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Underlying every microarray experiment is an experimental question that one would like to address. Finding a

useful and satisfactory answer relies on careful experimental design and the use of a variety of data-mining tools

to explore the relationships between genes or reveal patterns of expression. While other sections of this issue

deal with these lofty issues, this review focuses on the much more mundane but indispensable tasks of ‘normaliz-

ing’ data from individual hybridizations to make meaningful comparisons of expression levels, and of ‘transform-

ing’ them to select genes for further analysis and data mining.
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The goal of most microarray experiments is to survey patterns
of gene expression by assaying the expression levels of thou-
sands to tens of thousands of genes in a single assay. Typically,
RNA is first isolated from different tissues, developmental
stages, disease states or samples subjected to appropriate treat-
ments. The RNA is then labeled and hybridized to the arrays
using an experimental strategy that allows expression to be
assayed and compared between appropriate sample pairs. Com-
mon strategies include the use of a single label and independent
arrays for each sample, or a single array with distinguishable
fluorescent dye labels for the individual RNAs. Regardless of the
approach chosen, the arrays are scanned after hybridization
and independent grayscale images, typically 16-bit TIFF
(Tagged Information File Format) images, are generated for
each pair of samples to be compared. These images must then
be analyzed to identify the arrayed spots and to measure the rel-
ative fluorescence intensities for each element. There are many
commercial and freely available software packages for image
quantitation. Although there are minor differences between
them, most give high-quality, reproducible measures of
hybridization intensities.

For the purpose of the discussion here, we will ignore the par-
ticular microarray platform used, the type of measurement
reported (mean, median or integrated intensity, or the average
difference for Affymetrix GeneChips™), the background correc-
tion performed, or spot-quality assessment and trimming used.
As our starting point, we will assume that for each biological
sample we assay, we have a high-quality measurement of the
intensity of hybridization for each gene element on the array.

The hypothesis underlying microarray analysis is that the mea-
sured intensities for each arrayed gene represent its relative
expression level. Biologically relevant patterns of expression are
typically identified by comparing measured expression levels
between different states on a gene-by-gene basis. But before the
levels can be compared appropriately, a number of transforma-
tions must be carried out on the data to eliminate questionable
or low-quality measurements, to adjust the measured intensities
to facilitate comparisons, and to select genes that are significantly
differentially expressed between classes of samples.

Expression ratios: the primary comparison
Most microarray experiments investigate relationships between
related biological samples based on patterns of expression, and
the simplest approach looks for genes that are differentially
expressed. If we have an array that has Narray distinct elements,
and compare a query and a reference sample, which for conve-
nience we will call R and G, respectively (for the red and green
colors commonly used to represent array data), then the ratio (T)
for the ith gene (where i is an index running over all the arrayed
genes from 1 to Narray) can be written as

(Note that this definition does not limit us to any particular array
technology: the measures Ri and Gi can be made on either a sin-
gle array or on two replicate arrays. Furthermore, all the trans-
formations described below can be applied to data from any
microarray platform.)

Although ratios provide an intuitive measure of expression
changes, they have the disadvantage of treating up- and down-
regulated genes differently. Genes upregulated by a factor of 2
have an expression ratio of 2, whereas those downregulated by
the same factor have an expression ratio of (–0.5). The most
widely used alternative transformation of the ratio is the loga-
rithm base 2, which has the advantage of producing a continuous
spectrum of values and treating up- and downregulated genes in
a similar fashion. Recall that logarithms treat numbers and their
reciprocals symmetrically: log2(1) = 0, log2(2) = 1, log2(1⁄2) = −1,
log2(4) = 2, log2(1⁄4) = −2, and so on. The logarithms of the
expression ratios are also treated symmetrically, so that a gene
upregulated by a factor of 2 has a log2(ratio) of 1, a gene down-
regulated by a factor of 2 has a log2(ratio) of −1, and a gene
expressed at a constant level (with a ratio of 1) has a log2(ratio)
equal to zero. For the remainder of this discussion, log2(ratio)
will be used to represent expression levels.

Normalization
Typically, the first transformation applied to expression data,
referred to as normalization, adjusts the individual hybridiza-
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tion intensities to balance them appropriately so that mean-
ingful biological comparisons can be made. There are a num-
ber of reasons why data must be normalized, including
unequal quantities of starting RNA, differences in labeling or
detection efficiencies between the fluorescent dyes used, and
systematic biases in the measured expression levels. Conceptu-
ally, normalization is similar to adjusting expression levels
measured by northern analysis or quantitative reverse tran-
scription PCR (RT–PCR) relative to the expression of one or
more reference genes whose levels are assumed to be constant
between samples.

There are many approaches to normalizing expression levels.
Some, such as total intensity normalization, are based on simple
assumptions. Here, let us assume that we are starting with equal
quantities of RNA for the two samples we are going to compare.
Given that there are millions of individual RNA molecules in
each sample, we will assume that the average mass of each mole-
cule is approximately the same, and that, consequently, the
number of molecules in each sample is also the same. Second, let
us assume that the arrayed elements represent a random sam-
pling of the genes in the organism. This point is important
because we will also assume that the arrayed elements randomly
interrogate the two RNA samples. If the arrayed genes are
selected to represent only those we know will change, then we
will likely over- or under-sample the genes in one of the biologi-
cal samples being compared. If the array contains a large enough
assortment of random genes, we do not expect to see such bias.
This is because for a finite RNA sample, when representation of
one RNA species increases, representation of other species must
decrease. Consequently, approximately the same number of
labeled molecules from each sample should hybridize to the
arrays and, therefore, the total hybridization intensities summed
over all elements in the arrays should be the same for each sam-
ple.

Using this approach, a normalization factor is calculated by
summing the measured intensities in both channels

where Gi and Ri are the mea-
sured intensities for the ith
array element (for example, the
green and red intensities in a
two-color microarray assay)
and Narray is the total number
of elements represented in the
microarray. One or both inten-
sities are appropriately scaled,
for example,

so that the normalized expres-
sion ratio for each element
becomes

which adjusts each ratio such that the mean ratio is equal to 1.
This process is equivalent to subtracting a constant from the log-
arithm of the expression ratio,

which results in a mean log2(ratio) equal to zero.
There are many variations on this type of normalization,

including scaling the individual intensities so that the mean or
median intensities are the same within a single array or across all
arrays, or using a selected subset of the arrayed genes rather than
the entire collection.

Lowess normalization
In addition to total intensity normalization described above,
there are a number of alternative approaches to normalizing
expression ratios, including linear regression analysis1, log cen-
tering, rank invariant methods2 and Chen’s ratio statistics3,
among others. However, none of these approaches takes into
account systematic biases that may appear in the data. Several
reports have indicated that the log2(ratio) values can have a sys-
tematic dependence on intensity4,5, which most commonly
appears as a deviation from zero for low-intensity spots. Locally
weighted linear regression (lowess)6 analysis has been
proposed4,5 as a normalization method that can remove such
intensity-dependent effects in the log2(ratio) values.

The easiest way to visualize intensity-dependent effects, and
the starting point for the lowess analysis described here, is to plot
the measured log2(Ri/Gi) for each element on the array as a func-
tion of the log10(Ri*Gi) product intensities. This ‘R-I’ (for ratio-
intensity) plot can reveal intensity-specific artifacts in the
log2(ratio) measurements (Fig. 1).

Lowess detects systematic deviations in the R-I plot and cor-
rects them by carrying out a local weighted linear regression as a
function of the log10(intensity) and subtracting the calculated
best-fit average log2(ratio) from the experimentally observed
ratio for each data point. Lowess uses a weight function that de-
emphasies the contributions of data from array elements that are
far (on the R-I plot) from each point.
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Fig. 1 An R-I plot displays the

log2(Ri/Gi) ratio for each element on

the array as a function of the

log10(Ri*Gi) product intensities and

can reveal systematic intensity-

dependent effects in the measured

log2(ratio) values. Data shown here

are for a 27,648-element spotted

mouse cDNA array.
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If we set xi = log10(Ri*Gi) and yi = log2(Ri/Gi), lowess first esti-
mates y(xk), the dependence of the log2(ratio) on the log10(inten-
sity), and then uses this function, point by point, to correct the
measured log2(ratio) values so that

or equivalently,

As with the other normalization methods, we can make this
equation equivalent to a transformation on the intensities, where

The results of applying such a lowess correction can be seen in
Fig. 2.
Global versus local normalization. Most normalization algo-
rithms, including lowess, can be applied either globally (to the
entire data set) or locally (to some physical subset of the data).
For spotted arrays, local normalization is often applied to each
group of array elements deposited by a single spotting pen
(sometimes referred to as a ‘pen group’ or ‘subgrid’). Local nor-
malization has the advantage that it can help correct for system-
atic spatial variation in the array, including inconsistencies
among the spotting pens used to make the array, variability in the
slide surface, and slight local differences in hybridization condi-
tions across the array. When a particular normalization algo-
rithm is applied locally, all the conditions and assumptions that
underlie the validity of the approach must be satisfied. For exam-
ple, the elements in any pen group should not be preferentially
selected to represent differentially expressed genes, and a suffi-
ciently large number of elements should be included in each pen
group for the approach to be valid.
Variance regularization. Whereas normalization adjusts the mean
of the log2(ratio) measurements, stochastic processes can cause the
variance of the measured log2(ratio) values to differ from one
region of an array to another or between arrays. One approach to
dealing with this problem is to adjust the log2(ratio) measures so
that the variance is the same4,7. If we consider a single array with
distinct subgrids for which we have carried out local normaliza-
tion, then what we are seeking is a factor for each subgrid that we

can use to scale all of the mea-
surements within that subgrid.

An appropriate scaling factor
is the variance for a particular
subgrid divided by the geomet-
ric mean of the variances for all
subgrids. If we assume that
each subgrid has M elements,
because we have already
adjusted the mean of the
log2(ratio) values in each sub-
grid to be zero, their variance
in the nth subgrid is

where the summation runs over all the elements in that subgrid.
If the number of subgrids in the array is Ngrids, then the appro-
priate scaling factor for the elements of the kth subgrid on the
array is

We then scale all of the elements within the kth subgrid by divid-
ing by the same value ak computed for that subgrid,

This is equivalent to taking the akth root of the individual
intensities in the kth subgrid,

It should be noted that other variance regularization factors have
been suggested4 and that, obviously, a similar process can be used
to regularize variances between normalized arrays.

Intensity-based filtering of array elements
If one examines several representative R-I plots, it becomes obvi-
ous that the variability in the measured log2(ratio) values
increases as the measured hybridization intensity decreases. This
is not surprising, as relative error increases at lower intensities,
where the signal approaches background. A commonly used
approach to address this problem is to use only array elements
with intensities that are statistically significantly different from
background. If we measure the average local background near
each array element and its standard deviation, we would expect
at 95.5% confidence that good elements would have intensities
more than two standard deviations above background. By keep-
ing only array elements that are confidently above background,

we can increase the reliability of measurements. Other approaches
include the use of absolute lower thresholds for acceptable array
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Fig. 2 Application of local (pen

group) lowess can correct for both

systematic variation as a function of

intensity and spatial variation

between spotting pens on a DNA

microarray. Here, the data from Fig. 1

has been adjusted using a lowess in

the TIGR MIDAS software (with a tri-

cube weight function and a 0.33

smooth parameter) available from

http://www.tigr.org/software.
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elements (sometimes referred
to as ‘floors’) or percentage-
based cut-offs in which some
fixed fraction of elements is 
discarded.

A different problem can
occur at the high end of the
intensity spectrum, where the
array elements saturate the
detector used to measure fluo-
rescence intensity. Once the
intensity approaches its maxi-
mum value (typically 216–1=65,535 per pixel for a 16-bit scan-
ner), comparisons are no longer meaningful, as the array
elements become saturated, and intensity measurements can-
not go higher. Again, there are a variety of approaches to deal-
ing with this problem as well, including eliminating saturated
pixels in the image-processing step or setting a maximum
acceptable value (often referred to as a ‘ceiling’) for each array
element.

Replicate filtering
Replication is essential for identifying and reducing the variation
in any experimental assay, and microarrays are no exception.
Biological replicates use RNA independently derived from dis-
tinct biological sources and provide both a measure of the nat-
ural biological variability in the system under study, as well as
any random variation used in sample preparation. Technical
replicates provide information on the natural and systematic
variability that occurs in performing the assay. Technical repli-
cates include replicated elements within a single array, multiple
independent elements for a particular gene within an array (such
as independent cDNAs or oligos for a particular gene), or repli-
cated hybridizations for a particular sample. The particular
approach used will depend on the experimental design and the
particular study underway (see also the review by G. Churchill,
pages 490–495, this issue)8.

To illustrate the usefulness of technical replicates, consider
their use in identifying and eliminating low-quality or question-
able array elements. One widely used technical replication in
two-color spotted array analysis is dye-reversal or flip-dye analy-
sis8, which consists of duplicating labeling and hybridization by
swapping the fluorescent dyes used for each RNA sample. This
process may help to compensate for any biases that may occur
during labeling or hybridization; for example, if some genes pref-
erentially label with the red or green dye. Let us assume we have
two samples, A and B. In the first hybridization, we label A with
our red dye and B with our green dye and reverse the dye labeling
in the second, so that the ratios for our measurements can be
defined, respectively, as

As we are making two comparisons between identical samples,
we expect

or equivalently,

However, we know that experimental variation will lead to a dis-
tribution of the measured values for the log of the product ratios, 
log2(T1i*T2i). For this distribution, we can calculate the mean and
standard deviation. One would expect the consistent array ele-
ments to have a value for log2(T1i*T2i) ‘close’ to zero and inconsis-
tent measurements to have a value ‘far’ from zero. Depending on
how stringent we want to be, we can choose to keep and use array
element data for which log2(T1i*T2i) is within a certain number of
standard deviations of the mean. Although one cannot determine 
a priori which of the replicates is likely to be in error, visual inspec-
tion may allow the ‘bad’ element to be identified and removed
before further analysis. Alternatively, and more practically for large
experiments, one can simply eliminate questionable elements from
further consideration. The application of such a replicate trim is
shown in Fig. 3. Obviously, similar approaches can be used to filter
data from other replication strategies, including replicates within a
single array or measurements from replicated single-color arrays.

Averaging over replicates
To reduce the complexity of the data set, we may average over the
replicate measures. If, as before, we consider replicate measures
of two samples, A and B, we would want to adjust the log2(ratio)
measures for each gene so that the transformed values are equal,
or, for the ith array element,

This equation can be easily solved to yield a value for the con-
stant ci that is used to correct each array element,
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Fig. 3 The use of replicates can help

eliminate questionable or inconsis-

tent data from further analysis. Here,

the lowess-adjusted log2(Ai/Bi) values

for two independent replicates are

plotted against each other element

by element for hybridizations to a

32,448-element human array. Outliers

in the original data (in red) are

excluded from the remainder of the

data (blue) selected on the basis of a

two-standard-deviation cut on the

replicates.
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If we use this equation to aver-
age our measurements, the
result is equivalent to taking
the geometric mean, or

where the average measure-
ments for expression in each
sample is given by

The adjusted average measures 

and for each gene can then be used to carry out further analyses.
For example, one can create an R-I plot, with 

plotted as a function of the 

product intensities for each arrayed element, or for any other
application. This procedure can obviously be extended to averag-
ing over n replicates by taking the nth root.

Propagation of errors
One advantage of having replicates is that they can be used to
estimate uncertainty in derived quantities based on the measured
or estimated uncertainties in the measured quantities. The the-
ory of error propagation9 tells us that, in general, if we have a
function f(A,B,C,…), with error estimates σ for each of the input
variables, A,B,C,…, then the squared error in f is 

where 

is the partial derivative of f with respect to A. For microarrays, the
function with which we are most often concerned is the log2(ratio),

Here, we can take advantage of the fact that logarithms can
easily be changed between bases and that we know the derivative
of the natural logarithm,

to derive the following equation

It then follows that the squared-error in our average log2(ratio) is

so that the errors in the expression measures for A and B can be
used to estimate the error in the log2(ratio).

Identifying differentially expressed genes
Regardless of the experiment performed, one outcome that is
invariably of interest is the identification of genes that are differ-
entially expressed between one or more pairs of samples in the
data set. Even if data-mining analysis is going to be done using,
for example, one or more of the widely used clustering meth-
ods10–12, it is still extremely useful to reduce the data set to those
genes that are most variable between samples. In many early
microarray analyses, a fixed fold-change cut-off (generally two-
fold) was used to identify the genes exhibiting the most signifi-
cant variation. A slightly more sophisticated approach involves
calculating the mean and standard deviation of the distribution
of log2(ratio) values and defining a global fold-change difference
and confidence; this is essentially equivalent to using a Z-score
for the data set. In an R-I plot, such criteria would be represented
as parallel horizontal lines; genes outside of those lines would be
called differentially expressed.

Analysis of the R-I plot suggests, however, that this approach
may not accurately reflect the inherent structure in the data. At
low intensities, where the data are much more variable, one
might misidentify genes as being differentially expressed, while at
higher intensities, genes that are significantly expressed might
not be identified. An alternative approach would be to use the
local structure of the data set to define differential expression.
Using a sliding window, one can calculate the mean and standard
deviation within a window surrounding each data point, and
define an intensity-dependent Z-score threshold to identify dif-
ferential expression5, where Z simply measures the number of
standard deviations a particular data point is from the mean. If
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Fig. 4 Local variation as a function of
intensity can be used to identify dif-
ferentially expressed genes by calcu-
lating an intensity-dependent
Z-score. In this R-I plot, array elements
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dard deviation from the mean (blue),
between one and two standard devi-
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(green).
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is the calculated standard deviation in a region of the R-I plot
surrounding the log2(ratio) for a particular array element i, then 

With this definition, differentially expressed genes at the 95%
confidence level would be those with a value of

or, equivalently, those more than 1.96 standard deviations from
the local mean. At higher intensities, this allows smaller, yet still
significant, changes to be identified, while applying more strin-
gent criteria at intensities where the data are naturally more vari-
able. An example of the application of a Z-score selection is
shown in Fig. 4.

Having identified differentially expressed genes for each pair
of hybridized samples, one can then further filter the entire
experimental data set to select for further analysis only those
genes that are differentially expressed in a subset of the experi-
mental samples, such as disease or normal tissues, or using any
other criteria that make sense for the experimental design used.
Another alternative would be to use the ANOVA techniques
summarized by Churchill on pages 490–495 of this supplement8

to select significantly differentially expressed genes. In either
case, the resulting reduced data set can then be used for further
data mining and analysis.

Looking ahead
There is a wide range of additional transformations that can be
applied to expression data, and we have presented only a small
sample of the available techniques that can be used. For example,
there are specific transformations that have been developed for
analysis of data from particular platforms13,14, and sophisticated
methods have been proposed for development of error models
based on analysis of repeated hybridizations14,15. Regardless of
the sophistication of the analysis, nothing can compensate for
poor-quality data. The single most important data-analysis tech-
nique is the collection of the highest-quality data possible. The
starting point for effective data collection and analysis is a good
experimental design with sufficient replication to ensure that
both the experimental and biological variation can be identified
and estimated. A second important element in generating
expression data is optimization and standardization of the exper-
imental protocol. Like northern blots and RT–PCR, microarrays
directly assay relative RNA levels and use these to infer gene
expression. Therefore, at every step in the process, from sample
collection through RNA isolation, array preparation, sample
labeling, hybridization, data collection and analysis, every possi-
ble effort must be made to minimize variation.

Defining objective criteria for the quality of a DNA microarray
assay remains an open problem, but one that clearly needs to be
addressed as microarray assays become more widespread. One
could easily write another review article on elements that con-
tribute to good-quality arrays and which could be used, in part,
to define such a quality standard. The challenge is to use these

often qualitative objectives to define one or more appropriate
quantitative measure. The Normalization Working Group of the
Microarray Gene Expression Data (MGED) organization
(http://www.mged.org) is attempting to define such a standard,
and community input and participation is welcome (see com-
mentary by C. Stoeckert, pages 469–473, this issue)16.

Finally, as standards for publication of microarray experi-
ments evolve, reporting data transformations is becoming as
important as disclosing laboratory methods. Without an accu-
rate description of either of these, it would be difficult, if 
not impossible, for the results derived from any study to be
replicated.
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