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Microbe-host interplay in atopic dermatitis
and psoriasis
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Despite recent advances in understanding microbial diversity in skin homeostasis, the rele-

vance of microbial dysbiosis in inflammatory disease is poorly understood. Here we perform a

comparative analysis of skin microbial communities coupled to global patterns of cutaneous

gene expression in patients with atopic dermatitis or psoriasis. The skin microbiota is ana-

lysed by 16S amplicon or whole genome sequencing and the skin transcriptome by micro-

arrays, followed by integration of the data layers. We find that atopic dermatitis and psoriasis

can be classified by distinct microbes, which differ from healthy volunteers microbiome

composition. Atopic dermatitis is dominated by a single microbe (Staphylococcus aureus), and

associated with a disease relevant host transcriptomic signature enriched for skin barrier

function, tryptophan metabolism and immune activation. In contrast, psoriasis is character-

ized by co-occurring communities of microbes with weak associations with disease related

gene expression. Our work provides a basis for biomarker discovery and targeted therapies in

skin dysbiosis.
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I
nteractions between commensal or pathogenic microbes and
the hosts they colonize are central to the maintenance of
homeostasis and the initiation of disease1. This rapidly

advancing field is now starting to bear the fruits of inter-
disciplinary efforts but our understanding of microbe−host
interactions is still limited2.

Skin represents a primary tissue interface, where accessibility to
both microbiome species and underlying tissue provides a unique
opportunity for studies into host−microbiome interactions3 in
the initiation and maintenance of atopic/allergic or autoimmune-
type inflammation4,5. Recent advances in analyzing microbial
gene sequences in healthy skin has provided a comprehensive
understanding of the classes of microbes and their diversity
occupying distinct topographical niches6. Pioneering studies have
expanded into shotgun sequencing approaches to further probe
the taxonomic diversity and biogeography of microbes in small
cohorts of healthy individuals7. Commensal skin microbes con-
trol adaptive skin immune homeostasis through interaction with
specific subsets of antigen-presenting dendritic cells (DCs) and
effector T-cell populations8,9, supporting their own survival, and
protecting against the overgrowth of pathogens. Insights into the
association of distinct microbial classes with inflammatory skin
disease and their impact on the host genome are just emerging. In
atopic dermatitis (AD), as a model of atopic/allergic inflamma-
tory disease, commensal skin microbes are associated with disease
flares10. AD-related dysbiosis is frequently characterized by the
colonization by Staphylococcus aureus, and simultaneous loss of
other, potentially beneficial species. S. aureus colonizes skin
effectively, and expresses several virulence factors11 with proven
roles in the pathogenesis of AD by studying effects in cell12 and
animal models13,14. S. aureus is associated with severity of the
disease, and may be the result of a combination of detrimental
effects from S. aureus on the one hand, and the loss of beneficial
effects from other members of the skin microbiota on the other
hand. Therefore, the use of antimicrobial therapeutics that target
S. aureusmay not be the optimal choice as they may also wipe out
beneficial species or strains, and break mutualistic interactions
between the skin and its microbiota. Psoriasis (PSO) appears to
induce physiological changes at the lesion site, selecting for a
specific microbiota. The psoriasis (PSO)-associated skin micro-
biome displays disease-specific features that might have a diag-
nostic value15–17, but whether the differential microbiota has
pathophysiologic significance remains undetermined.

Here, we present a large-scale, comprehensive analysis of the
microbiome and microbiome-associated host transcriptome in
skin of healthy volunteers (HV), AD, and PSO patients, revealing
two distinct patterns of host−microbe interactions in chronic
skin inflammation. We report a significant increase in the
abundance of S. aureus and loss of anaerobic species in AD, while
PSO is characterized by the co-occurrence of multiple organisms,
including Corynebacterium and Finegoldia species. In AD lesions,
which are abundantly colonized by S. aureus, toxin production
and metabolic reprogramming are highly over-represented
microbial functions. The host, in turn, responds to the changes
in the microbiota via altered expression of genes related to barrier
function, metabolic reprogramming, antimicrobial defense
mechanisms and T helper type 2 (TH2) signaling. In PSO, our
results suggest that members of Corynebacterium may play a
regulatory role, which is reduced in disease.

Results
The skin microbiotas in AD and PSO are highly distinct. Skin
swabs were collected using a standardized protocol (Supple-
mentary Fig. 1a−c). A total of 3.36 million 16S rRNA gene reads
were analyzed using QIIME v1.8.018 resulting in the identification

of 17,725 operational taxonomic units (OTUs) at 99.3% identity
level. After removal of rare OTUs, 3342 remained. Blasting
sequences against the Greengenes 16S rRNA gene database
revealed healthy skin microbiomes consistent with previous
reports6. An overall analysis indicated clear differences between
AD and HV (Fig. 1a, b, Supplementary Fig. 2), confirmed by
nonmetric multidimensional scaling (NMDS) analysis of the 95
most abundant OTUs (Supplementary Fig. 3a, Supplementary
Table 1). AD also showed a reduction in diversity (Supplementary
Fig. 3b). A total of 51 highly abundant OTUs showed significant
differences between HV, AD and PSO (Fig. 1a).

We additionally carried out a careful analysis of the influence
of confounding factors, including age, anatomical location,
gender and clinical center (Supplementary Table 2, Supplemen-
tary Fig. 3c). After correction for the confounding effects, 8 out of
17 confounded OTUs from AD and 5 of 13 OTUs from PSO
retained significance. For example, C. kroppenstedtii was
associated with age, S. aureus with anatomical location and
Lactobacillus sp. with gender, but they all remained significantly
associated with disease after correction (p < 0.01). Associations
were tested using the Kruskal−Wallis test for body site and
institution, the Mann−Whitney U test for gender, and Spearman
correlation for age.

The remaining 11 most significant OTUs are shown in Fig. 1c.
The most significant result is an increase in the abundance of S.
aureus in AD, associated with a significantly lower abundance of
OTUs representing strictly anaerobic bacteria in AD (Fig. 1d).
The loss of anaerobes in AD is not driven by S. aureus, indicated
by repeated analysis of samples devoid of S. aureus (Supplemen-
tary Fig. 2d). Significant changes in PSO compared to HV include
increases in the abundance of C. simulans and C. kroppenstedtii as
well as Finegoldia and Neisseriaceae species. Lactobacilli,
Burkholderia spp. and P. acnes were lower in abundance in both
AD and PSO compared to healthy skin.

Microbiota-based classification of AD and PSO. We next asked
whether the skin microbiome discriminates inflammatory skin
pathologies. A supervised learning pipeline was employed to con-
struct classifiers to explore the key sets of microbial taxa. We
identified 26 microbes discriminating AD vs. HV cohorts with an
area under the curve (AUC) of 0.94 (class errors HV= 0.03,
AD= 0.27, Fig. 2a). The most discriminative taxa were of the
genus Staphylococcus, including S. aureus (Z= 14.0), S. epidermidis
(Z= 5.8), Staphylococcus spp. (Z=−6.9) and Burkholderia spp.
(Z=−7.5). An NMDS analysis highlights the role of S. aureus in
differentiating AD (red dots) from HV (blue dots; Supplementary
Fig. 4a). We identified 24 microbes that differentiate PSO vs. HV
with an AUC of 0.85 (class errors HV= 0.09, PSO= 0.33, Fig. 2b).
The top discriminating microbes were C. simulans (Z= 15.5),
Neisseriaceae g. spp. (Z= 6.9), C. kroppenstedtii (Z= 5.5), Lacto-
bacillus spp. (Z=−8.4) and Lactobacillus iners (Z=−3.5). An
NMDS analysis demonstrated a clear separation boundary between
HV (green dots) and PSO (green dots; Supplementary Fig. 4b).
We identified 15 microbes that differentiate between AD and PSO
with AUC of 0.86 (class errors AD= 0.29, PSO= 0.13, Supple-
mentary Fig. 4c). The top microbes were S. aureus (Z= 14.0), S.
epidermidis (Z= 3.9), Finegoldia spp. (Z=−6.5), C. simulans (Z
=−5.0), and C. kroppenstedtii (Z=−4.4). An NMDS analysis
highlights the importance of S. aureus in AD (Supplementary
Fig. 4d).

Communities of microbes associate with AD or PSO. To
understand the interactions between communities of microbes
under different disease states, we used network principles to
express co-occurrence relationships. We found distinct
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differences between the community structures of microbes asso-
ciated with AD and PSO. For microbes associated with AD,
SparCC19 correlation between taxa resulted in 19 species with a
correlation above a threshold of 0.2 ( p < 0.05, Fig. 2c). S. aureus
negatively correlated with species including Corynebacterium

spp., S. epidermidis, Tepidimonas spp. and Phyllobacterium spp.
Of the 24 microbes identified as important for PSO classification
(Fig. 2b), 16 species showed significant SparCC correlation
(SparCC > 0.2, p < 0.05, Fig. 2d). The most discriminant taxa C.
simulans and C. kroppenstedtii displayed positive correlations

851917

851668

610043

205025

4449324

74351

4473201164003

4
3
5
3
6
4
2

4
3
4
8
3
4
7

4
4
6
7
2
1
8

4
3
4
6
8
9
4

8199374354809

4
4
8
0
0
6
3

4
3
6
9
2
2
9

8
3
7
8
8
4

43
01

45
711

07
94

0

44
56

06
8

8
2
0
6
9
2

3
6
0
4
8
3

4
4
8
2
5
9
84

0
2
1
3
3
5

3
7
8
0
9
6

4
3
0
3
6
9
7 4

3
0

6
5

4
0

4
3
5
0
1
2
4

4
3
4
9
8
5
9

4
3
0
9
3
2
3

10
81

37
2

654307

1096610

755148

625320

14278

4474056

505749

1003210

912906

4327300

2110555

4349522

4349519

939571

370309

4476950

76
15

94

279980

883806

496787

4294554

4471315

4421536

4408996

4318084

4
2
9
9
3
2
4

1
0
0
4
3
6
9

2
5
2
5
9

5
1
1
4
7
5

2
9
0
1
9
6
54
4
4
6
5
2
1

4481323

8
5
1
9
2
5

4473664

370134

403853

4439089

25478

3208510

247720

1036883

4047452

4317476

4422405

103810

987144

4460228

4468125

4411187

1
1
3
1
5
2
3

2
8
5
3
7
6

1
1
4
9
9
9

9
4
0
0
8
3

4
3
2
7
2
8
6

9
1
2
9
9
7

3
6
2
3
9
0

99
58

17

44
22

71
8

13
44

5

56
57

53

38
41

24
5

282360

20360

4440643

Relative

abundance

160

1

100%

AD

OTU #

Healthy

PSO

Stat value

90%

80%

70%

60%

50%

40%

30%

20%

10%

Other

Proteobact._Alphaproteobacteria

Proteobact._Betaproteobacteria

Proteobact._Gammaproteobacteria

Firmicutes_Clostridiales

Firmicutes_Lactobacilales

Firmicutes_Staphylococcus

Bacteriodetes_Flavobacteriales

Bacteriodetes_Bacteriodales

Other Actinobacteria

Actinobacteria_Propionibacteria

Actinobacteria_Corynebacteria

AD HV PSO

AD

HV

PSO

0 2500 5000

AD

HV

PSO

0 200 400

AD

PSO

0 200 600400

AD

PSO

0 10 20

AD

PSO

0 50 100 150

AD

PSO

0 30 60 90

AD

PSO

0 20 40 60

Abundance [reads/sample]Abundance [reads/sample] Abundance [reads/sample]

Abundance [reads/sample]

Abundance [reads/sample]

Abundance [reads/sample]

Abundance [reads/sample]

**

** **

**

**

**

**

**

**

7500

30

200

AD

PSO

0 200 400

Abundance [reads/sample]

**

AD

PSO

0 200 400 600

Abundance [reads/sample]

**

AD

PSO

0 50 100 150

Abundance [reads/sample]

**

**

AD

PSO

0 10 20 30

Abundance [reads/sample]

**

40

**

HV

HV HV HV

HV HV HV

HV HV

S. aureus

Finegoldia sp.

Lactobacillus sp.

C. kroppenstedtii

A
n
a
e
ro

b
e
 a

v
g
. 

re
la

ti
v
e
 a

b
u
n
d
a
n
c
e

566

786

766

86

6

a

b

c

d

Streptococcus sp.
Corynebacterium sp.

Corynebacterium simulans

Corynebacterium kroppenstedtii

Corynebacterium sp.

Corynebacterium sp.

Dermabacter sp.

Micrococcus sp.

Rothia dentocariosa

Kocuria palustris

Propionibacterium acnes

Actinomyces

Prevotella sp.

Prevotella sp.

Bradyrhizobium sp.

Caulobacteraceae

Paracoccus sp.
Phyllobacterium sp.

Enhydrobacter sp.
Acinetobacter sp.NeisseriaceaeMethylophilaceae

Burkholderia sp. 

Variovorax paradoxus

Ralstonia sp.

Pelomonas sp.

Finegoldia sp.

Peptoniphilus sp.

Anaerococcus sp.

Anaerococcus sp.

Anaerococcus sp.

Anaerococcus sp.

Anaerococcus sp.

Blautia sp.

Peptostreptococcus anaerobius

Staphylococcus epidermidis

Staphylococcus sp.

Staphylococcus aureus

Lactobacillus sp. 

Lactobacillus iners

AD HV

Anaerobe abundance in AD and HV

=Actinobacteria

=Proteobacteria

=Firmicutes

=Bacteroidetes

=Cyanobacteria

Burkholderia sp.C. simulans

NeisseriaceaeStaphylococcus sp.

P. acnesPelomonas sp.

Anaerococcus sp.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12253-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4703 | https://doi.org/10.1038/s41467-019-12253-y | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Fig. 1 Characterization of the skin microbiome in AD and PSO. The results show a typical range of skin microbiomes in HV (n= 115) and significant changes

in AD (n= 82) and PSO (n= 119). a An evolutionary tree based on 16S rRNA gene sequences, abundance and statistical significance of the 95 most

abundant OTUs. The blue color intensity in the heat map shows the relative abundance of each OTU. The three Staphylococcus OTUs (indicated by

asterisks) were calculated using a wider scale, due to their relatively high abundance in certain samples. The length of the green vertical bars indicate

nonparametric statistical score (Kruskal−Wallis test, FDR, p < 0.05). The color bars by each OTU number indicates bacterial phylum (green: Firmicutes; red:

Proteobacteria; cyan: Bacteroidetes; blue: Cyanobacteria; orange: Actinobacteria). b The most abundant bacterial groups depicted for HV, AD and PSO.

c Statistical analysis (Mann−Whitney U test (FDR, p < 0.05)) of the 11 OTUs showing the most significant changes in AD and/or PSO vs. HV after

correction for confounding factors. The values on the x axis are in number of reads, out of a total of 8495 reads/sample. The asterisks indicate statistically

significant differences and correspond to p < 0.01 (**) and p < 0.001 (***). The center line in the boxplots corresponds to the median, the bounding box is

the interquantile range (IQR) and the whiskers are defined as 1.5 times IQR. d Statistical analysis (Mann−Whitney U test, p < 0.05) of the relative

abundance of OTUs representing strictly anaerobic bacteria in AD lesions and HV. The x-axis units and the elements of the boxplots are as in (c). The

source data files used to generate the present figure are available from the NCBI Sequence Read Archive under accession PRJNA554499
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with Streptococcus spp., P. anaerobius and, Anaerococcus spp.,
Neisseriaceae g. spp., and Rothia dentocariosa respectively.
Comparison across microbial interactions in PSO indicate that
rather than a single species dominating the microbial landscape
(as in AD), we observe multiple species associated with this
disease type.

Overlaps and distinctions of AD and PSO transcriptomes. The
transcriptomes of full-thickness skin biopsies were defined based
on a stringent 10−5 FDR level and a fold change (FCH) of 1.5, or
greater. A principal component analysis (PCA) revealed a clear
separation between HV, AD, and PSO (Fig. 3a). Differential gene
expression analysis identified 1232 genes differing between AD
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and HV, and 2525 between PSO and HV, and 1051 genes shared
between AD and PSO (Fig. 3b).

For functional insight into the disease-specific genes, we
performed Ingenuity Pathway Analysis (IPA), revealing signifi-
cant overrepresentation of TH2 and TH1 signaling, dendritic cell
maturation and iCOS-iCOSL signaling in helper T cells in AD,
and Interferon signaling, LPS-IL-1-mediated inhibition of RXR
function, the Inflammasome pathway and Th17 signaling in PSO.
The levels of Interferon signaling and p38 MAPK signaling
distinguished PSO from AD (Fig. 3c).

TNF and IFNG were identified as upstream regulators in both
AD and PSO, whereas IL4 and IL13 emerged as unique features in
AD, underpinning the central role of TH2 -associated signaling in
AD (Supplementary Fig. 5b). Gene Ontology (GO) enrichment
analysis highlighted chemotaxis, inflammatory response, and
extracellular matrix organization in AD, and leukocyte activation
in both AD and PSO (Supplementary Fig. 6). Among top
upregulated genes in AD and PSO we observed inflammatory
mediators (S100 proteins, defensins, matrix metalloproteinases,
IL-1 family cytokines), T helper-related genes (CCL1, CCL18,
IL17A, IL22, PI3/Elafin), barrier genes (KRT16, SERPINB4, KLK9,
FLG2, LCE5A, CLDN8), and genes involved in tryptophan (trp)
metabolism (KYNU). Top downregulated genes included IL34,
anti-inflammatory IL37, and NOS2 (Fig. 3d, Supplementary
Fig. 7).

The S. aureus-induced host gene signature in AD. Taking
advantage of our large microbiome and transcriptome datasets,
we addressed the interplay between host and microbes. We
stratified AD samples into “high” and “low” groups, based on
microbial abundance, including top (n= 27) and bottom (n= 25)
tertiles in the analysis. The low abundance samples were devoid
of S. aureus, whereas high abundance samples exhibited in all
cases a high abundance of S. aureus (87–99%).

First, we explored the microbial gene repertoire of S. aureus
high and low groups. Using PiCRUST that predicts functional
content based on the 16S rRNA gene marker, we observed the
enrichment of bacterial toxins, the two-component system and
glycolysis in the S. aureus high group compared with the low
group (Supplementary Fig. 8a−b). The majority of the functions
were contributed by S. aureus OTUs (Supplementary Fig. 8c). To
validate OTU-based predictions, we performed whole genome
sequencing (WGS) on a limited sample set, showing close
agreement between the two independent sequencing methods
(Supplementary Fig. 9). WGS data confirmed the enrichment of
major bacterial toxins, hld and plc (alpha- and delta-toxin,
respectively), and genes associated with galactose metabolism, the
phosphotransferase system, the two-component system, and
glycolysis and gluconeogenesis, in the S. aureus high samples
(Supplementary Fig. 8c).

Next, we investigated gene expression profiles in the under-
lying skin. Comparison of the transcriptomes between S. aureus
high and low samples revealed a set of 256 significant genes (FDR
< 0.05, FCH ≥ 1.5) (Supplementary Fig. 10a, Supplementary
Table 3). To explore whether the S. aureus-regulated genes were
relevant to global features of AD pathophysiology, we created a

co-expression network based on pairwise Pearson correlation (r >
0.7), using all significant AD-associated genes. Network commu-
nity detection20 identified ten distinct modules, enriched for
disease-relevant functions (Fig.4a, Supplementary Fig. 10c).
Projecting S. aureus-regulated genes onto the AD network
revealed significant enrichment in genes that mapped to modules
M1 and M5 (hypergeometric test, FDR < 0.05), associated with
keratinocyte differentiation, and extracellular matrix organiza-
tion, respectively (Fig. 4b).

Functional analysis of the S. aureus-regulated genes using GO
and IPA revealed the enrichment of keratinization and skin
development (Fig. 4c), and TH17 signaling and tryptophan (trp)
degradation (Supplementary Fig. 11a), respectively. IPA predicted
IL1B, TNF and IFNG as top upstream regulators (Fig. 4d) and
leukocyte migration and development of epithelial tissue as
downstream effects (Fig. 4e). While upregulated genes were
enriched for inflammatory signaling (Supplementary Fig. 11b),
downregulated genes were over-represented for mainly skin
development (Supplementary Fig. 11c). Top genes included skin
barrier and antimicrobial factors (S100A7, DEFB4A/B, S100A9,
MMP12, FLG2, CLDN8, ADAM12), components of trp metabo-
lism (KYNU, TDO2, KMO), immune activation (IL1B, CCL2,
CCL19), and TH2 signaling (IL4R, IL5, IL13, PI3, TNFRSF4,
CCR4). Moreover, HIF1A and its targets HK2 and PFKP were
among the significantly regulated genes (Fig. 4e, f, Supplementary
Fig. 10b, d−e).

Since the kynurenine pathway was enriched in the S. aureus
“high” samples, we performed transcriptomic reconstruction of
trp breakdown, indicating the accumulation of 3-
hydroxyanthralic acid (3-HAA) in the skin (Supplementary
Fig. 12a). Further, we investigated to what extent AD-associated
strains of S. aureus may depend on trp, and isolated 32S. aureus
strains from AD patients with moderate to severe manifestation
of the disease. We found that 66% of the isolated strains grew
independent of trp (Supplementary Fig. 12b, Supplementary
Table 4), and this observation was further supported by our WGS
data (73% trp biosynthesis-related genes in the S. aureus high
samples) (Supplementary Fig. 12c).

Finally, to explore the impact of S. aureus on gene targets
identified by this study, organotypic human epidermal equiva-
lents were topically exposed to 106 CFU S. aureus for 24 h,
followed by measurement of gene expression by qPCR (Supple-
mentary Fig. 13a−c). S. aureus significantly induced the
expression of DEFB4, PI3, IL4R and S100A9 (Supplementary
Fig. 13d).

Integrative analysis of the PSO microbiome and transcriptome.
Next, we combined the PSO microbiome with associated skin
transcriptomes. Testing the top discriminating microbes in PSO
in terms of their ability to partition the skin transcriptome did not
yield significant results. Therefore, we constructed a co-
expression network based on PSO differentially expressed
genes, and partitioned it into 12 modules as described above20

(Supplementary Fig. 14a). We identified associations between the
top 25 most differentially abundant taxa between PSO and HV,
and module eigengenes derived from the PSO co-expression

Fig. 3 The AD and PSO skin transcriptomes. a Projection of AD (red, n= 82), PSO (orange, n= 119) and HV (green, n= 115) transcriptome profiles in the

subspace spanned by the two first components of the principal component analysis (PCA) performed on the 1000 most variant genes. b Venn diagram of

the differentially expressed genes in the AD vs. HV, PSO vs. HV and PSO vs. AD contrasts (identified using the Limma linear model and empirical Bayes

method, cut-off: log2 FC > 0.58 and FDR p < 1 × 10−5, corrected using the Benjamini−Hochberg method). c IPA canonic pathway analysis of significantly

enriched functions in AD and PSO gene signatures and the PSO vs. AD contrast. d Statistical analysis (unpaired t test) of selected top up- and

downregulated genes. The center line in the dot plots corresponds to the mean, and the error bars to the standard deviation. The source data files used to

generate the present figure are available from EBI ArrayExpress under accession E-MTAB-8149

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12253-y

6 NATURE COMMUNICATIONS |         (2019) 10:4703 | https://doi.org/10.1038/s41467-019-12253-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


network, using linear models implemented in the MaAsLin
package21. A linear model controlling for body site, institution,
age and gender effects was fit for each microbe−module eigen-
gene pair. Overall, six associations were identified (FDR < 0.20)
(Supplementary Fig. 14b). Negative associations were identified
between Corynebacterium spp. and three co-expression modules;
M2, M3 and M10. M3 was strongly associated with the cell cycle,
whereas M2 and M10 were enriched for inflammatory pathways
including interferon signaling, and TH1 and TH2 activation

(Supplementary Fig. 14c). These results suggest that Cor-
ynebacterium spp. may play a regulatory role which is reduced in
disease however. Overall, our results indicate that microbe−host
associations in PSO are considerably less well defined than
observed in AD.

Microbiome associates with clinical severity in AD. To inves-
tigate the effect of microbiota and gene expression on clinical
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severity, we performed feature selection coupled with multivariate
regression. Genes and microbes were ranked according to their
correlation with SCORAD or PASI indices and then regression
models were trained onto the top N features (N= 5–50 in
increments of five), and the best performing model was selected.
Prediction of SCORAD from microbial abundance was optimal
with the top 35 species with Random Forest regression (Supple-
mentary Fig. 15a). The accuracy was relatively modest (MAE=
12.35, correlation true vs. predicted= 0.55) suggesting that
variability in microbial abundance and clinical severity are likely
explained by other factors. Amongst the most highly correlated
species were Tepidimonas spp., Propionibacterium acnes, and S.
aureus (Supplementary Fig. 15b). Most of the selected species
were negatively correlated with the exception of S. aureus, indi-
cating that microbial diversity may be inversely associated with
clinical severity in AD. Diversity correlation with SCORAD
revealed a weak but significant correlation (cor=−0.27, p=
0.01).

Transcriptomic data outperformed microbial abundance for
predicting SCORAD. The top model identified 15 genes using
linear regression as the best set of predictive genes (Supplemen-
tary Fig. 15c), (MAE= 9.84, correlation true vs. predicted=
0.66). Amongst the top genes were SEMA3D, IGSF10, LGR5 and
CASP10 (Supplementary Fig. 15d). No associations between
clinical severity and microbial abundance in PSO were identified.

Finally, oozing and crusting in the AD lesions indicative of
infection, correlated significantly with the abundance of S. aureus,
supporting the link between colonization by S. aureus and clinical
severity in AD (Supplementary Fig. 16).

Discussion
Microbe−host interactions may be central to skin homeostasis,
and dysbiosis may drive disease10,15. However, to what extent the
skin microbiota may associate with the host skin phenotype and
underlying mechanisms, remains elusive. To achieve a better
understanding of the dialogue between the skin and the skin
microbiome, we used skin as a model and AD and PSO as proxies
for TH2-associated atopic and TH17-associated autoimmune
inflammation, respectively, giving us the opportunity to compare
two types of inflammation and the associated microbiomes
and transcriptomes. Here we present the findings of a large
cohort (n= 316) combining the analysis of skin microbiomes and
associated transcriptomes, identifying unique gene profiles that
characterize healthy vs. inflamed skin. We show that while AD is
dominated by one single microbial species, multiple species
associate with PSO, and the abundance of the dominating species
in AD, S. aureus, correlates with disease relevant gene expression
(overview of the main findings in Fig. 5).

Analysis of the two patient groups shows distinct differences
between microbiomes. The most significant change, the increase
in S. aureus abundance in AD, is not present in all samples. A

number of AD lesions contain little or no S. aureus, representing
potentially different endotypes of the disease which deserve fur-
ther investigation. The changes associated with psoriasis are more
complex than for AD and involve many different bacteria,
including Corynebacteria and Finegoldia. Through exploring
classification models as a way to discriminate disease state, several
of the OTUs were also strong predictors of disease status. Lac-
tobacillus appeared to be consistently depleted in both diseases,
whereas disease-specific species such as S. aureus in AD and C.
simulans and C. kroppenstedtii in PSO were important for pre-
diction in disease. Moreover, we identified two distinct commu-
nity patterns by means of co-occurrence analysis. In AD, it was
clear that S. aureus dominated the microbial landscape and
negatively correlated with several skin commensals, such as S.
epidermidis and Corynebacterium spp, and thus may be asso-
ciated with the depletion of potentially regulatory or protective
microbes. Importantly, recent studies have shown that S. epi-
dermidis may specifically limit the growth of S. aureus22, and
disease severity is inversely correlated with the abundance of S.
epidermidis relative to S. aureus14. In contrast to the dynamics
revealed in AD, the PSO-associated interaction network suggested
that multiple, co-occurring species, is a more representative
model. Previous studies have shown that while single taxa are
unable to discriminate between PSO and healthy skin, the com-
bined relative abundances of selected genera (Corynebacterium,
Streptococcus and Staphylococcus) attain significance across the
groups15. In our hands, the same genera display clear patterns of
co-occurrence, increasing in relative abundance in PSO lesions
compared with healthy skin.

We observed a remarkable loss of strictly anaerobic bacteria in
AD, indicating a switch in the skin microbiome from anaerobic to
aerobic metabolism. Healthy skin is normally O2 deprived23, but
a dry flaky skin and an impaired epidermal barrier function—
characteristics seen in AD24, may increase oxygenation and select
for the low abundance of strictly anaerobic bacteria such as
Lactobacillus spp or Finegoldia spp. At anaerobic conditions
bacteria are fermenting organic matter, e.g. in skin the amino acid
serine originating from filaggrin degradation, forming in parti-
cular lactic acid, propionic acid and other short chain fatty acids
(SCFA). These metabolites lower the skin pH to pH < 5.5,
maintaining a protective acidity of the skin. Potassium lactate is
also one of the most relevant “natural moisturizing factors” of
healthy skin. Furthermore, gram-positive anaerobe cocci such as
Finegoldia, Anaerococcus, and Peptoniphilus, stimulate rapid
induction of antimicrobial peptides response in human kerati-
nocytes, which could be an important signaling mechanism to the
keratinocytes when the skin is injured25. In the complete or
partial absence of these organisms, danger signaling in kerati-
nocytes and other barrier functions could be impaired, potentially
favoring colonization by S. aureus.

We identified AD and PSO transcriptomes which overlap
substantially with previously published studies26–29. While

Fig. 4 The “S. aureus signature” and functional associations. a Using AD-associated genes (AD patients, n= 82) identified at FDR level 10−5, we created an

AD gene co-expression network, which was partitioned into modules by network community detection. Top enriched GO terms are indicated for each

network module. b Differential analysis between S. aureus “high” (n= 27) and “low” (n= 25) samples revealed 256 differentially expressed genes (FDR <

0.05, FCH≥ 1.5). Hypergeometric tests revealed significant enrichment in S. aureus-associated genes (colored red) that mapped to modules M1 and M5.

Gene annotations and Ingenuity Pathway analysis identified c enriched gene ontology terms in the S. aureus signature, and d predicted upstream regulators,

respectively. eMolecular networks generated between top functions and associated genes. The red color of the gene symbols indicates upregulated genes,

green indicates downregulated genes. Red colored edges indicate predicted activation, yellow edges indicate inconsistent findings, and gray edges lack a

predicted effect. f Statistical analysis (unpaired t test) of RNA expression levels of selected genes in S. aureus “high” and “low” abundance samples. The

center line in the dot plots corresponds to the mean, and the error bars correspond to the standard deviation. The source data files used to generate the

present figure are available from the NCBI Sequence Read Archive under accession PRJNA554499, and from EBI ArrayExpress under accession E-MTAB-

8149
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transcriptomic changes in PSO were dramatic, microbial changes
were rather small. Yet, the opposite applied to AD lesions, sug-
gesting a nonlinear relationship between the skin microbiota and
the host transcriptome. Instead, the communication between host
and microbiota might depend on defined subsets of genes, and
the interaction is likely bi-directional, with the microbiota influ-
encing host gene expression, which in turn forms a habitat for
specific microbes.

Previous studies have identified colonization by S. aureus in
AD; however, little is known about its potential mechanistic
impact10,13. We identified differentially regulated host genes
between AD lesional skin samples containing high or low abun-
dance of S. aureus, functionally enriched for mainly three activ-
ities: skin barrier function, immune activation and trp
metabolism. The S. aureus high associated microbiome was
overrepresented by bacterial toxins (alpha-toxin and delta-toxin),
the two-component system and glucose metabolism, essentially
contributed by S. aureus specific OTUs. The highly adaptable and
potent pathogen S. aureus is known to express a multitude of
virulence factors, including toxins that impact on the skin barrier
and the immune system. The pore forming alpha-toxin, for
instance, which was highly enriched in the S. aureus “high”
samples, likely plays a key role in the disruption of the skin
barrier in AD patients, and through being able to activate the
inflammasome, resulting in the secretion of IL-1beta, alpha-toxin
is able to promote further inflammation30,31. Delta-toxin, in turn,
is known to contribute to AD-associated pathology through the
induction of mast cell degranulation and Th2 differentiation13.

The host responded to S. aureus through upregulating beta-
defensins (eg. DEFB4), and the expression of S100 protein family
members (S100A8, S100A9, S100A7). Beta-defensins are potent
antimicrobial peptides, contributing directly to local immune
responses as chemoattractants for leukocytes, and through acti-
vating antigen-presenting cells (APCs)32. Psoriasin (S100A7)
preferentially kills Escherichia coli, but has also bactericidal
activity against S. aureus33. Being upregulated by proin-
flammatory cytokines, psoriasin functions as a T cell and neu-
trophil chemotactic agent. S100A8 and binding partner S100A9
are, in turn, expressed and released by activated phagocytes, and
have powerful antimicrobial activities through the sequestration
of essential trace elements. The S100A8/A9 complex also protects

the host from infection by triggering toll-like receptor 4 (TLR4)
and receptor for advanced glycation end-products (RAGE)-
mediated inflammatory pathways, and through the recruitment of
neutrophils34,35. Thus, besides targeting microorganisms, the
antimicrobial defense response promotes inflammation, possibly
feeding additionally into AD pathology.

Further, samples abundantly colonized by S. aureus, displayed
significant changes in the expression of barrier genes, such as
CLDN8, a component of tight junctions (TJs). TJs are key to
epithelial barriers, reside immediately under the stratum cor-
neum, and regulate the passage of water, ions and solutes through
the skin. TJ defects, including dysregulated CLDN8, are associated
with AD36,37. Moreover, the expression of metalloproteinases
ADAM12 and MMP12, which are implicated in tissue remodel-
ing, cytokine and growth factor shedding, cell migration and
adhesion38, was modified. Alpha-toxin is known to specifically
interact ADAM10, leading to the cleavage of cadherins in epi-
thelial cell tight-junctions, and resulting in the destruction of cell
−cell contacts39, and consequently, the expression of ADAM10
was modified in S. aureus high samples.

Among proinflammatory factors that were influenced by S.
aureus, we note dysregulation of IL1B, CCL2, CCL19 and mem-
bers of the Th2 signaling pathway. IL1B is a central mediator of
inflammation40, affecting all cells of the innate immune system
and playing a key role in the differentiation and function of
adaptive lymphoid cells. The chemokine CCL2, which is expres-
sed mainly in basal keratinocytes, acts through attracting
monocytes, dendritic cells, Th1 and Th2 cells41, and the che-
mokine CCL19 is involved in the colocalization of CCR7-positive
dendritic cells with CCR7-positive T cells42, facilitating antigen
presentation and activation of T cells. Among Th2 associated
genes, we observed the induction of chemokine receptor CCR4,
cytokines IL5 and IL13, cytokine receptor IL4R, and TNFRSR4,
all central mediators of allergic pathomechanisms. Finally, the
AD-associated peptidase inhibitor 3 PI3/elafin, a product of Th17
activation and implicated in Th2 differentiation43, was sig-
nificantly modulated in S. aureus high samples.

Colonization of the skin by S. aureus activates defense and
tissue repair responses, which cause increased metabolic
demands, requiring the tissue to switch to glycolysis44. When
densely present, S. aureus may generate localized hypoxia and
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biofilms45, triggering hypoxia inducible factor (HIF) transcription
factors, which drive the metabolic changes and shape the
immunological response. In the S. aureus high samples, we
observed significant upregulation of HIF1A, and its target genes
HK2, PFKP and IL1B. HK2 and PFKP are key regulatory enzymes
in glucose metabolism. While glycolysis in the host is necessary to
combat infection, a recent study shows that staphylococcal gly-
colysis is equally necessary to cause infection44. In line, we
observed increased levels of glucose and galactose metabolism
and glucose transport, in the S. aureus high associated micro-
biome, suggesting enhanced ability to compete with the skin for
limited oxygen and glucose. Staphylococci also express hypoxia
activated genes46, some of them which are part of the two-
component system, regulating metabolic activity in anaerobic
conditions44. Accordingly, the two-component system was sig-
nificantly enriched in the S. aureus high samples, including genes
which facilitate anaerobic respiration and biofilm formation47,48.

The essential amino acid trp and its catabolites are emerging as
important mediators of host−microbe interactions, with multiple
effects on host physiology on the one hand, and consequences for
the survival of the microorganisms, on the other hand. Recent
studies have shown attenuated trp metabolic pathways in the skin
microbiota of AD patients, and protective functions of microbial
trp catabolites in AD49. In turn, the host may use trp “depletion”,
or “starvation” as an antimicrobial strategy50. We generated a
transcriptomic reconstruction of trp breakdown in atopic
inflammation (Supplementary Fig. 13a), and detailed analysis of
the pathway indicated significant upregulation of TDO2, KMO
and KYNU, while alternative endpoints of the pathway were not
regulated. Hence, the result suggests accumulation of 3-
hydroxyanthranilic acid (3-HAA), and the pathway being
locked into the generation of this metabolite. Interestingly, 3-
HAA is considered an inflammatory mediator, and has been
shown to interact directly with neuronal cells51. The depletion of
key nutrients by the host is thought to be a mode of host defense
during bacterial colonization, and certain microbes, including
staphylococci, are sensitive to the depletion of trp by the host50.
While investigating whether such mechanisms are at play in AD
during S. aureus colonization, we found that the majority of S.
aureus strains in AD patients were independent of supplied trp.

Taken together, our findings in AD patients imply that S.
aureus may actively modulate the skin barrier function, while
triggering an inflammatory response, including Th2 type signal-
ing, potentially interfering with the regulation of S. aureus colo-
nization and perhaps contributing to the exacerbation of clinical
symptoms. Moreover, dense colonization by S. aureus may cause
local hypoxia, leading to metabolic reprogramming of the host
and its microbiota, and amplification of the inflammatory
response. Our findings also suggest that S. aureus promotes trp
degradation and the accumulation of proinflammatory metabo-
lites in the host, which may help the host to maintain a defensive
immune barrier, but may also feed into AD pathology. Finally,
AD patients may be preferentially colonized by S. aureus strains
that are capable of trp biosynthesis, providing them with a
colonization advantage in the atopic environment. However, the
defense mechanism of limiting trp may also result in adverse
effects, i.e. repressing colonization by benign commensal bacteria,
creating more dysbiosis.

Unlike in AD, where one species, S. aureus, was identified as
the dominant microbe, we observed that multiple species
demonstrated increased abundance in PSO. To establish a rela-
tionship between host transcriptomic profiles and microbial
abundances, we screened PSO-associated microbes against
modules of co-expressed genes, but detected only weak associa-
tions between potential pathogens and the expression of host
transcripts. Several modules were found to be associated with

microbial abundance, four of which were associated with one
particular taxon corresponding to Corynebacterium spp. This
species was negatively associated with a module enriched for
“interferon signaling”, suggesting a potential protective, or reg-
ulatory role of pathways relating to psoriatic inflammation. This
is of particular importance, since interferon signaling represents a
key event during the initiation of psoriatic inflammation52.
However, since the identified correlations with bacteria were
weak, further studies are warranted for unraveling the potential
role of fungi or viruses in psoriatic inflammation.

Finally, we applied regression algorithms to highlight potential
links between transcriptomic and microbial biomarkers with
disease severity. In AD a set of 35 microbes was identified and
linked to clinical severity. Of these species, all, except S. aureus,
were negatively correlated with disease severity. The association
between the abundance of S. aureus and severity has been
observed in previous studies10,53, and specific strains of S. aureus
contribute to a varying degree to severity, adding to the com-
plexity of AD disease14. We lack S. aureus strain information in
this study, but identify genes which appear to be driven by S.
aureus. More than half of these genes are relevant to AD
pathophysiology, overlapping with the AD transcriptome, but
only a handful of these genes are associated with disease severity,
suggesting that the S. aureus signature is driven mainly by S.
aureus, not by severity. Lastly, we conclude that the host tran-
scriptome predicted patient SCORAD to greater accuracy than
the microbiome, suggesting that gene expression is a better pre-
dictor of clinical severity.

This study represents a large cohort with a rich dataset giving
an opportunity for further detailed analysis of specific microbe
−host interaction. For additional insight, full genetic diversity of
the microorganisms need to be explored, adding information
concerning strains and the functional potential, as well as infor-
mation related to yet unexplored microorganisms including fungi,
viruses and archaea. Principles of microbe−host interactions will
need to be added to the concept of homeostasis and disease, and
only an integrated approach will be able to follow the complex
ecology of human health, paving the way for medical interven-
tions that aim at preserving health-associated homeostasis
between humans and their microbiota.

Methods
Subject recruitment and sampling. Adult patients (18–83 years) with moderate-
to-severe chronic AD (SCORAD score > 25, n= 91) and plaque-type PSO (PASI
score > 7, n= 134) as well as healthy volunteers (n= 126) were recruited for the
study (Supplementary Fig. 1). Microbiome samples and skin biopsies were obtained
from areas with active disease in the upper back or posterior thigh in AD patients,
and from the upper and lower back in PSO patients. Healthy volunteers were
sampled in corresponding skin areas.

Each subject underwent a physical examination by a dermatologist and the
medical history was recorded. The diagnoses were made by a dermatologist based
on clinical presentation, personal history, laboratory findings and the criteria of
Hanifin and Rajka54. The exclusion criteria included concomitant autoimmune
diseases (e.g. rheumatoid arthritis, diabetes, alopecia areata, etc.), the use of
systemic antibiotics within 2 weeks and systemic immunosuppressive therapy or
phototherapy or systemic biologic agents within the previous 12 weeks prior to
screening. Before skin sampling, the biopsy sites were left untreated for at least
2 weeks and cleansing with only the non-antibacterial Dove soap was allowed and
washing was avoided for 24 h prior to sampling. The patients or healthy volunteers
who did not match these clinical exclusion criteria were removed from the study.
The following biological samples were then obtained and submitted to analysis: (1)
microbiome samples from upper/lower back, posterior thigh or buttocks (PSO, AD,
HV) with no prior cleaning or preparation of the skin surface using sterile gloves to
prevent cross-contamination were obtained placing a sterile ring (2.5 cm diameter)
onto the appropriate skin area, 1.5 ml phosphate-buffered saline (PBS) was
supplemented into the ring and the area sampled scraping a glass rod in a circular
motion ten times to the left and to the right. Subsequently, the microbiome-
enriched PBS was harvested and stored. In addition, mock samples containing
only PBS were collected at each sampling time in order to assess contamination.
(2) 6 mm punch biopsies from skin at the “microbiome” sites were taken in local
anesthesia. Subsequently, samples were stored in RNAlater (Sigma-Aldrich) and
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subjected to further analyses (Supplementary Fig. S1a). The study was approved by
the appropriate local Institutional Review Boards (University of Helsinki, Dnro 91/
13/03/00/2011; Heinrich Heine University Düsseldorf, 3647/2011; King’s College
London, 11/H0802/6) and all subjects provided written informed consent before
participation.

Upper back and thigh posterior were chosen to represent skin areas with AD
lesions, while upper back and lower back were chosen for PSO lesions, at the same
time taking care in minimizing harm due to the surgical procedure of obtaining
skin biopsies (Supplementary Fig. 1a). Only samples from active skin disease, i.e.
lesional skin, were included in the study, and normal skin from HV was used as a
control. In HV, samples were taken from sites corresponding to the sampling sites
in AD and PSO. Identical SOPs were used in all three clinical centers and quality
and homogeneity was assessed and confirmed in a pilot study prior to starting the
major sample collection. Final analysis included 82 AD, 119 PSO and 115 HV
samples integrating the microbiome with the transcriptome.

16S rRNA gene sequencing and analyses. DNA was extracted from the clinical
swab and mock samples using Qiagen’s Pathogen Lysis Tubes and the QIAamp
UCP Pathogen Mini Kit (Cat.No: 19092) according to the manufacturer’s
instructions. In brief, sample pellets were resuspended in 500 μl Buffer ATL and
vortexed for 10 min at maximum speed using Pathogen Lysis Tubes containing
glass beads. The samples were transferred to fresh Beckman tubes and incubated in
16.5 mg/ml lysozyme (Sigma) for 30 min at 37 °C. Fifty microliters proteinase K
was added and the samples were then incubated for 10 min at 56 °C. Addition of
250 μl of Buffer APL2 was followed by incubation at 70 °C for 10 min. Ten
microliters RNA-grade glycogen (20 mg/ml, Thermo Scientific) were added to
maximize DNA recovery. Ethanol was added to a final concentration of 25%. DNA
was extracted and washed using spin columns, and subsequently eluted in 50 μl of
Buffer AVE.

For 16S rRNA gene amplification and preparation for sequencing, 2.5 μl
template were amplified in RT-PCR GradeWater (Life technologies), 3% DMSO,
with 1× PCR HF buffer using Phusion Hot start II DNA polymerase, 200 μM
dNTPs (all Thermo Scientific), and 500 nM custom primers (Eurofins MWG
Operon). One universal forward primer (341f 5′-CCTACGGGNGGCWGCAG
with adaptor B, Lib-L) was paired with one of 104 barcoded reverse primers (805r
5′-GACTACHVGGGTATCTAATCC with adaptor A, Lib-L) (Supplementary
Table 5). Each barcode consisted of seven nucleotides, contained no
homopolymers, and a pair of barcodes differed in at least two positions. Each PCR
was run in triplicates and the PCR products from each sample were pooled. A
negative control PCR reaction lacking template was included for all primer pairs in
each run. The PCR was run for 30 cycles. The PCR products were purified from the
reaction using Dynabeads® MyOne™ Carboxylic Acid (Life Technologies, Cat.No:
35401) and TruSeq precipitation buffer (16% PEG-6000, 1.5 M NaCl) on the
Magnatrix 1200 (LBH Advanced Bioservices AB, Sweden). The purity of the
amplicons was visualized on the Agilent 2100 BioAnalyzer using High sensitivity
DNA chips and reagents (Agilent Technologies, Cat.No: 5067-4626) according to
the manufacturer’s instructions. DNA concentrations were measured by real-time
PCR (KAPA Library Quantification Kits For Roche 454 GS Titanium platform,
Cat. No: KK4821 and BioRad CFX96 Touch™ Real-Time PCR Detection System;
C1000 Thermal cycler) according to the manufacturer’s instructions with samples
diluted 1:500, 1:1000, and 1:2000 in 10 mM Tris-HCl, pH 8.0. Extension time was
90 s. Finally, the samples were adjusted to 1.0 × 108 DNA molecules for each
sample before pooling 50–60 samples per 454 sequencing run.

For 454 amplicon sequencing, emulsionPCR was performed on the amplicon
library using a large volume emPCR (Lib-L, v2 reagent kit) according to the
manufacturer’s amplicon protocols and pyrosequenced (one way read direction) on
a Genome Sequencer FLX-Titanium instrument (Roche/454 Life Sciences) at
Science For Life Laboratory (SciLifeLab), Stockholm. Each library was sequenced in
both regions of a two region gasketed 70 × 75 mm Titanium PicoTiterPlate, and
base calling was performed with the on-instrument amplicon filter settings.
Samples containing only water were sequenced in order to assess contamination
during the sequencing process.

For demultiplexing and preprocessing of 454 reads, all sequence reads were
assigned to their samples using the unique sample barcodes. Raw sequence reads
were analyzed with AmpliconNoise version 1.25 to remove 454 sequencing and
PCR artifacts and PerseusD from the same program package to remove PCR
chimaeras, using default parameter values. The output from each sample was
further processed in QIIME (Quantitative Insights Into Microbial Ecology) version
1.8.0 if the number of processed high-quality reads exceeded 3000 per sample.
Otherwise, the sample was resequenced.

For OTU clustering and taxonomy assignment, the preprocessed dataset
comprised of a total of 3,357,091 high-quality reads. The following analysis steps
were performed using QIIME version 1.8.0. OTUs were picked at 99.3% identity
using the pick_open_reference_otus.py command and uclust 1.2.22q. Taxonomy
was assigned using blast-2.2.22. The reference data files used for both OTU
clustering and taxonomy assignment were downloaded from the Greengenes
Database Consortium55. As AmpliconNoise did not perform very well in
identifying chimeric sequences in our dataset, ChimeraSlayer56 was applied here
within the QIIME pipeline and identified chimeric sequences were removed from
the OTU table and the phylogenetic tree.

Analysis of 16S rRNA gene data. The protocol for 16S rRNA gene data pro-
duction used long amplicons and deep 454 sequencing in order to make it possible
to exhaustively distinguish as many different OTUs as possible and to discover
close to all relevant bacteria in the skin. The noninvasive sampling protocol was
designed to specifically sample bacteria on the surface of the skin as the total
amount of bacteria in the deeper skin layers is expected to be low. 16S rRNA gene
PCR was carried out directly from the DNA preparation, without another ampli-
fication step to avoid amplification-induced bias to the data. The analysis of the 16S
rRNA gene data was carried out according to standard protocols and relevant
controls and low-quality data was removed using AmpliconNoise, which is the gold
standard in the field. The same, easily reproduced sampling protocol was used in all
cases and the DNA preparations, PCRs, sequencing and analysis were carried out
in one facility using standard methods.

Three samples of poor quality were removed from the OTU table (1 PSO and 2
HV, Supplementary Fig. 1b). Abundances were normalized using the Trimmed
Mean of M-values method (TMM), implemented in the edgeR Bioconductor
package. Good’ś coverage and Shannon diversity index was calculated using QIIME
version 1.8.0.

To preserve statistical power, only OTUs present in more than 25% of all
samples were analyzed. Differentially abundant OTUs were identified from the
filtered set by comparing the abundance distribution of each OTU across the three
clinical groups (HV vs. PSO vs. AD) with the Kruskal−Wallis test (FDR, p < 0.05).
Microbe–disease-specific associations were detected testing for differences in the
abundance distribution of each differentially abundant OTU between the diseased
(PSO and AD) and HV groups with the Mann−Whitney U test (FDR, p < 0.05).

For analysis of confounding variables, associations between OTU abundance
and nonclinical factors (age, gender, body site and institution) were tested for
within the HV group using: (1) Kruskal−Wallis test for body site and institution;
(2) Mann−Whitney U test for gender and (3) Spearman correlation for age. FDR
correction was used to correct for multiple testing. Additionally, the same
association tests were carried out within the PSO and AD groups to search for
disease-factor interactions. Then, a linear model was fitted for each OTU to
account for the discovered nonclinical factor associations in the microbe−disease
association test. The general linear model equation is: OTU_abundance=
clinical_group+ nonclinical factors and it was fitted using the lm function of R. p
values from the test for the disease were FDR-corrected for multiple hypothesis
testing.

Bacterial aerobes vs. strict anaerobes were determined according to Bergey’s
Manual of Systematic Bacteriology57. Anaerobe abundance comparison between
AD and HV was performed using a Mann−Whitney U test. Additionally, to
account for the systematic increase of S. aureus in AD, the same test was repeated
only with samples in which the aforementioned bacterium was not detected.

For visualization of results, the phylogenetic tree in Fig. 1a was calculated using
ClustalW2 and it was visualized, along with associated data using interactive Tree
of Life, iTOL58 and Adobe Illustrator. NMDS analysis was performed using
phyloseq. Boxplots were generated in R version 3.1.0 with the ggplot2 package
version 1.0.1, with whiskers extending to max 1.5 IQR. Outliers were removed.

Analysis of 16S rRNA gene sequencing negative controls. For OTU clustering
and taxonomy assignment, OTU picking was performed independently from the
volunteer samples. The pick_closed_reference_otus.py pipeline from QIIME ver-
sion 1.9.1 was run on the samples, with the same parameters and the same version
of the Greengenes 16S database used to process the volunteer samples. The pro-
cedure yielded a total of 425 identified OTUs in 40 samples.

To reduce false positives in the contamination analysis, OTUs were discarded if
they were present in less than five samples or if the raw abundance of the OTU in
any sample was less than 100 reads. Filtering criteria were selected to preserve both
low abundant bacteria whose presence is supported by many negative controls and
bacteria with enough read coverage to be trustworthy. The filtering procedure
reduced the total number of detected OTUs in the mock samples from 425 to 73.

OTU ids obtained from the negative controls were compared against the list of
differentially abundant OTU ids from the volunteer samples. None of the OTUs
from the negative controls matched the OTUs identified in the volunteer samples.

Generation and analysis of metagenomics shotgun data. Libraries for shotgun
sequencing were prepared from the same DNA preparations that were used for 16S
rRNA gene PCR. The libraries were prepared using the ThruPLEX DNA-seq kit
(Rubicon Genomics, Cat No. R400406) and sequenced using the Illumina HiSeq
technology. The resulting reads were quality controlled and human sequences were
removed. Primary analysis was carried out using MetaPhlan2 and humann2.

16S rRNA gene sequence-based metagenomic feature inference. Metagenome
inference from 16S rRNA gene sequences was carried out using PICRUSt59. Briefly,
gene content of individual OTUs was inferred using the Greengenes v.13.5 database
and KEGG Orthologs (KOs) were extracted on multiple hierarchical levels (KEGG
tiers 1–4). Relevant microbial pathways were extracted from the tier 1 categories
“metabolism” and “signaling and cellular processes”. Contribution of each OTU to
the respective functional terms was quantified using the “metagenome_contribu-
tions.py” subroutine, where the relative contribution of OTUs was compared
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between S. aureus high and S. aureus low groups using Student’s t test followed by
Benjamini−Hochberg multiple testing correction. Visualization was carried out
using STAMP software60 and R v.3.5.1.

Generation of microarray transcriptional profiles. The skin biopsy samples were
stored in RNAlater and total RNA was extracted from the tissue samples using the
RNeasy Fibrous Tissue Mini kit (Qiagen). Tissue samples were homogenized using
the FastPrep-24 instrument (Nordic Biolabs AB), and RNA was extracted
according to the manufacturer’s instructions. The yield and purity of RNA in the
samples were controlled using a Nanodrop spectrophotometer and Qubit fluo-
rometer to verify absence of inhibitors (R260/280: 2.1; R260/230 nm: 1.3). RNA
integrity was quantified by electrophoresis and performed using Agilent dedicated
Lab-on-chip (RNA6000 Nano and Pico kits). RNA Integrity numbers and 28S/18S
ratio averages were respectively 8.6 and 2.

One hundred nanograms of total RNA was amplified according to Affymetrix
protocols (Affymetrix® GeneChip® Whole Transcript (WT) Expression Arrays).
Based on expertise of Institut Curie genomic platform, MAQC A RNA samples
(Universal RNA, Stratagene, P/N: 740000) were implemented to series of RNA
amplification in order to monitor target preparation. In practice, series of 47 RNA
(from healthy volunteers, and patients) and 1 Universal RNA were amplified,
monitored and labeled. During synthesis steps, purified molecules were quantified
using a multichannel Nanodrop (ND8000, Thermo) to normalize amount of
molecules used for DNA synthesis (10 µg) and hybridization (5.5 µg). Molecules
were also controlled on high throughput electrophoresis (QIAxcel DNA, Qiagen)
in order to monitor the size of complementary RNAs (average: 500nt), and
fragmented DNA (average: 50nt), to ensure quality of targets and hybridization of
microarrays. Series of 96 targets were hybridized onto Affymetrix Gene ST 2.1 96
array plates, including in total two Universal RNA, using an Affymetrix Genetitan
MC system. Quality of raw data and normalized data was monitored to control
dynamics of the measurements, across series of synthesis, and series of
hybridization using bacterial spike in controls added to total RNA, and using
Universal RNA.

An automated quality control pipeline based on the arrayQualityMetrics
method was used to capture quality failures in microarray data. A total of
12 samples were removed from the dataset. Data were then normalized using the
Robust Multi-array Average (RMA) approach implemented in the affy
Bioconductor package61.

Technical batch effects originating from sample preparation for microarray
analysis were removed (SVA-package with Combat function). For identification of
differentially expressed genes, a linear model (R package Limma) was fitted to the
data (using age, gender, anatomical location and clinical center as covariates), and
pairwise comparisons were done using the empirical Bayes method.
Transcriptomes were defined based on a fold change of 1.5 or greater and a
Benjamini−Hochberg adjusted p value less than 0.05. Functional enrichment
analyses were performed using web-based tools (http://amp.pharm.mssm.edu/
Enrichr/ and the PANTHER Classification System version 13.1) and the Ingenuity
Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity).

High RNA and microarray quality was assured by standard methods including
measurement of RNA quantity and degradation, the use of control probes and QC
and preprocessing methods provided the Bioconductor repository of R libraries.
The high quality of samples is reflected by a very low rate of exclusion due QC in
S16 (3/331 subjects) or Affymetrix (12/331 subjects) analyses. Overall the data were
robust and reliable.

3D human epidermal equivalents and bacterial stimulations. Human epidermal
equivalents (HEEs) were generated by seeding 300,000 human primary keratino-
cytes (obtained from abdominal plastic skin surgery) on polycarbonate cell culture
inserts, followed by 11 days of culture (3 days submerged and 8 days air-exposed)
(Supplementary Fig. 13). The last day of culture 106 CFU S. aureus was topically
applied on the HEEs for 24 h, followed by analysis of morphology, histology
(protein expression) and qPCR analysis (gene expression).

For bacterial cultures, S. aureus (ATCC 29213) was obtained from the
Department of Medical Microbiology of the Radboudumc. Bacteria were inoculated
on Columbia agar with 5% sheep blood (Dickinson and Company (BD), Sparks,
MD) overnight (S. aureus) or for 4 days (F. magna) at 37 °C. One single colony of
each plate was picked and cultured in Brain Heart Infusion medium
(Mediaproducts BV, Groningen, The Netherlands). Bacteria were collected by
centrifugation, washed two times with PBS and finally resuspended in PBS
resulting in bacterial concentrations of 107 CFU/ml. To determine the amount of
bacteria that was brought on the keratinocyte cultures, bacterial suspensions were
serially diluted in steps of 5. Ten microliters of each dilution was placed on sheep
blood agar plates and incubated overnight or for 4 days at 37 °C in aerobic (S.
aureus) conditions, respectively. Visible colonies on the plate were counted for each
dilution. The number of CFU was calculated: counted CFU × dilution factor.

For the development of 3D HEE, primary human keratinocytes were obtained
from abdominal plastic skin surgery, and isolated and expanded according to the
Rheinwald−Green protocol62 and stored in liquid nitrogen. For the generation of
HEE’s 300,000 primary human keratinocytes were seeded onto 0.4 µm pore size
transwell filters (Thincerts, Greiner Bio-One). Prior to seeding, these transwells
were incubated with 100 µg/ml rat-tail collagen (BD Biosciences) diluted in sterile

cold PBS at 4 °C for 1 h. Afterwards, excessive coating was carefully aspirated and
filters were washed once with cold, sterile PBS. First, the primary keratinocytes
were cultured in a submerged manner in proliferation medium (CnT-prime,
CELLnTEC) for 2 days to form a homogenously distributed monolayer. One day
later, medium was changed to differentiation medium (60% 3D barrier, CELLnTEC
complemented with 40% Dulbecco’s modified Eagle medium, Sigma). On the third
day the transwell inserts were lifted to the air−liquid interface to induce
differentiation and stratification of the epidermis. From now on cells were cultured
in differentiation medium until the end of the culture and they were refreshed with
differentiation medium every other day.

On day 7 of air−liquid interface culture 106 CFU S. aureus in PBS (cultured as
described above) was applied topically on the HEEs. For control HEEs only PBS
was applied. After 24 h HEEs were harvested for qPCR analysis.

RNA isolation, cDNA synthesis and qPCR analysis was performed as described
earlier63. All primers were designed and used as described previously64

(Supplementary Table 5). Target gene expression was normalized to the expression
of the house-keeping gene human acidic ribosomal phosphoprotein P0 (RPLP0).
The ΔΔCt method was used to calculate relative mRNA expression levels65.

For morphological analysis, HEEs were fixed in 4% formalin solution for 4 h
and embedded in paraffin. 6 μm Six-micrometer sections were stained with
hematoxylin and eosin (H&E, Sigma-Aldrich) or DAPI stain solution (DAPI
Fluoromount-G, Southern Biotech) as described previously66.

Tryptophan dependence assay. The growth of S. aureus strains isolated from
moderate-to-severe atopic dermatitis patients was analyzed in tryptophan-
containing vs. tryptophan-depleted culture media. The tryptophan-depleted, con-
ditioned medium was derived from IFN-γ activated, IDO-positive human glio-
blastoma cells 86HG39 that efficiently inhibit the growth of tryptophan-
auxotrophic S. aureus strains67. 86HG39 cells were cultured in Iscove’s modified
Dulbecco’s medium (IMDM) (Gibco, Grand Island, USA), supplemented with 5%
heat-inactivated fetal calf serum (FCS) in culture flasks (Costar, Cambridge, USA)
in a humidified incubator (37 °C, 10% CO2). 1 × 106 cells per cell culture flask were
stimulated with 1000U/ml IFN-γ (R&D Systems, Minneapolis, USA) for 74 h and
the conditioned medium was harvested. As controls, medium from unstimulated
86HG39 cells or tryptophan-free RPMI 1640 Medium (Gibco, Grand Island, USA)
(with or without tryptophan supplementation) were used. For the tryptophan
dependence assay, a 24 h old colony was picked, resuspended in PBS (Gibco, Grand
Island, USA) and serial diluted. The conditioned medium as well as control media
(200 µl) were inoculated with 10 µl of the bacterial dilution containing 10–100
colony forming units (cfu). Cultures were incubated overnight. Bacterial growth
was monitored by measuring the optical density of resuspended cultures at 620 nm.
Tryptophan dependency was validated by growth restoration in tryptophan-
containing cultures.

Classification and feature selection. In order to identify the best set of repre-
sentative microbiota for disease class, we used a supervised learning approach
based upon Random Forest classification models. The pipeline was used to train
models for three contrasts (Healthy vs. AD, Healthy vs. PSO and PSO vs. AD) with
the aim of identifying the features that best discriminate disease groups. To identify
the most stable predictors of disease, we first removed under-represented species by
filtering out those that were present in less than 15 samples for each contrast. Next,
to select the most discriminant OTU features, Random Forest feature selection
implemented in the R package Boruta was used under a tenfold cross-validation
framework with ten randomized repeats. Selected features were ranked by Boruta
according to the variable importance score Z, which represents the average loss in
accuracy after permutation of attribute values across samples. OTUs with a mean Z
score greater than 0.2 were considered for further analysis. The fold change
between healthy and disease patients was calculated to identify depletion or
increased abundance in disease. After selection of features, the classification model
was built within the R package randomForest. We evaluated the performance of the
model using the R package ROCR and report the mean AUC across all folds68.
NMDS with Bray−Curtis distance using the selected feature sets with the function
metaMDS from the R package Vegan was used for visualization purposes only.
Selection frequency was calculated as the percentage of times a variable was
selected by Boruta across all folds over all randomizations.

Microbial co-occurrence networks. We constructed interaction networks on all
OTUs present in at least 5% of samples resulting in a core microbiome of 569
OTUs. We employed SparCC19 on the raw OTU abundance, which calculates a
corrected correlation coefficient designed specifically for assessing the correlative
relationships between taxa in microbiome studies. The statistical significance of
correlations was evaluated against an empirical null distribution obtained with 100
bootstrap iterations (p < 0.05 and SparCC > 0.2). Network visualizations were
generated in Cytoscape.

Dimensionality reduction of transcriptomics data. To select genes for integra-
tion, differential analysis between healthy and diseased samples was performed
using the limma package reducing the total number of host transcripts under
consideration from 32,633 to 16,716 AD and 22,433 PSO-associated transcripts
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(FDR < 0.05). Co-expression networks were constructed using the pairwise Pearson
correlations between differentially expressed genes. Edges were determined by a
hard threshold of r < 0.7 and the main component of the network was retained for
further analysis. This reduced the overall transcriptome to a core disease-associated
network of 1833 AD and 2653 PSO-associated genes. To partition the network into
modules of genes that display similar expression profile, the Louvain method for
community detection was employed. Co-expression networks were visualized in
Cytoscape.

Identification of host−microbial interactions. For each module identified
through network community detection, feature reduction was performed by cal-
culation of the module eigengene which is equivalent to the first principal com-
ponent of module gene expression69. To test for associations between microbial
taxa and module eigengenes, we used the MaAsLin (https://huttenhower.sph.
harvard.edu/maaslin) package21 which fits linear models between arcsine square
root transformed OTU relative abundances and metadata after removal of statis-
tical outliers. We assessed the relationship between the top 25 most significant
disease-associated microbes and module eigengene pairs while correcting for
potential confounding factors using the model: microbe ~ module+ anatomical
location+ institution+ age+ gender. p values were corrected using the Benjamini
−Hochberg method and microbe−module associations with FDR < 0.20 were
considered as significant. In AD, the top most abundant microbe (S. aureus) was
used for stratification of the patient cohort, and differential gene expression was
compared between samples exhibiting the top and bottom tertiles of S. aureus
abundance. Network modules enriched for S.aureus-associated genes were identi-
fied using hypergeometric tests followed by Benjamini−Hochberg multiple testing
correction. For modules with significant microbial association, we evaluated the
overrepresentation of pathways using Ingenuity pathway analysis.

Microbiome, transcriptome and disease severity associations. Regression
algorithms were employed for the task of identifying gene and taxonomical mar-
kers that can predict the severity of disease indices. For transcriptomic data, one
score is computed for each gene, quantifying its degree of correlation with severity.
The genes are then ranked in descending order according to their scores and a
series of regression models are trained onto the top N genes (N= 5–50 in incre-
ments of five). The trained model can then be used to predict the severity of new
samples. To ensure that the constructed regression model can generalize well to
unseen samples, a leave-one-out cross-validation scheme is applied to identify
performance. Briefly, one sample is made blind to the process of calculation of
correlation and training of regression model, and is used to estimate the accuracy
of the trained model. In leave-one-out cross-validation, each sample is held out
exactly once and the prediction errors are averaged over all samples. The optimal
number of genes is then chosen as the set that corresponds to the lowest mean
absolute prediction error. The same procedure was applied to OTU abundance data
to identify a signature that correlates with severity of disease. Six multivariate
regression methods were applied including linear regression, SVM, 5-NN, M5P, RF
and Cubist and the model with the lowest mean absolute error was chosen.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data underlying Figs. 1−4, Supplementary Figs. 1−12, 14−16 and Supplementary

Tables 1−3 are available from the NCBI Sequence Read Archive under accession

PRJNA554499 and from EBI Array Express under accession E-MTAB-8149. Data

underlying Supplementary Fig. 13 is provided as a Source Data file. All other data are

available from the corresponding author upon reasonable requests.
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