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Abstract

Background: Intra-amniotic inflammation, which is 

 associated with adverse pregnancy outcomes, can 

occur in the presence or absence of detectable microor-

ganisms, and involves activation of the inflammasome. 

Intra-amniotic inflammasome activation has been 

reported in clinical chorioamnionitis at term and 

preterm labor with intact membranes, but it has not 

yet been investigated in women with preterm prelabor 

rupture of membranes (preterm PROM) in the presence/

absence of detectable microorganisms. The aim of this 

study was to determine whether, among women with 

preterm PROM, there is an association between detecta-

ble microorganisms in  amniotic fluid and  intra-amniotic 
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inflammation, and whether  intra-amniotic inflamma-

some activation correlates with microbial burden.

Methods: Amniotic fluids from 59 cases of preterm PROM 

were examined for the presence/absence of microorgan-

isms through culture and 16S ribosomal RNA (rRNA) 

gene quantitative real-time polymerase chain reaction 

(qPCR), and concentrations of interleukin-6 (IL-6) and 

ASC  [apoptosis-associated spec-like protein containing 

a caspase recruitment domain (CARD)], an indicator of 

inflammasome activation, were determined.

Results: qPCR identified more microbe-positive amniotic 

fluids than culture. Greater than 50% of patients with a 

negative culture and high IL-6 concentration in amni-

otic fluid yielded a positive qPCR signal. ASC concentra-

tions were greatest in patients with high qPCR signals 

and elevated IL-6 concentrations in amniotic fluid (i.e. 

intra-amniotic infection). ASC concentrations tended to 

increase in patients without detectable microorganisms 

but yet with elevated IL-6 concentrations (i.e. sterile intra-

amniotic inflammation) compared to those without intra-

amniotic inflammation.

Conclusion: qPCR is a valuable complement to microbio-

logical culture for the detection of microorganisms in the 

amniotic cavity in women with preterm PROM, and micro-

bial burden is associated with the severity of intra-amni-

otic inflammatory response, including inflammasome 

activation.

Keywords: culture; microbial invasion of the amniotic 

cavity; PPROM (preterm prelabor rupture of membranes); 

quantitative real-time PCR (qPCR); sterile intra-amniotic 

inflammation.

Introduction

Microbial invasion of the amniotic cavity can lead to 

intra-amniotic inflammation (i.e. intra-amniotic infec-

tion) [1–25] when bacteria from the lower genital tract 

gain access to this compartment [6, 26–28]. Yet, in some 

cases, intra-amniotic inflammation can occur in the 

absence of detectable microorganisms, a clinical condi-

tion referred to as sterile intra-amniotic inflammation 

[23, 24, 29–32]. Intra-amniotic infection is more common 

than sterile intra-amniotic inflammation in women with 

clinical chorioamnionitis at term [24] and preterm prela-

bor rupture of membranes (preterm PROM) [31, 32]. These 

clinical conditions are associated with adverse maternal 

outcomes and increased risk for neonatal sequelae [16, 

33–70].

Preterm PROM occurs in approximately 30% of all 

preterm deliveries [53, 71] and thus represents a major 

contributing factor to adverse perinatal outcomes associ-

ated with prematurity [16, 33–35, 55, 56, 60, 72]. Given that 

the prevalence of intra-amniotic infection is increased in 

laboring women with preterm PROM [32, 73], it is tempting 

to suggest that the process of labor facilitates the ascen-

sion of microorganisms into the amniotic cavity [18, 74–

77]. In line with this concept, several reports have shown 

that approximately 40% of women with preterm PROM 

have intra-amniotic infection [32, 62, 78–80]. Importantly, 

molecular microbiology is capable of detecting 50% more 

cases of microbial invasion of the amniotic cavity than 

conventional microbiological cultures [32]. These results 

suggest that the syndrome of preterm PROM is a heteroge-

neous condition that requires further investigation.

The mechanisms that lead to preterm birth following 

intra-amniotic infection involve a localized inflammatory 

response, which is partially mediated by the NLRP3 [also 

known as cryopyrin or NLR (nucleotide-binding domain 

and leucine-rich repeat) family pyrin domain-contain-

ing protein 3] inflammasome [81–85]. Inflammasomes 

are cytoplasmic multiprotein complexes composed of 

a sensor molecule, the adapter protein ASC [apoptosis-

associated spec-like protein containing a caspase recruit-

ment domain (CARD)], and inactive caspase-1 [86–101]. 

The assembly of inflammasomes promotes the activation 

of caspase-1, which subsequently cleaves the immature 

forms of the pro-inflammatory cytokines interleukin-1β 

(IL-1β) and IL-18 into their bioactive forms [102–111]. Upon 

inflammasome activation, ASC proteins are released 

into the extracellular space where they can serve as a 

readout of inflammasome activation in vivo [112–114]. 

Indeed, we have previously shown that increased con-

centrations of extracellular ASC are observed in amniotic 

fluid from women with spontaneous labor at term [115] 

and those with clinical chorioamnionitis at term [116] or 

with preterm labor with intact membranes [82]. However, 

whether amniotic fluid concentrations of extracellular 

ASC can provide a readout of the intra-amniotic inflam-

matory response in women with preterm PROM has not 

been investigated.

Herein, in women with preterm PROM, we investi-

gated: (1) the relationship between conventional micro-

biological cultures and 16S ribosomal RNA (rRNA) gene 

quantitative real-time polymerase chain reaction (qPCR) 

signals in amniotic fluid, (2) the association between 

detection of microbes in amniotic fluid by microbiologi-

cal cultures and/or 16S rRNA gene qPCR and intra-amni-

otic inflammation (IL-6 >2.6 ng/mL [14]), and (3) whether 
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intra-amniotic inflammasome activation (amniotic fluid 

concentrations of extracellular ASC) correlates with 

microbial burden (defined as a positive microbiological 

culture and/or positive 16S rRNA gene signal).

Materials and methods

Study design and population

This retrospective cross-sectional study was conducted by searching 

our clinical database and bank of biological samples. The collection 

of samples was approved by the Institutional Review Boards of the 

Detroit Medical Center (Detroit, MI, USA), Wayne State University, 

and the Perinatology Research Branch, an intramural program of 

the Eunice Kennedy Shriver National Institute of Child Health and 

Human Development, National Institutes of Health, U.S. Department 

of Health and Human Services. All women provided written informed 

consent prior to the collection of amniotic fluid.

This study included 59 amniotic fluid samples collected from 

patients with preterm PROM that were initially classified into 

the following groups (Table 1): (i) preterm PROM with a negative 

 microbiological culture and low amniotic fluid concentrations of 

IL-6 (<2.6 ng/mL), (ii) preterm PROM with a negative microbiological 

culture and high amniotic fluid IL-6 (>2.6 ng/mL), (iii) preterm PROM 

with a positive microbiological culture and high amniotic fluid IL-6, 

and (iv) preterm PROM with a positive microbiological culture and 

low  amniotic fluid concentrations of IL-6 (see Clinical definitions).

Clinical definitions

Gestational age was determined by the date of the last menstrual 

period and confirmed by ultrasound examination. The gestational 

age derived from sonographic fetal biometry was used if the esti-

mation was inconsistent with menstrual dating. Preterm PROM was 

Table 1: Clinical and demographic characteristics of patients with preterm PROM.

Negative culture with 

low IL-6 (n = 18)

Negative culture with 

high IL-6 (n = 19)

Positive culture with 

high IL-6 (n = 8)

Positive culture with 

low IL-6 (n = 14)

P-value

Maternal age, years, median 

(IQR)a

25.5 (22–31) 29 (22.5–32) 21.5 (20.8–26.8) 26.5 (23.3–32) 0.5

Body mass index, kg/m2, median 

(IQR)a

23.6 (21.4–29)c 24 (21–28)d 21.8 (19.4–30.9)c 21.1 (18.8–25.7) 0.6

Primiparityb 22.2% (4/18) 15.8% (3/19) 12.5% (1/8) 14.3% (2/14) 0.9

Race/ethnicityb 0.5

 African American 100% (18/18) 84.2% (16/19) 87.5% (7/8) 85.7% (12/14)

 White 0% (0/18) 10.5% (2/19) 12.5% (1/8) 7.1% (1/14)

 Hispanic 0% (0/18) 0% (0/19) 0% (0/8) 7.1% (1/14)

 Other 0% (0/18) 5.3% (1/19) 0% (0/8) 0% (0/14)

Gestational age at membrane 

rupture, weeks, median (IQR)a

31.9 (29.2–32.6) 27.8 (22.8–31.2)c 29.5 (27.6–30.4) 31.6 (29.5–33.3) 0.01

Gestational age at 

amniocentesis, weeks, median 

(IQR)a

32.2 (29.4–32.6) 27.7 (22.4–30.8) 29.5 (27.6–30.4) 31.6 (29.5–33.3) 0.007

IL-6, ng/mL, median (IQR)a 0.9 (0.5–1.2) 34.1 (6–161.3) 33.3 (19.9–46) 1 (0.4–1.9) <0.001

Gestational age at delivery, 

weeks, median (IQR)a

33 (31.1–33.7) 28.7 (23.1–32.6) 30.2 (29–30.9) 31.9 (29.7–33.6) 0.02

Cesarean sectionb 11.1% (2/18) 26.3% (5/19) 25% (2/8) 28.6% (4/14) 0.5

Birthweight, ga 1902.5 (1756.3–2115) 1185 (490–1927.5) 1257.5 (1135–1506.3) 1767.5 (1402.5–2095) 0.02

Acute maternal inflammatory response

  Stage 1 (early acute 

subchorionitis or chorionitis)b

17.6% (3/17)c 6.3% (1/16)e 0% (0/8) 7.1% (1/14) 0.6

  Stage 2 (acute 

chorioamnionitis)b

23.5% (4/17)c 25% (4/16)e 87.5% (7/8) 42.9% (6/14) 0.01

  Stage 3 (necrotizing 

chorioamnionitis)b

0% (0/17)c 37.5% (6/16)e 12.5% (1/8) 14.3% (2/14) 0.02

Acute fetal inflammatory response

  Stage 1 (chronic vasculitis or 

umbilical phlebitis)b

23.5% (4/17)c 18.8% (3/16)e 25% (2/8) 14.3% (2/14) 0.9

 Stage 2 (umbilical arteritis)b 17.6% (3/17)c 18.8% (3/16)e 62.5% (5/8) 28.6% (4/14) 0.1

 Stage 3 (necrotizing funisitis)b 0% (0/17)c 18.8% (3/16)e 0% (0/8) 14.3% (2/14) 0.1

Data are given as median (interquartile range, IQR) and percentage (n/N). aKruskal-Wallis test. bFisher’s exact test. cOne missing datum. 
dTwo missing data. eThree missing data.
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defined as amniorrhexis confirmed by vaginal pooling, ferning, or 

a positive nitrazine test prior to the onset of labor before 37 weeks 

of gestation [117–120]. Intra-amniotic inflammation was defined 

using an established cutoff for amniotic fluid concentrations of 

IL-6 [14], where concentrations >2.6 ng/mL indicate intra-amniotic 

inflammation and concentrations <2.6 ng/mL are considered as no 

inflammation.

Amniotic fluid sample collection

Amniotic fluid samples were obtained by transabdominal amniocen-

tesis under antiseptic conditions and ultrasound guidance to evaluate 

the microbial and inflammatory status of the amniotic cavity. Samples 

of amniotic fluid were transported to the laboratory in a sterile capped 

syringe. Clinical tests included culture of aerobic/anaerobic bacteria 

and genital mycoplasmas [7, 121], white blood cell count [122], Gram 

stain [123], glucose concentration [124], and IL-6 concentration [14]. 

The rest of the sample was utilized for research purposes.

Determination of IL-6 concentration in amniotic fluid

Amniotic fluid concentrations of IL-6 were determined as previously 

established [14] using a sensitive and specific enzyme immuno-

assay obtained from R&D systems (Minneapolis, MN, USA). The IL-6 

concentrations were determined by interpolation from the stand-

ard curves. The inter- and intra-assay coefficients of variation for 

IL-6  were 8.7% and 4.6%, respectively. The sensitivity of the IL-6 

assay was 0.09 pg/mL. 

Placental histopathological examination

Sampling of the placentas was conducted according to protocols 

established by the Perinatology Research Branch. A minimum of five 

full-thickness sections of chorionic plate, three sections of umbilical 

cord, and three chorioamniotic membrane rolls from each case were 

examined by placental pathologists who were blinded to the clinical 

histories and additional testing results. Acute inflammatory lesions 

of the placenta (maternal inflammatory response and fetal inflam-

matory response) were diagnosed according to established criteria, 

including staging and grading [125].

DNA extraction from amniotic fluid

Samples of amniotic fluid (250 µL) were processed inside a bio-

logical safety cabinet by personnel equipped with sterile surgi-

cal gowns, hoods, surgical masks, and powder-free exam gloves 

(Kimberly-Clark, Roswell, GA, USA). DNA was extracted using the 

DNeasy  PowerLyzer PowerSoil Kit (Cat# 12855, Qiagen, Germantown, 

MD, USA) with minor modifications to the manufacturer’s protocol. 

Briefly, amniotic fluid samples were mixed with 400 µL of bead solu-

tion and 200 µL of phenol:chloroform:isoamyl alcohol (pH 7–8) in 

the supplied bead tube. Next, 60 µL of solution C1 was added, and 

microbial cells were lysed by mechanical disruption using a bead 

beater (BioSpec, Bartlesville, OK, USA) for 30 s. Afterward, the bead 

tubes were centrifuged at 10,000 × g for 1 min and the resulting super-

natants were transferred to new tubes. Next, 100 µL of solution C2, 

100 µL of solution C3 and 1 µL of RNase A enzyme were added to the 

sample tubes and incubated at 4°C for 5 min. Steps involving solu-

tions C2 and C3 were combined to maximize DNA yield. The sample 

tubes were centrifuged at 10,000 × g for 1 min and the supernatants 

were transferred to new tubes containing 650 µL of solution C4 and 

650 µL of 100% ethanol. Each amniotic fluid lysate was then loaded 

onto a filter column, centrifuged at 10,000 × g for 1 min, and the flow-

through was discarded. Next, 500 µL of solution C5 was added to the 

filter columns and centrifuged at 10,000 × g for 1 min, after which the 

flow-through was discarded and the tube was centrifuged again for 

an additional 3 min as a dry-spin. Finally, 60 µL of solution C6 was 

placed on the filter column and incubated for 5 min before centrifug-

ing at 10,000 × g for 30 s to elute the extracted DNA. For each set of 

extractions, at least one blank DNA extraction kit was processed as 

a background negative control (n = 8). Positive amniotic fluid control 

samples (n = 6) included DNA extractions performed on amniotic 

fluid supernatants from six different patients whose amniotic fluid 

yielded a bacterial isolate by culture. Negative amniotic fluid control 

samples (n = 7) included seven separate DNA extractions performed 

on an amniotic fluid sample from a patient previously determined 

not to have intra-amniotic infection by qPCR. These technical repli-

cates are provided only for perspective and were not included in any 

statistical analyses in this study. Purified DNA was stored at −80°C.

Establishment of a quantitative real-time PCR for the 

16S rRNA gene to determine microbial burden in  

amniotic fluid

Prior to the performance of qPCR in study samples, a preliminary test 

was conducted to investigate the existence of DNA amplification inhi-

bition for amniotic fluid [126, 127]. For this test, 3 µL of purified DNA 

from amniotic fluid samples was serially diluted with solution C6 elu-

tion buffer by a factor of 1:3 (i.e. 1:0, 1:3, 1:9). Each qPCR reaction was 

then spiked with 3 µL of purified Escherichia coli ATCC 25922 (GenBank 

accession: CP009072) genomic DNA (10 pg/µL) containing seven 16S 

rDNA copies per genome. Genomic DNA was quantified using a Qubit 

3.0 fluorometer with a Qubit dsDNA HS Assay kit (Life Technologies, 

Carlsbad, CA, USA) according to the manufacturer’s protocol. Spiked 

reactions contained approximately 3.989 × 104 E. coli 16S rDNA copies, 

and there was evidence of DNA amplification inhibition (Figure S1). 

All amniotic fluid samples were subsequently diluted with solution C6 

elution buffer by a factor of 1:3 prior to further analyses.

Total bacterial DNA abundance within samples was measured via 

amplification of the V1–V2 region of the 16S rRNA gene according to 

the protocol of Dickson et al. [128] with minor modifications as previ-

ously described [126, 129]. These modifications included the use of a 

degenerative forward primer (27f-CM: 5′-AGA GTT TGA TCM TGG CTC 

AG-3′) [130] and a degenerative probe containing locked nucleic acids 

(+) (BSR65/17: 5′-56FAM-TAA + YA + C ATG +CA + A GT + C GA-BHQ1-3′). 

Each 20 µL reaction contained 0.6 µM of 27f-CM primer, 0.6 µM of 357R 

primer (5′-CTG CTG CCT YCC GTA G-3′), 0.25 µM of BSR65/17 probe, 

10 µL of 2X TaqMan Environmental Master Mix 2.0 (Life Technologies), 

and 3 µL of either purified DNA, elution buffer, or nuclease-free water. 

The total bacterial DNA qPCR was performed using the following con-

ditions: 95°C for 10 min, followed by 45 cycles of 94°C for 30 s, 50°C for 

30 s, and 72°C for 30 s. Duplicate reactions were run for all samples. All 

samples were run across a total of four runs. Raw DNA amplification 
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data were normalized to the ROX passive reference dye and analyzed 

using the on-line platform Thermo Fisher Cloud (Thermo Fisher Scien-

tific, Waltham, MA, USA): Standard Curve (SR) 3.3.0-SR2-build15 using 

automatic threshold and baseline settings. Cycle of quantification (Cq) 

values were calculated for each sample based on the mean number of 

qPCR cycles required to observe an exponential increase in the normal-

ized fluorescence signal.

DNA derived from E. coli ATCC 25922 (described earlier) and a 

Ureaplasma parvum isolate previously obtained from an amniotic 

fluid sample (using the same DNA extraction protocol) was quan-

tified with the use of a Qubit 3.0 fluorometer with a Qubit dsDNA 

HS Assay kit and used for the generation of standard curves. The 

E. coli standard curve ranged from 1.99 × 107 to 1.99 × 101 copies. For 

the U. parvum isolate, it was estimated that its genome has a mass 

of 4.78 × 105 kDa and contains two 16S rRNA gene copies. Therefore, 

the U. parvum standard curve ranged from 3.40 × 106 to 3.40 × 101 cop-

ies. Independently diluted standard curves containing 10-fold serial 

 dilutions (three replicates each) were included in each of the four 

qPCR runs. The standard curves were used to evaluate the perfor-

mance of the qPCR assay by estimation of its efficiency based on the 

slope of regression lines [131]. Analysis of Cq values generated for the 

standard curves indicated that the average amplification efficiency of 

the E. coli and U. parvum assays was 90.32 ± 1.47% [standard devia-

tion (SD)] and 91.31 ± 0.93% (SD), respectively, with similar diagnos-

tic sensitivity as previously observed for the qPCR assay [126, 129]. 

The regression curves were linear over the entire range of dilutions 

for both standard curves (Figure S2).

Determination of extracellular ASC in amniotic fluid

Concentrations of extracellular ASC in the amniotic fluid were deter-

mined as previously established [82, 115, 116] by using a sensitive and 

specific enzyme-linked immunosorbent assay (ELISA) kit obtained 

from LifeSpan Biosciences (Seattle, WA, USA). Amniotic fluid concen-

trations of ASC were obtained by interpolation from the standard curve. 

The inter- and intra-assay coefficients of variation were 5.0% and 8.6%, 

respectively. The sensitivity of the ASC assay was 0.131 ng/mL.

Statistical analysis

Differences in Cq values among samples were evaluated using the 

Kruskal-Wallis and Mann-Whitney U tests. Sequential Bonferroni 

corrections were applied to all post hoc pairwise comparisons. The 

strength of correlation between ASC concentrations and Cq values in 

amniotic fluid was evaluated using Spearman’s rank-order correla-

tion test. Graphical and statistical analyses were performed in PAST 

v3.25 (https://folk.uio.no/ohammer/past/).

Results

Characteristics of the study population

Clinical and demographic characteristics of the study 

population (n = 59) are described in Table 1. There were 

no differences in maternal age, body mass index, rate of 

primiparity, race, or the rate of cesarean section among 

the initial study groups (Table 1). Birthweights, as well as 

gestational ages at membrane rupture, amniocentesis, 

and delivery, were significantly different (Table 1). Acute 

maternal inflammatory responses (stage 2 and stage 3), 

but not fetal inflammatory responses, were significantly 

different among the study groups.

The relationship between microbiological 
culture and 16S rRNA gene qPCR signal

Microbial culture is regarded as the gold standard 

 technique to identify microorganisms in amniotic fluid 

[6, 9, 23, 73, 78, 132–138]. Therefore, we first assessed 

whether microbial burden detected by 16S rRNA gene qPCR 

was capable of detecting bacterial signals in amniotic 

fluid samples that had a negative or positive microbiologi-

cal culture. Microbial burden is reported using Cq, which 

represents the average number of qPCR cycles required to 

observe an exponential increase in the detected 16S rRNA 

gene signal. Thus, a lower Cq number is indicative of a 

greater microbial burden.

Amniotic fluid samples with a positive culture often 

had a greater microbial burden than those with a negative 

culture; however, this difference did not reach statistical 

significance (P = 0.068) (Figure 1). This result could poten-

tially be explained by the presence of difficult-to-culture 

(i.e. fastidious) bacteria in amniotic fluid of women with 

a negative culture [78, 139–154]. Nonetheless, amniotic 

fluid samples, regardless of the microbiological culture 

result, had higher median 16S rRNA gene signals than the 

kit/extraction controls (P < 0.0001) (Figure 1). It is worth 

mentioning that several samples with a negative culture 

had similar signals of the 16S rRNA gene compared to kit/

extraction controls (samples included in the dotted blue 

square), indicating that not all samples from cases of 

preterm PROM have detectable bacteria. Additionally, one 

sample with a positive amniotic fluid culture had a similar 

16S rRNA gene signal compared to kit/extraction controls 

(sample included in the dotted red square), which could 

represent a possible laboratory contaminant isolated 

during microbiological culture (Figure 1). Taken together, 

these results indicate that increased microbial burden, as 

determined by 16S rRNA gene signal, is in general associ-

ated with a positive microbiological culture result. Yet, 16S 

rRNA gene qPCR can detect bacterial signals in samples 

that did not yield bacterial cultivars, thus demonstrat-

ing a higher sensitivity of qPCR than culture for detecting 

microbial invasion of the amniotic cavity.

https://folk.uio.no/ohammer/past/
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The association between microbial detection 
and intra-amniotic inflammation

We next investigated whether the detection of micro-

organisms is associated with the IL-6 inflammatory 

response in amniotic fluid. The amniotic fluid concen-

tration of IL-6  was used as the diagnostic criteria for 

intra-amniotic inflammation as previously described [14, 

155–158]. According to amniotic fluid culture and IL-6 con-

centrations, we classified the patients into four groups: 

(1)   negative culture with low IL-6 [culture(−)/IL-6(−)]; 

(2)  negative culture with high IL-6 [culture(−)/IL-6(+)]; 

(3) positive culture with high IL-6 [culture(+)/IL-6(+)]; and 

(4)  positive culture with low IL-6 [culture(+)/IL-6(−)]. We 

used amniotic fluid samples from a mid-trimester amni-

ocentesis of a patient without preterm PROM or intra-

amniotic inflammation as a negative control in addition to 

water and kit/extraction controls. Amniotic fluid samples 

from women with positive microbiological cultures but 

without preterm PROM were used as positive controls. The 

cutoff for a positive 16S rRNA gene signal was defined as a 

Cq value less than 34.66, which was determined based on 

the lowest Cq value among the water and kit/extraction 

controls (Figure 2).

As described earlier, the overall 16S rRNA gene signal 

in preterm PROM patients was significantly higher than 

in kit/extraction controls (P < 0.001) (Figure 2). Most of 

the culture(−)/IL-6(−) patients had a negative (Cq value 

>34.66) 16S rRNA gene signal (14/18: 77.8%). More than 

half of the culture(−)/IL-6(+) patients had a positive 

(Cq value  <34.66) 16S rRNA gene signal (11/19: 57.9%) 

(Figure 2), indicating that non-culturable or fastidious 

Figure 1: Association between microbiological culture and 16s rRNA 

gene qPCR in amniotic fluid.

Cycle of quantification (Cq) of background technical controls and 

amniotic fluid samples from women with preterm PROM based on 

the presence/absence of a positive microbial culture. Median values 

are indicated. Statistical results are from the Mann-Whitney U tests. 

Dotted squares represent the absence of microbial detection by 16S 

rRNA gene qPCR in culture positive/negative amniotic fluid samples. 

n = 20–37 per group.

Figure 2: Microbial burden and intra-amniotic inflammation.

Cycle of quantification (Cq) of background technical controls 

and amniotic fluid samples based on the presence/absence of a 

positive microbiological culture and intra-amniotic inflammation 

(IL-6 concentrations >2.6 ng/mL). Median values are indicated. 

Statistical results are from the Mann-Whitney U and Kruskal-Wallis 

tests. Sequential Bonferroni corrections were applied to all post hoc 

pairwise comparisons. The dashed line indicates the lowest 

Cq value of any background technical control, which was used to 

define the cutoff for a positive 16S signal (Cq value <34.66 cycles). 

n = 12–19 per group.
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microorganisms may induce an inflammatory response in 

the amniotic cavity. Notably, nearly 60% of the patients 

with a positive culture also had a positive (Cq value 

<34.66) 16S rRNA gene signal, regardless of the presence 

of intra-amniotic inflammation [culture(+)/IL-6(+): 5/8, 

62.5%; culture(+)/IL-6(−): 8/14, 57.1%] (Figure 2). Indeed, 

the median 16S rRNA gene signal between patients with a 

positive culture, regardless of the presence of intra-amni-

otic inflammation, was similar (Figure 2). These results 

show that high levels of IL-6 (>2.6 ng/mL) are associated 

with the detection of microbes by culture or 16S rRNA 

gene qPCR; however, a subset of preterm PROM patients 

with detectable microorganisms do not present with intra-

amniotic inflammation.

Based on the results of 16S rRNA gene qPCR, we 

 re-stratified our patients into new study groups (Table 2). 

The first group included cases with both a negative 

 amniotic fluid culture and negative 16S rRNA gene qPCR 

as well as low IL-6 (n = 14/59, 23.7%), and represented 

preterm PROM patients with neither detectable bacte-

ria nor intra-amniotic inflammation. The second group 

included patients with both a negative amniotic fluid 

culture and negative 16S rRNA gene signal but high IL-6 

(n = 8/59, 13.6%), a condition which has been termed 

sterile intra-amniotic inflammation [23, 29, 30, 32]. The 

third group included all patients with a positive amniotic 

fluid culture and/or positive 16S rRNA gene signal together 

with high IL-6 (n = 19/59, 32.2%), referred to as microbial-

associated intra-amniotic inflammation or intra-amniotic 

infection [23, 29, 30, 32]. Finally, the fourth group included 

those patients with a positive amniotic fluid culture and/

or positive 16S rRNA gene signal with low IL-6 (n = 18/59, 

30.5%). These reassigned patient groups are utilized in 

Figures 3 and 4. These results confirm that preterm PROM 

is a heterogeneous condition that includes different 

subsets of patients [31, 32].

The correlation between microbial burden and 

extracellular ASC concentrations in amniotic 

fluid (i.e. intra-amniotic inflammasome 

activation)

Subsequently, we investigated the intra-amniotic inflam-

matory response in women with preterm PROM by meas-

uring amniotic fluid concentrations of extracellular ASC 

(i.e. intra-amniotic inflammasome activation). A signifi-

cant correlation was observed between amniotic fluid ASC 

concentrations and microbial burden, i.e. low 16S rRNA 

gene Cq values (P = 0.013, ρ = −0.322) (Figure 3). Hence, 

most of the samples with detectable microorganisms (red 

dots) had elevated concentrations of extracellular ASC, 

whereas most of the samples without detectable microor-

ganisms (blue dots) had low concentrations of extracel-

lular ASC (Figure 3).

The correlation between microbial burden and extra-

cellular ASC (Figure 3) appeared to be related to the 

severity of the intra-amniotic inflammatory response, 

as amniotic fluid ASC concentrations were signifi-

cantly elevated in patients with intra-amniotic infection 

[microbe(+)/IL-6(+)] compared to those with a positive bac-

terial culture/16S rRNA gene signal without intra-amniotic 

inflammation [microbe(+)/IL-6(−)] or those with neither 

detectable microorganisms nor intra-amniotic inflamma-

tion [microbe(−)/IL-6(−)] (Figure 4). This association was 

partially independent of the detection of microorganisms 

given that patients with sterile intra-amniotic inflamma-

tion [microbe(−)/IL-6(+)] tended to display higher ASC 

concentrations in amniotic fluid compared to those with 

detectable microorganisms without intra-amniotic inflam-

mation [microbe(+)/IL-6(−), non-significant] or those with 

neither detectable microorganisms nor intra-amniotic 

inflammation [microbe(−)/IL-6(−), non-significant] (Figure 

Table 2: Amniotic fluid sample categorization in patients with preterm PROM.

Category Bacterial culture Bacterial qPCR IL-6 concentration Number of cases Percentages

Negative microbial detection and low IL-6 Negative Negative Negative 14 23.7%

Negative microbial detection and high IL-6 Negative Negative Positive 8 13.6%

Positive microbial detection and high IL-6 Positive Negative Positive 3 32.2%

Negative Positive Positive 11

Positive Positive Positive 5

Positive microbial detection and low IL-6 Positive Negative Negative 6 30.5%

Negative Positive Negative 4

Positive Positive Negative 8

Categorization of amniotic fluid samples based on the presence/absence of a positive microbiological culture, positive bacterial 16S rRNA 

gene quantitative real-time PCR (qPCR), and intra-amniotic inflammation (IL-6 concentrations >2.6 ng/mL). A positive bacterial qPCR result 

was defined as having a Cq value <34.66 cycles (the lowest Cq value among the negative technical controls).
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4). These data suggest that the intra-amniotic inflamma-

tory response in patients with preterm PROM involves 

inflammasome activation, which partially depends on the 

detection of microbes in the amniotic cavity.

Discussion

Principal findings

In the current study, we report that in patients with preterm 

PROM: (1) a positive amniotic fluid microbiological culture 

result was associated with high 16S rRNA gene signal; 

(2) 16S rRNA gene qPCR can identify a greater number 

of microbe-positive amniotic fluids than conventional 

culture; (3) over 50% of patients with a negative culture 

and high IL-6 in amniotic fluid yielded a positive 16S rRNA 

gene signal; (4) 16S rRNA gene signal was positively cor-

related with amniotic fluid concentrations of extracellular 

ASC; (5) ASC concentrations were greatest in patients with 

a high positive 16S rRNA gene signal and elevated IL-6 

concentrations in amniotic fluid (i.e. intra-amniotic infec-

tion); and (6) ASC concentrations tended to increase in 

patients without detectable microorganisms but yet with 

elevated IL-6 concentrations in amniotic fluid (i.e. sterile 

intra-amniotic inflammation) compared to those without 

intra-amniotic inflammation. Collectively, these results 

indicate that 16S rRNA gene qPCR can be an effective and 

valuable complement to microbiological culture for the 

detection of microbial invasion of the amniotic cavity in 

women with preterm PROM, and that microbial burden is 

associated with intra-amniotic inflammation, including 

the activation of the inflammasome.

Detection of microbial burden in amniotic 
fluid by 16S rRNA gene qPCR compared to 
conventional microbiological cultures

Conventional microbiological culture has been widely 

used to diagnose microbial invasion of the amniotic cavity 

[2, 3, 5, 6, 9, 73, 122, 123, 132–138, 145, 146, 159–165]. However, 

Figure 3: Correlation between microbial burden and extracellular 

ASC in amniotic fluid.

Extracellular ASC concentration in relation to the cycle of 

quantification (Cq) of amniotic fluid samples. Categorization of 

amniotic fluid samples is based on the presence/absence of a 

positive microbiological culture and/or positive bacterial 16S rRNA 

gene qPCR, and intra-amniotic inflammation (IL-6 concentrations 

>2.6 ng/mL). The statistical result is from the Spearman’s rank-order 

correlation test. The regression line is indicated. n = 8–19 per group.

Figure 4: Extracellular ASC concentrations in amniotic fluid of 

women with preterm PROM in the presence/absence of positive 

microbial detection and intra-amniotic inflammation.

Extracellular ASC concentrations of amniotic fluid samples based on 

the presence/absence of a positive microbial culture and/or positive 

bacterial 16S rRNA gene qPCR, and intra-amniotic inflammation 

(IL-6 concentrations >2.6 ng/mL). Median values are indicated. 

Statistical results are from the Kruskal-Wallis and Mann-Whitney 

U tests. Amniotic fluid categories marked by different letters were 

statistically different after sequential Bonferroni corrections were 

applied. n = 8–19 per group.
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this method has several limitations, most notably the 

length of time required to obtain results and the variety of 

microorganisms that can be detected [23, 24, 78, 152, 166, 

167]. Clinically, this delay in obtaining culture results has 

led to the standard practice of administering broad-spec-

trum antibiotics to patients presenting with inflammation 

without knowing the specific microorganisms present 

[168–171]. Recently, the use of advanced molecular micro-

biological PCR-based techniques was proposed as a solu-

tion to these problems [23], as such methods can identify a 

greater number of microorganisms, including those which 

may be difficult to culture [78, 139–145, 147–154, 172–174], 

and the results can be rapidly obtained [23, 175–181]. Mole-

cular microbiological techniques can also rule out false 

positives obtained by conventional culture likely due to 

contamination [126]. In line with these previous studies, 

we report that patients with preterm PROM and a posi-

tive amniotic fluid culture have a higher 16S rRNA gene 

signal than those with a negative culture. More impor-

tantly, several of the patients with a negative culture also 

displayed a high 16S rRNA gene signal, providing further 

confirmation that molecular microbiological techniques 

can detect microorganisms in amniotic fluid that are not 

found using conventional clinical methods.

Microbial detection and intra-amniotic 
infection

In the current study, we found that preterm PROM patients 

with a positive culture and intra-amniotic inflammation 

(diagnosed as the elevated amniotic fluid concentration of 

IL-6 >2.6 ng/mL) have elevated bacterial burden using 16S 

rRNA gene qPCR. These results are consistent with previ-

ous studies in which women with preterm labor [29, 82], 

clinical chorioamnionitis at term [116] or preterm PROM 

[31, 32] and proven intra-amniotic infection display higher 

levels of IL-6 than those with intra-amniotic inflamma-

tion without detectable microorganisms. Patients with a 

positive culture do not seem to display differences in the 

intensity of the intra-amniotic inflammatory response, as 

evidenced by amniotic fluid IL-6 concentrations. This sug-

gests that further investigation of the identities of the dif-

ferent cultured, as well as uncultured, microorganisms in 

these amniotic fluids, using deep sequencing, is warranted.

In the current study, we also found that some patients 

with a negative culture had an elevated amniotic fluid 

IL-6 concentration and detectable 16S rRNA gene signal, 

suggesting that microorganisms that were not cultured 

from amniotic fluid, yet still present, may also initiate an 

intra-amniotic inflammatory response. There are several 

microorganisms associated with intra-amniotic infection 

that are difficult to culture in a clinical laboratory setting, 

namely mycoplasmas (e.g. Ureaplasma urealyticum) [23, 

32, 66, 79, 143, 182–184], Sneathia spp. [23, 32, 66, 152, 184], 

Neisseria spp. [32, 152], and Fusobacterium nucleatum 

[23, 66, 184, 185]. In addition, there are several fastidious 

species that are known to exist in a viable but non-cul-

turable state [186]. These non-culturable microorganisms 

can be notably different from their viable counterparts 

with respect to their metabolic, adhesive, and virulence 

capacities, as well the biochemical composition of their 

cell walls and membranes [187–209]. Therefore, it is likely 

that both the viability and culturable state of the micro-

organisms in amniotic fluid may affect the severity of the 

inflammatory response.

The mechanisms whereby microbes invading the 

amniotic cavity induce high concentrations of IL-6 involve 

the activation of the nuclear factor-κB (NF-κB) pathway 

[210–213]. Indeed, in vitro studies have shown that incu-

bation of the chorioamniotic membranes with microbial 

products such as lipopolysaccharide (LPS) triggers the 

activation of such a pathway [214]. Another potential cel-

lular source of IL-6 in amniotic fluid is the immune cells 

present in this compartment, particularly monocytes/

macrophages [215–218]. Nonetheless, further research is 

needed to investigate whether viable yet non-culturable 

microorganisms are sensed by different pattern recogni-

tion receptors than culturable microorganisms, leading to 

distinct inflammatory responses.

Microbial burden correlated with  
intra-amniotic inflammasome activation

Herein, we showed that there is a significant correlation 

between 16S rRNA gene signal, microbial burden, and 

extracellular ASC concentrations in amniotic fluid of 

patients with preterm PROM. Extracellular ASC has been 

previously utilized as an in vivo indicator of inflamma-

some activation in amniotic fluid [82, 115, 116]. Indeed, 

we have recently demonstrated that the concentrations 

of this protein are increased in the amniotic cavity during 

the sterile physiological process of spontaneous labor at 

term [115], as well as in pathological processes such as 

clinical chorioamnionitis at term [116] and preterm labor/

birth [82]. These observations are in line with previous 

studies showing that inflammasome-related molecules 

such as caspase-1 [219] and IL-1β are increased in amniotic 

fluid of women who underwent preterm labor with intact 

membranes [220–223] or preterm PROM [220]. There are 

several possible sources for extracellular ASC and other 
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inflammasome components in the amniotic cavity. First, 

the chorioamniotic membranes from women in preterm 

labor with  intra-amniotic inflammation/infection express 

increased levels of inflammasome sensor molecules and 

the active forms of both caspase-1 and IL-1β, as well as 

greater numbers of ASC/caspase-1 protein complexes 

(i.e. enhanced inflammasome assembly) [81]. Second, 

amniotic fluid of women with intra-amniotic infection 

contains large numbers of immune cells such as neu-

trophils and monocytes/macrophages [215–217], which 

may undergo inflammasome-mediated inflammatory cell 

death (i.e. pyroptosis) [224]. Together, these data indicate 

that women with a high microbial burden in the amniotic 

cavity – intra-amniotic infection – display inflammasome 

activation. Yet, the sole presence of microorganisms in 

this compartment may not always result in intra-amniotic 

inflammasome activation.

In this study, we report that a subset of women with 

preterm PROM had elevated concentrations of IL-6 and 

ASC (i.e. intra-amniotic inflammasome activation) in the 

absence of detectable microorganisms, which has been 

termed “sterile intra-amniotic inflammation” [23, 29, 30, 

32]. This is consistent with previous reports showing that 

there is evidence of in vivo activation of the inflammasome 

in women with sterile intra-amniotic inflammation and 

preterm labor/birth [82] or clinical chorioamnionitis at term 

[116]. The mechanisms leading to sterile intra-amniotic 

inflammation involve the activation of the NLRP3 inflam-

masome in the chorioamniotic membranes [81, 82, 85]. 

Indeed, animal experimentation has shown that alarmins 

(molecules that trigger sterile inflammation [225–227]) are 

capable of activating the NLRP3 inflammasome in the fetal 

membranes [228]. Importantly, these studies have gener-

ated promising data showing that, by tackling the activa-

tion of the NLRP3 inflammasome, sterile intra-amniotic 

inflammation can be treated and preterm birth prevented.

It is worth mentioning that, regardless of the nature of 

the stimuli (microbes and/or alarmins), the single deter-

mination of ASC in amniotic fluid does not allow for the 

identification of the canonical and non-canonical activa-

tion of the NLRP3 inflammasome. Yet, in vivo concentra-

tions of extracellular ASC provide an overall readout of 

inflammasome activation in the amniotic cavity.

Microbial detection in amniotic fluid does 
not always correspond with intra-amniotic 
infection

A subset of patients with preterm PROM had detectable 

microbes either by culture or 16S rRNA gene qPCR but 

had low concentrations of IL-6 and extracellular ASC. 

This subset of patients are considered to have micro-

bial invasion of the amniotic cavity in the absence of an 

inflammatory response [23, 24, 29–32, 229–231]. A possible 

explanation for the lack of inflammation in these patients 

is that the amniotic fluid sample was collected before 

the initiation of the inflammatory cascade. However, 

the detection of microorganisms in the absence of intra-

amniotic inflammation may also represent downstream 

contamination of the amniotic fluid sample. Additional 

research is required to investigate the clinical significance 

of the detection of microbes in the amniotic cavity in the 

absence of an inflammatory response.

Conclusion

In summary, the data presented herein provide evidence 

that preterm PROM is a heterogeneous condition that can 

be categorized based on the microbial burden and/or pres-

ence of intra-amniotic inflammation. The intra-amniotic 

inflammatory response is characterized by elevated con-

centrations of IL-6 as well as enhanced inflammasome 

activation (i.e. extracellular ASC) in amniotic fluid. These 

results provide insight into the biological processes occur-

ring in the amniotic cavity of women with preterm PROM, 

and show that molecular microbiological techniques are 

valuable complements of conventional microbiological 

culture for the detection of microbial invasion of the amni-

otic cavity.
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