for example Strang [14]. Pellegrino and Calladine [12] give the following
interpretation to these subspaces:

1. Row(A): basis for the equilibrium bar tension vectors t without self-stress, with dimension dim(Row(A)) = rA.
Kinematically, this subspace is composed of all geometrically compatible bar elongations e since Row(A) = Col(B).

2. Col(A): basis for the equilibrium external force vectors without self-stress f where dim(Col(A)) = rA. Kinematically,
this subspace is composed of all geometrically compatible joint displacements d since Col(A) = Row(B).

3. Nul(A): basis for all bar tensions t in equilibrium with f = 0. This comprises all the states of self-stress, with
dim(Nul(A)) = b − rA = s. Kinematically, this subspace is composed of all geometrically incompatible e since
Nul(A) = Nul

(
BT)

.
4. Nul(AT): basis for the inadmissible external force vectors f , with dim(Nul(AT)) = Nj−k−rA. These force vectors

are forbidden by the equilibrium equations. Kinematically, this subspace is composed of all geometrically incompatible
d, since Nul

(
AT)

= Nul(B); this subspace is composed of all the inextensional mechanisms.

The above subspace interpretations lead directly to (3) and (4). Pellegrino [11] has recast the above items in terms of the
singular value decomposition and has discussed the fundamental subspaces of several example trusses in detail.

2.1 Infinite periodic pin-jointed truss

For an infinite pin-jointed framework of connectivity Z and j joints, the total number of bars b is approximately jZ/2. Thus,
the necessary, but not sufficient, condition for rigidity is Z = 4 in 2D and Z = 6 in 3D [4]. A Venn diagram to illustrate the
various types of mechanism exhibited by classes of 2D periodic pin-jointed truss is given in Fig. 2. Consider the various
structures in turn. The fully triangulated structure, comprising equilateral triangles with a nodal connectivity of Z = 6, is
highly redundant and possesses no collapse mechanisms. In contrast, a triangular-triangular lattice, with unit cell shown in
Fig. 2, collapses by a mechanism which leads to a macroscopic hydrostatic strain. Thus, this structure has zero macroscopic
stiffness against this collapse mode. The Kagome microstructure, as sketched in Fig. 1a, has a connectivity of Z = 4 and has
no strain-producing collapse mechanisms; it can only collapse by periodic mechanisms which do not produce a macroscopic
strain. Consequently, it is rigid in all directions. The cases of the square lattice and the hexagonal lattice, with a connectivity
of Z = 4 and Z = 3, respectively, are different. Each of these structures can collapse by macroscopic strain-producing
mechanisms, and by periodic collapse mechanisms. A methodology has been developed by Hutchinson and Fleck [7] to

Triangular

triangular
Triangular−

mechanisms
producing
Strain−

Hexagonal

No mechanisms
mechanisms
Periodic

Square

Kagome

Fig. 2 Venn diagram of planar pin-jointed trusses.
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explore the periodic collapse mechanisms based on Bloch-wave analysis; the details are beyond the scope of the present
article. The main conclusion to draw from Fig. 2 is that the fully triangulated structure is macroscopically stiff because it
possesses no collapse mechanisms while the Kagome structure is macroscopically stiff because it has only periodic collapse
mechanisms which generate no macroscopic strain.

2.2 Exploration of strain-producing collapse mechanisms

Consider a periodic lattice, with n independent joints within each (primitive) unit cell. The entire lattice is constructed by
translating the unit cell from the origin by a set of vectors x. Let {jl} be the joint basis used to define the relative location of
each joint l within the unit cell. Then, the position vector of any joint throughout the lattice is xl = jl + x for joint number
l. It is convenient to define the components of the various vectors in terms of the covariant basis {aα} of the direct lattice.
Then, {aα} is the reciprocal lattice basis, α ∈ {1, 2}.

The Cauchy-Born hypothesis states that a macroscopic, homogeneous displacement field d of the joints of a planar,
periodic lattice may be defined using its unit cell Y (with boundary ∂Y ) as

d (xl, ε̄) = ε̄ · x + p (jl) ∀ jl ∈ ∂Y (5)

where p (jl) is a periodic function which repeats from one unit cell to the next, and ε̄ is the symmetric second-order
macroscopic, average, or effective strain tensor. The basic notion is to explore the existence of the set of p (jl) and
associated ε̄ for a given periodic truss. This is achieved by substituting (5) into (2), to obtain a relation of the form

B̄ · d̄ = ē (6)

where the vector d̄ comprises a linear combination of the components of ε̄ and p (jl). The null space Nul
(
B̄

)
is composed

of all the inextensional mechanisms associated with a macroscopic strain. For some of these collapse modes the magnitude
of the macroscopic strain may vanish. We find that the planar Kagome grid has only collapse mechanisms which produce
zero macroscopic strain [8]. Consequently, it is macroscopically rigid for the case of inextensional bars and has a finite
macroscopic stiffness for the case of bars with finite axial compliance.

The static boundary conditions consistent with the assumed kinematics of (5) are that the tractions σ · n are opposite on
opposite faces of the unit cell boundary ∂Y . Consider a general unit cell Y made up of j pin-joints and b truss members with
only joints on the unit cell boundary ∂Y . Identify each of the p periodic joint pairs on ∂Y separated by translation vectors,

x̂ = x̂αaα ∀ x̂α ∈ {−1, 0, 1} . (7)

We re-label one joint of each pair such that the two joint positions are jq and jq + x̂q. This may be expressed in terms of
(applied) joint forces on the boundary ∂Y as

f
(
jq + x̂q

)
+ f

(
jq

)
= 0 ∀ jq ∈ ∂Y . (8)

The boundary conditions analogous to (8) for the case when bars, rather than joints, are “cut” by the unit cell boundary are

t
(
bq + x̂q

) − t
(
bq

)
= 0 ∀ bq ∈ ∂Y (9)

where t
(
bq

)
are bar tensions and

{
bq

}
is the bar basis. Clearly, a combination of (8) and (9) may be applied when both

bars and joints are on ∂Y .

3 The planar Kagome truss

We consider first a planar Kagome grid of n hexagons per side, and derive the required patching scheme. Such a grid contains
6n2 triangles, and therefore the number of bars is b = 18n2. The number of joints (nodes) is j = 9n2 + 3n. For a planar
Kagome grid there are no states of self stress, s = 0. If we apply three constraints, k = 3, to prevent rigid body motions
we may determine the number of mechanisms (and therefore the number of patch bars required) from the 2D version of
Maxwell’s equation

s − m = b − 2j + k

giving

m = 6n − 3 .
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Thus, for the planar 7-hexagon Kagome grid (n = 2) we require 9 patch bars. There remains an arbitrary choice in the
location of the patch bars, but the arrangement shown in Fig. 1a is systematic and straightforward to generate. Consider the
planar Kagome truss as sketched in Fig. 1a, with each truss bar made from a linear elastic solid of Young’s modulus ES .
Hyun and Torquato [10] have shown that the elastic, infinite version has in-plane effective properties which are close to
optimal, and attain the upper Hashin-Shtrikman bound. In the dilute limit, the in-plane Young’s modulus E scales with the
relative density ρ̄ of the cellular solid according to

E = 1
3 ρ̄ES (10)

and the Poisson’s ratio is ν = 1/3. Strikingly, this effective response is identical to that of the fully triangulated truss.

4 The Kagome double-layer grid (KDLG)

Fig. 3 shows a plan view of three KDLGs with a number of hexagons per side n equal to 1, 2, and 3. The finite asymmetric
KDLG contains no states of self-stress (s = 0) and is therefore statically determinate. To make the structure kinematically
determinate (m = 0) the remaining mechanisms must be “switched off” by a peripheral patching scheme. We may use the
same approach to determine the number of patches required for the three dimensional KDLG as for the planar Kagome
grid described above. Assume the KDLG has planar Kagome faces comprising a grid of n-by-n hexagons. The number of
tetrahedra in the KDLG is 12n2. Therefore, the number of bars is

b = 72n2

and the number of joints is

j = 24n2 + 6n .

If we apply 6 constraints (k = 6), to prevent rigid body motions we then apply the three dimensional form of
Maxwell’s equation

s − m = b − 3j + k

to obtain

m − s = 18n − 6 .

For the asymmetric KDLG we have s = 0 and therefore the number of required patch-bars is 18n − 6 in order to make
the structure kinematically determinate (m = 0). The patching scheme adopted is sketched in Fig. 1b. The scheme for the
top and bottom faces and the mid-plane nodes closely resembles that sketched in Fig. 1a for the planar Kagome grid. Three
additional patch bars complete the patching scheme and these bars connect the top and bottom layers of the KDLG.

1 hexagon per side,  n = 1 2 hexagons per side,  n = 2 3 hexagons per side,  n = 3

Fig. 3 Kagome double-layer grids (plan view).

4.1 Plate bending stiffness of the welded KDLG

The effective stretching stiffness S̄ of the KDLG can be estimated by treating the structure as a sandwich with faces each
of thickness t equal to that of the bar thickness, and a core of height H . Then, under a single component of axial force N
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per unit width the effective plate stretching stiffness is simply S̄ = 2S, where S = Et in terms of the effective Young’s
modulus E of the Kagome planar faces. Under a single component of applied moment, the plate bending stiffness is

D̄ = 1
2 SH2 . (11)

Substitution for (10) gives D̄ = 1
6 tρ̄ESH2. These expressions for the stretching and bending stiffness of the KDLG neglect

the minor contribution from the bending stiffness of each bar. Note that the stiffnesses of the KDLG scale with relative
density ρ̄, implying a stretching response under all external loadings. We shall see that this response is in sharp contrast to
that of the modified octet truss.

5 Modification of the octet truss to a statically and kinematically determinate design

Fig. 4b is a plan view of a finite octet-truss structure and Fig. 4a is a detail of the unit cell used to construct the octet-truss.
The challenge is to convert this highly redundant pin-jointed structure to a statically and kinematically determinate form by
suitable removal of bars. We first discuss the derivation of finite, pin-jointed, 2D statically and kinematically determinate
structures that derive from the faces of the fully triangulated octet truss – the thick lines in Fig. 4. Consider the trial geometries
detailed in Figs. 5a and 5b. Applying the matrix analysis development of Pellegrino and Calladine [12] in a MATLAB script,
the equilibrium matrices (A) for the structures of Fig. 5 were generated and rank(A) = rA estimated. Then, the generalised
Maxwell’s rule for planar structures, s = b − rA and m = 2j − rA − 3, was applied to each truss with the results quoted in
Fig. 5; the most notable being that the truss of Fig. 5b is statically and kinematically determinate with s = m = 0. A larger
example analogous to Fig. 5b is given in Fig. 6b for which b = 101, j = 52, and rA = 101 ⇒ s = m = 0.

The algorithm developed to generate Fig. 6b and such frameworks of general size is as follows:

1. Translate the unit cell of Fig. 6a to generate a planar “network”.
2. Add additional boundary-layer members, and joints if necessary, to render the planar truss statically and kinematically

determinate. Use MATLAB or a similar mathematical programming environment (e.g. C, FORTRAN) to form the
explicit equilibrium matrix A, to estimate rA, and thus numerically check that s = m = 0, upon evaluating s = b− rA

and m = 2j − rA − 3.

In progressing from Fig. 5a to 5b, the second step above involves the straightforward addition of three boundary bars. The
complete construction of Fig. 6b requires the addition of eleven such bars.

(a) (b)

Fig. 4 a An octet unit cell, and b the corresponding octet truss, where thick solid, thin solid and dashed lines make up the
top face, bottom face and core members respectively. All bars are of equal length.

(a) (b) (c)

Fig. 5 Finite, planar trusses: a a mechanism (s = 0, m = 3); b statically and kinematically determinate (s = m = 0);
and c a redundant fully triangulated truss (s = 3, m = 0).
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(a) (b)

Fig. 6 a The triangle-triangle unit cell, and b a larger, statically and kinematically determinate version of Fig. 5b, with
b = 101 and j = 52.

The unit cell given in Fig. 6a may be tessellated to form the infinitely periodic analog of Fig. 5a and was analysed using
the matrix analysis techniques outlined above. After forming Ā = B̄

T
(recall (6)), a MATLAB script was used to perform

the following calculations. For each unit cell, the number of bars b = 6, the number of joints j = 5 and the number of
periodic node pairs p = 2 ⇒ Ā is a 6-by-6 real matrix. Finding that rank(Ā) = 4 ⇒ dim(Nul(Ā)) = b−rĀ = 6−4 = 2.
This implies that m = 1 and the infinite truss is a mechanism. We thus find that this lattice cannot support biaxial loading.
Fig. 6a satisfies the necessary rigidity condition that the average connectivity Z = 4 but not the sufficient condition, that
dim(Nul(Ā)) = 3.

5.1 Reduction of 3D octet truss to statically and kinematically determinate form

To identify a (finite) statically and kinematically determinate derivative of the octet truss, we adopted a trial and error
method similar to that which generated Figs. 5a, 5b, and 6b. Fig. 7 summarises our early findings following a progression
similar to that in Fig. 5. Applying the generalised Maxwell’s rule to Fig. 7c one finds that b = 69 and j = 22 so s −
m = b − 3j + 6 = 69 − 66 + 6 = 9. Using a MATLAB script to perform the required matrix computations, we find
that rank(A) = 60, s = b − rA = 9 and m = 0 as stated in Fig. 7. For Fig. 7b the corresponding data are: b = 57,
j = 21 ⇒ s − m = b − 3j + 6 = 57 − 63 + 6 = 0 and s = b − rA = 57 − 57 = 0 ⇒ s = m = 0 so this truss is statically
and kinematically determinate. Fig. 7a is a mechanism with b = 42, j = 18, s−m = −6 and rA = 42 so s = 0 and m = 6.
A larger lattice of the type of Fig. 7b and its corresponding unit cell are detailed in Fig. 8. The structures of Figs. 7b and 8
are examples of what we call the modified octet truss (MOT). The construction recipe for Fig. 8b is similar to that given for
Fig. 6b: First, tessellate a planar region with the unit cell and then affix additional boundary-layer members and joints about
the perimeter of the lattice. The transition from Fig. 7a to 7b is the simplest example of the latter procedure which we shall
term octet addition since one “completes” boundary octet units (as defined in Fig. 4a). As for Fig. 7b, the larger (pin-jointed)
lattice of Fig. 8b may also be shown to be statically and kinematically determinate by inputing its joint coordinates and bar

(a) (b) (c)

Fig. 7 Finite, spatial trusses based upon the octet truss: a a mechanism (s = 0, m = 6); b a statically and kinematically
determinate truss (s = m = 0); and c the octet truss (s = 9, m = 0). The thick solid, thin solid and dashed lines represent
the top face, bottom face and core members, respectively.
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(a) (b)

Fig. 8 a The modified octet truss unit cell and b a larger, statically and kinematically determinate variant of Fig. 7b. The
thick solid, thin solid and dashed lines represent the top face, bottom face and core members, respectively.
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Fig. 9 Three point bending of a narrow (nW = 1) modified octet truss beam. Comparison of ABAQUS finite element
predictions and measured response, using truss or beam elements, and an assumed yield strength of 170 MPa or 250 MPa.

connectivity into the MATLAB script developed. Similarly, the unit cell of Fig. 8a is also a mechanism with m = 3, and
these mechanisms are manifested as an inability to support biaxial in-plane loadings.

5.2 Three-point bending experiments on the modified octet truss

Test specimens were prepared by investment casting with the aluminium alloy LM25 (Al-Si 7-Mg 0.3 wt%). The finite
lattices were composed of uniform members of radius 1 mm and length 14 mm (joint to joint). For brevity, we shall discuss
here only one such lattice beam: A “narrow”, finite MOT with width nW = 1 and length nL = 6, as measured in terms of
unit cell multiples, and shown in Fig. 9. Thus, this lattice beam was approximately 130 mm long, 42 mm wide, and 12 mm
high. The aluminium casting alloy had almost an elastic-perfectly plastic response with an elastic modulus E = 70 GPa
and shortly after manufacture the measured yield strength was σY = 170 MPa. The MOT lattice beam shown was loaded in
three-point bending using 20 mm diameter steel rollers and a cross-head displacement rate of 1 mm per minute. The outer
rollers were 108 mm (9 “bottom” joints) apart while the top loading roller was centred on a top joint equidistant between
the outer supports. The load on the centre roller was measured using a 10 kN load cell and the corresponding displacement
was measured using a linear voltage-displacement transducer.

5.2.1 Results

The transverse load versus displacement response (measured at the centre roller) of the MOT beam is plotted in Fig. 9. The
specimen gave an initial non-linear response due to bedding-in of the rollers across the specimen width. The subsequent
response was linear, followed by plastic yielding across the mid-section. This was confirmed by post-test examination: The
specimen hinged at mid-span. This mode of plastic deformation is termed “face yield” as it involves plastic bending of the
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section directly beneath the centre roller at the location of greatest effective bending moment. The final phase of deformation
involved tensile fracture of the cast Al-alloy struts on the tensile, bottom face directly opposite the centre roller.

5.2.2 Three-point bending simulations

We modelled the modified octet-truss (MOT) of Fig. 9 using the ABAQUS finite element analysis package with both truss
(pin-joints, T3D2) and Timoshenko beam (rigid-joints, B32) elements. The finite element analysis gave quantitative estimates
for the three-point bending stiffness and limit load to compare directly with experiment. Fig. 9 shows the comparison of the
ABAQUS analysis and the three-point bend experiment for this “narrow” MOT beam modelled using an assumed elastic-
perfectly plastic response. The measured limit load is considerably larger than the prediction assuming σY = 170MPa. We
also obtained predictions using σY = 250MPa. The measured collapse load lay between the predictions using truss elements
and using Timoshenko beam elements. The beam elements are more appropriate due to the relatively stubby constituent
members while the initial, elastic, transverse load-displacement slope is well-fit using either beam or truss elements. The limit
load discrepancy for the choice σY = 170MPa is likely due to precipitation hardening of the as-received LM25 aluminium
casting alloy at room temperature; subsequent Vickers hardness testing confirmed the choice of σY = 250 MPa. The initial,
experimental, elastic three-point bending behaviour is captured despite slight bedding-in effects (i.e. the displacement offset)
using either truss or beam elements. The experimentally observed sudden load drop at around 2.7 mm transverse displacement
is due to tensile fracture of highly-stressed bottom face sheet members immediately below the central roller. This load drop
is not captured in our simulations as tensile fracture of the brittle cast-alloy struts was not addressed.

6 Effective properties of the modified octet truss

A series of finite element calculations have been performed by Hutchinson [8] to determine the bending stiffness of the
modified octet truss (MOT). These calculations reveal that the MOT has a much lower bending stiffness than that of the
KDLG. This is because the MOT relies for its stiffness upon the peripheral patch bars. In the absence of these patch bars the
pin-jointed structure is a mechanism and the welded structure behaves as a bending dominated structure. Accurate estimates
of the plate stretching stiffness S̄ and the plate bending stiffness D̄ are obtained by treating the MOT as a rigid-jointed
sandwich structure, with a triangular-triangular face sheet and a hexagonal face sheet. The triangular-triangular face sheet
deforms by bending of the struts, and elementary beam theory provides the effective Young’s modulus as

ETT = 9
32 ρ̄3ES (12)

with a Poisson ratio ν = −1. Similarly, the hexagonal faces deform by strut bending, and the effective Young’s modulus is

EH = 3
2 ρ̄3ES (13)

with a Poisson ratio ν = 1. The stretching stiffness S̄ of the MOT can be estimated by treating the structure as a sandwich
with faces each of thickness t equal to that of the bar thickness, and a core of height H . Then, under a single component of
axial force N per unit width, the plate stretching stiffness is simply S̄ = t (ETT + EH) in terms of the effective Young’s
moduli of the faces. Under a single component of applied moment, the effective plate bending stiffness is

D̄ =
H2

2
(tETT )2 + (tEH)2

t (ETT + EH)
. (14)

Note that the stiffnesses of the MOT scale with relative density ρ̄3, implying a bending response under all external loadings.

7 Actuation of the MOT

The pin-jointed MOT is statically and kinematically determinate so, consequently, if one lengthens or shortens any individual
constituent bar, no strain energy is stored during activation of this infinitesimal mechanism. Even when actuation of a bar is
not infinitesimal, one would still expect little structural strain energy increase. This conclusion is moderated for the case of
the rigid-jointed MOT as actuation will now lead to the storage of strain energy within the lattice. Further, constituent slender
lattice members may yield or buckle. To investigate this idea, we simulated the actuation of four pin-jointed “actuators”
(bars) in a MOT beam otherwise composed of either truss (T3D2) or Timoshenko beam (B32) elements modelling the
lattice members; 1 mm in radius and 14 mm in length, as elastically-perfectly plastic with elastic modulus E = 70 GPa and
yield strength σY = 150 MPa. The actuators were strained via thermal expansion (T3D2T elements). When truss elements
were used for the entire lattice, all the MOT members remained unloaded regardless of actuation strain. However, when
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Fig. 10 ABAQUS actuation simulation wherein four top (hexagonal) face sheet members, shown in bold, are lengthened
and contracted using thermal expansion (modelled as T3D2T truss elements). The MOT beam is fixed at one end such that
when the actuating members contract the free end rises and when they expand the free end drops. The actuation strain of all
four pin-jointed actuators is plotted versus the free-end, transverse displacement assuming the MOT is otherwise modelled
using Timoshenko (B32) beam elements.
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Fig. 11 Plot of the actuator stresses versus actuator strains corresponding
to the strain-displacement plot of Fig. 10.

the passive MOT members were modelled as Timoshenko beams, the actuators and various bars and joints experienced
significant stresses. Fig. 10 details the geometry (nW = 2, nL = 6) analysed and the actuation strain-transverse end
displacement “waveform”. Fig. 11 shows how the actuator stresses vary with actuator strain when the surrounding MOT is
modelled using beam (rigid-jointed) elements.

The interpretation of Fig. 11 is as follows. The actuators remain elastic while several adjoining bars yield during actuator
elongation and contraction. Consequently, in the physical realisation, one would expect that they would soon fail by low
cycle fatigue. An additional parametric study is needed to explore the achievable actuation strain without inducing yield or
buckling of the structure. It is expected that the achievable strain is sensitive to the slenderness ratio of the constituent lattice
members. This has been explored for the case of the Kagome double-layer grid in the recent study of Symons et al. [15].

8 Concluding remarks

This study reveals that the modified octet truss (MOT) and the Kagome double-layer grid (KDLG) are each derived from
statically and kinematically determinate pin-jointed parent structures. However, they have remarkably different structural
behaviours. The MOT has a low, effective bending stiffness that may be attributed to the fact that much of the structure behaves
as a mechanism with boundary bars required to make the structure statically and kinematically determinate. Consequently,
the MOT is not as attractive a morphing material as the KDLG. Double-layer grids such as the MOT have a variety of
possible actuation modes, with the maximum achievable actuation strain limited by yield or buckling of the rigid-jointed
structure. The full range of morphing capability of double-layer grids (and fully 3D grids) remains an open issue.
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Book Review

Susan Friedlander and Denis Serre (eds.), Handbook
of Mathematical Fluid Dynamics, Elsevier, North-Holland,
Hardbound, Vol. 2, 2003, XI, 614pp. USD 135.00, EUR
135.00, GBP 90.00, ISBN 0-444-51287-x; Vol. 3, 2004, XI,
674pp., USD 175.00, EUR 175.00, GBP 116.50, ISBN 0-
444-51556-9

This Handbook is a collection of refereed articles written
by some of the very best specialists in Mathematical Fluid
Dynamics. The editors decided to restrict the contents to
mathematical aspects of fluid dynamics, avoiding to a large
extent the physical and numerical aspects. But the authors
have been encouraged to describe the physical meaning of
the mathematical questions and results. The Handbook con-
sists of three volumes. Volume 1 has been reviewed in this
Journal of Applied Mathematics and Mechanics (ZAMM),
Vol. 84, 2004, p. 834. Now the remaining volumes 2 and 3
have been published. Volume 2 contains a wide range of ma-
terial with the majority of articles addressing issues related
to incompressible fluids. Volume 3 begins with two funda-
mental articles on the continuum concept and on the vortex
patches problem. The remaining articles concentrate on the
Navier-Stokes equations. The contents in detail are:

Volume 2: 1. Robert: Statistical hydrodynamics, 2.
Brenier: Topics on hydrodynamics and volume preserv-
ing maps, 3. Shnirelman: Weak solutions of incom-
pressible Euler equations, 4. Constantin: Near iden-
tity transformations for the Navier-Stokes equations, 5.
Ben-Artzi: Planar Navier-Stokes equations: vorticity ap-
proach, 6. Babin: Attractors of Navier-Stokes equations,

7. Renardy and Renardy: Stability and instability in viscous
fluids, 8. Friedlander and Lipton-Lifschitz: Localized insta-
bilities in fluids, 9. Gilbert: Dynamo theory, 10. Dias and
Iooss: Water-waves as a spatial dynamical system, 11. Groah,
Temple and Smoller: Solving the Einstein equations by Lip-
schitz continuous metrics: shock waves in general relativity.

Volume 3: 1. Esposito and Pulvirenti: From particles to
fluids, 2. Chemin: Two-dimensional Euler system and vor-
tex patches problem, 3. Cannone: Harmonic analysis tools
for solving the incompressible Navier-Stokes equations, 4.
Grenier: Boundary layers, 5. Zumbrun: Stability of large-
amplitude shock waves of compressible Navier.Stokes qua-
tions (with Appendix by Jenssen and Lyng), 6. Temam and
Ziane: Some mathematical problems in geophysical fluid dy-
namics.

Articles with more physical aspects of fluid dynamics are
those on stability and instability in viscous fluids, on dynamo
theory and on water-waves as dynamical system (using “dy-
namical” arguments was developed in the 1980 s, pioneered
by K. Kirchgässner). The article on boundary layers is deal-
ing mainly with stability aspects.

This three volume Handbook provides a comprehensive
overview of the fascinating variety of mathematics that arise
from the study of fluid motion. Altogether 3388 references
are cited. The Handbook will certainly become the standard
work in Mathematical Fluid Dynamics.

Bochum K. Gersten
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