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ABSTRACT
Motivation: In the context of clinical bioinformatics methods are nee-
ded for assessing the additional predictive value of microarray data
compared to simple clinical parameters alone. Such methods should
also provide an optimal prediction rule making use of all potentialities
of both types of data: they should ideally be able to catch subty-
pes which are not identified by clinical parameters alone. Moreover,
they should address the question of the additional predictive value of
microarray data in a fair framework.
Results: We propose a novel but simple two-step approach based on
random forests and PLS dimension reduction embedding the idea of
pre-validation suggested by Tibshirani and colleagues which is based
on an internal cross-validation for avoiding overfitting. Our approach
is fast, flexible and can be used both for assessing the overall additio-
nal significance of the microarray data and for building optimal hybrid
classification rules. Its efficiency is demonstrated through simulations
and an application to breast cancer and colorectal cancer data.
Availability: Our method is implemented in the freely available R
package ’MAclinical’ which can be downloaded from
http://www.stat.uni-muenchen.de/∼socher/MAclinical.
Contact: boulesteix@slcmsr.org

1 INTRODUCTION
For the last few years, microarray-based outcome prediction, espe-
cially classification, has attracted much attention in the statistics,
bioinformatics and medical communities. While cancer research
is probably the most important field of application of microarray-
based prediction, classifiers have also been proposed for other
diseases such as multiple sclerosis (Bomprezzi et al., 2003). Classi-
fication studies using microarray data only often aim to demonstrate
that microarray data are informative to distinguish different types of
tissues or patients, e.g., normal from cancer tissues or responders
from non-responders. As a by-product of such a study, researchers
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usually also explore the molecular mechanisms underlying the con-
sidered disease by focusing their attention on the most informative
genes.

In the context of outcome prediction, some groups of researchers
suggest that gene expression data could be used in clinical prac-
tice to provide improved diagnosis or prediction (see, e.g. van’t
Veer et al., 2002). In this case, it is crucial to assess the additional
predictive value of gene expression data compared to the available
(good) simple clinical predictors. Since they are in general much
more difficult and expensive to collect than clinical predictors, gene
expression predictors should be used as prediction tools only when
they really lead to an accuracy improvement. A problem related
to the additional predictive value is outlined by Ntzani and Ioan-
nidis (2003) who state that‘adjustment for other classic predictors
of the disease outcome [is] essential’. This is especially true when
the study’s aim is to demonstrate the practical benefit of using gene
expression predictors in clinical practice, but also in other cases. For
instance, suppose that the age and sex distributions are not the same
in the two groups that have to be distinguished. If these variables are
ignored when performing classification, one may misleadingly con-
clude that microarray data can separate the two groups very well,
whereas the differences in gene expression are in fact due to sex and
age differences.

Although taking clinical variables into account may be crucial in
the context of microarray-based prediction, this aspect is often either
omitted or performed using sub-optimal methods and not adequa-
tely described in the medical literature. Hundreds of novel methods
have been proposed to deal with the ‘smalln, largep’ problem, but
very few statisticians address the question of the additional predic-
tive value of microarray data. We give an overview at the end of this
section.

Such clinical parameters may include, e.g. age and sex of the pati-
ent, disease duration, relapse rate or tumor grade, depending on the
investigated disease. A critical study of breast cancer outcome pre-
diction (Eden et al., 2004) suggests that‘ ’good old’ clinical markers
have similar power in breast cancer prognosis as microarray [...]
profilers’ and, more generally, microarray data are suspected to
sometimes yield‘noise discovery’(Ioannidis, 2005). In another con-
text, Hunter et al. (2008) point out that‘letting the genome out of
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the bottle’may have perverse effects in the context of genetic tests.
Similar results have been obtained in the field of multiple sclero-
sis and magnetic resonance imaging (MRI). MRI, which has long
been considered as an efficient tool for disease course prediction,
turns out to show only marginal additional predictive value when
it is used in combination with simple clinical parameters including,
e.g., relapse history and disease duration (Daumer et al., 2006).

In the present paper, we focus on a standard binary classifica-
tion problem: the response variableY to be predicted can take two
valuesY = 0 or Y = 1. The term prediction refers to the prediction
of the responseY . For example,Y may stand for the development
of metastases within a given period of time (yes/no). Note that not
all prediction problems can be easily simplified in terms of binary
prediction without substantial loss of information and precision.
However, class prediction remains the most commonly encounte-
red prediction problem in high-dimensional settings. Our method is
easily generalizable to other prediction problems including survival
analysis and multicategorical responses.

The answer to the question of the additional predictive value of
microarray data is typically binary: ‘yes, microarray data improve
the classification accuracy yielded by clinical predictors’ or ‘clini-
cal predictors perform at least as well as gene expression predictors
-and are much less expensive’. The second answer may correspond
to different situations. Firstly, it is possible that microarray data are
not relevant at all for the prediction problem, in which case a usual
classifier for high dimensional data gives poor results when applied
to microarray data alone. The second scenario is that microarray
data are relevant for the prediction problem, but redundant with or
weaker than clinical parameters, in which case a usual classifier for
high dimensional data yields satisfying results. Note that the term
‘redundant’ does not imply any causality relationship. Microarray
data and clinical data may be redundant because the gene expression
influences clinical variables or vice versa, or because both clinical
and microarray variables are influenced by common latent unob-
served mechanisms. Additional biological knowledge is needed to
answer this question, which goes beyond the scope of this article.

In practical studies, the additional predictive value of microar-
ray data is often assessed by using naı̈ve methods. The most simple
one is probably subgroup analysis. If one is interested in the pre-
dictive value given that a binary predictor is already available, the
separate analysis of both subgroups is a natural approach. Conside-
ring the small sample sizes in microarray studies and the number
of available candidate clinical predictors (typically about 5 to 10),
this approach can not be recommended in general. Another simple
approach consists of building a classifier based on all predictors,
without distinguishing between microarray and clinical variables.
This method seems also inappropriate to answer the question of the
additional predictive value: even if we have an excellent clinical
predictor, it is likely to get lost within the huge amount of microar-
ray variables. Hence, this approach does not treat clinical predictors
fairly. The third intuitive approach consists of building two classi-
fiers: one based on clinical parameters, one based on microarray
data. The problem is then that the original question of the additional
predictive value cannot be answered at all. If both classifiers perform
similarly, one does not know whether microarray data do exactly the
same as clinical parameters or rather allow to refine the prediction in
some way. Hence, the assessment of the additional predictive value
of microarray data is not a trivial issue.

A related problem is the construction of complex classifiers com-
bining clinical parameters and high dimensional microarray data.
Ideally, such a classifier would

1. show at least as good performance as simpler classifiers using
only clinical parameters or only microarray data, respectively,

2. handle different configurations (bad microarray and good clini-
cal predictors, good microarray and bad clinical predictors) by
performing correct model selection,

3. neither over-summarize microarray data nor favor them in the
final classifier through overfitting mechanisms,

4. handle both categorical and continuous predictors, since many
clinical parameters are categorical,

5. decide automatically whether to include microarray data or not,
depending on their additional predictive value.

In the literature, some articles address the question of the additional
predictive value of microarray data, whereas others propose com-
bined classifiers without answering this question. Here is a brief
review.

On the one hand, Tibshirani and Efron (2002) suggest the
so-called ‘pre-validation’ (PV) testing framework whose aim is
to determine whether microarray data contribute significantly to
the prediction problem, given that clinical parameters are already
available. The idea is to summarize microarray data in form of
the internally cross-validated predicted probability of class mem-
bership, thus avoiding that microarray data are artificially favored.
This approach is applied, e.g., in a breast cancer study by Pawitan
et al. (2005). Note that the aim of this method is not to construct an
optimal classifier combining both types of data.

On the other hand, several authors try to involve clinical para-
meters in the classifier construction in some way. Dettling and
Bühlmann (2004) suggest a statistical approach based on penalized
logistic regression handling all types of clinical variables. Gevaert
et al. (2006) follow an approach based on Bayesian networks invol-
ving two steps (structure step and learning step). A related approach
is presented by Sun et al. (2007). It is also based on variable selec-
tion, although using a completely different selection procedure. The
method by Sun et al. (2007) relies on a wrapper feature selec-
tion method called I-RELIEF. They use linear discriminant analysis
(LDA) as a class prediction method, which can be an inconvenience
in the presence of categorical predictors.

Some of these studies do not appear to use any systematic vali-
dation strategy and hence have the pitfalls outlined by Dupuy and
Simon (2007), which make their results uninterpretable. Moreover,
most of them do not provide any adequate answer to the related
question of the additional predictive value of microarray data from
a testing point of view because it was not their primary goal. For
instance, with methods putting microarray and clinical data together,
the latter tend to get lost within the huge amount of microarray
variables and are thus not treated fairly from the point of view of
the additional predictive value. Methods treating the two groups of
variables separately and combining them at the end may also fail
partly in the frequent case where clinical and microarray data are
highly correlated.

In this article, we present a method which simultaneously i) deter-
mines whether microarray data have additional predictive value and
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ii) provides a combined classifier fulfilling the five points enu-
merated above. To the best of our knowledge, there is no other
approach treating these two aspects in a common framework. In a
very recent article, Binder and Schumacher (2008) address these
problems based on a penalized Cox regression approach using com-
ponentwise boosting techniques. However, they only address the
prediction of survival times. It is still unclear whether such methods
would perform well for classification problems in high dimensional
settings, which may be more affected by separation and overfitting
problems.

According to several independent comparison studies (Man et al.,
2004; Boulesteix, 2004; Dai et al., 2006), PLS-based methods
range among the best dimension reduction methods for high-
dimensional and noisy microarray data in the context of prediction.
See Nguyen and Rocke (2002) for the first application of PLS to
microarray-based prediction and Boulesteix and Strimmer (2007)
for an overview of PLS methods for genomic data.

In this article, we suggest a new approach combining PLS dimen-
sion reduction and the principle of pre-validation introduced by
Tibshirani and Efron (2002). Random forests (Breiman, 2001) are
then applied with both the new components and the clinical varia-
bles as predictors. Our proposal contains several novelties: i) the
two-step approach involving a dimension reduction step and a
classification step for handling the two types of variables, ii) the
extension of the pre-validation idea to dimension reduction and
prediction, iii) the combination of PLS and random forests which
involves several advantages, and iv) a model choice procedure based
on the out-of-bag error estimator. The proposed method is described
in Section 2 and illustrated in Section 3 through simulations and an
application to the breast cancer data by van’t Veer et al. (2002) and
the colorectal data by Lin et al. (2007).

2 METHODS
Let X denote then × p matrix containing the column-centered expression
values ofp genes forn patients, whiley denotes the centered vector of clas-
ses coded as 0, 1. Similarly,Z denotes then × q matrix giving the values
of q clinical parameters for then patients. In contrast to the gene expression
matrix X, Z may include categorical variables, such as tumor grade or sex
of the patient.

In the present section, we first give a short overview of partial least squares
(PLS) dimension reduction and random forest classification. In the second
subsection, we propose a novel method combining PLS dimension reduction
with the idea of pre-validation suggested by Tibshirani and Efron (2002).
We then outline the whole procedure consisting of summarizing microarray
data in form of pre-validated PLS components and applying random forests
to both microarray and clinical variables and address the problem of model
choice, especially the choice of the number of PLS components.

2.1 An introduction to PLS and random forests
Partial Least Squares (PLS) methods were developed in connection with
path models in the 60s and 70s (Wold, 1966). Statisticians became intere-
sted in its application to robust and computationally efficient regression for
data with small sample sizes and large number of highly correlated varia-
bles some 25 years ago (Martens and Naes, 1989; Stone and Brooks, 1990;
Garthwaite, 1994). The following introduction refers to the review by Bou-
lesteix and Strimmer (2007). PLS regression consists of two steps. During
the dimension reduction step, the predictors from matrixX are summarized
in form of a small number of linear combinations called ‘PLS components’.
Subsequently, assuming that the response is continuous, these extracted PLS

components are used as predictors in ordinary least squares regression, hence
the term ‘PLS regression’. When the response is binary, the linear regression
step can of course not be carried out. However, it can be shown (Barker
and Rayens, 2003) that, if applied to a categorical response, the dimension
reduction step is strongly related to principal component analysis performed
on the between-group covariance matrix. Hence, it makes sense to perform
PLS dimension reduction in this setting.

PLS dimension reduction constructsk mutually orthogonal components
as linear combinations ofX:

T = XW ,

whereT is then × k matrix of new componentsti = (t1i, ..., tni)
T , for

i = 1, ..., k, andW a p × k matrix of weights satisfying particular opti-
mality criteria. These criteria differ slightly depending on the considered
PLS variant. One of the most widely used PLS variant is SIMPLS (de Jong,
1993), in whichW is constructed such that the squared sample covariance
betweeny and the latent components is maximal under the constraint that the
columnsw1, ..., wk of W are of unit length and the new componentsti are
mutually orthogonal. In mathematical terms the extraction of the subsequent
components can be written as

wi = arg max
w

Cov2(Xw, y) = arg max
w

(yT Xw)2 (1)

subject towT
i wi = 1 and tTi tj = wT

i XT Xwj = 0. The fast extraction
of the weight matrixW can be carried out using a sequential algorithm
given in, e.g., Martens and Naes (1989). By definition, the most informative
components are the first ones, but the determination of the best number of
components is a difficult task. Some authors (Boulesteix, 2004; Dai et al.,
2006) use cross-validation based strategies. In this article, we use the imple-
mentation of SIMPLS included in the R package ’plsgenomics’ (Boulesteix,
2004; Boulesteix and Strimmer, 2007), function ’pls.regression’.

Although variable selection is not always necessary as a preliminary step
to PLS-based classification, some authors argue that it can substantially
improve accuracy in the high-dimensional setting (Dai et al., 2006), espe-
cially when there are indeed few relevant variables. Many variable selection
procedures are available in the literature. One of the most widely used is uni-
variate filtering based on the absolute value of the t-statistic. In the present
paper, we stick to this standard approach.

Random forests are introduced by Breiman (2001) and based on the deci-
sion tree methodology. In only seven years, they have grown to a major
data analysis tool, especially in the context of high-dimensional genetic
or genomic data (Strobl et al., 2007). Like bagging (Breiman, 1996), the
method is based on the aggregation of classification or regression trees built
using bootstrap samples drawn out of the originaln observations, in order
to make tree-based prediction more robust. In order to make the obtained
trees even more different and thus increase their stability and to reduce the
computation time, random forests have an additional feature. At each split,
a subset of candidate predictors is selected out of the available predictors.
The sizemtry of the subset, which is a method parameter, is often set to
mtry =

√
p, wherep is the total number of predictors.

As a model-free approach, the random forest method does not need any
distributional assumptions and can be applied to any type of data. In par-
ticular, it behaves well with high-dimensional correlated data, see, e.g.,
Diaz-Uriarte and de Andrés (2006) for an application to microarray-based
class prediction. Random forests can also take interactions between varia-
bles into account explicitly. Lastly, they are faster than other aggregation
methods like bagging, since they do not consider all the available predictors
at each split.

Like classification and regression trees, random forests handle all types
of responses, in particular multicategorical or censored responses. They also
work with all types of predictor variables. However, when predictors do not
have the same scale, selection bias may occur using the standard random
forest algorithm. It is then recommended to use an alternative version of the
random forest method based on conditional inference (Hothorn et al., 2006)
implemented in the function ’cforest’ of the R package ’party’. Moreover, it
can be shown (Strobl et al., 2007) that subsampling (without replacement) is
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preferable to the bootstrap when drawing samples out of then observations
at each random forest iteration. In this paper, we follow these recommen-
dations. The only parameters for which we do not use the default settings
are i) the number of trees, which is set to 200 instead of 500 for compu-
tational reasons, ii) the number of candidate predictors at each split, which
we set to

√
p for consistency with the original R package ’randomForest’

implementing the method by Breiman (2001), iii) the threshold defining the
stopping criterion (see Hothorn et al. (2006) for more details), which we set
to mincriterion=0 in order to obtain trees with long branches, as com-
monly recommended for trees used in random forests. In very small data sets
(say,n ≤ 30), one should also modify the parameterminsplit controlling
the minimal size of nodes to be split. However, our experience shows that
this modification is not necessary in data sets of usual size as those conside-
red here. Note that, in contrast to other methods such as penalized logistic
regression, the performance of random forests depends only slightly on the
choice of parameters and that different settings would yield similar results.

2.2 Pre-validated PLS
Suppose that we construct PLS components as described in Section 2.1,
based on a given learning data set. Per definition, these components are likely
to be strongly related to the response variable, especially in the case of high
dimensional data. Comparing their predictive power to the power of clinical
variables in the learning data set would be an unwise strategy: Because of
overfitting, there typically will be a bias in favor of the PLS components.

In the present article, we suggest to overcome this problem by extending
the pre-validation principle of Tibshirani and Efron (2002) to PLS dimension
reduction. Pre-validation is inspired from the well-known cross-validation
procedure for evaluation of prediction rules, which consists of partitioning
the available sample into distinct subsamples and successively considering
each subsample as test data and the remaining subsamples as training data.
Unfamiliar readers may refer to the review by Boulesteix et al. (2008) on this
subject. Our novel procedure works as follows.

1. Divide the learning data set intoG groups. Here, we setG = 10, as
recommended by Ḧofling and Tibshirani (2008).

2. Leave one group out and run PLS dimension reduction on the remaining
G− 1 groups.

3. Compute the PLS components for the left-out group using the derived
weight matrix. We denote these PLS components aspre-validated PLS
components.

4. Repeat steps 2-3 for each of theG groups.

The pre-validated components can then be fairly compared to other variables.

2.3 Summary: Recipe of the analysis
In the present article, we suggest to combine PLS dimension reduction with
the random forest methodology in order to take both gene expression and
clinical parameters into account when constructing a classifier. Suppose that
we have a learning data setL of sizenL (corresponding toXL, ZL, yL)
for which we know the response variable. We also have a test data setT of
sizenT (corresponding toXT , ZT ), for which a prediction has to be made.

In clinical practice, the test data set would be a set of patients that have
to be predicted. In the context of the validation of research findings, the test
data set would be a set of patients for which we also know the response
variable, and that are used to assess the prediction accuracy of the combi-
ned classifier constructed using the learning data. Note that this scheme is
possible only if we have a large enough data set. Otherwise, one may use an
evaluation scheme based on, e.g., cross-validation, repeated subsampling,
or bootstrap sampling, see Boulesteix et al. (2008) for an overview. In this
case, the algorithm is run several times. For example, if leave-one-out cross-
validation (LOOCV) is used to assess our combined classifier, one would
run the following algorithm for each LOOCV iteration, where the data set
XT consists of only one observation at each iteration.

The matrixXL is assumed to have columns with zero mean andXT

to be centered by substraction of the columns’ means obtained fromXL,
as usual in PLS-based prediction (Boulesteix and Strimmer, 2007). Letk

denote the maximum allowed number of PLS components, typicallyk = 3

in the binary case. The detailed procedure is as follows.

1. Cross-validated PLS dimension reduction with learning data set
Construct thenL × k matrix of pre-validated PLS components̃TL

as follows. Forg = 1, . . . , G:

1a. Carry out variable selection based onX(−g)
L and y

(−g)
L only,

where the superscript ‘(−g)’ indicates that the observations from
the g-th group have been removed fromXL and yL, respec-

tively. This yields an expression matrixX∗(−g)
L with p∗ columns,

wherep∗ is the pre-fixed number of selected variables. Theg-th
group is not taken into account in the variable selection process,
because variable selection must be considered as a part of the clas-
sifier construction, see, e.g., Dupuy and Simon (2007); Boulesteix
(2007).

1b. Run the PLS dimension reduction procedure withk components

on the data matrixX∗(−g)
L . This yields thep∗ × k weight matrix

W
(−g)
L .

1c. Build the k components for the excludedg-th group as the pro-

ductX∗(g)
L W

(−g)
L , whereX∗(g)

L denotes the part of the matrix
XL corresponding to theg-th group and containing only thep∗

variables selected in 1a. Store the productX
∗(g)
L W

(−g)
L in the

rows ofT̃L corresponding to theg-th group.

2. Classifier construction Construct a random forest using the columns
of the matrices̃TL andZL as predictors andyL as response.

3. PLS dimension reduction with the test data setCarry out variable
selection based onXL andyL only, yielding againp∗ selected varia-
bles. For the reduced test data matrixX∗

T consisting of thep∗ selected
variables, compute the matrixTT of PLS components as follows.

3a. Run the PLS dimension reduction procedure withk components
on the whole learning data matrixX∗

L of sizenL × p∗, yielding
thep∗ × k weight matrixWL.

3b. Build the PLS components for the test data set asTT = X∗
T WL.

4. Prediction Apply the random forest constructed in step 2 to the predic-
tion of the test observations using the matricesTT andZT . For each
test observation one obtains a predictionŶ for the class membership.

This procedure is summarized as a flow chart in Figure 1.

2.4 Model choice and additive predictive value of
microarray data

In this section, we show how the out-of-bag (OOB) error estimator (Breiman,
2001) yielded as a by-product when growing a random forest can be used
both for the choice of the number of PLS components and for answering the
question of the additive predictive value of microarray data.

The OOB error estimator works as follows. When growing each tree of
the random forest,36.8% of then observations are put aside and not used
for choosing the splits (this default setting of the functioncforest , which
stems from bootstrap sampling). These observations are calledout-of-bag
observations. After all the trees are constructed, a pseudo-prediction can be
made for each of then observations using only the trees that did not use it
for training, i.e. the trees for which it was an out-of-bag observation. The
OOB error rate is then computed by comparison of then pseudo-predictions
with the true classes. Note that, in contrast to in-bag error estimation, this
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repeat  Box 1 for XL=XL

(-g) 
and and XT=XL

(g)), g=1,..,G 
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Test data XT 

Prediction  
for test data

Random forest Predict Y for test data 
using the random forest 

Fig. 1. Schematic representation of the classification methods based on pre-
validated dimension reduction and random forests, using both microarray
predictors (XL for the learning set andXT for the test set) and clinical
predictors (ZL for the learning set andZT for the test set). Predictor data
sets are represented in ellipses, actions are represented in boxes, output as
simple text.

procedure overcomes overfitting problems, since the predicted observations
were not used for training the corresponding predicting trees. The OOB error
estimator can be used for comparing the prediction accuracy of several ran-
dom forests. An interesting application in the present context is the choice of
the number of components, and, if zero is considered as a possible candidate
for the number of components, the question of the additive predictive value
of microarray data. To do this, we suggest to replace step 2 of the procedure
outlined above by a modified version 2* as follows.

2*. Classifier construction

• For l = 0, . . . , k, construct a random forest using thel first columns of
the matrixT̃L and the matrixZL as predictors andyL as response.

• Compute the OOB error for each of thek + 1 constructed forests.

• Select the number of componentsk∗ yielding the forest with the
smallest OOB error.

The numberk is then replaced byk∗ in the following step of the procedure
(Step 3: ‘PLS dimension reduction with the test data set’). Note that this
procedure is much faster than cross-validation for the choice of the number
of components, since the OOB estimator is a by-product of the random forest
algorithm. In the rest of this article, this method is denoted as PLS+RF.

If k∗ = 0, we conclude that microarray data do not have any predic-
tive value compared to clinical variables alone. Ifk∗ > 0, it is possible
to roughly evaluate the significance of microarray data by computing confi-
dence intervals for the calculated OOB errors, where the sample size is given
as the size of the training set. This procedure does not yield a rigorous stati-
stical test, since independence of the observations is not warranted. However,
the resulting confidence intervals should give the order of magnitude of the
corresponding differences in accuracy.

The whole procedure is implemented in the R package ’MAclinical’. The
current version that was used for this paper is available from
http://www.stat.uni-muenchen.de/∼socher/MAclinical. We plan to send a
refined version of this package to the Comprehensive R Archive Network.

3 RESULTS AND DISCUSSION
The analyzes described below can be reproduced using the scripts
available from http://www.stat.uni-muenchen.de/∼socher/MAclinical.

3.1 Simulations
The aim of this simulation study is to compare the performance
of our approach to related approaches based on clinical and/or
microarray variables. Several data structures are considered: diffe-
rent predictive powers for the microarray variables, different powers
for the clinical variables, and different class structures. By diffe-
rent class structures, we mean that we examine two settings: i) a
‘redundant’ setting where the microarray and clinical variables are
generated using exactly the same model, thus discriminating the
classes in the same way and giving ‘redundant’ information, and ii)
a ‘non-redundant’ setting, where observations from classY = 1 are
assumed to form two distinct subgroups: one of the subgroups can
be discriminated from the other one and fromY = 0 by microarray
data, whereas the second one is discriminated by clinical variables.
The corresponding data generating processes are detailed below.

In the first setting (redundant setting), the random variablesY ,
X1, . . . , Xp andZ1, . . . , Zq have the following joint distribution.
The binary responseY follows a binomial distribution withP (Y =
1) = 0.5. A total of p∗ < p microarray variables are relevant for
class prediction. Each microarray variableXj (j = 1, . . . , p) is
generated as

Xj = µXj · Y + ej , (2)

and each clinical variableZs (s = 1, . . . , q) as

Zs = µZs · Y + fs, (3)

where µXj (j = 1, . . . , p) and µZs (s = 1, . . . , q) are con-
stant parameters controlling the amount of predicting power of the
microarray and clinical variables, respectively, and the termsej

(j = 1, . . . , p) andfs (s = 1, . . . , q) are independent random errors
following a standard normal distribution.

In the present simulation, we setµZs to the same valueµZs = µZ

for all clinical variables and consider different values ofµZ succes-
sively:µZ = 0 (no power),µZ = 1 (moderate power) andµZ = 3
(strong power). Similarly,µXj is set to the constantµX for thep∗

genesX1, . . . , Xp∗ (with p∗ < p) and to zero for the remaining
genesXp∗+1, . . . , Xp. Similarly to µZ , the parameterµX takes
different values successively:µX = 0, 0.5, 1. In the present study,
the total number of genes is set top = 1000 and the numberp∗

of relevant genes top∗ = 50. We denote this simulation setting as
redundant, because the discrimination mechanism is the same for
microarray and clinical variables.

For all parameter combinations(µX , µZ), we drawnL andnT

i.i.d. observations forming the learning set and test set, respectively.
Here,nL is set tonL = 50, nT is set tonT = 450 in order to obtain
accurate estimates of the error rate. A total ofNiter = 100 data sets
are simulated for each parameter setting. The optimal number of
PLS components is selected fromk = 0, 1, 2, 3.

We compare the pre-validated PLS+RF method based on both
microarray and clinical variables (’pls-pv+rf/xz’, with10-fold PV)
to simpler related approaches, in order to determine the effect of
pre-validation and to answer the question whether the combined
classifiers perform as well as classifiers based on microarray data
only or clinical variables only. The considered approaches are i)
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PLS+RF based on both microarray and clinical variables without
pre-validation (’pls+rf/xz’), ii) pre-validated PLS+RF based on
microarray data only with10-fold PV (’pls-pv+rf/x’), iii) PLS+RF
based on microarray data only without pre-validation (’pls+rf/x’),
and iv) RF based on clinical variables only (’rf/z’). As an additional
comparison, we also apply standard approaches used when dealing
with only one type of predictors: logistic regression for clinical pre-
dictors (’log/z’) and the Support Vector Machines (SVM) method
for microarray data (’svm/x’), which is well-established as one of
the most accurate procedures in this setting (Statnikov et al., 2005).
We use the R package ’e1071’, with linear kernel and cost set to
the default value 1. In order to make clear that we do not ‘tune’
our method artificially (which would yield an unfair comparison),
let us mention that we additionally applied the two pre-validation
approaches (’pls-pv+rf/xz’ and ’pls-pv+rf/x’) with leave-one-out
pre-validation instead of10-fold pre-validation (data not shown).
However, the results were not different from those obtained with10-
fold pre-validation. Hence, we stick to10-fold, following Höfling
and Tibshirani (2008).

For each iteration, a classifier is built based on the learning data
set only, with the seven methods outlined above successively. The
classifiers are then evaluated based on the corresponding test set and
the error rate is estimated as the mean proportion of misclassified
observations. In this simulation, we do not perform any preliminary
variable selection, as suggested by Boulesteix (2004, 2006) in the
case of relatively large signal to noise ratios. In real data analysis,
one could of course try to improve classification accuracy by preli-
minary variable selection. This step was omitted in the simulation
for computational reasons. Similarly, correlations between genes
and/or clinical variables do not seem to affect the results noticeably
(data not shown).

As can be seen from Table 1, pre-validation improves classifi-
cation accuracy noticeably, especially when clinical parameters are
good predictors (i.e., forµZ = 1 or µZ = 3). Since PLS com-
ponents without pre-validation usually overfit the training data, they
are artificially preferred to clinical parameters in the split selection
procedure. Moreover, trees are then likely to have longer irrele-
vant branches. The performance of the ’pls-pv+rf/xz’ approach is
slightly lower than the performance of ’pls-pv+rf/x’ in the case of
non-predictive clinical variables, but as good as the ’rf/z’ approach
in all cases, even when microarray data are not predictive. The
comparison to the standard logistic regression and to SVMs reveals
interesting features. In Table 1, logistic regression with clinical para-
meters performs better than the ’pls-pv+rf/xz’ approach only when
clinical parameters are more predictive than microarray data. Except
for the caseµX = 0, µZ = 1 (0.165± 0.03 vs0.216± 0.03), this
difference is minimal. Note that in this case, random forests with
clinical variables only do not perform better than ’pls-pv+rf/xz’.
The difference between random forests and logistic regression can
be explained by the linear structure of our simulated data: for
this simulation setting the flexibility of random forests is not an
advantage, in contrast to the non-redundant setting sketched below.
SVMs perform approximately as well as ’pls-pv+rf’ in the case of
non-informative clinical variables, but worse in all other cases.

As an illustration of the model selection scheme proposed in Sec-
tion 2.4 and its ability to assess the additional predictive value of
microarray data, we also compute i) the mean OOB error over the
100 subsampling runs obtained withk∗ = 0 andk∗ = 1 PLS com-
ponent, and ii) the percentage of runs for which at least one PLS

Method µZ µX = 0 µX = 0.5 µX = 1

pls-pv+rf/xz 0 0.50± 0.02 0.33± 0.07 0.04± 0.03
pls+rf/xz 0 0.50± 0.01 0.48± 0.04 0.44± 0.07

pls-pv+rf/x 0 0.50± 0.02 0.29± 0.06∗ 0.03± 0.02∗

pls+rf/x 0 0.50± 0.01 0.48± 0.04 0.44± 0.07
svm/x 0 0.50± 0.02 0.30± 0.05 0.05± 0.03

rf/z 0 0.50± 0.02 − −
log/z 0 0.50± 0.02 − −
pls-pv+rf/xz 1 0.22± 0.04 0.19± 0.04∗ 0.03± 0.02∗

pls+rf/xz 1 0.43± 0.08 0.42± 0.09 0.39± 0.10

rf/z 1 0.22± 0.04 − −
log/z 1 0.17± 0.03∗ − −
pls-pv+rf/xz 3 0.01± 0.01 0.01± 0.01∗ 0.01± 0.01∗

pls+rf/xz 3 0.05± 0.05 0.05± 0.05 0.05± 0.04

rf/z 3 0.01± 0.02 − −
log/z 3 0.003± 0.00∗ − −

Table 1. Redundant setting. Mean error rate and standard deviation (over
100 simulation runs) for the seven class prediction methods: ’pls-pv+rf/xz’,
’pls+rf/xz’, ’pls-pv+rf/x’, ’pls+rf/x’, ’svm/x’, ’rf/z’, ’log/z’ with different
powers for the microarray variables (µX = 0, 0.5, 1) and clinical varia-
bles (µZ = 0, 1, 3). The symbol∗ indicates the best performance for each
setting. Gray figures correspond to random predictors not correlated to the
class responseY . Summary: Our method is at least as good as the other
approaches in almost all settings.

µX = 0 µX = 0.5 µX = 1

µZ = 0 OOBk = 0 0.50 0.50 0.50
OOBk = 1 0.50 0.32 0.04
% k∗ > 0 65 96 100

µZ = 1 OOBk = 0 0.23 0.23 0.23
OOBk = 1 0.23 0.19 0.04
% k∗ > 0 67 83 100

µZ = 3 OOBk = 0 0.01 0.01 0.01
OOBk = 1 0.01 0.01 0.01
% k∗ > 0 36 40 48

Table 2. Novel PLS-PV+RF method. Mean OOB error over the 100
simulations runs withk = 0 andk = 1 PLS component and percentage
of simulation runs yieldingk∗ > 0 (i.e. where prediction accuracy with
microarray data was better than without microarray data).

component is selected (i.e.k∗ > 0), for the novel ’pls-pv+rf/xz’
method. As can be seen from Table 2, the proportion of simulation
runs withk∗ > 0 selected PLS components increases drastically
with µX , but this increase also depends onµZ . For a fixedµX ,
the proportion of runs withk∗ > 0 is much lower with informative
clinical variables (µZ = 1, 3) than with non-informative clinical
variables. This can be explained as follows: if clinical variables per-
form well, it is more difficult for microarray data to yield accuracy
improvement.

The simulation design outlined above corresponds to the case
where both microarray and clinical variables discriminate the two
response classes in the same way, for instance because both of them
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Method µZ µX = 0 µX = 0.5 µX = 1

pls-pv+rf/xz 0 0.50± 0.02 0.48± 0.03∗ 0.39± 0.08
pls+rf/xz 0 0.50± 0.01 0.49± 0.01 0.49± 0.02

pls-pv+rf/x 0 0.50± 0.02 0.48± 0.04 0.35± 0.06∗

pls+rf/x 0 0.50± 0.01 0.49± 0.01 0.49± 0.02
svm/x 0 0.50± 0.02 0.46± 0.03 0.37± 0.04

rf/z 0 0.50± 0.02 − −
log/z 0 0.50± 0.02 − −
pls-pv+rf/xz 1 0.39± 0.04 0.38± 0.04∗ 0.30± 0.07∗

pls+rf/xz 1 0.49± 0.03 0.49± 0.03 0.48± 0.03

rf/z 1 0.39± 0.04 − −
log/z 1 0.37± 0.04∗ − −
pls-pv+rf/xz 3 0.29± 0.04∗ 0.29± 0.04∗ 0.19± 0.07∗

pls+rf/xz 3 0.48± 0.04 0.48± 0.04 0.47± 0.05

rf/z 3 0.30± 0.04 − −
log/z 3 0.32± 0.04 − −

Table 3. Non-redundant setting. Mean error rate and standard deviation
(over 100 simulation runs) for the seven class prediction methods: ’pls-
pv+rf/xz’, ’pls+rf/xz’, ’pls-pv+rf/x’, ’pls+rf/x’, ’svm/x’, ’rf/z’, ’log/z’ with
different powers for the microarray variables (µX = 0, 0.5, 1) and clinical
variables (µZ = 0, 1, 3). The symbol∗ indicates the best performance for
each setting. Gray figures correspond to random predictors not correlated to
the class responseY . Summary: Our method is at least as good as the other
approaches in all settings.

are influenced by the same underlying mechanism. They give essen-
tially redundant information. In practice, investigators often hope
that microarray data give additional (i.e. non-redundant) informa-
tion, for instance, by correctly predicting a particular group that is
difficult to predict with clinical predictors only. In the rest of this
section, a variant of the above simulation design is applied to inve-
stigate the behavior of the different methods in an ideal extreme case
where clinical and microarray predictors are perfectly complemen-
tary. The observations withY = 1 are assumed to come from two
underlying classes1a and1b. The microarray variables are drawn
to separate1a from the rest, whereas the clinical variables separate
1b from the rest. The underlying model is the same as in Eq. (2) and
(3), except thatY is replaced by the binary variablesY (a) andY (b)

defined asY (a) = 1 if Y = 1a and 0 otherwise, andY (b) = 1 if
Y = 1b and 0 otherwise, respectively.

In this non-redundant setting, the two-step ’pls-pv+rf/xz’
approach performs almost uniformly better than all other methods
(see Table 3). This is not surprising, since the simulation setting can
be seen as an extreme case where the combination of two types of
predictors using tree-based methodologies is expected to work well.
However, this case is very important in the context of the additional
predictive value. Indeed, by additional predictive value, one often
implicitly means that microarray data can predict disease subtypes
which are wrongly classified by clinical parameters. Note that the
overall performance of all methods decreases dramatically compa-
red to the redundant setting. This is because each observation is
discriminated by both clinical and microarray variables in the red-
undant setting, but by only one of the two types of variables (either
clinical or microarray) in the non-redundant setting.

3.2 Application to breast cancer data
This widely-used benchmark data set gives the expression levels of
22483 genes for 78 breast cancer patients, of which 34 have poor
prognosis and 44 have good prognosis (van’t Veer et al., 2002). It
can be downloaded from the article webpage. The data set prepa-
red as described in the original manuscript (only genes that show
2-fold differential expression and p-value for a gene being expres-
sed< 0.01 in more than 5 samples are retained, yielding 4348
genes) is included in the R package ’DENMARKLAB’ (Fridlyand
and Yang, 2004), which we use in the article. The available clinical
variables are age (metric), tumor grade (ordinal), estrogen recep-
tor status (binary), progesterone receptor status (binary), tumor size
(metric) and angioinvasion (binary).

The classification accuracy is evaluated using the common repea-
ted subsampling method which is a variant of cross-validation
also denoted asMonte-Carlo-cross-validation, see Molinaro et al.
(2005); Boulesteix et al. (2008) for more details. In a nutshell,
instead of splitting the original data set consisting of 78 observa-
tions into, say, 5, 10 orn subsets (like in standard cross-validation),
we repeatedly split it into a learning set and a test set according to
the ratio 4:1. Variable selection is carried out based on the abso-
lute value of the t-statistic, using the learning set only as commonly
recommended (Boulesteix, 2007; Dupuy and Simon, 2007). The
method described in Section 2.3 is then applied to the learning and
test sets including the step for the optimization of the number of
components as described in Section 2.4. The error rates are estima-
ted as the proportion of misclassified test observations. The whole
procedure is repeated100 times and the error rates are averaged.
This approach usually leads to more stable results than standard
cross-validation, because it is based on a larger number of itera-
tions. Table 4 gives the obtained mean error rates with the seven
methods described in Section 3.1, for different numbers of variables
in the range of the number of genes used in the original signature
proposed by van’t Veer et al. (2002).

It can be seen from Table 4 that microarray data do not noticea-
bly improve the prediction accuracy yielded by clinical parameters
alone, which corroborates the findings of Eden et al. (2004). This
result is confirmed by considering the mean OOB error rates obtai-
ned with the different numbers of components. For each of the 100
iterations, we estimate the 95%-confidence interval for the diffe-
rence of the OOB misclassification rates obtained withk = 0 and
k = 1, respectively. The sample size is 62 for both rates, since each
learning set contains0.8 × 78 ≈ 62 observations. Forp∗ = 100,
the lower bound of the obtained confidence interval exceeds zero
for only 9% of the 100 iterations, which suggests that the microar-
ray data do not contribute significantly to the prediction. Similar
conclusions are obtained withp∗ = 20, 100, 200.

3.3 Application to colorectal cancer data
This Affymetrix data set described by Lin et al. (2007) gives the
expression levels of 16041 genes for 29 good outcome patients
and 26 poor outcome patients with colorectal cancer. In addition
to microarray data, the two variables sex and age are available. The
data are prepared as described in Lin et al. (2007). Gene expression
data are expected to have better predictive power than the variables
sex and age which typically yield relatively poor prediction accuracy
in the case of cancer.
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Method p∗ = 20 p∗ = 50 p∗ = 100 p∗ = 200

pls-pv+rf/xz 0.30± 0.11 0.31± 0.11 0.30± 0.12 0.31± 0.11
pls+rf/xz 0.30± 0.11 0.30± 0.11 0.31± 0.10 0.35± 0.12

pls-pv+rf/x 0.41± 0.12 0.42± 0.12 0.43± 0.11 0.43± 0.12
pls+rf/x 0.35± 0.11 0.36± 0.11 0.37± 0.10 0.39± 0.11
svm/x 0.40± 0.10 0.40± 0.10 0.40± 0.10 0.40± 0.10

rf/z 0.29± 0.11 − − −
log/z 0.30± 0.10 − − −

Table 4. Mean classification error rate and standard deviation for thebreast
cancerdata. The error rate is estimated by 100 subsampling iterations with
splitting ratio 4:1.

Method p∗ = 20 p∗ = 50 p∗ = 100 p∗ = 200

pls-pv+rf/xz 0.41± 0.15 0.40± 0.16 0.35± 0.15 0.36± 0.16
pls+rf/xz 0.33± 0.13 0.32± 0.13 0.31± 0.12 0.30± 0.14

pls-pv+rf/x 0.37± 0.14 0.36± 0.15 0.33± 0.13 0.33± 0.13
pls+rf/x 0.32± 0.13 0.33± 0.12 0.32± 0.13 0.31± 0.14
svm/x 0.37± 0.13 0.37± 0.13 0.37± 0.13 0.37± 0.13

rf/z 0.56± 0.15 − − −
log/z 0.57± 0.13 − − −

Table 5. Mean classification error rate and standard deviation for thecolo-
rectal cancerdata. The error rate is estimated by 100 subsampling iterations
with splitting ratio 4:1.

The analysis design is the same as for the van’t Veer data. As
can be seen from the results given in Table 5, the microarray data
now have predictive power whereas the two variables age and sex
do not. Unsurprisingly, involving the uninformative variables age
and sex (methods ’pls-pv+rf/xz’ and ’pls+rf/xz’) slightly decreases
the prediction accuracy compared to the methods without clinical
variables ’pls-pv+rf/x’ and ’pls+rf/x’, but the performance of the
approach ’pls-pv+rf/xz’ remains comparable to the performance of
the standard good performing SVM method. Hence, our approach
shows overall good performance in very different situations.

As an illustration of the model selection scheme embedded in the
PLS-PV+RF method, we show i) the mean OOB error over the 100
subsampling runs obtained with each number of PLS components,
and ii) the percentage of runs for which at least one PLS component
is selected (k∗ > 0), as in the simulation study. As can be seen from
Table 6, our method correctly selects at least one PLS component
in most runs (≥ 90%) for the colorectal data, i.e. much more often
than for the van’t Veer data. This result is in agreement with the
mean OOB obtained with each number of components. Whereas the
mean OOB does not depend on the number of PLS components for
the van’t Veer data (OOB ≈ 0.30 for allp∗ and allk), it decreases
substantially betweenk = 0 andk = 1 for the colorectal data, with
a further slight decrease fromk = 1 to k = 2.

p∗ 20 50 100 200

Breast

k = 0
k = 1
k = 2
k = 3
%k > 0

0.30
0.30
0.29
0.30
67

0.30
0.30
0.29
0.30
70

0.30
0.30
0.30
0.30
64

0.30
0.30
0.30
0.30
64

Colorectal

k = 0
k = 1
k = 2
k = 3
%k > 0

0.56
0.43
0.39
0.41
90

0.56
0.40
0.37
0.39
94

0.56
0.38
0.34
0.35
95

0.56
0.38
0.35
0.36
95

Table 6. Novel PLS-PV+RF method. Mean OOB error over the 100
subsampling runs withk = 0, 1, 2, 3 PLS component andpercentage of
simulation runs yielding k∗ > 0 (i.e. where prediction accuracy with
microarray data was better than without microarray data).

4 CONCLUSION
We have presented a simple two-step approach based on well-
established data analysis tools (PLS and random forests) combined
with the pre-validation principle by Tibshirani and Efron (2002).
This procedure can simultaneously determine whether microarray
data have additional predictive value and provide a combined clas-
sifier fulfilling the six points enumerated above. Our fast, simple
and flexible method is implemented in the R package ’MAclinical’.
Its ability to yield efficient hybrid prediction rules in various set-
tings (good/bad microarray/clinical predictors) was demonstrated in
both simulations and real data analysis. In particular, our approach
does not seem to overestimate the predictive value of microarray
data and yields good prediction accuracies when microarray and
clinical parameters do not give redundant predictive information.
Let us further mention that as far as computation time is concer-
ned our novel method is similar to SVM, i.e. very fast. In their
study of pre-validation, Ḧofling and Tibshirani (2008) point out
substantial biases occurring when pre-validated predicted probabi-
lities are tested for significance in linear regression. In our study,
the OOB error slightly decreased with the number of included pre-
validated PLS components in the non-informative case, but this
trend was minimal. This potential slight bias in model selection,
which is probably due to the mechanism outlined by Höfling and
Tibshirani (2008) (roughly speaking, observations are not indepen-
dent anymore in cross-validation), should be addressed in future
research.

Note that the OOB error used in this article for the choice of the
number of PLS components can also be used for the choice of the
number of genes, similarly to the procedure for the choice of the
number of PLS components. This problem is ignored by many aut-
hors, who compare the different number of genes post-hoc, i.e. after
completing the evaluation procedure. Tuning the number of genes
may lead to optimistic bias, not only in the context considered in
this article.

The extension of our method to other prediction problems (regres-
sion, survival analysis, multicategorical classification) is straightfor-
ward. Unlike other common approaches such as logistic regression,
it i) does not require any distributional assumption or a specific type
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of relationship (e.g., linearity) between the response and the pre-
dictors, ii) does not need any limitation of the number of clinical
variables, which is useful in the case of small samples, iii) can cope
with separated classes (in this respect, the aggregation of trees built
on perturbed data sets is an advantage), and iv) can handle inter-
actions, for instance interactions between microarray and clinical
predictors, thus potentially identifying subtypes that are not caught
by clinical data alone.
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