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Metagenomic sequencing has greatly improved our ability to profile the composition of

environmental and host-associated microbial communities. However, the dependency of

most methods on reference genomes, which are currently unavailable for a substantial

fraction of microbial species, introduces estimation biases. We present an updated and

functionally extended tool based on universal (i.e., reference-independent), phylogenetic

marker gene (MG)-based operational taxonomic units (mOTUs) enabling the profiling of

>7700 microbial species. As more than 30% of them could not previously be quantified

at this taxonomic resolution, relative abundance estimates based on mOTUs are more

accurate compared to other methods. As a new feature, we show that mOTUs, which

are based on essential housekeeping genes, are demonstrably well-suited for quantification

of basal transcriptional activity of community members. Furthermore, single nucleotide

variation profiles estimated using mOTUs reflect those from whole genomes, which allows

for comparing microbial strain populations (e.g., across different human body sites).
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M
icroorganisms live in complex communities of inter-
acting species that impact life on earth and geochemical
processes in the environment. It is thus of fundamental

interest to accurately profile and compare the composition of the
communities they form. The most common approach for
microbial community profiling is by classification of PCR
amplicon sequences from the small subunit ribosomal RNA gene
(i.e., the 16S rRNA gene of bacteria and archaea). While powerful,
this approach is also known to introduce biases in composition
estimates due to, for instance, variations in 16S rRNA gene copy
numbers per genome (Supplementary Figure 1), unequal effi-
ciencies of PCR-primers in different species1, 2 as well as the
use of different sub-regions of this gene3. In addition, the high
level of its sequence conservation limits the power for resolving
closely related organisms4.

More recent methods sample environmental DNA directly by
shotgun sequencing (metagenomics), which resolves some of
these biases. Different strategies have been introduced to deter-
mine microbial community compositions from metagenomic
data. One approach is based on classifying sequencing reads using
publicly available and taxonomically annotated reference genome
sequences of ‘known’ species. The resulting read abundance dis-
tributions require subsequent normalization by genome length5, 6

to derive relative abundances of individual species (Supplemen-
tary Figure 1). Rather than using whole genomes, an alternative
approach is to quantify read coverage of genes that are found to
be clade-specific based on analyzing current reference genome
databases7. If such marker genes occur only once per genome,
then the resulting read coverages do not need to be normalized by
copy number or genome length. However, a downside to any
method depending on prior knowledge of genome sequences is
that genomically uncharacterized taxa remain unaccounted for,
which can lead to inaccurate relative abundance estimates at
species-level resolution (Supplementary Figure 1).

Taxa that are missed by such reference-dependent methods can
collectively be referred to as biological ‘dark matter’8. These
include organisms—hereon referred to as ‘unknown’ species—
that may be detected, but remain difficult to quantify using
standard methods and up-to-date genome databases. To over-
come this issue, we previously introduced a profiling tool that
uses universally occurring, protein coding, single copy phyloge-
netic marker gene (MG)-based operational taxonomic units
(mOTUs) as an approach to capture and quantify microbial taxa
at species-level resolution in metagenomic samples9. mOTUs are
built on the basis of MGs from both known and unknown species,
the latter of which are extracted from existing metagenomes,
enabling higher taxonomic resolution and more accurate quan-
tification of species when profiling new microbial communities9.

Here, we present an updated and functionally extended pro-
filing tool, the mOTU profiler version 2 (mOTUs2), which con-
solidates data from >3100 metagenomic samples into an updated
mOTU database to substantially improve the representation of
human-associated and ocean microbial species. Evaluations of
mOTUs2 relative to state-of-the-art methods demonstrate
improved sensitivity and quantification accuracy for both known
and unknown species. We illustrate how species missed by other
approaches can skew relative abundance estimates from compo-
sitional metagenomic data. Moreover, mOTUs enable quantifying
baseline transcriptional activity of microbial community mem-
bers from metatranscriptomic data, while avoiding quantification
artefacts due to the use of non-housekeeping genes. Finally,
heterogeneous populations of microbial strains have been
reported in metagenomic studies to co-exist in a given microbial
community, differ between individuals and environmental sam-
pling sites, and remain stable over time10–12. We show that dif-
ferences between such strain populations can be estimated using

the MGs of mOTUs as an efficient alternative to using whole
genome sequences for metagenomic single-nucleotide-variation
profiling.

Results
Reference-extended microbial community profiling with
mOTUs2. We first identified 40 previously selected and bench-
marked MGs in a total set of >25,000 sequenced genomes13.
To obtain species-level taxonomic groups of (possibly redundant)
sequences, we clustered these genomes based on a calibrated
cutoff of 96.5% sequence identity4 into 5232 non-redundant,
reference MG-based operational taxonomic units (ref-mOTUs)
that contained more than half of a subset of ten MGs that
were found suitable for metagenomic analyses9. Next, we
assembled >3100 metagenomes from studies that included, as
a requirement, a large number of systematically processed sam-
ples per biome (Supplementary Data 1). These comprised
1210 samples from major human body sites (oral, skin, gut
and vaginal14, 15), an additional 1693 samples from various
human gut metagenomic studies including different disease
cohorts16–21 and 243 ocean water samples22. MGs predicted in
these assemblies were clustered into marker gene clusters
(MGCs). Finally, we devised an improved method for co-
abundance-based binning of the MGCs into metagenomic
mOTUs (meta-mOTUs) applying the same inclusion criterion
(>5 MGs per mOTU) as for ref-mOTUs (Fig. 1a, Methods).
To evaluate the binning accuracy of meta-mOTUs, we assessed
individual MGCs in terms of taxonomic consistencies (Methods),
variations in abundance, prevalence and GC-content of individual
MGCs in comparison to ref-mOTUs (Supplementary Figure 2,
Methods). Overall, we found high agreement in all categories.
For example, at the species level, >97% (s.d.: ±1.5%) of meta-
mOTUs are expected to be completely consistent in their taxo-
nomic annotation (Supplementary Figure 2a), despite known
incongruencies between species name assignments and MG-based
sequence divergence4.

After quality control, the resulting 2494 meta-mOTUs,
together with the 5232 ref-mOTUs, comprise the updated mOTU
database. Compared to the previous version, these numbers
correspond to a 3-fold and 7-fold increase in known and
unknown species, respectively, that can now be profiled using
mOTUs2. Taxonomic ranks for each mOTU were assigned by a
last common ancestor-based consensus assignment (Supplemen-
tary Figure 3, Methods). Also, phylogenetic reconstruction shows
that meta-mOTUs were sampled from a broad taxonomic
distribution (Supplementary Figure 4), including from taxa that
were hypothesized to represent novel phyla23. Across all included
biomes (four major human body sites and the ocean), the number
and fraction of unknown species (85%) were highest in ocean
water samples (Fig. 1b), which is in congruence with previous
results22. Notably, even in presumably well-explored human gut
samples, we found that more than half of the species still lacked
sequenced representatives in our reference genome database13

(Fig. 1b, c). A breakdown of mOTUs by biome showed that ref-
mOTUs are often detected in multiple biomes, while meta-
mOTUs tend to be more biome-specific (Supplementary
Figures 5a, b). As shown by rank-abundance analyses, we find
meta-mOTUs to be well distributed across the range from
dominant to rare species (Supplementary Figure 6). Finally, the
MGCs that could not be binned were used to quantify the
cumulative abundance of organisms that are known to be present,
but not quantified as mOTUs (Methods). This fraction was
higher for the ocean than for samples from human body sites
(Fig. 1c), which may be improved by increasing the number of
profiled ocean metagenomes in the future.
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We next evaluated the sensitivity of mOTUs2 for unknown
species and assessed the resulting impact on relative abundance
estimations compared to other approaches. To accomplish this,
we analyzed the correspondence between mOTUs and metagen-
ome assembled genomes (MAGs). MAGs involve binning
assembled metagenomic contigs by sequence composition and/
or read abundance variation as a strategy to detect and
genomically characterize organisms found in environmental
samples24. Thus, similar to meta-mOTUs, MAGs may include
taxa that are not yet represented in genomic databases, and thus
provide a way to test if and how many environmental microbes
would be captured by mOTUs. More specifically, we recon-
structed MAGs from 4880 published human gut metagenomes
(Supplementary Data 2) and used 1845 MAGs identified in ocean
water samples as a subset of 8000 recently published MAGs23.
Using these MAGs, we determined how many of them could be
assigned to previously known (ref-mOTUs) vs. unknown species
(meta-mOTUs) and evaluated the impact on relative abundance
estimations. We found that >97% of MAGs from human gut
samples were represented by mOTUs (Fig. 1d). Among these,
76% could be matched to ref-mOTUs and the remainder to meta-
mOTUs. In addition, although the majority of the MAGs could
be assigned to mOTUs, they represented only 42% of all human
gut meta-mOTUs. For ocean water MAGs, 55% were represented
by mOTUs (19% of these matching ref-mOTUs), while MAGs
represented only 25% of ocean meta-mOTUs (Supplementary
Figure 7). Our results indicate that the most abundant organisms
in the human gut are already represented in public genome
databases, whereas a substantial additional fraction becomes
accessible through metagenomic data analysis. While assembly
opens possibilities for many additional analyses, higher sequence
coverage is required for the reconstruction of high-quality MAGs
than for mOTUs, explaining why meta-mOTUs capture many

more species. In the ocean, even some of the most abundant
species still appear to lack representative genomic informa-
tion (Supplementary Figure 7).

Next, we assessed the advantage of using a reference-
independent method for species quantification in microbial
communities. To this end, we compared mOTUs2 with two
popular reference-dependent approaches, as well as its original
version (mOTUs19), using: (i) simulated metagenomes from
human gut-associated MAGs (Supplementary Figures 8, 9 and
Methods), (ii) the Critical Assessment of Metagenome Inter-
pretation (CAMI) dataset25 (Supplementary Figures 10, 11), and
(iii) the simulated metagenomes used to evaluate MetaPhlan27 for
benchmarking (Fig. 2; Supplementary Data 3, 4; Supplementary
Table 1). Our results based on simulated MAGs show that in
terms of precision, mOTUs2 and MetaPhlan2 outperformed
mOTUs1 and Kraken (Fig. 2e). The fact that the reference-
dependent methods MetaPhlan2 and Kraken can only detect
genomes that are closely related to those present in current
reference databases was well reflected in a reduced sensitivity,
higher mean absolute error and deviations from expected
taxonomic diversity estimates (Fig. 2e–g). Additional simulations
showed that relative abundance estimates may be highly
inaccurate when solely relying on reference genomes if unknown
species are present in medium to high abundance (Supplementary
Figures 9, 11). For the CAMI dataset, our results show that the
mOTUs2 profiler outperformed many other tools (Fig. 2h–o;
Supplementary Figures 10, 11). More specifically, mOTUs2 not
only outperformed mOTUs1 at all taxonomic ranks, but also
other tools, including MetaPhlan2 above the genus level for
medium complexity simulations and above the species level for
high complexity samples (Fig. 2k, o). We should note that in the
CAMI benchmark (and the OPAL evaluation tool26) profiled
abundance data are re-normalized based on the detected taxa (see
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Supplementary Figure 11b). This re-normalisation procedure
penalises tools, such as mOTUs2, that can account for the relative
abundance of unknown taxa (Supplementary Figures 1, 11b).
This feature leads to improved quantification (hence, a
further reduction of the mean absolute error), in particular at
the species level (Fig. 2k, o; Supplementary Figure 11a). Finally,
since Kraken was not included in the CAMI benchmark25 dataset,
we compared the performance of mOTUs2 to the results
reported for the evaluation of MetaPhlan27, which included
Kraken6. We find that mOTUs2 and MetaPhlan2 performed
similarly, while both (and mOTUs1) outcompeted Kraken
(Supplementary Table 1).

Given that profiling unknown species in addition to those
represented in genome databases significantly improves relative
abundance estimates, we sought to assess potential impacts on
describing community structural properties. The total number
of detected species and their relative abundance distribution
determines the alpha diversity of a microbial community. This
parameter is of fundamental interest in microbial ecology
including in studies of gastrointestinal diseases27. As the
quantitative breakdown of unknown species into mOTUs
provides more accurate estimates of relative species abundances,
measures for alpha diversity, such as the Shannon index (H’),
were expected to be more accurate for mOTU-based profiles
compared to reference-dependent approaches (based on simula-
tions, Fig. 2g). To test this further using real microbial
community data, we compared mOTUs2 to reference-
dependent methods against 16S rRNA gene-based approaches.
In two example data sets, one from a colorectal cancer study21

(n= 129) and one from an ocean ecosystem survey22 (n= 139),
we found mOTUs2 profiles to have higher correlations with
16S rRNA gene-based estimates of alpha diversity (Spearman
R= 0.71, P < 0.0001 and R= 0.78, P < 0.0001, respectively) than
the reference-dependent methods (Fig. 3 and Supplementary
Figure 12).

We also assessed the performance of methods at estimating
how similar taxonomic compositions are between samples (beta
diversity). For this, we used data from healthy individuals who
donated samples from four different major body sites on multiple
sampling occasions14, so that composition similarities could be
compared within and between individuals. Given that

compositional differences are expected to be smaller within than
between individuals14, we tested in how many cases a sample
from one subject would be most similar to another sample from
the same individual (and body site) than from any other sample
in the set of >1200 samples tested. As a result, we found
that mOTUs2 performed similarly to the reference-dependent,
clade-specific gene-based method7, while both outperformed the
whole genome-based method used by Kraken6 (Supplementary
Figure 13).

Unbiased metatranscriptomic profiling using marker genes.
Although metagenomics data can be used for taxonomic profiling
of microbial communities, it does not allow determining whether
community members are physiologically active or not. Analogous
to DNA for metagenomics, metatranscriptomics refers to the
sequencing of reverse-transcribed RNA present in a microbial
community. Depending on environmental conditions, the num-
ber of transcripts per cell varies for most genes. An exception to
this are housekeeping genes that are expressed constitutively and
with low variability under different conditions. Thus, the abun-
dance of transcripts from such genes should strongly correlate
with the abundance of active cells in a community. As all ten
MGs are universal and involved in the highly conserved process
of translating mRNA to proteins, we hypothesized that meta-
transcriptomic abundances would serve as particularly good
proxies for relative cell abundances. To test this, we compared
mOTUs2 to reference-dependent methods that have been used in
recent metatranscriptomic studies28, 29 or analysis workflows30

relating metatranscriptomic profiles to microbial abundance
and/or activity. More specifically, we correlated matching meta-
genome and metatranscriptome profiles from human stool sam-
ples31. At the species level (Fig. 4a, Supplementary Figure 14),
mOTUs2-based correlations were considerably higher (median
Spearman’s R= 0.76) than for reference-dependent methods
(R= 0.37 and 0.45). Furthermore, we summarized mOTU
abundances at the class level and computed all pairwise distances
for all metagenomic and metatranscriptomic profiles to test for
each metagenomic profile whether the most similar metatran-
scriptomic profile matched the same sample. For mOTUs2,
this was the case for 92% of the samples compared to 78% and
64% for reference-dependent methods (Fig. 4b, Supplementary
Figure 15).

MG-based SNV profiling for microbial population analyses.
Originally, the ten MGs were identified as a subset of candidate
phylogenetic marker genes deemed suitable for reconstructing
the tree of life32 due to their universal occurrence and low
rate of horizontal gene transfer33. These properties provided us
with the opportunity to test how well single nucleotide variation
(SNV) profiles of microbial populations could be recapitulated
by the MGs comprising mOTUs as a compute-efficient alter-
native to using whole reference genome sequences. To this end,
we generated metagenomic SNV profiles34 for sets of samples
from different human body sites and ocean water using ref-
mOTUs and representative genome sequences as reference
databases. Despite some differences between biomes (Fig. 5a)
and a few species, we found overall that the distances of SNV
profiles using MGs were highly correlated (R > 0.8; Pearson) with
those obtained using whole genomes. For example, we find
almost perfect correlations for ocean microbial species (median
R= 0.96), and for most gut microbial species (median R= 0.84)
including those for which sub-species population structure was
recently identified12, 15, 35 (Supplementary Figure 16).

Having established the possibility of resolving mOTUs below
the species level, we addressed the question of how variable
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microbial strains populations were over time in different human
body sites. Previously, microbial strain populations were shown
to display a high degree of individuality e.g., in the gut, skin, and
oral sites11, 36, 37. However, a comparative analysis of the degree
of individuality of strain populations across different human
body-sites has not yet been performed. Using both ref-mOTUs
and meta-mOTUs, we compared strain population similarities
of body site samples collected in the HMP project14, 15 and found
that stool and vaginal samples display the highest degree of
individuality, followed by oral and skin samples. Again, these
results were highly consistent with those obtained for reference
genomes (Fig. 5b and Supplementary Figure 17).

Discussion
The original development of the mOTU profiler was driven by the
motivation to extend reference-dependent profiling of human gut
microbial species to uncharacterized taxa. As more environments
are subjected to metagenomic profiling, more data sets
are becoming available that can be used for approaches based
on binning genes by co-abundance analysis. With the inclusion of
new microbiomes, we found that some human body sites are very
well represented by available reference genomes (in particular skin
and vagina). In contrast, more than 50% of gut microbial species
still lack representative reference genomes (see also ref. 38),
which may seem unexpected, but this estimate is in the same
range as reported for an independent approach39. This may in
part be due to methodological improvements in the binning of
MGs into meta-mOTUs (Methods), increasing the number of
potentially uncharacterized species that can be profiled. In addi-
tion, we included not only more samples, but also data from a

number of disease-related studies (e.g., CRC, liver cirrhosis, type 2
diabetes) with large geographic distribution both contributing to
an extended diversity of species that were not profiled previously.
These may include species of particular relevance for differ-
entiating healthy from diseased states. Furthermore, our results
highlight the critical need to generate more reference genomes
for the ocean environment where we find only 15% of species
to have a representative genome sequenced. Future efforts could
aim at extracting MGs from high-quality MAGs and single
amplified genome sequences to incorporate these into the mOTU
database.

Although metagenomics data can be used to profile the
abundance of microbial taxa in a given community, they do not
inform us as to whether they are also (transcriptionally) active.
To discern genomic potential from activity, the combined use
of metagenomics with metatranscriptomics profiling is becoming
increasingly popular. Here, we found that metatranscriptomic
abundances of mOTUs are highly correlated with metagenomic
abundances, which highlights the property of MGs as con-
stitutively expressed housekeeping genes across different condi-
tions. This suggests that mOTUs should be useful for normalizing
metatranscriptomics data for differential gene expression ana-
lyses. Other methods depending on genes that are conditionally
or variably expressed are demonstrably less suitable for this
approach and may also give the misleading impression that
many taxa are rare, but highly active, or abundant, but inactive or
dead (Supplementary Figure 15).
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The computation of metagenomic SNV profiles to study
microbial strain population differences is both resource and time-
consuming when using methods based on whole reference gen-
ome sequences34, 38. We show that the use of mOTUs provides a
fast and efficient alternative for profiling abundant species in
microbial communities. In addition to the improved efficiency,
mOTUs enable studying differences in strain populations of
species that currently lack a representative genome sequence. This
may be particularly relevant for disease-associated species and
biomes for which only few reference genomes are available. A
breakdown of intra-individual strain population similarity by
species also allows for distinguishing those with high specificity,
potentially under the control of the immune system, from those
that only transiently populate their host. Promising applications
of this approach could include testing the efficacy of strain-
retention after faecal microbiota transplantation10 or studying
dispersal patterns of microbial populations in the environment.

Methods
The mOTUs2 profiler. The mOTU profiler version 2 (mOTUs2) is a stand-alone,
open source, computational tool that estimates the relative abundance of known as
well as genomically uncharacterized microbial community members at the species
level using metagenomic shotgun sequencing data. The taxonomic profiling
method is based on ten universally occurring, protein coding, single-copy phylo-
genetic marker genes (MGs), which were extracted from more than 25,000 refer-
ence genomes13 and more than 3100 metagenomic samples (Supplementary
Data 1; in total ca. 367,000 non-redundant MG sequences). The MGs were grouped
into >7700 MG-based operational taxonomic units (mOTUs) that represent
microbial species, many of which (ca. 30%) still lack sequenced reference genomes.
In addition to (i) taxonomic profiling, the tool allows for (ii) basal transcriptional
activity profiling of community members using metatranscriptomic data as well as
(iii) determining proxies for strain population genomic distances based on single-
nucleotide variations (SNVs) within the phylogenetic marker genes that comprise
mOTUs.

Generation and annotation of the mOTUs2 database. The mOTUs2 profiler
relies on a custom-built database of MG sequences extracted from reference gen-
omes (ref-MGs) and from metagenomic samples (meta-MGs). The reference
genomes were grouped into species-level clusters (specI clusters) and MG
sequences from these reference genomes were grouped based on their specI
affiliation into reference marker gene clusters (ref-MGCs). These ref-MGCs were
augmented by meta-MGs and the remaining meta-MGs were clustered into meta-
MGCs. MGCs of different MGs were subsequently grouped based on their specI
affiliation or binned based on co-abundance analysis into reference genome-based
mOTUs (ref-mOTUs) and metagenomic mOTUs (meta-mOTUs), respectively.
The resulting mOTUs were quality-controlled, compiled into a sequence database
for short-read mapping and taxonomically annotated. Regular updates of the of the
mOTU database will be made available at: http://motu-tool.org.

Collection of MGs from reference genomes and metagenomes. The 25,038
reference genomes used for the mOTU database were downloaded from the pro-
Genomes database13. Metagenomic data were downloaded from the Genbank
Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) and the European
Nucleotide Archive (https://www.ebi.ac.uk/ena) (accession numbers are listed in
Supplementary Data 1). Most samples were obtained from human microbiome
studies, including 1210 samples from different major human body sites (oral, skin,
gut and vaginal14, 15 and 1693 further samples from various human gut micro-
biome studies16–21. In addition, we used 243 metagenomic samples from an ocean
microbiome study22. All samples were processed for marker gene identification9.
Briefly, quality-controlled raw sequencing reads were subjected to metagenomic
assembly and genes predicted on contiguous sequences longer than 500 base pairs
(bp). MGs were subsequently extracted using the fetchMGs tool (available at http://
motu-tool.org/fetchMG.html). In short, fetchMGs identifies MGs using HMM
models built with HMMER3 (http://hmmer.org) applying a set of optimized
cutoffs4, 9, and extracts corresponding nucleotide sequences with the Seqtk tool.
With this workflow we extracted a set of 40 MGs (COG0012, COG0016, COG0018,
COG0048, COG0049, COG0052, COG0080, COG0081, COG0085, COG0087,
COG0088, COG0090, COG0091, COG0092, COG0093, COG0094, COG0096,
COG0097, COG0098, COG0099, COG0100, COG0102, COG0103, COG0124,
COG0172, COG0184, COG0185, COG0186, COG0197, COG0200, COG0201,
COG0202, COG0215, COG0256, COG0495, COG0522, COG0525, COG0533,
COG0541, COG0552)32, 33 from all 25,038 reference genomes. Not all of these
genes are currently suitable for metagenomic applications due to high rates of
ambiguous mapping of short reads owing to highly conserved regions within MG
sequences as well as lower assembly rates observed for some MGs4, 9. Hence, a

selected subset of ten MGs (COG0012, COG0016, COG0018, COG0172,
COG0215, COG0495, COG0525, COG0533, COG0541, COG0552) was extracted
from genes that were predicted in metagenomes as described above.

Grouping of MGs into ref-MGCs and meta-MGCs. Reference genomes were
processed and clustered into specI clusters to build ref-MGCs4. To this end, we
calculated pairwise global nucleotide identities for all genome for each of the 40
MGs using vsearch (version v1.9.3)40. Genome-to-genome distances were calcu-
lated as the gene length-weighted arithmetic mean of the individual MG sequence
distances. The resulting distance matrix was used as input for average linkage
clustering using an optimized cutoff of 96.5% nucleotide identity4, resulting in
5306 specI clusters. To assess the quality of grouping genomes into specI clusters,
we tested whether the taxonomic annotations of the individual genomes provided
by the NCBI were congruent (Supplementary Figure 18). More specifically, all specI
clusters were annotated taxonomically in accordance to their member genomes.
SpecI clusters were either homogeneous (all members had the same species-level
annotation), heterogeneous (different species annotations found in the same
cluster) or undetermined (clusters only containing genomes with non-binomial
species names such as: Synechocystis sp. PCC 6803). We further evaluated how
many NCBI species names occurred multiple times (in different clusters). Subse-
quently, the ten MGs suited for metagenomics were extracted from the specI
clusters resulting in over 51,000 ref-MGCs.

To enable the profiling of species that are not yet represented by reference
genomes, we extracted MG sequences from metagenomic assemblies using the
fetchMGs tool. For clustering, we first calculated all pairwise distances between
MGs from ref-MGs and meta-MGs using vsearch (version v1.9.3)40 and retained
alignments of at least 20 aligned bases. Then, we used open-reference clustering
(employing the average linkage hierarchical clustering algorithm) to augment the
pre-existing ref-MGCs with meta-MGs. The remaining meta-MGs sequences were
clustered into meta-MGCs containing only meta-MGs.

Binning of MGCs into mOTUs. As the clustering of meta-MGs into meta-MGCs
was performed independently for each of the ten MGs, it resulted in unbinned
meta-MGCs (as opposed to the ref-MGCs, which were grouped into mOTUs based
on their specI cluster affiliation). In order to bin MGCs into mOTUs (i.e., to link
MGCs originating from the same species), we utilized the property that genes (and
therefore, MGCs) from the same species are expected to co-vary in abundance
across metagenomic samples41. Accordingly, we calculated the correlation between
pairwise MGC abundances across all samples for each biome. We optimized the
correlation measure and prevalence filtering (as a means against the spurious
correlation between low-prevalence MGCs, see9) for each biome separately based
on the AU-ROC determined by cross-validating the grouping of ref-MGCs for
which membership in the same specI clusters served as a ground truth. As a result,
we defined the following biome-specific parameters: human gut - prevalence filter:
five samples, Pearson correlation of log-transformed relative abundance; ocean
- prevalence filter: five samples, Pearson correlation of relative abundance; human
oral cavity - prevalence filter: 50 samples, Pearson correlation of relative abun-
dance; human vagina - prevalence filter: five samples, Pearson correlation of log
transform relative abundance; human skin - prevalence filter: ten samples, Spear-
man correlation of log-transformed relative abundance. In order to combine the
biome-specific correlations we transformed each of these into an FDR-calibrated
association measure in such a way that for a given FDR value, the same association
value was assigned. To obtain a single measure of association for each pair of
MGCs, we computed the maximum of the FDR-calibrated association values across
biomes.

For the actual binning, we used a slightly modified version of the greedy
algorithm described in ref. 9. As an initialization step, the ref-MGCs were grouped
according to their specI cluster affiliations. Then, meta-MGCs were progressively
binned starting from the highest FDR-calibrated association values and decreasing
until a cutoff value of 0.8 was reached. In this procedure, an MGC was added
(binned) to an existing group (or another MGC to form a bin of size two) if this
MG (among the ten possible ones) was not already present. Only groups with at
least 6 MGCs were retained and defined as mOTUs, which resulted in 2494 meta-
mOTUs (consisting only of meta-MGCs) and 5232 ref-mOTUs (containing at least
one ref-MGC and possibly additional meta-MGCs). MGCs that remained
unbinned were grouped into a single unbinned group. Note that although specI
clusters and ref-mOTUs are conceptually similar, there are two major differences:
first, ref-mOTUs are composed of MGCs of at least six out of the ten different MGs
used for metagenomics, while specI clusters represent genomes that are grouped
based on distances calculated from up to 40 MGs; second, ref-mOTUs can, as
described above, contain MGs and MGCs that were assembled from metagenomic
samples.

To assess the expected taxonomic consistency of the binning strategy of meta-
MGCs, a fraction of the ref-MGCs were treated in the same ways as meta-MGCs
and their taxonomic affiliation (known from ref-mOTU membership) was only
used afterwards to ascertain the error rate of the binning algorithm (Supplementary
Figure 2a). Across all metagenomic samples used to construct the mOTUs, 1223
ref-mOTUs were detected and could be used for 100-fold resampled 5-fold cross-
validation. We also assessed the agreement of the MGCs for each mOTU in terms
of relative abundance and prevalence across metagenomic samples (Supplementary
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Figures 2b,c). Relative abundance and prevalence showed higher agreement for
meta-mOTUs than for ref-mOTUs. This was expected since the binning algorithm
is directly influenced by these two parameters. We additionally evaluated the
homogeneity of GC content among the MG sequences within each mOTU
(Supplementary Figure 2d). meta-MGCs showed very homogeneous GC content,
as expected for genes that originate from the same genome, but not for erroneously
binned MG sequences.

Construction of the mOTUs2 mapping database. We compiled a sequence
database against which short metagenomic reads can be aligned to quantify the
abundance of MGCs and mOTUs. To construct a non-redundant mOTUs map-
ping database, we removed identical MG sequences. MG sequences in the database
were extended at the start and end of the gene by up to 100 nt, based on their
genome or metagenomic assembly of origin, to reduce known mapping artifacts
at gene boundaries. The resulting non-redundant database consists of the
sequence files in FASTA format along with MGC and mOTU annotations, as well
as the coordinates of the coding segments of the MG sequences. The sequence files
were further indexed for searches with BWA42. For SNV calling, we constructed
an additional database that only consists of the centroid (medoid) sequence of
every MGC so that SNVs can be identified with respect to one reference sequence
per MGC.

Taxonomic annotation of meta-mOTUs. To assign taxonomic affiliations to
meta-mOTUs, we first annotated each MG using Uniprot’s UniRef90 (https://
www.uniprot.org/uniref, release 2017_08) as a reference protein sequence data-
base43, which was supplemented with a set of additional marine protein sequences
as described in44. Similarities between translated MG sequences and reference
database entries were computed using MMSEQS245 with the following parameters:
search -a true -e 1E-5 --max-seqs 1000. Taxonomic affiliation was assigned using a
weighted Lowest Common Ancestor (LCA) approach as follows: for each MG, all
protein matches in the reference database with a value ≥90% of the highest bitscore
were kept. Then, outlier taxa were excluded by using a bitscore-weighted LCA
annotation that covered at least 75% of the sum of all bitscores of each MG. Next,
we transferred the annotation of the best-scoring MG member to each MGC and
used the MGC annotations to assign a taxonomy to meta-mOTUs as follows: for
each meta-mOTU and for each taxonomy rank, we required at least three MGCs to
be annotated to consider the meta-mOTUs as annotated at this rank. Annotated
meta-mOTUs were considered consistent if at least half of the MGC taxonomy
annotations were in agreement.

Phylogenetic analysis of mOTUs. To explore the phylogeny of mOTUs
(ref-mOTUs and meta-mOTUs), a reference tree was reconstructed by combining
the phylogenetic signal of the ten sets of marker genes selected (Supplementary
Figure 4). For this, all marker genes were translated into amino acid sequences and
analyzed using ETE Toolkit v3.1. 146. In particular, the program ete-build was used
to run the following phylogenetic workflow: First, each set of marker proteins
was independently aligned using ClustalOmega47. Next, alignment columns with
less than three aligned residues were removed. Finally, the ten individual MG
alignments were concatenated and used to infer a maximum likelihood phyloge-
netic tree using IQTree48 and the LG model.

The mOTUs2 profiling workflow. The mOTUs2 workflow for taxonomic pro-
filing consists of three steps: alignment of metagenomic sequencing reads to MGs,
estimation of read abundances for every marker gene cluster (MGC), and calcu-
lation of mOTU abundances. As input, mOTUs2 expects the user to provide
quality controlled sequencing reads. These are aligned to the MGs of the mOTU
database using BWA (mem algorithm, default parameters)42. The resulting
alignments are filtered and only those with at least 97% nucleotide identity are
retained. Further, alignments are filtered according to their lengths (default: 75 bp
minimum alignment length; can be adjusted using the -l option).

Next, we compute the best alignment(s) for every insert (read pair) to the
MGCs using BWA alignment scores. Inserts with a single highest scoring
alignment are flagged as “unique alignments”, whereas inserts with multiple
highest scoring alignments are flagged as “multiple alignments”. Subsequently,
abundances for each MGC are calculated by summing up the number of all inserts
flagged as unique alignments resulting in a unique alignment profile. Inserts
flagged as multiple alignments are distributed among their best-scoring MGCs
in accord with their respective abundances estimated based on the unique
alignment profile. Thus, the final abundances are calculated as the sum of the
unique abundance profiles and the distributed contributions of the inserts flagged
as multiple alignments. In addition to these MGC insert counts, MGC base
coverages are calculated by first summing up the total number of bases aligning to
each MGC and then dividing by the respective gene lengths. Finally, the
abundances of the mOTUs are calculated as the median of their respective MGC
abundances (insert counts and base coverages). In order to reduce false positive
results, we require a certain number of MGCs to be detected, that is to have
metagenomic reads mapped to them (default: 3 MGs, -g option in mOTUs2).
Although mOTUs2 is able to profile many organisms not yet represented by
reference genomes, there are still around 25% of the MGCs that could not be

binned into mOTUs (see section 2.5). Reads mapping to those MGCs are assigned
to a group labelled as “unbinned” (shown as “-1” in mOTU abundance profiles).
The abundance of this group is calculated as the median of unbinned MGCs
summed by COG.

Description of taxonomic profiling outputs. The mOTUs2 profiler returns
multiple taxonomic profiles, since abundances based on read mappings can be
calculated in different ways. One major distinction is the unit of counts. Either
fragments such as inserts (or reads for single-pair sequencing) or mapped base-
pairs can be counted. Counting the mapped base-pairs has the advantage that the
mean base coverage can easily be computed by dividing the number of bases
aligned to a certain gene by its corresponding length (mOTUs2 output -y option:
“base.coverage”). Count based statistics are powerful for differential abundance
testing (output -y option: “insert.raw_counts”). As the counts could in principle be
non-integer numbers due to inserts mapping to multiple genes (see section 3.1),
all counts are rounded to integers. For relative abundance-based estimates, gene-
length normalizations are required to account for varying lengths of MG sequences
and varying numbers of MGCs present in each mOTU. To this end, we previously
introduced “scaled counts” that retains most of the characteristics of insert counts.
In this approach, coverages are calculated as described above and are then nor-
malized to sum up to the number of inserts that align to MGCs (output -y option:
“insert.scaled_counts”).

Single-nucleotide variant analysis with MGs. The mOTUs2 profiler has new
functionality to compute metagenomic SNV profiles using the MGs comprising
mOTUs as reference sequences. The resulting SNV profiles are highly correlated to
those obtained by whole genome SNV profiling (see main text, Fig. 5, Supple-
mentary Figures 16, 17). The overall SNV calling pipeline starts by aligning
metagenomic sequences to centroid sequences of MGCs (see above), before the
resulting bam files are post-processed using metaSNV functions34. The mOTUs2
command map_snv maps the reads using BWA42 and performs read filtering in a
similar fashion as described for taxonomic profiling. For the SNV analyses, only
inserts flagged as unique alignments are kept and the resulting sam file is sorted
and converted into a bam file. Using the snv_call command, the tool (i) computes
base coverages, (ii) calls SNVs, (iii) generates filtered allele frequency tables, and
(iv) calculates distances between strain populations.

These four steps are directly built upon metaSNV capabilities34, although the
procedure was adapted to mOTUs2 to facilitate its use with genes rather than
genomes. Firstly, each bam file is processed to compute per sample coverages for
every reference sequence/mOTU, both vertical (average number of reads per
position) and horizontal (percentage of the sequence covered at least once). SNVs
are subsequently called using samtools mpileup49, followed by two post-processing
steps. This includes a filtering step, which was modified to include parallelized
computing capabilities as well as the removal of padded regions in the allele
frequency tables. The filtering parameters remain identical, with updated default
values to account for the universal character of the genes considered: (-fb) minimal
percentage of the sequence horizontally covered per sample and per mOTU
(default= 80), (-fd) minimal average vertical coverage per sample and per
mOTU (default= 5), (-fm) minimum number of samples meeting the listed
criteria per mOTU (default= 2), (-fc) minimum vertical coverage per SNV
position (default= 5), (-fp) minimum proportion of samples meeting the previous
criterion at said position (default= 0.9). Finally, the filtered allele frequency tables
are used to compute genetic distances between samples for each mOTU,
Manhattan distances as well as major allele distances are used as the population
genomic distance measure. For the latter, only allele frequency changes above
50% between the two samples are taken into account. The mOTU profiler uses
parallelized computing capabilities for this step.

The output directory (-o) includes three files: two with the coverage information
for each mOTU, both horizontal (*.cov.tab file) and vertical (*.perc.tab file), and
a log file. Additionally, there are two directories: (i) per mOTU filtered allele
frequencies of identified SNVs across samples (filtered-* directory) and (ii) per
mOTU genetic distances between samples (distances-* directory), both Manhattan
(mann.dist files) and major allele (allele.dist files).

Benchmarking mOTUs2 against other tools. To evaluate its accuracy and
robustness, we benchmarked mOTUs2 against two established tools for taxonomic
profiling of metagenomic samples: MetaPhlAn27, which is based on clade-specific
marker genes, and Kraken50, which is based on exact alignments of genomic
k-mers. MetaPhlAn2 (version 2.6.0) was executed with default parameters. For
Kraken-labelled analyses, we executed Kraken for read classification and
calculated relative abundances with Bracken6. Kraken and Bracken were
installed as version 1.0.0 using conda. The Minikraken database (version mini-
kraken_20171101_8GB_dustmasked) was downloaded from https://ccb.jhu.edu/
software/kraken/. The Minibracken database was downloaded from https://ccb.jhu.
edu/software/bracken/ on 1 February 2018. We executed kraken using paired-end
and single-end data using default parameters. Abundance estimation with Bracken
was performed with the following parameters: -k minikraken_8GB_75mers_distrib.
txt -l S -o result.abundance.bracken.
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Comparison of mOTUs with metagenome-assembled genomes. We further
validated the mOTUs using metagenome-assembled genomes (MAGs) recon-
structed from different environments. For this purpose, we first extracted 4880
metagenomic sequencing runs from human gut samples available from the Eur-
opean Nucleotide Archive (accession numbers are listed in Supplementary Data 2).
Raw reads from each run were assembled using metaSPAdes v3.10.051 and sub-
sequently binned with MetaBAT2 (v2.12.1)52 with a minimum contig length
threshold of 2000 bp. Sequencing coverage required for binning was inferred by
mapping the raw reads back to the assemblies using BWA v0.7.1642 and then
retrieving the percentage of mapped read bases with samtools v1.549 and the
jgi_summarize_bam_contig_depths function from MetaBAT2. Quality scores (QS)
of each metagenome-assembled genome (MAG) were estimated with CheckM
v1.0.753, calculated as the level of completeness - 5 x contamination, as previously
described23. Good-quality MAGs (QS > 50) were kept for subsequent downstream
analyses. MAGs from marine samples (Ocean MAGs) were obtained as a subset
of about 8000 MAGs, which are described in a recent publication23. In order to
identify ocean-associated MAGs, we first searched for the keywords: ocean, marine,
baltic sea and north sea to extract entries in Supplementary Table 1 of23 and found
400 samples matching these keywords. From these samples, we selected 1845
MAGs (from Supplementary Data 2) that were reconstructed from these
metagenomes.

Correspondence between MAGs and mOTUs was established using the
following procedure: first, we extracted the ten MGs from the MAGs using
fetchMGs (see above), obtaining a set of MG-MAGs. Second, we aligned the MG-
MAGs to the MG database of the mOTUs using vsearch -usearch_global
(parameters: --id 0.96 --minqt 0.7). Finally, we evaluated the congruency of the
MG-MAGs to mOTU matches. For this, we first checked if at least three MG-
MAGs could be assigned to a mOTU (by mapping to a MGC that is part of a
mOTU). If this was not the case the MAG was annotated as “unassigned/-1”. Next,
we removed all alignments to MGCs not assigned to mOTUs and assigned a MAG
to a mOTU if >50% of the MG-MAGs were consistently matched to the same
mOTU. Otherwise (if no majority mOTU was found) the MAG is annotated as
“inconsistent”.

Benchmarking mOTUs2 using simulated metagenomes. To be able to assess
taxonomic quantification accuracy, ten human gut metagenomic samples were
simulated using 15,102 Human gut MAGs: a subset of the 19,302 MAGs described
before, excluding the MAGs created from samples used to construct the mOTU
database (Supplementary Figure 8). MAGs with an ANI > 96.5% were de-replicated
to have one representative MAG per species (cut-off according to ref. 4). The ANI
was calculated with the fastANI tool [https://github.com/ParBLiSS/FastANI]. The
corresponding fastq files (as well as the simulated abundance data) are available
at: http://motu-tool.org/download.html. Metagenomic read data were simulated
using BEAR54: first, we generated 100M inserts (2 × 100M paired-end reads of
150 nt length) with 350 nt insert distance (standard deviation: 30) using gen-
erate_reads.py. Second, trim_reads.pl with default parameters was used to add
the quality scores, introduce errors and shorten the reads. Every sample was
simulated based on mOTUs2 profiled relative abundances from ten real samples.
For each simulated sample, we randomly selected 50 MAGs with a representative
reference genome sequence in the superset of the Kraken, MetaPhlAn2, or
ref-mOTU databases and 50 additional MAGs sampled from those that lacked
any reference database representation (which does not preclude these MAGs to
map to meta-mOTUs).

The benchmark was performed by evaluating precision-recall plots of the
simulated metagenomes based on the number of true positives (TP) false positives
(FP) representing species that are predicted but not present in the real sample, and
false negatives (FN) representing species that are missed by the profiler. Precision is
calculated as TP/(TP+ FP) and recall as TP/(TP+ FN). Next we evaluated the
mean absolute error (MAE) defined as the average absolute difference between
estimated relative abundances and relative abundances simulated as ground truth.
Finally we evaluated the accuracy of alpha diversity estimates using the difference
between predicted and actual Shannon index (abbreviated as H’).

Benchmarking mOTUs2 using the CAMI framework. We further evaluated
mOTUs2 in the CAMI framework25, which includes eight simulated samples
(one low complexity, two medium complexity and five high complexity) for which
the ground truth is available. Within the first CAMI community challenge, ten
metagenomic profiling tools including MetaPhlAn2 and mOTUs1 were already
benchmarked on these data sets. To comparatively assess the performance of
mOTUs2 in this context, we converted its output to CAMI/Bioboxes format (-C
option in the mOTUs2 profiler) and used OPAL 0.2.926 (developed by the same
authors as CAMI) for consistency of performance assessments. Using precision-
recall plots we evaluated mOTUs2 employing five different parameter sets: high
precision (-l 140 -g 6 -C precision), default (-l 100 -g 3 -C precision), recall (-l 75 -g
3 -C recall), high recall (-l 50 -g 2 -C recall) and maximum recall (-l 30 -g 1 -C
recall). Hence mOTUs2 are represented by five red dots in the precision-recall
plots, demonstrating that it can be tuned to obtain a range of precision-recall trade-
offs. The evaluation of the mean absolute error (MAE), which it is called L1 norm
in the CAMI paper, was also obtained with OPAL. By default, OPAL re-normalises
the relative abundances of the gold standard and the profiling result to each sum to

1 before calculating the MAE, which apparently substantially deteriorates the
quantification accuracy of mOTUs2 (see Supplementary Figure 11b). For this
reason, we included both re-normalised and relative abundances without any post-
processing in our evaluation for mOTUs2. This aims for maximum transparency
in the comparison to the other tools, which could only be evaluated with the re-
normalised version (but could theoretically also benefit from an evaluation of non-
normalised relative abundances).

Determining environmental specificity of mOTUs. To determine the environ-
mental specificity of the mOTUs, we used the set of >3100 metagenomes (Sup-
plementary Data 1) to assess the environmental specificity of all meta-mOTUs and
the subset of ref-mOTUs that are present in these samples (Supplementary Fig-
ure 5a). To this end, we generated mOTUs2 profiles of these samples with default
settings and removed samples with less than 500 scaled insert counts. Based on the
resulting profiles (https://motu-tool.org/data/All_2481_at_least_500.motu.nr.
out.20180307.tsv), we classified a mOTU to be present in a specific environment
if it was detected in more than three samples from that environment.

Analysis of community structure. We assessed correlations of the Shannon index
calculated based on 16S rRNA gene-based analyses and three metagenomic pro-
filing tools (mOTUs2, MetaPhlAn2 and Kraken). For this we used data from two
different biomes: metagenomes generated from stool samples of a colorectal cancer
(CRC) study21 and metagenomes from seawater samples of the Tara Oceans
expedition22. For the CRC study, amplicon sequencing data of the V4 region of the
16S rRNA were downloaded from the European Nucleotide Archive (ENA)
database (http://www.ebi.ac.uk/ena): accession number ERP005534. For the ocean
water samples, 16S rRNA gene containing fragments were extracted from meta-
genomic sequencing reads (miTAGs55). To ensure comparability between the data
sets, we extracted the first 100 bp from each miTAG sequence starting from the
V4 primer sequence.

Ribosomal RNA data were initially processed using USEARCH56 (version
9.2.64) as follows: paired-end reads were merged and quality-filtered using the
fastq_mergepairs command with default settings. Merged reads were filtered using
the fastq_filter command (-fastq_maxee 0.1). Sequences were de-replicated using
the fastx_uniques command, singletons were excluded and the remaining unique
sequences were clustered into operational taxonomic units (OTUs) at 97% with
chimera removal using the cluster_otus command. Finally, OTU abundances for
each sample were determined using the usearch_global command (-strand both;
-id 0.97). The OTU abundance tables were downsampled to the minimum number
of reads per sample (CRC: 40,805 reads, TARA: 1494 reads) to normalize for
uneven sequencing depths using the R function rarefy within the vegan package57.
The Shannon index of diversity was computed for each sample and all methods
(16S rRNA gene-based and metagenomic method-based) using the R function
diversity of the vegan package. In order to obtain a 95% confidence interval we used
bootstrapping (n= 100,000) by resampling pairs of Shannon index values. The
confidence intervals reflect the 2.5 and 97.5 percentile of the bootstrapped samples.

Between sample distances were determined using human body site samples for
which more than one time point was available for the same individual. More
specifically, for each body site, we compared community compositional distances
between samples from the same individual (intra-individual) to distances between
this and other individuals (inter-individual). Canberra and Bray-Curtis distances
were computed with the vegdist R function of the vegan package and the log-
Euclidean distance was computed as the Euclidean distance of the log-transformed
relative abundances after the addition of a pseudocount smaller than the smallest
non-zero value. For each of the three distances and each sample, we identified the
most similar sample (i.e. the one with the minimum distance value) and
determined the proportion of cases in which both samples belonged to the same
individual.

Analysis of metatranscriptomes. To demonstrate the use of mOTUs2 to assess
basal transcriptional activity of microbial community members, we used a dataset
from 36 samples for which metagenomic and metatranscriptomic sequencing data
are available31. Each sample (36 metagenomes and 36 metatranscriptomes) was
subjected to profiling using mOTUs2, Kraken/Bracken and MetaPhlAn2. All
resulting profiles were transformed to relative abundances, and log-transformed
after adding a small pseudocount. After that, Spearman correlations between
corresponding metagenomic and metatranscriptomic profiles generated from the
same sample were calculated and compared between profiling methods (Fig. 4a and
Supplementary Figure 11). We moreover evaluated how well species abundance
estimates correlated between metagenomic and metatranscriptomic profiles for the
twelve most abundant taxa at the class level. Class level information for mOTUs
and MetaPhlAn2 was available as part of the profiler output. Class level annota-
tions for Kraken were obtained using NCBI taxonomy identifiers.

Comparison of SNV profiles from MGs and whole genomes. To assess the
comparability of SNV profiles generated with mOTUs2 and whole genomes, we
used samples from 2807 human microbiome samples14, 15 and 139 prokaryote-
enriched metagenomes from the Tara Oceans project22. Metagenomic reads were
mapped to the mOTUs centroid database using the mOTUs2 command map_snv
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and in addition to a set of 5306 reference genomes13. Genomic distances of strain
populations between samples were estimated based on SNV profiles computed
both on mOTUs and the whole genomes using the motus snv_call command. The
filtering parameters used within the snv_call command were adapted to the spe-
cificity of datasets and references. The allele frequency tables were filtered using a
horizontal coverage (-fb) equal to 40% for whole genome-mapped reads and 80%
for mOTU-mapped reads, a vertical coverage (-fd) of 10, a per position coverage
(-fc) of 5 and a position prevalence (-fp) of 0.90. The minimum number of samples
per reference (-fm) was 20 for the human samples and 5 for the Ocean samples.
Whole-genome-based distances were compared to those from mOTUs using
Pearson’s correlation (Fig. 5a). We selected the ref-mOTUs/genomes that passed
the filtering thresholds for both methods and correlated between sample distances
between the two methods (n.b. there were no species from the vaginal supersite
passing the filtering requirements for both methods).

Individuality of microbial populations across body sites. We tested for the
individuality of microbial strain populations on the subset of the human micro-
biome samples described above (5.4.1), for which at least two time point data were
available. For each body site, we compared SNV profile distances between samples
from the same individual (intra-individual, intra-body-site distances) to distances
between this and other individuals (inter-individual, intra-body-site distances). To
determine whether intra-individual distances were smaller than inter-individual
distances (see Supplementary Figure 17b)—indicating individuality of strain
populations—we used ROC analysis. ROC curves (see Supplementary Figure 17a)
ascertain how accurately small distances predict whether a pair of samples origi-
nated from the same individual (with similarly small inter-individual distances
being considered false positives) when systematically varying the distance cutoff.
ROC curves can be summarized by the area under the curve (AU-ROC) with
higher values corresponding to clearer separation between intra- and inter-
individual distances (Fig. 5b and Supplementary Figure 17a). Confidence intervals
on the AU-ROC (Fig. 5b) were obtained by bootstrapping using the pROC
package58.

Code availability. The mOTU profiler version 2 and additional information are
available at: https://motu-tool.org. Its source code is accessible at: https://github.
com/motu-tool/mOTUs_v2.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
To generate the mOTU database, we used reference genome sequence data from the

proGenomes database (http://progenomes.embl.de) as well as metagenomic sequence

data from the Genbank Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) and

the EMBL European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena) with acces-

sion numbers listed in Supplementary Data 1. Human gut metagenomic data and

metagenome assembled genomes are available at the ENA (accession numbers are listed

in Supplementary Data 2; MAGs can be downloaded from: http://ftp.ebi.ac.uk/pub/

databases/metagenomics/mags-gut_19k.tar.gz). The 10 human gut metagenomic samples

simulated from metagenome-assembled genomes are available on Zenodo (https://doi.

org/10.5281/zenodo.1473645). All other relevant data is available upon request.
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