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Metabolism occurs both within and between cells. The 
exchange of metabolites is increasingly recognized as a 
critical feature for the physiology of microbial cells that 

are growing as part of community structures, where uptake and 
secretion of metabolites are defining characteristics of metabo-
lism that lead to cross-feeding and collective survival1–6. Because 
metabolic processes are coupled to each other as part of metabolic 
networks, microbial metabolic interdependencies fundamentally 
contribute to the physiology of cells that are part of communi-
ties7,8. Indeed, most microbial cells have broad-ranging biosynthetic 
capacities and can synthesize a wide range of biomolecules that they 
require for growth. In the presence of the respective metabolites in 
the extracellular environment, however—for instance, when they 
are released at sufficient concentration by cogrowing cells—they 
inhibit the respective biosynthetic pathways and uptake metabo-
lites rather than synthesizing them9. Such metabolic flexibility 
results in cell–cell metabolic interactions and allows communi-
ties to effectively exploit resources, to save costs and to improve 
biomass formation10,11. Evidence for a high degree of metabolite 
exchange is provided by the regular presence of auxotrophic species 
within microbial communities. Auxotrophs lack the essential meta-
bolic pathways required to synthesize amino acids, nucleotides,  

vitamins, fatty acids or metabolic coenzymes at the genetic level1,12–16. 
In contrast to prototrophs that can flexibly switch between metabo-
lite synthesis and uptake, auxotrophs are constitutively dependent 
on the extracellular availability of these metabolites for growth7,17. 
Auxotrophs can hence persist in communities only where the essen-
tial metabolites are consistently available at growth-supporting 
concentrations.

A switch from self-synthesis to the uptake of a metabolite 
affects the physiological parameters of microbial cells and affects 
their stress tolerance18–20. For instance, Saccharomyces cerevisiae 
cells uptake much higher concentrations of lysine than they would 
require for growth. This lysine harvest allows them to configure 
their metabolism to maintain higher concentrations of glutathione, 
which increases oxidant tolerances21. Interestingly, several recent 
reports have linked the metabolic properties of both bacterial 
and fungal microbes to their ability to mount resistance (defined 
as robust growth in the presence of the antimicrobial22), tolerance 
(slower growth of subpopulations in the presence of drug concen-
trations above minimum inhibitory concentration (MIC) drug con-
centrations22) and resilience (used herein to describe situations that 
involve both tolerance and resistance mechanisms) against anti-
microbial substances23,24. In parallel, there is an active discussion 
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regarding whether and how the exchange of metabolites between 
cells is influencing the evolution of resistance genes. ‘Weakest links’ 
in metabolite exchange chains can slow the spread of drug resistance 
genes if their growth is impaired by antimicrobial exposure25,26.

We here describe a mechanism that links the presence of auxo-
trophs within microbial communities to an increase in metabo-
lite exchange interactions in general, and show that communities 
gain robustness against antimicrobial substances as a consequence 
of metabolite exchange interactions. We observed that amino 
acid auxotrophs are found in the vast majority of microbiomes 
sequenced as part of the EMP27, and it triggered our particu-
lar attention that these auxotrophs are particularly frequent in 
host-associated communities. Searching for potential physiologi-
cal consequences, we mined growth data for a panel of gut micro-
bial species28 of which one-third were revealed to be auxotrophic 
for diverse amino acid biosynthetic pathways. We observed that 
amino acid auxotrophs achieve better growth in the presence of a 
large number of drugs. To shed light on the underlying mechanism, 
we made use of a tractable, isogenic system (SeMeCos) in budding 
yeast29. The SeMeCos model replicated the increased drug resil-
ience of auxotrophs. Moreover, SeMeCos revealed system-wide 
metabolic flux changes that cause auxotrophs to enrich the com-
munal metabolic environment. We describe how these metabolic 
changes are associated with overall increased efflux activity. These 
effects are not specific to metabolites but also reduce intracellular 
drug concentrations. Studying azoles as a potent class of antifun-
gals, we report that lower intracellular drug levels allow meta-
bolically interacting cells to grow above the minimal inhibitory  
drug concentrations.

Results
Amino acid auxotrophs are prevalent in natural communi-
ties. We analyzed the frequency of auxotrophs in both free-living 
and host-associated natural communities using species composi-
tion data from EMP27. We determined the occurrence of auxot-
rophies using procedures described by Machado et al.30. Study of 
>12,000 communities present in the EMP dataset revealed that 
both free-living and host-associated communities contain a high 
frequency of species auxotrophic for amino acid biosynthetic path-
ways. Indeed, the data revealed that the presence of (amino acid) 
auxotrophs is an almost universal feature of microbial communi-
ties. Only six out of 12,538 communities in the dataset contained no 
amino acid auxotrophs, while one community contained not a sin-
gle example. Moreover, many communities contained auxotrophs at 
high frequency, notably in host-associated communities, where we 
observed a particularly high abundance of auxotrophic species rela-
tive to prototrophs (45.55 versus 25.88% in free-living communities; 
Fig. 1a). We speculated that host-associated species are exposed to 

rich nutritional environments, which may explain why auxotrophs 
are more likely to prevail.

Amino acid auxotrophs are less susceptible to drug effects. 
Equally, host-associated communities are more frequently exposed 
to bioactive drugs, including those targeting human, fungal or bac-
terial cells, which can affect host microbiome composition. To test 
whether auxotrophy could have any impact in these drug responses, 
we made use of growth data from 40 gut microbiome members 
exposed to 1,197 bioactive drugs28. To determine the presence of 
auxotrophic species in these 40 gut microbiome members, we used 
the same predictor30 and found that 15 (37.5%) of the 40 species did 
bear auxotrophies (Extended Data Fig. 1a) in 12 amino acid biosyn-
thetic pathways (Fig. 1b). Individual species possessed a maximum 
of seven amino acid auxotrophies in parallel, with the majority pos-
sessing between one and four in different combinations (Extended 
Data Fig. 1b). To illustrate the effect of drugs on growth in microbial 
species, we split these into three categories: (1) strong effect of the 
applied drug on growth (n = 3,100 drug–microbe pairs, one-sided 
Wilcoxon rank-sum test, false discovery rate (FDR) adjusted 
P = 5.4 × 10–9; (2) weak effect of drug on growth (n = 5,461 drug–
microbe pairs, one-sided Wilcoxon rank-sum test, FDR adjusted 
P = 2.0 × 10–15); and (3) no effect of drug on growth (n = 39,264 
drug–microbe pairs). We used the difference in mean area under 
the curve (AUC) values obtained from the growth curves, where 
AUC values were normalized to the value of 1 for the category “no 
growth effect” described in Maier et al.28 (Fig. 1c). Auxotrophs gen-
erally grew better in the presence of the selected drugs compared to 
prototrophs (expressed as higher AUC values). Enhanced growth of 
auxotrophs compared to prototrophs was detected in 8,561 drug–
microbe combinations (Fig. 1c, top and middle). While other drugs 
had no effect on auxotrophs (Fig. 1c, bottom), we did not find a 
drug class that would disadvantage auxotrophs over prototrophs 
(Extended Data Fig. 1c). The effect of auxotrophy was most preva-
lent on the group of drugs having a suppressive effect on growth, 
but not in the group in which the drug had no general impact on 
growth, indicating that amino acid auxotrophy could buffer the 
impact of growth-inhibiting drug treatments (Fig. 1c). In particu-
lar, amino acid auxotrophs were more resilient to drugs directed 
against bacterial, fungal and protozoal targets (Wilcoxon rank-sum 
test; Fig. 1c).

Metabolically cooperating auxotrophs are more drug resilient. 
The improved growth of auxotrophs versus prototrophs following 
drug exposure was observed for a broad spectrum of drug types and 
targets. This finding implies a general, target-independent mecha-
nism that connects amino acid auxotrophy with microbial drug 
response. To shed light on this mechanism, we sought a tractable, 

Fig. 1 | Auxotrophs are prevalent in host-associated microbial communities and are more drug resilient. a, Frequency of amino acid auxotrophic species 
in <12,000 microbial communities sequenced in the EMP27,30. Dotted line represents an auxotroph/prototroph (A:P) ratio of 1:1 in a given microbial 
community. b, Number of amino acid auxotrophies detected in 15/40 gut microbial species exposed to 1,197 bioactive drugs28. c, Growth, represented by 
AUC, between prototrophs and auxotrophs in drug-exposed microbiome species28. Microbe–drug pairs are binned according to strong (AUC > 0.2), weak 
(0.9 > AUC > 0.2) and no effect (AUC > 0.9) on growth across 40 drug-exposed microbial species. d, SeMeCos, a yeast-based, isogenic model for study 
of auxotrophic subpopulations41. e, Top, bottom left: SeMeCo colonies exposed to 900 FDA-approved drugs. PCA of z-scores assessing their impact on 
community composition. Hierarchical clustering identified two drug clusters (yellow and gray) affecting the A:P ratio. Arrows indicate variance driven 
by auxotrophic subpopulations. Bottom right: subset of gut microbiome AUC values for strong azoles identified by PCA. Significance was determined 
using a two-sided Wilcoxon rank-sum test, P = 5 × 10–4. f, A:P ratio within drug-treated SeMeCos based on highest z-scores. Classification of these drugs 
is based on known target/activity (sunburst plot). g, Composition analysis of SeMeCos treated with azoles/statins not present in e. Changes in A:P ratio 
are highlighted in red and blue.. Data are the median of n = 3 technical replicates within one independent experiment. Clustering based on subtraction of 
Pearson’s correlation from 1. h, Proportion of prototrophic and auxotrophic subpopulations following drug treatment. Data are median ± s.d. from 12 or 
26 independent measurements for drug or DMSO, respectively, across two biologically independent experiments. Significance determined using two-sided 
Student’s t-test; *P < 0.05, **P < 0.005, ****P < 0.00005. Boxplots represent median (50% quantile (middle line)), lower (25%) and upper (75%) 
quantiles respectively). For c and e, significance was determined using Wilcoxon rank-sum test: *P < 0.05, **P < 0.005, ****P < 0.00005. Exact P values are 
available in Source Data 1. NS, not significant.
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isogenic model in which differences in drug tolerance are readily 
and directly attributable to auxotrophic mutations. SeMeCos repre-
sents a yeast model that allows the tracing of auxotrophic subpopu-
lations and the dissection of auxotroph–prototroph interactions19,29. 
In SeMeCos, stochastic plasmid loss from a single prototrophic 
founder cell generates a community of auxotrophs and prototrophs 
in which auxotrophs require the exchange of amino acids (histi-
dine, leucine, methionine) and a nucleobase (uracil) for survival 
and growth19 (Fig. 1d). Emerging auxotrophic subpopulations can 
be tracked because the SeMeCos colony grows exponentially, either 
by testing their auxotrophy through growth on appropriate media 
or by coupling the segregated metabolic marker to fluorescent pro-
teins, and identifying auxotrophy through microscopy and fluo-
rescent activated cell sorting (FACS). Ideal for our study, SeMeCos 
possesses a similar number of auxotrophies to gut microbial species, 
with similar pathways affected: 13 of the 15 auxotrophic gut species, 
as well as SeMeCos, had between one and four amino acid auxotro-
phies in different combinations (Extended Data Fig. 1b).

To investigate whether auxotrophs within SeMeCos replicate 
increased robustness to drug exposure as observed in bacterial 
auxotrophs, we first generated a SeMeCos strain that coexpresses 
the prototrophic marker enzymes His3p, Leu2p, Met15p and Ura3p 
with fluorescent proteins that are codon optimized for expression 
in yeast31. We then established SeMeCos communities from the 
founder strain by serial spotting29, and exposed them to a com-
pound library containing 900 diverse FDA-approved drugs at the 
typical concentration of 10 µM used in many pharmacological 
screens32. Of these drugs, 240 had also been tested in the gut micro-
biome species and, of these, 179 had a growth-inhibitory effect28. 
After cultivation of cells for 24 h in minimal synthetic medium, 
we used high-throughput fluorescence imaging to determine the 
auxotrophic composition of the cultures. For each auxotrophic 
subpopulation under each drug condition, a z-score was assigned 
reflecting the degree of deviation from the vehicle control (DMSO) 
population median (Extended Data Fig. 1d). Principal component 
analysis (PCA) of the raw scores and hierarchical clustering of the 
first two components revealed three clusters (Fig. 1e). Cluster 1 
contained vehicle control (DMSO) and drug treatments with no 
effect on SeMeCos composition, as opposed to clusters 2 and 3, 
which primarily reflects an increase in auxotrophy independent 
of the number or type of auxotrophy (Fig. 1e, arrows). Most of the 
drugs contributing to clusters 2 and 3 were antimicrobial/antifungal 
compounds and, in a subset of cluster 2 drugs, the auxotrophs also 
demonstrated improved growth in the gut microbiome drug screen 
(Fig. 1e,f and Extended Data Fig. 1e). Notable was the robustness 
of auxotrophs against azole treatment (10/42 drugs in the SeMeCos 
drug screen hits), a class of compounds clinically used to treat fungal  

infections and which target the ergosterol biosynthetic pathway33 
(Fig. 1e; Wilcoxon rank-sum test, P = 5.3 × 10–4). To test the gen-
erality of this finding in an independent experiment, we exposed 
SeMeCos to additional compounds belonging to the azole and 
statin classes, another group of compounds that affect the ergosterol 
biosynthetic pathway in yeast34. We then determined changes in the 
auxotrophic composition of SeMeCos by flow cytometry. SeMeCos 
exposed to these two drug classes showed a significant increase in 
the number of auxotrophic subpopulations when compared to vehi-
cle control (DMSO) across two independent experiments (Fig. 1g,h 
and Extended Data Fig. 1f). To exclude the possibility that changes 
in drug response were due to altered segregation or stability of the 
plasmids that would also affect the proportion of auxotrophic sub-
populations within SeMeCos, we transformed wild-type (WT) cells 
with an alternative centromeric plasmid (MitoLoc35), which allowed 
for selection not by auxotrophy but with the antibiotic nourseothri-
cin. Moreover, we also tested drug tolerance in yeast strains in which 
the four marker genes were genomically integrated. In comparison 
of WT (no plasmid) and SeMeCos (four plasmids), as well as the 
genomically integrated strains, we observed no significant differ-
ence in growth response to uniconazole or miconazole, suggesting 
that the observed effects are not explained by the drug influenc-
ing either plasmid segregation or stability (Extended Data Fig. 2). 
In summary, together these results show that auxotrophy increases 
resilience to a broad range of bioactive compounds, particularly to 
azole antifungals and statins, not only in bacteria but also in iso-
genic yeast strains.

A rich metabolic environment promotes drug resilience. We 
interrogated a yeast genome-scale metabolic model using flux bal-
ance analysis (FBA)36,37 to map the community’s metabolic changes 
introduced by auxotrophy. To account for the exchange of amino 
acids and uracil between cells, we expanded the conventional FBA 
approach by including export and import reactions from a shared 
exometabolome, so that the model reflects metabolic interactions 
between the different metabotypes (metabolic backgrounds), spe-
cifically between cogrowing auxotrophs and prototrophs (Fig. 2a, 
left). The main objective function of the community model is the 
cumulative biomass of both auxotrophs and prototrophs. The analy-
sis revealed that the change from self-synthesis to uptake of histidine 
(H), leucine (L), methionine (M) and/or uracil (U) not only affects 
the four perturbed biosynthetic pathways, but also a broad range of 
other metabolic fluxes coupled to them. Interestingly, comparison of 
the network reconstructions of auxotrophs with those of prototrophs 
interacting in a common metabolic environment revealed that auxo-
trophs had, in aggregate, more reactions with increased flux (flux 
change >10%). Consistently, a broader range of fluxes was reduced 

Fig. 2 | Auxotrophs promote a rich metabolic environment that increases drug tolerance in prototrophs. a, Left: genome-scale metabolic modeling 
in SeMeCos composed of auxotrophic and prototrophic subpopulations (n = 4, H/L/U/M community models). Significant increase (change >10%) in 
the number of metabolic fluxes (second from left, P = 7 × 10–4, metabolite exchange (second from right, P = 0.02) and exchange of amino acids (right, 
P = 0.002) in auxotrophs compared to prototrophs, shown as boxplots. Significance was calculated by two-sided Student’s t-test. b, Prototrophic 
community generated by genomic repair of HIS3, LEU2, URA3 and MET15 (WT), as opposed to SeMeCos containing auxotrophs due to the stochastic 
segregation of plasmids containing the four auxotrophic markers. c, Left, middle: quantification of intra- and extracellular metabolites by mass 
spectroscopy39 in exponentially growing SeMeCos compared to WT cultures in SM medium. Metabolite concentrations were normalized to biomass, 
as assessed by optical density at OD600. Grouped metabolite comparison (box plots) significance was determined using a one-sided Kruskal–Wallis 
rank-sum test. Mean ± s.e.m. of n = 8 independent cultures per strain from two independent experiments. Individual metabolite comparison (bar plots) 
significance was determined using an unpaired two-sided Wilcoxon rank-sum test: *P < 0.05, **P < 0.005, ***P < 0.0005, ****P < 0.00005; exact 
P values are given in Source data 2. Right: proportion of auxotrophs and prototrophs in SeMeCos analyzed above, calculated by spotting colonies onto 
selective medium. Mean ± s.e.m. of n = 6 independent cultures from two independent experiments. d, Drug resistance (diameter of inhibition halo) and 
tolerance (growth within halo) measured by DDA22 in WT colonies in minimal (SM) or SM + HLUM-supplemented medium treated with uniconazole or 
miconazole, respectively. DDAs generated from WT cultures plated onto SM or SM + HLUM and/or azoles. One DDA per drug is illustrated. e, Growth of 
WT yeast cultures, assessed by OD600 and plotted as AUC, under increasing concentrations of uniconazole/miconazole and following increasing HLUM 
supplementation. Boxplots represent median (50% quantile (middle line)), lower (25%) and upper (75%) quantiles, respectively, of change in metabolic 
flux and amino acid and metabolite exchanges in auxotrophs compared to prototrophs in a, and pooled metabolite FC levels compared to WT in c.
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in prototrophs (two-sided Student’s t-test, P = 7 × 10–4) (Fig. 2a, sec-
ond from left). Moreover, the spectrum of metabolites released from 
cells was increased in auxotrophs compared to prototrophs (Fig. 2a,  
second from right and far right). We then applied the expanded 
FBA approach, assessing flux changes between cells, to SeMeCos 

exchanging all four metabolites (H, L, U, M) and performed pair-
wise analysis between prototrophs and each of the 15 auxotrophic 
combinations (Extended Data Fig. 3a). We found that the number 
of auxotrophies positively correlated with the percentage of meta-
bolic pathways with altered flux (flux change >10%; Extended Data 
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Fig. 3b,c). In parallel, we simulated individual auxotrophic strains 
in minimal medium with the required metabolite supplementation 
using FBA and minimization of metabolic adjustment (MOMA) 
approaches38. FBA predicted a faster growth rate of auxotrophs while 
MOMA, similar to community-extended FBA, predicted an increase 
in metabolite excretion (Extended Data Fig. 3d).

To experimentally test these predictions, we tested for changes 
in both growth rate and exometabolome. To address the former, 
we engineered a SeMeCos founder strain carrying all four marker 
genes on a single plasmid (pHLUM). Because this strain cannot 
differentially segregate markers, its progeny either maintains pro-
totrophy or becomes auxotrophic for all four metabolites simulta-
neously (Extended Data Fig. 4a). We then conducted a competitive 
growth experiment on minimal medium, by monitoring SeMeCos 
composition over time. The prototrophic (pHLUM) strain slowly 
but consistently became the dominant population, and dominated 
SeMeCos after ~3 weeks (~250 generations) of sequential respotting 
onto solid minimal medium every 2 days (Extended Data Fig. 4b). 
Despite bearing the synthesis costs for H, L, U and M for the entire 
community, it was hence the prototrophs that obtained a slightly, 
but substantially increased growth rate over the auxotrophs in the 
common metabolic environment.

Next, we employed a highly sensitive targeted liquid 
chromatography-selected reaction monitoring (LC-SRM)-based 
metabolomics method39 to measure the concentrations of amino 
acids and uracil in cell pellets, as well as in the exometabolome sur-
rounding prototrophic WT and SeMeCos (Fig. 2b). We found that, 
despite communities being forced to exchange only four metabolites 
(H, L, U and M), they exhibited a broad spectrum of metabolite con-
centration changes in both the intra- and the extracellular metabo-
lome. In SeMeCos, in which two-thirds of the cells were auxotrophic 
for H, L, U or M (Fig. 2c), 14 out of 20 extracellular metabolite con-
centrations (amino acids and uracil) were significantly increased 
(Fig. 2c). Together, these results revealed that the presence of auxo-
trophs broadly changes metabolism in these communities and 
results in higher extracellular metabolite levels (Fig. 2c).

Our previous work has shown that cells import at least some 
extracellular amino acids at much higher concentrations than that 
required for growth. Such harvesting of metabolites can promote 
stress tolerance18,40. This situation suggested that the observed 
changes in the exometabolome could be associated with the 
observed increase in drug robustness. To test this hypothesis, we 
exposed WT cells to H, L, U and M under drug treatment. The 
four metabolites were supplied at growth-supporting concentra-
tions, which resulted in similar uptake rates in both auxotrophs 
and prototrophs so that their flux distribution was similar41,42. We 
then measured the drug response against azole antifungals, using 
both disk diffusion assays (DDA) in solid media and assessment 
of MIC in liquid cultures via microbroth dilution assays. Nutrient 
supplementation markedly increased growth in the presence of 
azoles in WT cells, to the extent that the growth-inhibitory proper-
ties of azoles were largely abrogated (Fig. 2d,e). This phenotype was 
independent of the growth-promoting effects of supplementation, 
because AUC values did not substantially change in the untreated 
controls. Furthermore, this result was substantiated by a gain in 
tolerance and resistance against azoles with increasing concentra-
tion of the supplemented metabolites in WT cells (Extended Data 
Fig. 5a), in a growth-rate-independent manner (Extended Data Fig. 
5b). Together, these results show that an increase in exometabolome 
metabolite concentration, as caused by the presence of auxotrophs, 
increases cellular ability to tolerate drugs.

Reciprocity of the metabolic response in prototrophs. Microbes 
in general, and yeast cells in particular, possess elaborate capacities 
to sense and uptake extracellular metabolites10,11,29,43. This biological 
situation implies that altered metabolite concentrations, as measured 

in the exometabolome (Fig. 2b), might trigger a metabolic response 
not only in auxotrophs but in all cells in the community. We gen-
erated SeMeCos containing only one segregating plasmid (pH, pL, 
pU or pM) encoding for an independently expressed enhanced cyan 
fluorescent protein (eCFP) (Fig. 3a). We then separated auxotrophic 
and prototrophic cells by FACS and measured their proteomes. In 
parallel, we measured the proteomes of equally treated prototrophs 
that had grown among themselves—that is, similarly treated cells 
isolated from prototrophic WT yeast colonies (Fig. 3a). We used liq-
uid chromatography-sequential window aquisition of all theoretical 
ion spectra-mass spectrometry, a data-independent mass spectrom-
etry acquisition technique to measure proteomes, in a pipeline we 
recently developed44 that provides a comprehensive, system-scale 
view of the state of the yeast metabolic network45. The proteome data 
thus obtained confirmed that CFP-based sorting of SeMeCos suc-
cessfully separated auxotrophic and prototrophic populations based 
on expression of marker enzymes Leu2p, Met15p and Ura3p (His3p 
was below the detection limit in all samples). With this proteomic 
method, we quantified about 1,500 of the 4,000–5,000 proteins 
expressed in a typical yeast cell, covering mostly the high-abundant 
fraction of the proteome that is enriched for metabolic enzymes, 
including Leu2p, Ura3p and Met15p34. These marker enzymes 
were identified as the proteins most highly differentially expressed 
between the two populations (Fig. 3b). Gene set enrichment and 
Gene Ontology (GO) analyses of differentially expressed proteins 
revealed that metabolic terms or processes, particularly amino 
acid biosynthesis, were enriched among differentially expressed 
proteins (Extended Data Fig. 6). Multiple enzymes associated with 
flux changes in FBA (Fig. 2a) were expressed at lower levels in 
prototrophs compared to auxotrophs (Fig. 3c). Furthermore, also 
in agreement with the FBA analysis (Fig. 2a), metabolic pathways 
with a higher predicted flux in auxotrophs versus prototrophs (for 
example, V, L and I biosynthesis) contained many enzymes that 
were more highly expressed in auxotrophs. Similarly, many of the 
metabolic pathways with a lower predicted flux in prototrophs also 
had a higher proportion of downregulated enzymes (Extended 
Data Fig. 7a,b). Overall, when comparing flux predictions from 
FBA analysis with proteomic data, we detected that, depending on 
conditions, 44–64% of enzymes encoding for a reaction with flux 
change >10% were also differentially expressed (Extended Data Fig. 
7c). Considering that overall, about half of these yeast metabolic 
changes can be explained by enzyme abundance changes45, this 
result indicates agreement between the predicted changes in flux 
and measured changes in the proteome. Next, we directly compared 
the proteomes of prototrophs that cogrow in the presence of auxo-
trophs—that is, in the SeMeCos environment—with those isolated 
from fully genomically prototrophic colonies—that is, WT com-
munities (Fig. 3d). We found that enzyme expression, in particu-
lar enzymes implicated in amino acid biosynthetic pathways, were 
significantly different in prototrophs growing in the presence of 
auxotrophs, compared with prototrophic cells growing among pro-
totrophic cells (Fig. 3d). Of note, while more pathways were upregu-
lated in communal prototrophic cells others were downregulated, 
indicating that prototrophs both contribute and consume metabo-
lites within SeMeCos. Finally, we also observed a higher expression 
of ribosomal and other growth-regulated proteins (Extended Data 
Fig. 8). This is also consistent with the aforementioned observation 
that prototrophs, despite carrying the synthesis costs for H, L, U 
and M, maintain a slightly faster growth rate compared to SeMeCos, 
providing no antifungal is present (Extended Data Fig. 4b).

High metabolite efflux confers azole tolerance in auxotrophs. The 
concentration of extracellular metabolites is dependent on transport 
across the plasma membrane. In yeast, the export of amino acids 
is driven to a large extent by metabolite transporters with a broad 
substrate spectrum, and which are also responsible for the export 
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to each other. Comparisons were made exclusively between proteins significantly differentially expressed in b where P < 0.05. Bottom: differential 
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(ref. 83); n = 4. d, Top left: proteomic analysis of prototrophic cells isolated from SeMeCos relative to prototrophs grown on their own. Top right: summary 
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of drugs and xenobiotics, including azole antifungals46–49. Indeed, a 
mechanism that mediates tolerance and resistance to antifungal sub-
stances is increased drug efflux50. We speculated that the increased 

export of amino acids from auxotrophs into the community space 
(Fig. 2c) might explain a higher tolerance to antifungal substances, 
if the higher efflux activity also affects drug concentrations.  
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We first explored a transcriptome dataset that we previously used to 
quantify the impact of auxotrophy on gene expression epistasis42. We 
found that two out of three plasma membrane ATP-binding cassette 
(ABC) transporters with relevant antifungal activity (PDR5 and 
SNQ2)51 were expressed at higher levels across many auxotrophs, in 
comparison to prototrophs (Extended Data Fig. 9; ref. 42). To quantify 
export activity we then applied DiOC5(3), a cationic carbocyanine 
dye used to monitor general export activity, to SeMeCos. DiOC5(3) 
passively diffuses into cells, its export being dependent on ABC/
MFS transporter activity. Therefore, cells with higher export activity 
have reduced staining for DiOC5(3)52. We assessed DiOC5(3) fluo-
rescence intensity by flow cytometry, using a SeMeCos strain with 
three auxotrophies (his3∆, leu2∆ and met15∆) complemented with 
three plasmids all encoding the same far-red-excitable TagRFP657 
protein (Extended Data Fig. 10a). In this situation auxotrophy is, on 
average, inversely proportional to the intensity of fluorescence that 
is related to the number of plasmids carried by each cell (Fig. 4a). 
This experiment allowed us to quantitatively assess the relationship 
between auxotrophy and dye uptake in a complex SeMeCos sys-
tem with multiple auxotrophies. Fluorescent marker and DiOC5(3) 
fluorescence levels were positively correlated, indicating that the 
prototrophic subpopulation exports the dye more slowly than 
the auxotrophic (Spearman’s rank order coefficient = 2.2 × 10–16, 
R = 0.53) (Fig. 4a and Extended Data Fig. 10b). To confirm that it 
was indeed the auxotrophs that exported the dye more rapidly, we 
used single auxotrophic, eCFP-expressing SeMeCos strains, stained 
them with DiOC5(3) and analyzed dye intensity by fluorescence 
microscopy. These analyses also revealed lower relative mean fluo-
rescence intensity across the auxotrophic population compared 
to the prototrophic (Fig. 4b). Hence auxotrophs maintain lower 
DiOC5(3) concentrations, which indicates greater export activity 
when compared to prototrophs. In parallel, we sought to determine 
the influence of the drug on cell size, which needs to be taken into 
account when considering the underlying mechanisms for a change 
in drug resilience and/or transport. Reanalysis of the SeMeCos drug 
screen data revealed that, although some drugs can influence cell 
size, this was not the case for the majority of azoles tested (Extended 
Data Fig. 10e).

Next, we established an LC–MS method to quantify the intra-
cellular concentration of uniconazole (Extended Data Fig. 10c) 
in sorted CFP– auxotrophic and CFP+ prototrophic cells from 
azole-treated SeMeCos. Intracellular concentrations of uniconazole 
were significantly lower in auxotrophic subpopulations relative to 
prototrophic, sorted from the four communities (Fig. 4c). In each 
case, auxotrophs had lower azole levels than the corresponding 
prototrophs. We further noted that the absolute values of azoles 
were lower in URA3 and MET15 auxotrophs, followed by HIS3 and 
LEU2, respectively, which corresponds to their differences in drug 
tolerance (Fig. 4c). Taking nondrug-treated cultures, we then sorted 
and plated the subpopulations onto either minimal (SM) medium, 
where only prototrophic cells can grow, or the corresponding sup-
plemented medium (+H/L/U/M), which supports the growth of 
both populations, and assessed drug tolerance against miconazole 
or uniconazole using DDAs (Fig. 4d). Indeed, ura3Δ and met15Δ 
cells containing lower uniconazole concentrations when sorted from 
SeMeCos did grow better in the presence of the azole, as did his3Δ 
followed by leu2Δ cells, retaining higher azole concentrations when 
isolated from the same community (Fig. 4e). Similar results were 
observed in miconazole-treated cells: indeed, the resilience of his3Δ 
and leu2Δ auxotrophs was much stronger, highlighting the effect of 
differing azole potency on drug tolerance (Extended Data Fig. 10d).

Discussion
Microbial cells generally produce, release, take up and sense a broad 
range of metabolites and, when microbes grow together, these 
intrinsic metabolic properties result in a high degree of metabolite 

exchange. Indeed, for many metabolites, prototrophic microbes 
prioritize uptake from the exometabolome over their own biosyn-
thetic capacity for growth. Accumulating evidence suggests that 
the degree of metabolite exchange within cells in communities is 
extensive, with quantitative metabolome data revealing high levels 
of exported metabolites that enrich the exometabolome of both 
single- and multispecies communities29,53–56. The high degree of 
metabolite availability within microbial communities is reflected by 
a high prevalence of auxotrophic cells57,58 that can grow only if the 
community environment contains growth-supporting concentra-
tions of the metabolites essential to them.

There is still an intense debate over how such high frequencies 
of auxotrophs can persist within communities without being at a 
disadvantage17,58. One popular explanation for the success of auxot-
rophy is the ‘black queen hypothesis’59, which postulates that cells 
profit either from auxotrophy, by reducing the burden of costly 
metabolite synthesis, or from the situation where cells are incapable 
of privatizing their resources once exported. A conundrum around 
the success of auxotrophs is, however, the ‘cheater dilemma’, because 
auxotrophs can exploit prototrophs that provide metabolites with-
out returning any benefit60. If such a benefit allowed auxotrophs to 
grow more rapidly than prototrophs, it would ultimately destabilize 
the community61,62. Another possible explanation for the relatively 
stable coexistence observed in communities is that prototrophs 
might simply export or leak ‘costless’ metabolites. In this case the 
auxotrophic cells, even if cheaters, might impose minimal costs 
to the community because the metabolites essential to auxotroph 
growth are regarded as waste products by the prototrophs63.

The results presented here add a new aspect to understanding 
the success of auxotrophs in microbial communities. Our find-
ings demonstrate that, when taking specific metabolites from the 
community, auxotrophs broadly reconfigure their metabolism and 
overflow metabolites other than those taken up. As a consequence, 
the presence of auxotrophs increases metabolite concentration in 
the community environment. We further show that such changes 
in the extracellular environment can have a profound effect on 
communities because microbial cells, irrespective of whether they 
are prototrophs or auxotrophs, sense changes in the extracellular 
metabolome and adapt their metabolism accordingly21,42. We found 
evidence for a reciprocal response, in which prototrophs downregu-
lated several metabolic enzymes in the presence of auxotrophs, indi-
cating that they made use of metabolites released by the auxotrophs. 
A community that contains auxotrophic cells therefore has broadly 
altered metabolic properties.

Auxotrophs possess the same basic metabolic network struc-
ture as prototrophs, and the interconnectivity in this metabolic 
network explains the increased overflow of a broad range of unre-
lated metabolites, when cells shift from amino acid self-synthesis 
to uptake. Indeed, we see that in the presence of the metabolite 
outside of cells, WT cells uptake metabolites like auxotrophs29 
and, throughout our experiments, we find that their metabolism 
is reconfigured accordingly. From this situation we arrived at the 
conclusion that the ability to uptake metabolites for efficient use of 
the exometabolome is a property of the microbial cell, and hence 
needs no secondary adaptation to come into effect. Indeed, cells 
that are members of natural communities overflow large amounts 
of metabolites, an example being a community of lactic acid bacte-
ria and yeasts64. Corroborating this, the discovery of increased drug 
tolerance was made in the genetic auxotrophs and was replicated in 
genetically prototrophic cells with induced metabolic uptake. We 
would like to emphasize that, because of these metabolic proper-
ties, the gain in tolerance can be explained by the individual cell’s 
optimization of metabolism and does not require coevolution 
of auxotrophs and prototrophs to be beneficial. Indeed, the basis 
for metabolite exchange interactions relies on the basic metabolic 
properties of microbes, in particular their ability to feedback inhibit 
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their intrinsic biosynthetic pathways for efficient uptake and exploi-
tation of extracellular metabolites, while it is reconfigurations in 
the metabolic network that are responsible for altered overflow 
metabolism9. The latter changes are explained by the structure of 
the metabolic network, which largely relies on the thermodynam-
ics and reaction properties of the interconverted metabolites. Due 
to high interconnectivity, fluxes change broadly when cells switch 
from self-synthesis to uptake of a metabolite42.

Eventually, our results unveiled a biochemical mechanism link-
ing metabolic interactions to robustness against antimicrobial drug 
treatments. By analysis of data collected as part of the EMP, as well 
as extensive gut microbiome data27,28 and confirmed by the traceable 
SeMeCo model, we found that amino acid auxotrophs are highly 
prevalent and more resilient to a broad range of drug exposures 
than prototrophs. We provide evidence that the underlying mecha-
nism is increased metabolite efflux activity resulting from the met-
abolic reconfiguration undergone by cells when they switch from 
self-synthesis of specific essential metabolites to their uptake. This 
raises the attractive prospect of a priori drug efficacy prediction, 
although further characterization of drug efflux pump structure 
and activity will be required to achieve this. The data indicate that 
increased drug tolerance is an emergent property that comes as a 
consequence of metabolite exchange interactions, where the degree 
of metabolite exchange is more complex than can be determined 
simply by the number of auxotrophs present. Our metabolome 
data, FBA model and proteome data show that each of the different 
metabolites (H, L, U and M) used to model auxotroph–prototroph 
interactions has a different impact on a broad range of metabolites 
and proteomes, and each of the metabolite titrations has a differ-
ent quantitative effect on drug levels and resistance. Thus, increased 
robustness to drugs is a function of metabolite exchange activ-
ity between cells that is stimulated by the presence of auxotrophs 
according to their degree of interactions with other cells.

Although we have not focused on the evolutionary aspects of 
resistance in our manuscript, it is also worth discussing our find-
ings in the context of multiple reports that have attributed meta-
bolic interactions to the emergence of drug resistance25. Metabolic 
interactions can drive community structures that are important for 
the spread of drug-resistance genes65. Moreover, the evolution of 
antimicrobial resistance can originate from tolerant subpopulations 
of cells that grow slowly in otherwise inhibitory drug concentra-
tions22,66–68, at which point resistance genes can spread rapidly in 
complex communities via horizontal gene transfer69–73. Our data 
imply that in communities in which the presence of auxotrophs 
stimulates a high degree of metabolic interactions, the effective 
population size of cells that can persist following drug treatment is 
increased, possibly accelerating adaptive evolution. This speculation 
is consistent with recent reports showing that an increased number 
of metabolic mutations following metabolic evolution assays leads 
to increased drug resistance in bacteria74.

Methods
Yeast cultivation and growth assays. Plasmids and strain construction. All details 
relating to strains and plasmids used in this study can be found in Supplementary 
Information. Prototrophy was restored either by genomic knock-in or plasmid 
complementation75, following standard techniques76.

SeMeCos generation and culture. The generation and culture of SeMeCos was 
based on previous work19. SeMeCos starts with a single prototrophic founder cell, 
where between one and four genetic auxotrophies are complemented by plasmids 
containing the essential metabolic gene(s) and, optionally, encode for a fluorescent 
marker gene (mRuby2, mWasabi, eCFP and TagRFP657). Because the SeMeCo 
founder cell grows into a colony, an increasing number of cells stochastically 
segregate one or more of its plasmids. This gives progeny to auxotrophic 
subpopulations that continue to grow by obtaining essential metabolites from 
complementary prototrophic cells. After the rapid emergence of auxotrophic 
subpopulations, cells enter an equilibrium of metabolite exchange with cogrowing 
prototrophs29. Cryostocks were streaked onto yeast nitrogen broth (6.8 g l–1, 
Sigma) + glucose (20 g l–1, Sigma) + 2% agar medium (solid Spizizen minimal (SM) 

medium) and cultured at 30 °C for 2–3 days. A microcolony was then diluted in 
200 µl of distilled water (dH2O) and normalized to OD600 = 0.8. Then, 5 µl was 
spotted onto solid SM medium to generate a giant colony, corresponding to 
~7.2 × 104 cells using a predefined OD-to-cell number standard curve. Cells were 
incubated for 2 days at 30 °C, then giant colony generation was repeated twice. 
This dilution and respotting was performed to ensure that cells had undergone 
sufficient proliferation cycles and plasmid segregation to enable metabolic 
cooperation whilst being continuously maintained in an exponential growth phase, 
preventing nutrient recycling from dead or dying cells. For the competitive assay, 
giant colony generation was repeated nine times, forming every 2 days for 18 days, 
corresponding to ~120 doublings in total. For culture, giant spots were diluted in 
1 ml of dH2O and normalized to OD600 = 0.1 in SM liquid medium. This relatively 
high starting OD600 ensured that cells were kept at a density that minimizes 
disturbing the relative proportions of auxotrophs and prototrophs generated in 
SeMeCos. Cells were then incubated overnight (~20 h) at 30 °C and 180 r.p.m and 
collected for downstream experiments.

Metabotyping by colony-forming units and sequencing. A sample of the 
SeMeCos culture was cryostocked at days 6, 12 and 18, from which new giant 
colonies were generated by resuspending scrapings in 30 µl of dH2O and spotting 
5 µl of this dilution onto SM solid medium. This colony was resuspended in 1 ml 
of dH2O, plated at 1:100,000 dilution on solid synthetic complete (SC) medium 
and incubated at 30 °C for 2 days to establish colony-forming units (CFUs). Each 
CFU was then resuspended in 100 µl of dH2O in a 96-well plate (Nunc, Sigma) 
and replica plated onto SM and SC + 5-fluoroorotic acid (5-FOA, 1 mg ml–1; 
Sigma) + H/L/U/M solid medium. Auxotrophies could be distinguished based on 
the presence or absence of URA3; cells carrying pU and pHLUM do not survive 
in the presence of 5-FOA, as opposed to those carrying pH, L or M. Plasmid 
extraction and sequencing were then performed for additional confirmation.

FACS and flow cytometry of SeMeCos. Fluorescent-tagged SeMeCos were 
generated and cultured as described above. Before sorting, cells were sonicated for 
30 s to dissociate clumps and stained with LIVE/DEAD Fixable dye UV or far-red 
excitable (ThermoFisher, catalog nos. L23105 and L34973, respectively) to identify 
live cells. Cells were sorted or analyzed on a BD Aria Fusion or Fortessa HTS-X20 
(BD Biosciences) using the following fluorophore and excitation laser: bandpass 
filter settings: LIVE/DEAD dye; 355-nm-UV; 440/40-UV, eCFP; 405-nm-violet; 
525/50-violet, mWasabi/DiOC5(3); 488-nm-blue; 530/30-blue, mRuby2; 
561-nm-yellow/green; 610/20-yellow, TagRFP657; 633 nm-red; 730/45-red. 
Analysis was conducted in either BD FACSDiva v.8.0 or FlowJo v.10.6.2.

Fluorescent SeMeCos composition analysis and drug screening. For 
high-throughput drug screening, a preculture of four-plasmid-bearing fluorescent 
SeMeCo was grown overnight to OD600 = 1.0 and diluted to OD600 = 0.3. Next, 
384-well microtiter plates were predosed with 0.7 µl per well of drug at 1 mM stock 
concentration using a Labcyte Echo 550 acoustic dispenser, for a final working 
concentration of 10 µM. Diluted culture (70 µl per well) was then transferred using 
a rapid liquid dispensing robot (FluidX Xrd-384) and incubated for 24 h. Cells were 
fixed rapidly by the addition of 20 µl of 16% paraformaldehyde before transfer to 
polylysine-coated imaging plates (Perkin Elmer Cell Carrier-384 Ultra, catalog no. 
6057300) for high-throughput fluorescence imaging using a Perkin Elmer Opera 
Phenix fully automated confocal microscope. Thresholding and autofluorescence 
corrections were performed with the aid of the corresponding single auxotrophic 
fluorescent strains (pH-mRuby2, pL-mWasabi, pU-eCFP and pM-TagRFP657), 
and image analysis was performed via the high-content imaging software Harmony 
v.5.0. Drugs were subsetted from an FDA-approved collection from Selleck 
(2,572 compounds, no. L1300-Z368434-100uL).

For low-throughput validation, SeMeCo cultures were propagated as described 
as in SeMeCos generation and culture and transferred to 1,200-µl deep-well plates 
(Greiner Bio-One), then diluted to final OD600 = 0.3 in 1 ml of liquid medium 
(SM). Drugs (atorvastatin, fluvastatin, itraconazole, miconazole, uniconazole—all 
Selleck) were reconstituted in DMSO (Sigma) to a stock concentration of either 
1 or 10 mM and used at a final concentration of 10 µM. Plates were incubated at 
30 °C on an orbital shaker for 24 h, before 200 µl of each culture was transferred to 
a U-bottomed, high-throughput, flow-cytometry-compatible microtiter plate for 
data acquisition. Analysis was performed on FlowJo v.10.6.2, from which raw cell 
counts were extracted, processed in R77 and visualized in Clustvis v.1.0 (ref. 78).

Metabolomics. Sample preparation. Wild-type and 4p-SeMeCos were grown to 
exponential phase, as described in SeMeCos generation and culture, and 0.5 ml 
of each culture was collected for amino acid and uracil profiling. Samples were 
centrifuged at 4,000g for 3 min, and supernatants (SN) were transferred to a 
new microcentrifuge tube for extracellular metabolite profiling while cell pellets 
were used for intracellular metabolite profiling. Both cell pellets and SN were 
immediately frozen in dry ice and samples stored at −80 °C until required for 
analysis. Amino acid and uracil extraction, separation and detection protocols were 
adapted from ref. 39. Briefly, 200 µl of 80% ethanol at 80 °C was added to the yeast 
pellets; samples were then heated for 2 min at 80 °C, vigorously mixed on a vortex 
mixer and incubated for a further 2 min at 80 °C followed by vigorous vortexing. 
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The extracts were removed from debris by centrifugation at 12,000g for 5 min. 
SN were also centrifuged at 12,000g for 5 min, to further purify samples from any 
debris. Before analysis by high-performance liquid chromatography–tandem mass 
spectrometry (HPLC–MS/MS), the order of samples was randomized and during 
analysis a quality control sample was assessed every 24 samples.

Sample acquisition. Analysis by LC–MS/MS was based on previous work39. Amino 
acids and uracil were separated by hydrophilic interaction liquid chromatography 
using an ACQUITY UPLC BEH amide column (130 A˚, 1.7 mm, 2.1 × 100 mm2) 
on a liquid chromatography (Agilent 1290 Infinity) and tandem mass spectrometry 
(Agilent 6460) system. Buffer A was composed of 50:50 acetonitrile (ACN)/water 
(Greyhound, nos. Bio-012041 and 23214125), 10 mM ammonium formate (Fluka, 
catalog no. 14266), 0.176% formic acid (FA; Fluka, catalog no. O6454); buffer B 
consisted of 95:5:5 ACN/methanol/water (Greyhound, no. BIO-13684102), 
10 mM ammonium formate and 0.176% FA. Gradient elution was performed at a 
constant flow rate of 0.9 ml min–1. Starting conditions were 85% buffer B then, after 
0.7 min the concentration was decreased gradually to 5% until 2.5 min and kept 
for a further 0.05 min before returning to initial conditions. The column was then 
equilibrated, resulting in a total run time of 3.25 min. Compounds were identified 
by matching retention time and fragmentation (MS2) with commercially obtained 
standards (Sigma-Aldrich, catalog no. LAA21). Signals for free amino acids 
were then acquired in dynamic SRM mode in Agilent Technologies MassHunter 
software suite v.8.07.00. Amino acid and uracil quantifications were then 
normalized according to OD600 at the time of collection.

Proteomics. Sample preparation. For proteomics on FACS samples, 20 million 
sorted WT (that had just passed through FACS), CFP+ and CFP– SeMeCos were 
immediately spun down at 4,000 r.p.m., SN was partially discarded, 600 µl was 
transferred to a 1.5-ml centrifuge tube and spun down at 4,000 r.p.m. for 5 min, 
SN was discarded and cell pellets were then immediately stored at −80 °C until 
all samples had been collected. Cell pellets were processed in a bead beater 
for 5 min at 1,500 r.p.m. (Spex Geno/Grinder) in a lysis buffer, where proteins 
were denatured in 8 M urea (Sigma-Aldrich, no. 33247) and 0.1 M ammonium 
bicarbonate (Sigma-Aldrich, no. 09830) at pH 8.0. Samples were spun down for 
1 min at 4,000 r.p.m before being reduced in 5 mM dithiothreitol (Sigma-Aldrich, 
no. 43815) for 1 h at 30 °C. Samples were then alkylated in 10 mM iodoacetamide 
(Sigma-Aldrich, no. I1149) for 30 min at room temperature and protected from 
light. Samples were diluted to <1.5 M urea in 0.1 M ammonium bicarbonate at 
pH 8.0, before overnight digestion of proteins at 37 °C with trypsin (Promega, no. 
V511X). Trypsin was neutralized with 1% FA (Fisher Scientific, no. 13454279), 
before peptides were purified in 96-well MacroSpin plates (Nest Group): (1) plates 
were first equilibrated in a series of methanol (1×) (Greyhound Chromatography, 
no. BIO-13684102), 50% ACN (2×) (Greyhound Chromatography, no. Bio-
012041-2.5 L) and 3% ACN/0.1% FA (2×); between each wash, plates were spun 
down for 1 min at 100g and flowthrough was discarded. (2) Samples were loaded 
into plates and peptides were cleaned up in a series of 3% ACN and 0.1% FA (3x); 
between each wash, samples were spun down for 1 min at 100g and flowthrough 
was discarded. (3) Peptides were eluted into a new collection plate with 50% ACN 
(3×) and spin-dried overnight at room temperature in a speed vacuum. Peptides 
were then dissolved in 40 µl of 3% ACN/0.1% FA. Peptide concentration was 
measured at an absorbance of 280 nm using Lunatic (Unchained Labs).

Sample acquisition. Acquisition was largely based on a previous study44. In brief, 
digested peptides were analyzed on a nanoAcquity (Waters) (running as 5 µl min−1 
microflow liquid chromatography) coupled to a TripleTOF 6600 (SCIEX). Protein 
digest (2 µg) was injected and peptides were separated with a 23-min nonlinear 
gradient starting with 4% ACN in 0.1% FA and increasing to 36% ACN in 0.1% 
FA. A Waters HSS T3 column (150 mm × 300 µm, 1.8-µm particles) was used. The 
data-independent acquisition (DIA) method consisted of a single MS1 scan at 
400–1,250 m/z (50-ms accumulation time) and 40 MS2 scans (35-ms accumulation 
time) with a variable precursor isolation width covering the mass range from 400 
to 1,250 m/z.

Data analysis. Data quantification was performed using DIA-NN v.7.1 software79. 
Postprocessing data analysis was conducted in R. Missing values in proteomics 
data were median imputed. Differential protein expression analysis was performed 
using the limma package v.3.48.3 in R80. GO terms were retrieved using the package 
‘GO2ALLORFS object of org.Sc.sgd.db’ v.3.14.0 (ref. 81), and enrichment analysis 
of differentially expressed proteins was performed using hypergeometric statistical 
tests. The GO slim-term mapper from the SGD database82 was used to map 
differentially expressed proteins with GO slim terms. Metabolic enzyme expression 
levels were mapped to the yeast metabolic network using iPATH3 (ref. 83).

Community modeling. The genome-scale metabolic model of S. cerevisiae 
(iMM904_NADcorrected) was used to perform model simulations36,37. The model 
was modified by the addition of two transport reactions (R_NADPtru: nadp_c 
-> nadp_r and R_NADPHtru: nadph_c -> nadph_r) to reproduce ergosterol 
auxotrophy. Furthermore, the URAt2 reaction was changed from nonreversible 
to reversible since uracil was previously shown to be secreted by the cell to the 

extracellular environment29. The revised model, which consisted of a total of 
1,577 reactions (1,413 metabolic and 164 exchange reactions), was then utilized 
to construct the auxotrophic–prototrophic community metabolic models using 
the compartment-per-guild approach84. In this approach, both strains in the 
community are treated as separate compartments where exchange metabolites 
are transported to and from the extra compartment pool of metabolites. All 
1,413 metabolic reactions were assigned to both strains, and suffixes (PROTS 
for prototroph or AUXOS for auxotrophs) were added to all metabolites and 
reactions to avoid any duplication between the two strains. For instance, 
glucokinase reaction ID, GLUK, was renamed R_PROTSGLUK and glucose 
compound ID was changed to M_PROTSCglc_D for the prototroph, whereas for 
the auxotroph these were changed to R_AUXOSGLUK and M_AUXOSCglc_D, 
respectively. Extracellular metabolites/reactions were kept the same and 
shared by both strains. A new reaction, representing the community biomass 
(AUXOSCbiomass + PROTSCbiomass → community biomass), was also added 
to the model. The final community model consisted of 2,991 reactions (1,413 × 2 
metabolic, 164 exchange and one community biomass). Growth of the community 
(community biomass reaction) was maximized in minimal media. Because the 
auxotrophic strain lacks an essential gene, it cannot make its biomass in minimal 
media on its own. However, due to metabolic cooperation between the auxotroph 
and prototroph, the former acquires essential compounds allowing the community 
as a whole to grow. Default minimal media were used, and the uptake flux of 
glucose and oxygen was doubled to feed the two strains. Percentage concordance 
between the predicted flux and protein expression profile was calculated by 
dividing the number of reactions, where either (1) flux change >10% and protein 
expression log fold change (FC) >0 or (2) flux change <−10% and protein 
expression log FC < 0, by the total number of reactions with absolute flux change 
>10%. For each reaction, protein expression log FC (auxotroph versus prototroph) 
was assigned using the gene–protein–reaction relation, where ‘or’ and ‘and’ logic 
was replaced by max and min, respectively. Model simulations were performed 
using the cobra toolbox85.

Biochemical assays. DiOC5(3) export assay. For SeMeCos, giant colony cultures 
were grown overnight and washed 3× with dH2O before incubation with 
2 µM DiOC5(3) (Stratech) at 30 °C for 30 min with agitation. Cells were then 
incubated for a further 1 h in SM to allow export of the dye before fixation with 
4% PFA (Sigma) for 20 min and mounting for fluorescence microscopy. For 
three-plasmid-bearing fluorescent SeMeCos, giant colonies were cultured in the 
presence of uniconazole (10 µM, Selleck) before washing and incubation with 2 µM 
DiOC5(3) at 30 °C for 30 min with agitation. Here, the fixation step was omitted 
and cells were taken directly for flow cytometry analysis.

DDA. SeMeCos were generated and cultured as in SeMeCos generation and 
culture. Following sorting of ~10 million cells, cultures were centrifuged and 
resuspended in 700 µl of SM, of which 100 µl was spread on solid medium 
using glass beads. For WT strains and experiments that did not require sorting, 
precultures were normalized to OD600 = 1.0 before plating. Once plates were dry, 
a single blank Oxoid antimicrobial susceptibility disk (ThermoFisher) was placed 
in the center of the plate and inoculated with 50 µg of uniconazole or miconazole 
(Selleck). Plates were then incubated for 3 days at 30 °C and imaged.

Azole quantification by LC–MS. Sample preparation. Glass beads and 200 µl of 
methanol were added to aliquots of previously sorted cells (7.5 million of CFP+ and 
CFP– cells from each single auxotrophic fluorescent strain). Samples were beaten 
for 3 × 3 min at 250g, followed by centrifugation (1 min, maximum speed) before 
further centrifugation for 3 min at 1,250g through a 0.45-µm filter plate (Agilent). 
Samples were then evaporated to dryness at room temperature using an Eppendorf 
Concentrator Plus (Eppendorf). The dry residue was reconstituted in 40% 
methanol (1 ml) and an aliquot subjected to LC–MS analysis.

Sample acquisition. Liquid chromatography was performed on an Infinity II 
ultra-high-pressure system (Agilent) hyphenated to a TripleTOF 6600 mass 
spectrometer (Sciex). Chromatographic separations were performed on a C18 
ZORBAX Rapid Resolution High Definition (RRHD) column (2.1 × 50 mm2, 
1.8 µm) (Agilent) by application of a linear gradient of 40–60% buffer B over 
3 min at a flow rate of 600 µl min–1 (buffer A, 0.1% FA/H2O v/v; buffer B, 0.1% FA/
ACN v/v). For washing of the column, the organic solvent was increased to 100% 
buffer B within 0.5 min. Equilibration time between runs was 3.6 min. For washing 
and equilibration, the flow rate was increased to 1 ml min–1. The injection volume 
was set to 20 µl and the column temperature held at 30 °C. The mass spectrometer 
was operated in positive ESI mode using a DuoSpray ion source, and spray voltage 
was set to 5.5 kV. Gas flows of 50 arbitrary units for the nebulizer gas, 40 arbitrary 
units for the heater gas and 25 arbitrary units for the curtain gas were employed. 
The temperature of the turbo gas was adjusted to 450 °C. A duty cycle consisted 
of a single MS scan (accumulation time, 250 ms; scan range, 50–800 m/z) followed 
by a product ion scan at 292.121 m/z in high-sensitivity mode (accumulation 
time, 100 ms; collision energy, 30 eV with a spread of 5 eV; scan range, 20–
300 m/z). Instruments were controlled by Analyst TF 1.7.1 software (Sciex). 
Compound identification and quantification were achieved using MultiQuant 
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3.0.2 (Sciex). Identification was based on chromatographic retention time and 
compound-specific ion traces of product ions (70.030 and 43.010 m/z), as well as 
the precursor ion (292.121 m/z). Ion traces were extracted at a width of 0.05 m/z. 
Quantification was performed using external calibration at the MS1 level due to 
the absence of interfering compounds. The linear calibration model covered a 
range of 0.05−2.5 ng ml–1, with 1/x weighting and the lowest level being considered 
the lower level of quantitation.

Reanalysis of metagenomic EMP dataset. Area under the curve growth values, 
as measured by optical density at absorbance wavelength OD600, were obtained 
from a study that screened the effect of 1,197 drugs on 40 gut microbiome 
members in vitro28. In the original study the AUC values were normalized and 
scaled such that a value of 1 corresponded to no growth effect of drug on the 
microbe, while a value of 0 corresponded to no growth of the microbe under the 
drug. Gut microbiome members were assigned as being either auxotrophic or 
prototrophic depending on the presence or absence of any amino acid auxotrophy, 
based on in silico predictions from another recent study30. In short, as described 
in Machado et al.86, genome-scale models were used to calculate the auxotrophies 
of all reference species. Then, with 100 stochastic character mapping, posterior 
probabilities of the auxotrophic ancestral state were calculated using functions 
from the phytools R package87. All data analysis was carried out in R v.3.6.1 (unless 
otherwise described), using the package tidyverse 1.3.0 for data manipulation and 
visualization.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the paper 
and its Supplementary Information and are deposited within publicly accessible 
repositories. Datasets derived from EMP relevant to Fig. 1 and Extended Data Fig. 1 
can be accessed at https://qiita.ucsd.edu/. The proteomic datasets generated during 
the current study and that are relevant to the data shown in Fig. 3 and Extended 
Data Figs. 6–8 are available from the PRoteomics IDEntifications database (PRIDE, 
https://www.ebi.ac.uk/pride/, project ID: PXD031160). Yeast gene functions 
and the GO slim-term mapper can be accessed at the Saccharomyces Genome 
Database (https://www.yeastgenome.org/). Protein sequence databases used for the 
identification and mapping of proteins from proteomics can be accessed via KEGG 
(https://www.genome.jp/kegg/pathway.html) and Uniprot (https://www.uniprot.
org/), respectively. Source data are provided with this paper.

Code availability
No custom codes were generated as part of this study. All analyses conducted in R 
v.3.6.1 used standard, publicly accessible packages obtained either through GitHub 
(https://github.com/), the Comprehensive R Archive Network (CRAN, https://
cran.r-project.org/) or Bioconductor (https://www.bioconductor.org/).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Auxotrophs are prevalent in drug-exposed natural and synthetic microbial communities and more drug resilient. (a) Frequency 
of amino acid auxotrophies across gut microbiome species, using the procedures in1. (b) Frequency of amino acid auxotrophies per gut microbiome 
auxotrophic species. (c) Growth, as measured by AUC, in drug exposed gut microbiome species across drug classes and metabolic background 
(auxotrophy vs prototrophy); n = number of drug-microbe pairs in each subset. (d) Screen setup, scoring and identification of drugs that modulate the 
auxotrophic composition in SeMeCos. Drug hits are identified by a high Z-score that indicates a significant shift in the SeMeCo composition compared to 
DMSO baseline. (e) Growth, as measured by AUC, in prototrophs and auxotrophs treated with drugs common to both the SeMeCo and gut microbiome 
drug screens, from Cluster 1 or 2 in the SeMeCo screen (e); n = number of drug-microbe pairs in each subset. (f) Flow cytometric analysis of the SeMeCo 
composition upon drug treatment, where red and blue indicate the relative increase or decrease, respectively, of a specific auxotrophic subpopulation 
(count of subpopulation/ total count). Median: n = 3 technical replicates within an independent experiment. Statistics by (c and f) two-sided Wilcoxon 
Rank Sum test, P-values are listed in the respective Source Data.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Increased proportion of auxotrophic subpopulations in SeMeCos are independent of drug effects on plasmid segregation or 
stability. (a) Drug disk diffusion assays of wild-type (WT) strains without plasmid or transformed with MitoLOC plasmid2 that encode for nourseothricin 
resistance (NAT) compared against the SeMeCo strain which carries 4 plasmids when exposed to uniconazole. (b) Disk diffusion assays of WT 
prototrophic strain compared against singly auxotrophic strains and quadruple auxotrophic parental strain when exposed to miconazole. SM indicated 
minimal media condition versus SM + HLUM whereby minimal media was supplemented with the 4 amino acids. Singly auxotrophic strains were 
supplemented with the respective amino acid to ensure their growth in the absence of genomic or plasmid complementation.
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Extended Data Fig. 3 | Increased metabolic flux change with increasing number of auxotrophies per cell. (a) Pair-wise FBA analysis assessing flux 
changes in communities composed of prototrophs and each of 15 auxotrophic subpopulations present in SeMeCos, relying on the exchanging of H, L, 
U and/or M. (b) Relative frequency of metabolic pathways with altered flux (flux change >10%) in the 15 different auxotrophs when interacting with 
a prototroph. (c) Pearson correlation between the proportion of metabolic pathways with altered flux (flux change >10%) and the total number of 
auxotrophies per cell. Error bands indicate the 95% confidence level interval for the predictions from the linear model. (d) Number of secreted metabolites 
in prototrophic (wild-type) and auxotrophic models in minimal media supplemented with required metabolites using FBA and MOMA simulation 
approaches3. The MOMA predicts an increase in metabolite excretion in single-metabolite supplemented auxotrophic yeast strain, compared to an  
FBA analysis.

Nature Microbiology | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


ArticlesNature Microbiology ArticlesNature Microbiology

Extended Data Fig. 4 | Prototrophs present growth advantage relative to co-growing auxotrophs. (a) pHLUM strain carrying a single plasmid 
complementing the 4 auxotrophies. Loss of the plasmid results in immediate reduction in production capacity for HLUM opposed to sequential loss in 
SeMeCos. (b) Competitive growth assay in which the pHLUM strain was co-cultured with the SeMeCo strain. Over 18 days, replated every 48 h, in 3 
independent cultures (A, B and C), the pHLUM strain retaining full prototrophy, slowly outcompetes all SeMeCo derived subpopulations in terms of growth.
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Extended Data Fig. 5 | Rich extracellular metabolic environments protect growth of prototrophic yeast against antifungals independently of 
growth rate. (a) Drug response, as measured with a disk diffusion assay (DDA), in prototrophic yeast communities in synthetic minimal media (SM) 
supplemented with increasing concentrations of HLUM and treated with miconazole. DDAs were generated from wild-type cultures plated onto the 
respective media and then exposed to the azoles. Increasing HLUM supplementation reduced the inhibition zone (IZ) and increased cellular growth 
in the IZ in response to azole treatment. Data is n = 1 culture. b) Growth response to antifungals, as measured with a disk diffusion assay (DDA) in 
wild-type colonies in minimal (SM) media supplemented at different growth phases: initial exponential phase (OD600 = 0.5) and late exponential phase 
(OD600 = 1.5) treated with miconazole. Data are n = 1 wild-type culture.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | GO cluster representation in co-growing auxotrophs vs prototrophs. GO cluster and Gene Set Enrichment Analysis (GSEA) 
using the proteomics data from the sorted auxotrophic and prototrophic subpopulations, derived from single-plasmid CFP SeMeCos. Data are from 
n = 16 independent SeMecos sorting experiments (n = 4 independent experiments for each single-plasmid complemented strains (pH-, pL-, pU- and 
pM-SeMeCos). P-values obtained from GSEA were used to calculate a simRel score, a functional similarity measure for comparing two GO terms with 
each other and projected onto two dimensional space (x and y-axes) derived by applying multidimensional scaling to a matrix of the GO terms’ semantic 
similarities that generates slimmed GO terms. Left and right columns indicate upregulated and downregulated proteins respectively in auxotrophs when 
compared to the corresponding prototroph. Significance threshold is defined as P < 0.05. Bubble colour indicates log10(P-value), with blue being highly 
significant and red being less significant. Bubble sizes indicate gene ratio, which is the frequency of representation of the GO term within the Uniprot 
database for S. cerevisiae. A larger circle would indicate a more general term compared with a smaller circle that indicates a more specific term. All plots 
were generated via REVIGO4.
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Extended Data Fig. 7 | Auxotrophs export more non-essential metabolites and generate a rich metabolic environment conducive for drug tolerance.  
(a) Percentage change in expression of proteins involved in different amino acid biosynthetic pathways in the sorted histidine, leucine, uracil and 
methionine auxotrophs. Amino acid pathway annotations were taken as per the metabolic model, iMM904. (b) FBA analysis assessing amino acid 
exchange in auxotrophic versus protrophic subpopulations. The FBA analysis indicates that with the increased export of metabolites from auxotrophs, 
the degree of metabolite exchange within communal cells increases. Pink indicates export of metabolites from auxotrophs, blue indicates export of 
metabolites from prototrophs. (c) Qualitative analysis of concordance between fluxes (FBA analysis) and protein expression (proteomics analysis) in the 
auxotrophic versus prototrophic subpopulations.
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Extended Data Fig. 8 | Prototrophs respond to the presence of auxotrophs and upregulate growth related processes. GO slim term mapping, using 
SGD’s GO Slim Mapper tool, of differentially expressed proteins from the proteomics analysis as in Fig. 3d, when prototrophs grow in the presence 
(SeMeCo communities) or absence (wild-type communities) of auxotrophs.
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Extended Data Fig. 9 | Expression of multidrug plasma membrane ABC transporters in auxotrophs and prototrophs for HLUM. mRNA expression 
profiles for the ABC transporters PDR5, SNQ2, and YOR1 were obtained from RNASeq expression data of n = 3 exponentially grown cultures, of 16 strains 
(1 prototroph and 15 auxotrophs in all possible combinations of HLUM) at similar cell density (optical density at 600 nm (OD600) of 0.8), followed 
by mRNA sequencing5. Analysis was performed either by (top) grouping prototrophs and auxotrophs normalised mRNA expression levels (box plots 
represent median (50% quantile (middle line) and lower and upper quantiles (lower (25% quantile) and upper (75% quantile); statistical significance was 
determined using a one-sided Kruskal-Wallis rank sum test) or (bottom) by each background strain (bar plots represent mean ± SEM of 3 independent 
cultures per strain, dots refer to individual cultures normalised mRNA abundance; statistical significance was determined using a two-sided Wilcoxon 
Rank Sum test, precise p-values are available in Source Data for Extended Data Fig. S9). The raw data5 (gene-wise read counts for gene expression 
estimation) was then processed using ‘DEseq2’6 in R for normalization.
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Extended Data Fig. 10 | Auxotrophy correlates with DIOC5(3) export and azole tolerance independent of cell size in SeMeCos. (a) Construction of 
the 3-plasmid, TagRFP657 fluorescent SeMeCo strain. Auxotrophy was repaired in the parental BY4741 strain via plasmid complementation with pH, pL 
and pM (all encoding TagRFP657) and genomic knock-in of URA3. (b) Scatter plot of DIOC5(3) against TagRFP657 fluorescence intensity in 20,000 
cells. Correlation was tested using a two-sided, Spearman’s Rank Correlation Coefficient (P value < 2.2e-16) with a R-value of 0.53 indicating a positive 
correlation. (c) Total ion chromatograms (TIC) and extracted ion chromatograms (XIC) corresponding to uniconazole in standard and cell pellet extracts 
from sorted cells. Peaks at <1 and ~4 min retention time correspond to highly hydrophilic and hydrophobic metabolites respectively. XIC at m/z of 292.121 
was used to calculate concentration of uniconazole in extracts from a standard curve generated from the analytical standard (Sigma, 37044). Fragments at 
m/z 70.030 and 43.010 correspond to protonated triazole and loss of CNH thereof respectively. (d) DDA for all four sorted single-plasmid-CFP SeMeCos 
exposed to miconazole plated onto SM or SM + H/L/U/M. DDAs were generated from a single sort experiment and exposed to miconazole. (e) Summary 
of the changes in cell size against SeMeCo composition change as measured in the drug screen. Cell size was defined as the pixel area covered by a cell 
capture via high-throughput microscopy. DMSO (mean) indicates the global mean value from all DMSO treated wells. Drugs (Azoles) indicate azoles 
within the 900-FDA compounds collection, dotted lines indicate range of cell size changes for azole treated cells. Error bars indicate standard deviation of 
prototroph percentage or cell size from 3 biological replicates. Data are presented as mean values + /- SD.
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