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Abstract—Microarray imaging is considered an important tool
for large scale analysis of gene expression. The accuracy of the gene
expression depends on the experiment itself and further image pro-
cessing. It’s well known that the noises introduced during the ex-
periment will greatly affect the accuracy of the gene expression.
How to eliminate the effect of the noise constitutes a challenging
problem in microarray analysis. Traditionally, statistical methods
are used to estimate the noises while the microarray images are
being processed. In this paper, we present a new approach to deal
with the noise inherent in the microarray image processing pro-
cedure. That is, to denoise the image noises before further image
processing using stationary wavelet transform (SWT). The time in-
variant characteristic of SWT is particularly useful in image de-
noising. The testing result on sample microarray images has shown
an enhanced image quality. The results also show that it has a su-
perior performance than conventional discrete wavelet transform
and widely used adaptive Wiener filter in this procedure.

Index Terms—Stationary wavelet transform, microarray im-
ages, denoising.

I. INTRODUCTION

I
T IS WELL KNOWN that microarray imaging is a recent

cutting-edge technology in bioinformatics which can

monitor thousand of genes simultaneously. The origin of this

imaging technique was evolved from E. Southern’s technique

in the 1970s [1] and sparked in the last decade by two key

innovations. One was the use of nonporous solid support, such

as glass, to facilitate miniaturization and fluorescent-based

detection, which was pioneered by P. Brown [2]. Another was

the development of methods, by S. Fodor and colleagues [3],

for high-density spatial synthesis of oligonucleotide. After that,

thousands of oligonucleotides and cDNAs could be globally

viewed at the same time. This provides a systematic and

comprehensive way to survey the DNA and RNA variations

[4], which could become a standard tool for both molecular

biology research and genomic clinical diagnosis, such as cancer

diagnosis [5], [6], type 1 [7] and type 2 [8] diabetes diagnosis.

In general, the results of the microarray processing combine

two sample images that after further image processing, gene ex-
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pression data can be produced for further analysis, such as gene

clustering or identification. These three crucial steps, experi-

ment, image processing and data analysis, determine the suc-

cess or not of the microarray analysis. Image processing plays

a potentially large impact on the subsequent analysis. In recent

years, large number of commercial tools have been developed

in microarray image processing [9]–[15]. The tasks of all these

tools mainly focus on two major targets, namely: spot segmen-

tation and spot intensity extraction. However, the quality of the

images from the experiments is not always perfect. The gene

array experiments involve a large number of error-prone steps

which lead to a high level of noise in the resulting images [16].

Hence, the accuracy of the gene expressions derived from these

images will largely be affected in the process.

In order to assure the accuracy of the gene expression,

normally the replicated experiments and incorporated statistical

methods are needed to estimate the errors. Such statistical

methods include analysis of variance introduced by Kerr

[17], ratio distribution by Chen [18] and Ermolaeva [19],

Gamma distribution by Newton [20], empirical Bayes model

by Lonnstedt and Speed [21], and Bayesian Estimation of

Array Measurements (BEAM) by Dror [22]. These methods

deal mainly with measurement error, such as preparation of the

sample, cross hybridization, and fluctuation of fluorescence

value from gene to gene. But none deals particularly with the

effect of the noise.

In this paper, we proposed a new approach based on wavelet

theory to provide an enhanced approach for eliminating

such noise source and ensure better gene expression. It is

well known that wavelet transform is a signal processing

technique which can display the signals on in both time and

frequency domain. Wavelet transform is superior approach

to other time-frequency analysis tools because its time scale

width of the window can be stretched to match the original

signal, especially in image processing studies. This makes it

particularly useful for nonstationary signal analysis, such as

noises and transients. For a discrete signal, a fast algorithm of

discrete wavelet transform(DWT) is multiresolution analysis,

which is a nonredundant decomposition [23]. The drawback of

nonredundant transform is their noninvariance in time/space,

i.e., the coefficients of a delayed signal are not a time-shifted

version those of the original signal. The stationary wavelet

transform (SWT) was introduced in 1996 to make the wavelet

decomposition time invariant [24]. This improves the power of

wavelet in signal de-noising. In this paper, we apply the SWT

method to preprocess the microarray images for removing

the random noises. We also compare this method with other

two traditional denoising methods, namely DWT and Wiener
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Fig. 1. Schematic diagram of microarray experiment.

filter, to validate the enhanced characteristics of this method to

microarray image processing.

II. MICROARRAY IMAGING AND NOISE SOURCES

It is well known microarray technology can monitor thousand

of DNA sequences in a high density array on a glass. The basic

procedure for a microarray experiment is simply described as

follow. Two mRNA samples are reverse-transcribed into cDNA,

labeled using different fluorescent dyes (e.g., the red fluorescent

dye Cy5 and the green fluorescent dye Cy3), then mixed and hy-

bridized with the arrayed DNA sequences. After this competi-

tive hybridization, the slides are imaged using a scanner which

makes fluorescence measurement for each dye. From the differ-

ential hybridization of the two samples, the relative abundance

of the spotted DNA sequences can be assessed. A schematic di-

agram for this process created is shown in Fig. 1 [25].

The results of the microarray experiment are two 16-bit

tagged mage files, one for each fluorescent dye. Fig. 2 shows

one example of the microarray image.

As shown in Fig. 2, the image is not perfect and includes noisy

sources that blur such images for further gene expression exper-

imentation. The noise source originates from different sources

during the course of experiment, such as photon noise, elec-

tronic noise, laser light reflection, dust on the slide, and so on.

Hence, it is crucial to denoise the resultant image within this

process.

Exciting methods to reduce the noise source include using

clean glass slide and using a higher laser power rather than a

higher PMT voltages. However, there are not adequate for the

required image qualities and an enhanced software procedure

embedded within the process in a much better alternative. In

this paper, we focus on the implementation of the SWT method

to the denoising on microarray images.

Fig. 2. Microarray image.

III. STATIONARY WAVELET METHOD

In this section, we present the basic principals of the SWT

method. In summary, the SWT method can be described as fol-

lows. At each level, when the high-pass and low-pass filters are

applied to the data, the two new sequences have the same length

as the original sequences. To do this, the original data is not

decimated. However, the filters at each level are modified by

padding them out with zeros.

Supposing a function is projected at each step on the

subset . This projection

is defined by the scalar product of with the scaling

function which is dilated and translated

(1)

(2)

where is the scaling function, which is a low-pass filter.

is also called a discrete approximation at the resolution .

If is the wavelet function, the wavelet coefficients are

obtained by

(3)

is called the discrete detail signal at the resolution .

As the scaling function has the following property:

can be obtained by direct computation from

(4)
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The scalar products are

computed with

(5)

Equations (4) and (5) are the multiresolution algorithm of the

traditional DWT. In this transform, a downsampling algorithm

is used to perform the transformation. That is, one point out of

two is kept during transformation. Therefore, the whole length

of the function will reduce by half after the transformation.

This process continues until the length of the function becomes

one.

However, for stationary or redundant transform, instead of

downsampling, an upsampling procedure is carried out before

performing filter convolution at each scale. The distance be-

tween samples increasing by a factor of two from scale to the

next. is obtained by

(6)

and the discrete wavelet coefficients

(7)

The redundancy of this transform facilitates the identifica-

tion of salient features in a signal, especially for recognising the

noises.

This is the transform for one-dimensional signal. For a two-

dimensional image (microarray image in this case), we separate

the variables and and have the following wavelets.

— Vertical wavelet:

— Horizontal wavelet:

— Diagonal wavelet: .

Thus, the detail signal is contained in three subimages

(8)

(9)

(10)

IV. IMPLEMENTATION OF SWT IN MICROARRAY IMAGE

DE-NOISING AND RESULTS

In this section, the implementation issues of the SWT method

for enhanced microarray image quality are described. A com-

parative analysis of this method with conventional DWT and

Wiener filter is presented to validate the results obtained.

The wavelet denoising is achieved via thresholding or

shrinkage. The wavelet thresholding procedure removes

noise by thresholding only the wavelet coefficient of the

Fig. 3. Soft and hard thresholding.

detail subbands, while keeping the low resolution coefficients

unaltered. There are two thresholding methods frequently

used, soft-thresholding and hard-thresholding functions. The

soft-thresholding rule is normally chosen over hard-thresh-

olding in de-noising. There are several reasons for this. First,

soft-thresholding has been shown to achieve near-optimal

minimax rate. Second, the optimal soft-thresholding estimator

yields a smaller risk thanks the optimal hard-thresholding

estimator. Finally, in practice, the soft-thresholding method

yields more visually enhanced images over hard-thresholding

because the latter is discontinuous and yields abrupt artefacts

in the recovered images, especially when the noise energy is

significant.

The general soft-thresholding function is defined by

(11)

Its function is also illustrated in Fig. 3 and compared with the

hard thresholding.

By the soft thresholding, the general denoising procedure in-

volves three steps, including:

i) decompose;

ii) threshold detail coefficients;

iii) reconstruct.

In the three steps, a signal is first decomposed by the wavelet

transform. Then the decomposition coefficients are thresholded

by the thresholding rule. After the thresholding, a new coeffi-

cient is obtained. This new coefficient is then reconstructed to a

new signal. This is filtered signal by wavelet transform.

In this paper, we apply the biorthogonal wavelet procedure

to decompose the image using Matlab. After the decomposi-

tion procedure at two levels, three detailed subimages and one

approximation image at each level are produced. The three de-

tailed subimages in level one, after the decomposition procedure

outlined above with resultant decomposed images, are shown in

Fig. 4.

Next, the SureShrink thresholding algorithm is applied to the

above three subimages [26]. The thresholding estimator for th

level of decomposition with coefficient is given as

(12)
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Fig. 4. Three-dimensional detail subimages.

where is the variance, is the thresholding value

. For the sparse case, the thresholding

value is set as , where is the length of the

signal.

Through the thresholding, the noise sources in detail images

are eliminated at each level. After the denoising, the denoised

detail images and the approximation image are reconstructed

and the result is shown in Fig. 5(b). The above application of

SWT via SureShrink thresholding is implemented in Matlab. For

the comparison, the original image is also displayed in Fig. 5(a).

Traditionally, wavelet transform (DWT) is also performed

following the above procedure using same wavelet, decompo-

sition level, and thresholding function. The resultant denoised

image using DWT is shown in Fig. 5(c).

In order to compare the performance of the SWT in mi-

croarray image denoising with other methods, the widely used

adaptive filter in denoising, Wiener filter, is also applied. The

result of Wiener filtering is shown Fig. 5(d).

In order to provide a quantitative measure of the resultant

images, the universal index proposed in [27] is presented here.

This is defined as

(13)

where

Using this index, the quality of the denoised images by SWT,

DWT, and Wiener filter are 0.7927, 0.7905, and 0.6842, respec-

tively. The SWT achieves 16% better performance than Wiener

filter. Extensive tests are also performed using various wavelets

for the same image. The denoised image quality via several ex-

ample wavelets, and Wiener filter performance are shown in

Table I. It is clear that the SWT denoising achieves a better

image quality than DWT for every wavelet if the decomposition

(a) (b)

(c) (d)

Fig. 5. Original and the denoised images.

TABLE I
COMPARATIVE PERFORMANCE OF THE QUALITY INDEXES USING SWT,

DWT, AND WIENER FILTER

level and thresholding rules keep the same. For Wiener filter,

the performance is far poorer than that of the SWT.

In order to test the effectiveness of the SWT algorithm and

compare it with the other two algorithms, we apply the three al-

gorithms on another sample image [Fig. 6(a)]. A repeated pro-
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(a)

(b)

(c)

(d)

Fig. 6. Example 2 of original and filtered microarray images.

cedure of the algorithms is applied on this image. The denoised

images are shown in Fig. 6(b)–(d) for SWT denoising, DWT

denoising, and Wiener filtering, respectively. Its corresponding

quality indexes for the three algorithms are 0.8323, 0.8243, and

0.7426, respectively. Overall, the same consistent characteristic

is obtained.

V. CONCLUSION

In this paper, a new wavelet approach to deal with microarray

denoising image analysis is presented. The new approach adopts

the denoising by SWT. This image processing method has an

obvious advantage, namely time invariance. This makes it par-

ticularly useful in recognising the noises in microarray images.

The simulation results applied on microarray image examples

verified this enhanced characteristic and denoising quality of

the image analysis. The SWT provides a better performance in

denoising microarray image than traditional wavelet transform

method.

The results also show that the stationary wavelet denoising

has a 16% better performance than Wiener filter which is widely

used in commercial denoising software system. The application

of this method would improve the accuracy of gene expression,

and therefore easily identify the diseased gene for diagnosing

critical diseases.
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