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Abstract. More than 200 years ago, Alexander von Humboldt reported that tropical plant species
richness decreased with increasing elevation and decreasing temperature. Surprisingly, coordinated
patterns in plant, bacterial, and fungal diversity on tropical mountains have not yet been observed,
despite the central role of soil microorganisms in terrestrial biogeochemistry and ecology. We studied
an Andean transect traversing 3.5 km in elevation to test whether the species diversity and composi-
tion of tropical forest plants, soil bacteria, and fungi follow similar biogeographical patterns with
shared environmental drivers. We found coordinated changes with elevation in all three groups: species
richness declined as elevation increased, and the compositional dissimilarity among communities
increased with increased separation in elevation, although changes in plant diversity were larger than
in bacteria and fungi. Temperature was the dominant driver of these diversity gradients, with weak
influences of edaphic properties, including soil pH. The gradients in microbial diversity were strongly
correlated with the activities of enzymes involved in organic matter cycling, and were accompanied by
a transition in microbial traits towards slower-growing, oligotrophic taxa at higher elevations. We pro-
vide the first evidence of coordinated temperature-driven patterns in the diversity and distribution of
three major biotic groups in tropical ecosystems: soil bacteria, fungi, and plants. These findings sug-
gest that interrelated and fundamental patterns of plant and microbial communities with shared envi-
ronmental drivers occur across landscape scales. These patterns are revealed where soil pH is relatively
constant, and have implications for tropical forest communities under future climate change.

Key words: biogeography; elevation gradient; microbial ecology; Peru; phylogenetic diversity; plant ecology;
tropical forests.

INTRODUCTION

Climate regulates plant community composition and diver-

sity. This observation is exemplified by the existence of

changes in plant species diversity and community structure

with elevation along mountainsides, first reported in a classi-

cal 19th century study of the tropical Andes by the naturalist

Alexander von Humboldt (von Humboldt and Bonpland

1805). However, it has remained unclear whether soil bacteria

and fungi, key drivers of terrestrial biogeochemical cycling,

follow similar biogeographical patterns determined by the

same climatic drivers. Microbes are the most diverse and

abundant organisms on Earth (Whitman et al. 1998) and per-

form vital metabolic functions including the decomposition

of organic matter, recycling of nutrients, and formation of

root symbioses, all of which can affect the productivity and

diversity of plants (Bardgett and van der Putten 2014). Given

their small size, abundance and short life cycles relative to

plants and animals, microorganisms were long-assumed to be

cosmopolitan in their distributions (Baas Becking 1934).

Recent work has challenged this paradigm, highlighting the

importance of environmental filtering, historical events,

stochastic speciation, and dispersal processes in shaping

microbial biogeography (Fierer and Jackson 2006, Martiny

et al. 2006, Tedersoo et al. 2014). Relationships between

plants and soil microorganisms are now starting to be

revealed (Tedersoo et al. 2014, Barberan et al. 2015, Prober

et al. 2015, Zhou et al. 2016), but fundamental questions

concerning their relationships over landscape-scale gradients

remain open, especially for tropical forests. The high produc-

tivity and species richness of tropical rainforests (Pianka

1966, Beer et al. 2010) translate to a greater quantity and

chemical diversity of organic matter inputs to their soils and

a greater diversity of plant–microbe associations (Hatten-

schwiler et al. 2008, Mangan et al. 2010, Fanin et al. 2014).

Together, these characteristics point towards more opportuni-

ties for associations between plant and microbial species

in tropical than in temperate or high-latitude biomes,
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potentially leading to stronger coordinated changes in all

major biota across climatic gradients within tropical forests.

The large temperature gradients on mountains have proven

invaluable for understanding how temperature influences

plant diversity, community composition, and productivity

(Colwell et al. 2008). Shifts in the diversity of plant and ani-

mal taxa with changes in elevation along mountainsides glob-

ally are thought to result principally from differences in

energy limitation and/or niche differentiation, leading to a

typically monotonic decrease or mid-elevation peak in above-

ground species richness with elevation (Rahbek 2005). Eleva-

tion gradients can also help us to understand the influence of

temperature on the diversity and functional attributes of soil

microbial communities and their role in soil organic matter

cycling (Bryant et al. 2008, Geml 2017). However, such stud-

ies have not shown the strong elevation-related pattern of

diversity almost universally observed for plants. Studies of

bacterial richness have revealed contrasting patterns, strongly

influenced by multiple additional drivers, particularly the

large between-sample variations in rainfall or soil pH that

have accompanied such studies (Bryant et al. 2008, Shen

et al. 2013, Singh et al. 2014, Peay et al. 2017). Similarly,

contrasting patterns have been found in studies of fungal

richness, which have generally targeted specific groups that

vary in their elevation relationship by functional type and

plant-host specificity (reviewed in Geml 2017, Kivlin et al.

2017). Any of these sources of sample variance could obscure

an underlying fundamental relationship between temperature

and microbial diversity.

The diversity and functional attributes of bacteria and fungi

along elevation gradients in tropical forests are especially

poorly resolved despite their high biodiversity. We would

expect the biogeographical patterns of plants and soil microor-

ganisms to be related, as suggested by studies that have associ-

ated microbial communities with plant leaf litter traits (Orwin

et al. 2010, de Vries et al. 2012, Handa et al. 2014). The wide

inter-specific variation in leaf traits reported for tropical forests

(Hattenschwiler et al. 2008, Salinas et al. 2010, van de Weg

et al. 2009) therefore points towards stronger associations

between plant leaf traits (e.g. chemical diversity) and soil

microbial species assemblages, relative to other ecosystems.

Where this question has been addressed in the tropics, a rela-

tionship between the chemical composition of leaf-litter and

the underlying microbial community composition has been

demonstrated in an incubation experiment (Fanin et al. 2014),

but there was no overall relationship between plant and soil

microbial species diversity in a study of a single, albeit large,

forest plot in Panama (Barberan et al. 2015). However, the

issue has not yet been investigated at a larger biogeographical

scale in the tropics. A global study of grasslands found rela-

tionships between plant, bacterial, and fungal diversity at the

community level (b-diversity), but not at the level of species

richness (a-diversity; Prober et al. 2015). Plant and fungal a-

diversity were positively related across a global latitudinal gra-

dient (Tedersoo et al. 2014) and detailed relationships have

been shown for specific groups of fungi (Geml 2017, Kivlin

et al. 2017). Importantly, these biogeographical patterns have

not been observed for bacteria across gradients in latitude or

elevation (Bardgett and van der Putten 2014, Prober et al.

2015), possibly due to the wide variation in soil pH, which has

likely confounded sampling for biogeographical patterns in

bacteria (Fierer and Jackson 2006). In summary, whilst some

work points towards related biogeographical patterns among

plant and microbial communities (Tedersoo et al. 2014, Prober

et al. 2015), the evidence is often inconclusive or partly contra-

dictory (de Vries et al. 2012, Barberan et al. 2015), and espe-

cially so for tropical forest.

In this study, we used a 3.5-km tropical elevation gradient

(equivalent to a 6.5°–26.4°C mean annual temperature

range) in the Peruvian Andes (Fig. 1) to ask: (1) whether

related biogeographical patterns in plant, bacterial, and fun-

gal species richness (a-diversity) and compositional dissimi-

larity of communities (b-diversity) occur across large

environmental gradients; and (2) whether temperature drives

these patterns where other key environmental variables are

constrained. Importantly, the variation along this elevation

gradient in the key environmental variables of soil pH and

moisture is small (Appendix S1: Table S1), meaning that our

data should be minimally affected by other principal poten-

tial environmental factors that might be expected to con-

found the observation of any fundamental effect of

temperature on soil biota. We sampled at high density con-

sidering the logistical challenges of the environment (14 sites

in total, with soil samples from two separate horizons). We

determined the a-diversity and b-diversity for plants and soil

microbes by using field surveys of 1-ha permanent sample

plots for plants and high-throughput sequencing for soil

microbes. Our analyses included a large suite of environmen-

tal and soil properties, including soil extracellular enzyme

activity, to determine the environmental drivers of these pat-

terns in plant and microbial diversity, and how the patterns

were related to indices of organic matter cycling.

MATERIALS AND METHODS

Study sites

The elevation transect under study lies on the Eastern

flank of the Andes in southeastern Peru, in the upper Madre

de Dios/Madeira watershed (Fig. 1; Nottingham et al.

2015a). The transect spans 3,450 m in elevation from 194 to

3,644 m above sea level (asl) and consists of 14 sites, each

with a 1-ha permanent sampling plot, all in old growth trop-

ical forest except for one site on high elevation grassland

(Fig. 1, Appendix S1: Table S1). The sites are roughly evenly

distributed by elevation but not in terms of spatial separa-

tion: the transect is approximately 270 km in length, with

35 km between the upper 12 sites and 12 km between the

upper nine sites. Mean annual temperature (MAT) decreases

with increasing elevation across the transect (dropping from

26° to 6°C), but mean annual precipitation (MAP) does not

vary consistently with elevation, ranging from 1,506 to

5,302 mm/yr among the sites (Girardin et al. 2013). Season-

ality of MAP decreases with increasing elevation, with no

clear dry season in the montane forest sites (Girardin et al.

2013) and approximately 4 months (June–September) with

<100 mm rainfall in the lowland forest sites (Malhi et al.

2014); although there is no evidence of seasonal soil or plant

moisture constraints (Zimmermann et al. 2010, van de Weg

et al. 2014). The plots are situated on predominantly Paleo-

zoic (~450 Ma) meta-sedimentary mudstone (~80%), with

plutonic intrusions (granite) underlying the sites between
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1,500 and 2,020 m asl. The soils at the sites above 2,520 m

are Umbrisols (Inceptisols), while the soils from 1,000 to

2,020 m are Cambisols (Inceptisols). The soils below

1,000 m, at the two lowland sites, are Haplic Allisols (Ulti-

sols) and Haplic Cambisols (Inceptisols) (according to FAO,

with USDA Soil Taxonomy in parentheses). Further

descriptions of soil, climate, and floristic composition of

these sites are reported elsewhere (Rapp et al. 2012, Jan-

kowski et al. 2013, Whitaker et al. 2014).

Plant and soil data collection.—Soil and microbial properties

were determined for 14 sites (13 forest, 1 high elevation grass-

land). Plant diversity was determined in the 13 forest sites,

resulting in 13 sites with both tree and microbial data. For

the 13 forest sites, trees were measured in each 1-ha plot,

where every individual tree ≥10 cm diameter at breast height

(1.3 m) was measured, tagged, and identified to species or

morphospecies. Plants were censused during 2007–2012; for

further details on methodology see Rapp et al. (2012). For all

sites, soil samples were collected during January 2012 from

five systematically distributed sampling points in the 1-ha

plots. Given that these ecosystems are largely aseasonal, with

no significant intra-annual variation in mean monthly tem-

perature across all sites and no evidence of seasonal soil or

plant moisture constraints (Zimmermann et al. 2010, van de

Weg et al. 2014), the comparison of soil properties for these

sites at a single time point was considered representative of

patterns likely to be found throughout the year. We used

composite soil samples composed of three replicates for

DNA extraction because our aim, for both plants and soil

microorganisms, was to characterize the overall diversity and

community composition by plot (rather than to investigate

the spatial variation within the plot). However, we used five

spatial replicates for all other edaphic analyses, to quantify

the within-plot variation for soil properties. The five spatial

replicates were sampled from outside each of the four corners,

and from one central point, of the 1-ha plot. We collected

and analysed samples from both organic and mineral

FIG. 1. The Kos~nipata elevation transect, Manu National Park, Peru. The top panel shows the highest (3,644 m above sea level [a.s.l.])
and lowest elevation (194 m a.s.l.) sites and the relationship between elevation and mean annual temperature (MAT). The bottom panel
shows all sites from 3,644 to 1,500 m a.s.l. viewed facing approximately northeast from the top of the transect. The photograph shows a
northeasterly view from approximately 3,500 m a.s.l. along the transect.
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horizons, with the mineral horizon samples coming from the

upper 10 cm of the mineral layer. Soil samples were stored

for <14 d at <4°C until DNA extraction and determination

of nutrient content and enzyme activities; this method has

been shown to have negligible effects on these soil properties

(Lauber et al. 2010, Turner and Romero 2010).

Soil analyses: DNA sequencing, nutrients and extracellular

enzyme activities

Microbial diversity was assessed using high-throughput

sequencing to characterize the variation in marker gene

sequences (Fierer et al. 2012). For bacterial community

composition, the 16S rRNA gene was amplified in triplicate

PCR reactions using the 515f and 806r primers. For fungal

community composition, the first internal transcribed

spacer region (ITS1) of the rRNA gene was amplified using

the ITS1-F and ITS2 primer pair. Raw sequence data were

processed using the QIIME v1.7 pipeline, where sequences

were de-multiplexed using their unique barcode specific to

individual samples and assigned to phylotypes (operational

taxonomic units, OTUs, at 97% similarity). Taxonomy was

determined for each phylotype using the RDP classifier

(Wang et al. 2007) trained on the Greengenes (McDonald

et al. 2012) and UNITE (Abarenkov et al. 2010) databases

for bacterial and fungal sequences (see Supplementary

Information for further detail).

Soil characteristics.—We determined the following soil vari-

ables: total carbon (C), total nitrogen (N), total phosphorus

(P), organic P, resin-extractable P (resin P), resin-N, effective

cation exchange capacity (ECEC) and exchangeable cations

(Al, Ca, Fe, K, Mn, Mg, Na), soil pH, bulk density, mois-

ture content, and activities of seven soil enzymes (Notting-

ham et al. 2012). We determined 31 soil and environmental

variables in total (see Supplementary Information for fur-

ther detail).

Measures of a- and b-diversity

We analyzed estimates of a- and b-diversity for each biotic

group. For plants, a-diversity measures came from Shannon

species diversity indices for each plot and therefore consti-

tuted a single measure per site (n = 13 sites in total, as there

was no plant diversity measure from the grassland site). Bac-

terial and fungal a-diversity were determined using Shannon

species diversity indices based on the abundance of OTUs

for soil bacteria and fungi. We determined b-diversity (com-

munity composition) using dissimilarity matrices (Sørensen

and Bray-Curtis for plants and soil microbes, respectively).

The process was repeated separately for the organic and the

mineral horizons. Our data set therefore consisted of the fol-

lowing five measures of a-diversity and b-diversity for each

site: plants, fungal-organic, fungal-mineral, bacterial-

organic, and bacterial-mineral.

Statistical analyses

Our main hypotheses that (1) a- and b-diversity measures

across biotic groups are related and (2) have shared environ-

mental drivers, were addressed by using linear and linear

mixed-models for a-diversity (mixed effects models) and

multivariate methods for b-diversity (permutational-MAN-

OVA (PERMANOVA), principal coordinates analyses

(PCA), Mantel tests, and multivariate correlation models).

The effects of elevation on a-diversity were tested using a

linear model for plant diversity and linear mixed-effects

models for each of the four measures of microbial diversity.

Elevational differences in b-diversity were examined using

PERMANOVA, PCA, and Mantel tests. The effects of cli-

mate and edaphic variables on a-diversity were addressed by

testing for effects of seven variables on a-diversity: MAT,

MAP, pH, total C, ECEC, resin P, and between-plot dis-

tance, using a linear model for plant diversity, and linear

mixed models for each of the four measures of soil microbial

diversity. We restricted linear models to include only seven

variables, which were selected due to their known influences

on plant and soil microbial communities. To test for covari-

ance among model parameters, we calculated variance infla-

tion factors (VIFs) for all parameters in the final model. To

test for the effects of climate and edaphic variables on

b-diversity, we used BIO-ENV multivariate correlation

models (Clarke and Ainsworth 1993), which creates a model

by step-wise selection, determining high-rank correlations

between species dissimilarity matrices and environmental

resemblance matrices. The environmental resemblance

matrices can be generated from a large set of environmental

variables. Detailed descriptions of these statistical tests are

provided in supplementary material. All statistical analyses

were performed in either R (version 3.4.1) or PRIMER (ver-

sion 6.1.12; PRIMER-E, Plymouth, UK). The combined

analysis allowed us to (1) determine whether diversity pat-

terns in plants, bacteria, and fungi are related; (2) infer the

principal environmental or edaphic drivers of the observed

patterns in diversity; and (3) test whether the diversity and

community composition of soil microorganisms influence

soil processes along a tropical elevation gradient.

RESULTS

Effect of elevation on a-diversity

There were significant differences between biotic groups in

their average levels of a-diversity (linear mixed model, group

effect: F = 1093; df = 4,165; P < 0.001), which increased in

the order: plants < fungi < bacteria (Fig. 2). For each group,

all a-diversity measures declined with increased elevation,

except for fungal diversity in the organic horizon

(Appendix S1: Table S2). For plant, fungal-mineral and bac-

terial-organic a-diversity, the decline with elevation was best

described with a linear model (Appendix S1: Table S2a, c, d).

For fungal-organic and bacterial-mineral a-diversity, the

change was non-linear: for fungal-organic, a-diversity was

lowest at mid-elevation (Fig. 2b, Appendix S1: Table S2b),

whereas for bacterial-mineral, a-diversity only showed signifi-

cant declines at the higher elevations (Fig. 2c, Appendix S1:

Table S2e). There was no significant spatial autocorrelation

of residuals for all models (Appendix S1: Table S2; Moran’s

I; Ape package in R). The effects of elevation on a-diversity

were therefore mostly negative, but there were also significant

differences among groups in the exact pattern of change with

elevation (combined linear mixed model, group 9 elevation,
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F = 23.48; df = 5,87, P < 0.001; group 9 elevation2, F =

7.80; df = 5,86; P < 0.001). Plants showed the steepest

decline in a-diversity with elevation (slope = �0.753 � 0.094;

Appendix S1: Table S2).

Effects of climate and edaphic variables on a-diversity

Mean annual temperature (MAT) was the dominant deter-

minant of the patterns in a-diversity for all biotic groups and

in both soil horizons, with the exception, again, of fungal-

organic (Table 1). Plant a-diversity increased significantly

with MAT, but also increased with mean annual precipitation

(MAP; Table 1a). Fungal-organic a-diversity was not corre-

lated to either climatic variable, but instead declined signifi-

cantly with increasing ECEC (Table 1b). For both mineral

horizon measures (fungal and bacterial), the only variable

with any significant effect was MAT (Table 1c, e). Bacterial-

organic a-diversity was also positively affected by MAT, and

additionally by resin-P (Table 1d). There was no evidence for

significant covariance of variables in the final models (VIFs

for all parameters in final model < 2). Full models with all

seven variables showed the same qualitative results

(Appendix S1: Table S3); spatial separation had no significant

effect. In summary, temperature (MAT) had a near-univer-

sally significant positive effect on a-diversity, but precipita-

tion (MAP), ECEC and resin-P were all also relevant for

certain biotic group-soil horizon combinations.

Correlations between a-diversity of different groups

Plant a-diversity was most strongly positively correlated

with that of bacterial a-diversity, especially in the organic

horizon (r = 0.83; Appendix S1: Table S4). The coupling of

plant and bacterial a-diversity also appeared to be more con-

served than for plant and fungal a-diversity: the ratio in the

Shannon diversity index for plants:bacteria varied with eleva-

tion by less than half that for plants:fungi, in both mineral

and organic horizons (Fig. 3). There were also strong positive

correlations between a-diversity for the two soil horizons for

bacteria (r = 0.81), but not for fungi (r = 0.30). Overall, the

fungal organic a-diversity showed the weakest coupling to

any of the other measures (Appendix S1: Table S4).

Elevation patterns in b-diversity of different groups

The composition of plant, bacterial, and fungal communi-

ties differed with elevation (differences in b-diversity; all

comparisons by PERMANOVA; P < 0.001; Fig. 4) and was

characterized by exponential relationships whereby commu-

nity compositional dissimilarity tended towards a maximum

(dissimilarity = 1) with increased elevational separation

(Fig. 4). Fungi exhibited the largest compositional dissimi-

larities of communities with elevation, followed by plant and

then bacteria communities. The b-diversity of bacteria and

fungi also differed between organic and mineral horizons

(Appendix S1: Fig. S2), although fungi differed to a smaller

extent than bacteria (all comparisons by PERMANOVA;

P < 0.001).

The b-diversity of plant communities was high across the

gradient and there was a steep increase in dissimilarity with

increased elevation difference (Fig. 4). This high b-diversity

was likely driven by high species turnover along narrow

local elevational ranges, with a species occurring on average

in only 1.7 plots (Jankowski et al. 2013). This species-level

turnover is underlain by deeper phylogenetic shifts, with

turnover in the dominant families and orders in the tree

community along the gradient. At low elevations, tree com-

munities are dominated by the families Euphorbiaceae, Urti-

caceae, Fabaceae, Moraceae, and Arecaceae, shifting to

communities dominated by Cunoniaceae, Melastomataceae,

Clethraceae, Clusiaceae, and Symplocaceae at high eleva-

tions; with corresponding ordinal changes being Malphi-

giales, Rosales, and Fabales at low elevations shifting to

Ericales, Myrtales, and Oxalidales at high elevations.

FIG. 2. Changes in a-diversity with elevation in plants, fungi, and bacteria. Fungi and bacteria were sampled from both the organic and
the mineral soil horizon, and each site is represented by three data points. Note the different scales on the y-axes. The solid lines and confi-
dence intervals show predicted relationships and 95% confidence intervals from models equivalent to those shown in Appendix S1: Table S2
but excluding quadratic terms where they were non-significant, i.e., for the plants, fungal-organic, and bacterial-mineral groups.
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The differences in soil microbial b-diversity with elevation

were reflected by shifts in dominant phyla (Appendix S1:

Fig. S3). For bacteria, increased elevation was associated

with an increased dominance of Acidobacteria and Betapro-

teobacteria, and decreased dominance of Actinobacteria

and Deltaproteobacteria; the patterns occurred in both hori-

zons, although mineral horizons contained a greater propor-

tion of Acidobacteria (Appendix S1: Fig. S3a). For fungi,

increased elevation was associated with increased domi-

nance of Ascomycota (Archaeorhizomycetes, Leotiomyce-

tes), Basidiomycota (Microbotryomycetes), and decreased

dominance of other Ascomycota (Sodariomycetes, Doth-

ideomycetes, Eurotiomycetes) and Glomeromycota (Appen-

dix S1: Fig. S3b, Table S5). The b-diversity patterns

observed for bacteria and fungi were correlated with those

observed for plants (Fig. 4). Patterns in ß-diversity were cor-

related between plants and bacteria (organic horizon

q = 0.81; mineral horizon q = 0.88) and plants and fungi

(organic horizon q = 0.67; mineral horizon q = 0.79; by

Mantel tests; P < 0.001 for all comparisons). Thus, plants

and several major taxonomic groups of both bacteria and

fungi showed clear and correlated changes in composition

with elevation.

Effects of climate and edaphic variables on b-diversity

As with a-diversity, MAT was the strongest correlate of

patterns in b-diversity. MAT was the most significant

parameter in multivariate models (Bioenv; vegan package,

R) for b-diversity of plants, bacteria in both organic and

TABLE 1. Final models of effects of climatic and edaphic parameters on a-diversity in the five groups.

Parameter Mean SE t P Prop. variance Variance R2

(a) Plants

(Intercept) 1.312 0.179 7.324 0

MAT 0.108 0.009 12.29 0 0.821

MAP 2.393 9 10�4 0.438 9 10�4 5.461 0 0.119

R2 0.940

(b) Fungal organic

(Intercept) 5.904 0.158 37.449 0

ECEC �0.012 0.003 �3.823 0.002 0.385

Random effects

Site 0.040

Residual 0.066

Marginal 0.385

Conditional 0.619

(c) Fungal mineral

(Intercept) 4.834 0.16 30.201 0

MAT 0.034 0.01 3.382 0.004 0.342

Random effects

Site 0.037

Residual 0.049

Marginal 0.342

Conditional 0.627

(d) Bacterial organic

(Intercept) 8.056 0.247 32.64 0

MAT 0.048 0.013 3.645 0.003 0.575

resinP �2.33 9 10�3 �0.58 9 10�3 �3.972 0.001 0.199

Random effects

Site 0.057

Residual 0.029

Marginal 0.774

Conditional 0.922

(e) Bacterial mineral

(Intercept) 8.213 0.19 43.2 0

MAT 0.031 0.012 2.568 0.022 0.294

Random effects

Site 0.071

Residual 0.013

Marginal 0.294

Conditional 0.889

Notes: Final models after removal of all non-significant variables: linear model for plants (n = 13) and linear mixed models for fungi/bac-
teria (with site as random effect; n = 42). MAT, mean annual temperature; MAP, mean annual precipitation; ECEC, cation exchange capac-
ity; resinP, resin-extractable P (for full models with all six variables for each measure of a-diversity, see Appendix S1: Table S3). Prop.
variance gives the proportion of variance explained by each fixed effect; marginal R2 is that explained by all the fixed effects together; condi-
tional R2 is that explained by both fixed and random effects (see Materials and Methods).
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mineral horizons, and fungi in mineral horizons (Table 2).

There were additional correlations between the b-diversity

of bacteria and fungi, and dissimilarity matrices of organic

nutrient concentrations and their ratios; these were stronger

in the organic compared to mineral horizons (Appendix S1:

Fig. S4). Nutrients other than N and P were also correlated

with b-diversity, including K for plants and Na for bacteria

(Table 2). Soil pH affected bacterial b-diversity, but not fun-

gal b-diversity (Table 2).

Soil b-diversity and function

The activities of seven soil enzymes decreased with

increased elevation but at different rates, and independently

of differences in ambient temperature (Appendix S1:

Fig. S5). These patterns reflected responses in the microbial

community to shifts in substrate availability in the soil. For

example, relative microbial investment into different

enzymes shifted with increased elevation, from enzymes that

degrade P- to N- containing organic compounds (Notting-

ham et al. 2015b). Strong relationships between the differen-

tial activity of these seven enzymes and differences in

b-diversity were found for bacteria (q = 0.75) and fungi

(q = 0.74) in organic horizons (Appendix S1: Fig. S6; by

Mantel tests; P < 0.001 for all comparisons).

DISCUSSION

Overall, our results demonstrate a fundamental role for

environment, principally temperature, in coordinating the

diversity and community composition of plants, soil bacte-

ria, and fungi along an extensive 3.5-km elevation gradient

in tropical forest. For all three biotic groups, species richness

(a-diversity) declined as elevation increased, and the compo-

sitional dissimilarity of communities (b-diversity) increased

with increased elevation difference between communities,

although the changes in plant a-diversity were larger than in

bacteria and fungi (Figs. 2, 3). While environmental filtering

at large geographic scales has been suggested to shape com-

munity composition for plants, soil bacteria, and fungi inde-

pendently (Tedersoo et al. 2014, Prober et al. 2015), this has

not been reported before for both a-diversity and b-diversity

and across all three biotic groups together. Fundamentally,

temperature, and to a much lesser extent rainfall and

edaphic properties, were strongly associated in our data with

variation in plant, bacterial, and fungal a-diversity (from

linear models; Table 1) and b-diversity (from multivariate

models; Table 2).

Plant community shifts along elevational gradients have

long been thought to correspond to temperature changes

(von Humboldt and Bonpland 1805), and comprise a classic

biogeographic pattern in both tropical and temperate zones

(Whittaker 1956, Gentry 1988). Our study confirms a domi-

nant role for temperature in driving both the steep decrease

in plant a-diversity with increasing elevation (Fig. 2) and

the high b-diversity across the gradient (Table 2), which is,

in turn, due to high turnover of species with narrow eleva-

tion ranges (Jankowski et al. 2013). Patterns in plant species

composition and richness on tropical mountains are thought

to be driven mainly by the effects of geographically narrow

temperature ranges on niche separation (by directly affecting

metabolism and indirectly affecting resource availability),

further constrained by land area, lithology, fertility, and dis-

turbance history (Janzen 1967, Colwell et al. 2008, Prada

et al. 2017). Although the high landslide activity and soil

erosion in the humid Eastern Andean Cordillera (Clark

et al. 2013) may be factors in constraining overall diversity

at higher elevations in this region, our study identifies a cen-

tral underlying role for temperature. Indeed, temperature

has previously been shown to be a major determinant of tree

community composition across this transect (Rapp et al.

FIG. 3. The relationships between the ratios of plant to bacterial
and plant to fungal a-diversity and elevation in organic and mineral
soil horizons. Regression lines are shown with for plants:bacteria
and plants:fungi against elevation in both mineral and organic hori-
zons. The stronger coupling of plant and bacterial diversity (Spear-
man’s correlation: q = 0.83, 0.57; organic and mineral horizons,
respectively) compared to plant and fungal diversity (q = 0.60,
0.39), was further reflected in a greater decline with elevation for the
species richness ratio of plants to fungi (average slope of 1.02) com-
pared to plants to bacteria (average slope of 0.59).

FIG. 4. The relationship between ß-diversity of plants, bacteria
and fungi (dissimilarity of communities) with elevation difference.
ß-diversity for all groups differed with elevation (plants: P < 0.001,
F = 79.2, df = 19; bacteria: P < 0.001. F = 4.5, df = 69; fungi:
P < 0.001, F = 3.3, df = 83; by PERMANOVA). Soil microbial
data are shown for organic soil horizons (there were consistent pat-
terns in mineral horizons). The overall decline with increased eleva-
tion indicates increased dissimilarity in ß-diversity between sites
with greater difference in elevation. Elevational declines were fitted
with exponential models [y = a[1 � exp(�bx)]; with parameter esti-
mates for bacteria (a = 1.27, 0.001), fungi (a = 0.12, b = 0.0013)
and plants (a = 0.424, b = 0.0019)].
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2012), and up-slope movement of tree species’ lower-range

limits has been observed under recent climatic warming

(Feeley et al. 2011, Duque et al. 2015).

While temperature was the main determinant of high

plant b-diversity across the gradient (Table 2), the highest

plant b-diversity occurred across the mid-elevation sites cor-

responding to the zone at which persistent cloud immersion

begins (Fyllas et al. 2017). This suggests an additional influ-

ence of moisture and light in determining compositional

changes at the mid-elevations, perhaps through impacts on

productivity (Goldsmith et al. 2013, Fyllas et al. 2017). The

mid-elevation zone is also where there is a transition in soil

nutrient availability from N to P (Nottingham et al. 2015b),

which may promote plant b-diversity according to different

nutrient-use strategies (Condit et al. 2013). Although the

pattern of shifts in plant b-diversity along elevation gradi-

ents is well described, and there is intensive work on plant

functional traits on this transect (Asner et al. 2014, Enquist

et al. 2017, Fyllas et al. 2017, van de Weg et al. 2009, van

de Weg et al. 2012, van de Weg et al. 2014), the mechanistic

basis of the generation of this pattern is not yet well resolved

(Silman 2014), but will ultimately inform observed on-going

and past shifts in climate and plant species range shifts

(Bush et al. 2004, Feeley et al. 2011).

As with the plant diversity metrics, soil microbial a-diversity

decreased with increasing elevation (Fig. 2), b-diversity was

high across the gradient (Fig. 3), and temperature was the

dominant driver of these patterns (Table 2); although there

were differences in the strength of diversity gradients and in

the secondary drivers of these patterns. The role of tempera-

ture in determining microbial b-diversity is illustrated by shifts

in the relative abundance of specific taxonomic groups. For

example, there was an increased relative abundance of Aci-

dobacteria and the fungi Archaerhizomycetes with increased

elevation, but a decreased relative abundance of Actinobacte-

ria and Alphaproteobacteria (Appendix S1: Fig. S3). These

major taxonomic groups have been associated with olig-

otrophic (Acidobacteria, Archaerhizomycetes) and copi-

otrophic (Actinobacteria, Alphaproteobacteria) life history

strategies, respectively (Fierer et al. 2007, Rosling et al. 2011),

which is consistent with evidence for increased energy limita-

tion at higher, cooler elevations (e.g. decreased decomposition

rates) (Bruijnzeel et al. 2011, Nottingham et al. 2015a),

favoring slower growth. The high relative abundance of the

Ascomycota, Archaerhizomycetes at higher elevations

(Appendix S1: Fig. S3) is of particular interest because this

class of fungus was discovered only recently and their global

distribution is poorly understood, partly because many previ-

ous analyses failed to identify them due to amplification

biases (Rosling et al. 2011). They were recently identified in a

range of global biomes, but generally represented <1% of rela-

tive abundance (Tedersoo et al. 2014), which contrasts with

their high relative abundance in our upper montane forest

sites (26%; Appendix S1: Fig. S1B). They are understood to

be typically oligotrophic and root-associated fungi (Choma

et al. 2016), colonizing typical ectomycorrhizal (EM) fungal

habitats (Rosling et al. 2011). This important class of fungi,

which until very recently was unknown, is a major component

of the fungal biomass in these tropical montane forests.

Diversity gradients were steeper for plants compared to

microorganisms (Figs. 2, 3), which is consistent with the

widespread view that microorganisms are more diverse and

more cosmopolitan in their distributions than plants (Mar-

tiny et al. 2006). Analogous plant/microbial diversity rela-

tionships have been shown along latitudinal gradients where

plant/microbial species richness ratios decrease with distance

from the equator (Tedersoo et al. 2014, Zhou et al. 2016).

Our data indicate a stronger coupling between the a-diversity

of plants and bacteria compared to fungi (Fig. 3, Appen-

dix S1: Table S4), but a stronger coupling between the

b-diversity of plants and fungi than for bacteria (Fig. 4). The

stronger coupling between the a-diversity of plants and bac-

teria may indicate stronger biotic interactions between plants

and bacteria compared to plants and fungi, although con-

trolled experiments are required to understand the nature of

these interactions (for example, the interaction between litter

chemistry and microbial communities). The stronger cou-

pling between the b-diversity of plants and fungi can be

explained by coordinated shifts in the presence of obligate

plant hosts among sites for symbiotic fungi (Geml 2017);

which can also explain the absence of a clear elevation pat-

tern in fungal a-diversity in organic soil horizons (Fig. 4).

Consistent with this idea, correlations between plant and

fungal b-diversity alongside high variation in a-diversity pat-

terns among specific fungal phyla (especially those that form

plant associations) have been observed across elevation

TABLE 2. The effects of environmental and edaphic variables on plant, bacterial and fungal b-diversity, determined by multivariate
correlation models.

Organic horizon Mineral horizon

Variable Plants Bacteria Fungi Bacteria Fungi

MAT (0.91)*** (0.77)*** (0.67)* (0.88)*** (0.59)***

Soil pH ns (0.57)* ns (0.47)** ns

Total C:N ns (0.68)** ns ns (0.38)**

Total C:P ns ns (0.70)** ns ns

Na ns ns ns (0.22)* ns

K (0.44)** ns ns ns ns

N-acetyl b-glucosaminidase ns ns (0.74)*** ns ns

Complete model 0.93 0.88 0.80 0.91 0.65

Notes: The final models were determined by step-wise selection to determine which resemblances matrices for 47 initial predictor variables
best describe community composition dissimilarity matrices. Significance of individual parameters in each model was determined by Mantel
tests between b-diversity and the specific variable, shown in parentheses. Values are correlation coefficients.
***P < 0.001; **P < 0.01; *P < 0.05; ns, not significant.
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gradients in a range of ecosystems (Geml et al. 2014, 2017,

Merckx et al. 2015, Looby et al. 2016, Geml 2017). For

example, along other elevation gradients, the presence of EM

and endophytic fungal hosts explained correlations in plant

and fungal b-diversity (Geml et al. 2014) and opposing a-

diversity patterns have been observed for arbuscular mycor-

rhizal (AM) and EM fungi (Geml et al. 2017, Kivlin et al.

2017). The lack of a clear relationship in our data between

temperature and a-diversity for the distinct fungal communi-

ties in organic horizons (Fig. 3, Appendix S1: Fig. S2) may

therefore reflect a stronger signal of plant–host associations

on total fungal a-diversity.

In addition to the main effect of MAT, there was a sec-

ondary role for other environmental and edaphic properties

in shaping these diversity patterns (Tables 1, 2; Appendix S1:

Table S3, Figs. S4, S6). For a-diversity, cation exchange

capacity explained significant variation of fungal a-diversity

in organic horizons, while mean annual precipitation and soil

pH explained minor amounts of variation in a-diversity of

plants and bacteria (Table 1). For b-diversity, there were sec-

ondary influences of nutrient ratios on microbes (C:N and C:

P) and Kon plants (Table 2). Our data suggest that this influ-

ence of edaphic properties on microbial a- and b-diversity is

more significant for fungal a-diversity and in organic hori-

zons (Table 2, Appendix S1: Table S3). Fungi are the primary

decomposers of plant-derived lignocellulosic biomass and the

upper part of the soil profile is where decomposition pro-

cesses reflect the early stages of carbohydrate polymer break-

down. We know that plant litter chemistry varies with

elevation along this transect as a result of the influence of

MAT on plant communities (van de Weg et al. 2009, Salinas

et al. 2010) and that it can affect soil microbial community

composition (Orwin et al. 2010, de Vries et al. 2012, Fanin

et al. 2014). Thus, elevation-related shifts in plant litter chem-

istry may determine fungal a-diversity patterns in organic

horizons, and be an additional determinant of fungal b-diver-

sity and its coupling with plant b-diversity.

The diversity patterns we observed may have been rein-

forced by biotic interactions between functional groups of

plants and microbes, in addition to environmental filtering.

For example, multiple lines of evidence suggest an influence

of plant organic matter inputs on soil microbes, where these

inputs are in turn determined by temperature effects on

plant communities and productivity (van de Weg et al.

2014), for example, (1) the large difference in microbial

diversity (a and b) between organic and mineral soil hori-

zons (Appendix S1: Figs. S1, S2); (2) the stronger correla-

tions between microbial b-diversity and nutrients in organic

horizons compared to mineral horizons (Table 2,

Appendix S1: Fig. S4); (3) the overall strong correlation

between plant and soil microbial diversity (Fig. 3,

Appendix S1: Table S4); (4) the correlation between soil

microbial b-diversity and enzymatic activity, indices of

organic nutrient degradation (Nottingham et al. 2015b)

(Appendix S1: Fig. S6); (5) fungal a-diversity in organic

horizons significantly increased above the treeline, coincid-

ing with an abrupt change in plant organic matter inputs

from vegetation dominated by grassland (Fig. 2). Labora-

tory incubations of soils from this transect (Whitaker et al.

2014) and studies from tropical forest in French Guiana

(Fanin et al. 2011, 2014) also support the link between

differences in microbial community composition and

organic matter inputs, and their rates of degradation.

Together these findings point towards a relationship

between the high soil microbial diversity in tropical forests

and plant organic matter inputs to soil, through the high

inter- and intra-species chemical diversity in leaf litter. To

further investigate the role of biotic interactions between

plants and soil microbial communities in shaping these

diversity patterns, further studies are required using a tar-

geted sampling methodology by plant species or functional

group (e.g., root-associated soil microbial communities; Bar-

beran et al. 2015, Teste et al. 2017, Leff et al. 2018).

Our results, from a 3.5-km elevation range, contrast with

previous findings from studies of elevation gradients glob-

ally that examined plant and microbial a-diversity but did

not find such strong a-diversity correlations (Bryant et al.

2008, Fierer et al. 2011, Shen et al. 2013, 2014, Geml et al.

2014, Singh et al. 2014). The fundamental temperature–mi-

crobial-diversity relationships we have observed were likely

obscured in previous studies by the confounding influence

of wider natural among-site variation in soil pH, soil mois-

ture, plant–host distributions (for fungi, in particular) and,

in some instances, by insufficient sampling intensity or ele-

vation range. For example, variation in bacterial diversity

along a 1,850-m elevation gradient in South Korea was

related to the variation in rainfall (1713–3,743 mm) and soil

pH (3.7–5.8; Singh et al. 2014), while variation in rainfall

(280–3,280 mm) and soil pH also explained microbial diver-

sity along a 950 m elevation gradient in Hawaii (Peay et al.

2017). Soil pH effects on fungal a-diversity along mountain

gradients have been found (Geml 2017), including a positive

effect on the a-diversity of AM fungi along an elevation gra-

dient in Andean subtropical forest where soil pH varied

widely (3.8–7.2; Geml et al. 2014). Fungal a-diversity

increased with a 4°C temperature increase across an eleva-

tion gradient in tropical montane cloud forest in Costa Rica,

although decreased soil moisture also explained this diver-

sity pattern (Looby et al. 2016). The majority of fungal

diversity studies on mountain gradients have focused on

specific phyla, reporting high variation in a-diversity pat-

terns (Geml et al. 2014, 2017, Merckx et al. 2015, Geml

2017) and strong associations with plant–host distributions

such as with AM- and EM-fungal-associated communities

(Kivlin et al. 2017); as previously outlined, these factors can

partly explain differences in fungal a-diversity patterns in

organic and mineral horizons in this study. The importance

of sampling intensity is demonstrated by the contrast

between findings from this study of 14 sites with an earlier

report from six locations along the same Andean transect

where no elevation-related gradient in soil bacterial a-diver-

sity was found (Fierer et al. 2011): if we reduce our data set

to include only those sites represented in the earlier study,

no strong elevation trends are found (Appendix S1: Fig. S7).

Similarly, these factors may have accounted for the lack of

clear patterns in bacterial diversity for two temperate zone

elevation transect studies that sampled only six locations

over 1,670 m in Northeast China (Shen et al. 2014), and five

locations over 920 m in the Rocky Mountains, the latter

indicating a single-taxon increase with elevation, but no

community-wide trend (Bryant et al. 2008). Last, the detec-

tion of these elevation–diversity patterns may also depend
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on the length and, therefore, temperature range of the tran-

sect. For example, the absence of bacterial diversity patterns

along a 900 m gradient in tropical montane forest in Hawaii

may have been because the 5°C temperature difference did

not substantially affect plant community composition (Sel-

mants et al. 2016). In contrast, the temperature-driven

diversity patterns in bacteria and fungi demonstrated for

this large Peruvian gradient (20°C difference in MAT) likely

resulted, in part, from indirect temperature effects on plant

communities, thus contributing to the correlated diversity

patterns among these three biotic groups.

This elevation gradient study in the Peruvian Andes

demonstrates how temperature fundamentally shapes

plant, bacterial and fungal diversity in tropical forests,

whether directly for each group, or indirectly for microbial

groups through temperature effects on plant communities

and productivity. Consistent trends in both a- and b-diver-

sity were observed across the principal organismal groups

of plants, bacteria and fungi, suggesting that stronger

interactions occur among these groups than has been rec-

ognized previously. The role of temperature in driving

these coordinated patterns was revealed by the occurrence

in our study transect of a narrow natural range in soil pH

and moisture, and by intensive sampling across space, and

in separate soil horizons. We suggest that this relationship

will be obscured across unconstrained environmental gra-

dients often associated elsewhere with differences in eleva-

tion and latitude (Fierer and Jackson 2006, Bryant et al.

2008, Tedersoo et al. 2014), and its detection is further hin-

dered by shallower diversity gradients for soil microbes

compared to plants (Figs. 2, 3; Tedersoo et al. 2014, Zhou

et al. 2016). Our findings imply that, where other influ-

ences such as soil pH and moisture remain relatively con-

strained, anticipated future temperature change will have

significant coordinated and fundamental impacts on the

identity and functioning of tropical biota both above and

below-ground.
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