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High-throughput sequencing studies and new software tools are revolutionizing microbial community analyses, yet the
variety of experimental and computational methods can be daunting. In this review, we discuss some of the different
approaches to community profiling, highlighting strengths and weaknesses of various experimental approaches, se-
quencing methodologies, and analytical methods. We also address one key question emerging from various Human
Microbiome Projects: Is there a substantial core of abundant organisms or lineages that we all share? It appears that in
some human body habitats, such as the hand and the gut, the diversity among individuals is so great that we can rule out
the possibility that any species is at high abundance in all individuals: It is possible that the focus should instead be on
higher-level taxa or on functional genes instead.

The human microbiota (the collection of microbes that live on

and inside us) consists of about 100 trillion microbial cells that

outnumber our ‘‘human’’ cells 10 to 1 (Savage 1977), and that

provide a wide range of metabolic functions that we lack (Gill et al.

2006). If we consider ourselves as supraorganisms encompassing

these microbial symbionts (Lederberg 2000), by far the majority of

genes in the system are microbial. In this sense, completing the

human genome requires us to characterize the microbiome (the

collection of genes in the microbiota) (Turnbaugh et al. 2007).

Currently, there are two main methods for performing this char-

acterization that do not rely on growing organisms in pure culture:

small-subunit ribosomal RNA (rRNA) studies, in which the 16S

rRNA gene sequences (for archaea and bacteria) or the 18S rRNA

gene sequences (for eukaryotes) are used as stable phylogenetic

markers to define which lineages are present in a sample (Pace

1997), and metagenomic studies, in which community DNA is

subject to shotgun sequencing (Rondon et al. 2000). Small sub-

unit rRNA-based studies are sometimes also considered to be

‘‘metagenomic’’ in that they analyze a heterogeneous sample of

community DNA. Community profiling, or determining the

abundance of each kind of microbe, is much cheaper using

rRNA because only one gene out of each genome is examined,

but metagenomic profiles are essential for understanding the

functions encoded in those genomes. Techniques that probe

gene expression directly such as metatranscriptomics and meta-

proteomics (analysis of the transcripts or proteins in a community,

respectively), although useful in simpler microbial communities

such as acid mine drainage (Lo et al. 2007; Frias-Lopez et al. 2008),

are just beginning to be applied to human-associated microbial

communities (Verberkmoes et al. 2008).

Through the use of metagenomic and rRNA-based techni-

ques, much progress has been made in characterizing the human

microbiome and its role in health and disease in the past few years,

especially with the advent of high-throughput sequencing. These

studies are challenging because of the scale and complexity of the

microbiome and because of the unexpected variability between

individuals. In this review, we cover the combination of experi-

mental and analytical techniques used to characterize the micro-

biomes of humans and of other mammals. In particular, we

describe how recent advances in technology and experimental

techniques, together with computational methods that draw on

the long tradition of community analysis in large-scale ecological

studies, are essential for uncovering large-scale trends that relate

the microbiomes of many individuals.

One fundamental question raised by the National Institutes

of Health (NIH), European Union (EU), and other sponsored Hu-

man Microbiome Projects (HMPs) is whether there is a core hu-

man microbiome of genes or species that we all share (Fig. 1;

Turnbaugh et al. 2007, 2009). If there is a substantial core, the

strategy for understanding the microbiome is clear: Identify the

organisms that comprise the core using 16S rRNA analysis, se-

quence their genomes, and use these genomes as scaffolds for

metagenomic, metatranscriptomic, and metaproteomic studies

that provide information about small fragments of genes, tran-

scripts, or proteins, respectively, but that require assembly against

known sequences (Turnbaugh et al. 2007; Zaneveld et al. 2008).

However, if there is a minimal core or no core at all, alternative

strategies will need to be developed because new genes and species

will continue to be found in each new person examined.

Another key question is whether changes in the relative

abundance of members of human-associated microbial commu-

nities are generally important. For example, the proportional

representation of the bacterial phyla Firmicutes, Actinobacteria,

and Bacteroidetes in the gut is associated with obesity in both

humans and mice (Ley et al. 2005, 2006c; Turnbaugh et al.

2006, 2008). However, although this observation establishes that

changes in the abundance of broad bacterial groups such as entire

phyla can be important and we also know that miniscule inocu-

lations of particular pathogenic strains can cause disease, we know

little about the physiological impacts of changes in microbial

abundance at a given taxonomic level in general. Our power to

detect particular species depends on depth of sequencing and on

whether they can be selected by culture-based techniques. For

example, we think of Escherichia coli as a classic gut bacterium, but

the entire Gamma-proteobacteria phylum that contains it typi-

cally comprises much less than 1% of gut bacteria—rather, E. coli

grows extremely well in culture and can thus be detected at low

abundance. Most species found in the gut of a given individual are

rare (Dethlefsen et al. 2007), which makes them difficult to detect,
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and a plethora of rare species has also been found in other eco-

systems (Sogin et al. 2006; Huber et al. 2007). One possibility is

that everyone shares the same microbial species but that the

abundance of individual species varies by orders of magnitude in

different people in ways that affect health and disease. If rare

species are generally important, much deeper characterization of

the microbiome may be required.

Community profiling with 16S rRNA: New life
through deeper sequencing
Microbial community profiling using 16S rRNA is currently un-

dergoing a renaissance (Tringe and Hugenholtz 2008) as high-

throughput techniques such as barcoded pyrosequencing allow us

to gain deep views into hundreds of microbial communities si-

multaneously (Hamady et al. 2008). These studies are made pos-

sible by the remarkable observation that a small fragment of the

16S rRNA gene is sufficient as a proxy for the full-length sequence

for many community analyses, including those based on a phy-

logenetic tree (Liu et al. 2007, 2008; Wang et al. 2007). Although

the phylogenetic trees produced from ;250-base reads from the

current 454 Life Sciences (Roche) GS FLX instrument are relatively

inaccurate, they are still vastly better than the so-called ‘‘star

phylogeny,’’ the phylogeny that assumes all species are equally

related, that all nonphylogenetic methods for comparing com-

munities implicitly use (e.g., by counting how many species are

shared). However, such trees should only be used as a guide to

community comparisons and not for inferring true phylogenetic

relationships among reads. Rapid advances in sequencing tech-

nology, such as the recent availability of 400-base reads with the

Titanium kit from Roche or, in the future, the availability of in-

struments providing 1500-base single-molecule reads, as reported

by Pacific Biosciences (Korlach et al. 2008), will also improve the

accuracy of existing methods for building phylogenetic trees and

classifying functions of metagenomic reads. Similarly, the avail-

ability of many improved computational methods for comparing

large numbers of microbial communities including UniFrac (Loz-

upone and Knight 2005; Lozupone et al. 2006), SONS (Schloss and

Handelsman 2006), and network-based comparisons (Ley et al.

2008a) will allow very rapid progress to be made.

Sequence databases, especially rRNA sequence databases, are

growing explosively (Medini et al. 2008), and the ability to see

hundreds of samples at depth of coverage of many thousands of

sequences per sample allows us to contemplate completely new

types of analyses. At the same time, this flood of data poses for-

midable challenges in data analysis because many standard com-

putational tools are not designed for input on this scale. Many

investigators are already encountering the limitations of existing

tools—for example, it is impossible to align the half-million

sequences obtained from a single 454 FLX run with traditional

tools such as ClustalW (Thompson et al. 1994) or even the pub-

licly available versions of newer, rRNA-specific tools such as NAST

(DeSantis Jr. et al. 2006b). These tools and databases must antici-

pate scaling up to thousands of samples and many millions of

sequences over the next few years.

Key questions facing investigators
The wide array of sequencing technologies and analytical tools

can be daunting. The path to a successful study is first to define

what hypothesis is being tested and then to select the appropriate

technology. For example, it would be unfortunate to spend

months and millions of dollars performing a metagenomic study

solely to find changes such as the shift in the Bacteroidetes:

Firmicutes–Actinobacteria ratio in the gut of obese individuals

when a much faster and cheaper assay could have provided the

same result at a much lower cost. Such studies must be justified by

additional analyses that can only be performed with metagenomic

sequences (Turnbaugh et al. 2009). Here we cover some of the

key questions facing investigators: whether to use sequencing or

to use lower resolution but cheaper methods that allow more

samples to be processed for the same cost, which type of se-

quencing to perform, and how the data should be analyzed. These

decisions, especially with respect to data analysis, often differ

between rRNA and metagenomic surveys. For example, phyloge-

netic methods are increasingly useful for rRNA surveys because

this gene allows accurate reconstruction of phylogeny, whereas

functional or taxon-based methods are typically more useful for

metagenomic surveys because of the range of functions repre-

sented and because of the difficulty of reconstructing the phy-

logenies of small fragments of many gene families.

When is it necessary to obtain sequences, and when
should cheaper approximate methods such as
fingerprinting be used?
Although the cost of sequencing is dropping, fingerprinting

techniques (techniques that provide limited information about

the microbial community) are still orders of magnitude cheaper

and faster to perform. Fingerprinting techniques include T-RFLP,

DGGE, and TGGE: These methods have been reviewed compre-

hensively (Anderson and Cairney 2004). Briefly, they rely on

amplification of a specific gene, typically but not always 16S rRNA,

Figure 1. Models of a core microbiome. The circles represent the mi-
crobial communities in different individuals and can be thought of as ei-
ther representing different taxa (species, genera, etc.) or representing
different genes. (A) ‘‘Substantial core’’ model. Most individuals share most
components of the microbiota. (B) ‘‘Minimal core’’ model. All individuals
share a few components, and any individual shares many components
with a few other individuals, but very little is shared across all individuals.
(C) ‘‘No core’’ model. Nothing is shared by all individuals, and most di-
versity is unique to a given individual. (D) ‘‘Gradient’’ model. Individuals
next to each other on a gradient, for example, age or obesity, share many
components, but individuals at opposite ends share little or nothing. (E)
‘‘Subpopulation’’ model. Different subpopulations, for example, those
defined by geography or disease, have different cores, but nothing is
shared across subpopulations. Scenarios C–E would represent situations in
which the strategy of identifying core species for sequencing, then using
these as a scaffold for ‘‘omics’’ studies, would be problematic.
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then separating different variants of the gene in the community

sample by electrophoresis. These methods can be used to analyze

large numbers of samples, including clustering of the banding

patterns with statistical techniques such as Principal Coordinates

Analysis (PCoA) (Dollhopf et al. 2001), but typically the dynamic

range is limited (so only the few most abundant members of the

community can be observed), and it is difficult to relate banding

patterns to changes in particular species or lineages. It is also

generally impossible to combine data from different studies into

a single analysis. However, these techniques can be useful for

checking for stability in the dominant members of a community

and for clustering communities according to changes in the

dominant members across large numbers of samples (Fierer and

Jackson 2006).

The main advantages of sequencing studies over finger-

printing are that sequences can be classified according to tax-

onomy and function, that sequencing provides much greater

dynamic range and ability to compare complex samples, and

that sequences from different studies can be compared to one

another and placed in the same phylogenetic tree (Lozupone

and Knight 2007). Sequencing is especially useful when asking

which specific genes or species contribute to differences among

communities.

Two intermediate approaches between fingerprinting and

sequencing are to use short sequence tags and to use DNA

microarrays. These approaches provide access to large numbers

of samples, as does fingerprinting, but also provide phyloge-

netic resolution, as does sequencing, albeit with limits in both

dimensions.

Techniques that use short sequence tags include the ARISA

technique that uses the intergenic spacer of the ribosomal RNA

(Fisher and Triplett 1999) or sequencing of the V6 hypervariable

region of the 16S rRNA (Sogin et al. 2006). These methods allow

comparisons among samples and measurements of diversity, and,

when the database of full-length sequences is sufficiently com-

plete, assessment of the taxonomic distribution. However, they are

less useful in cases in which new lineages with no close relatives

are dominant.

DNA microarrays such as the PhyloChip (Wilson et al. 2002)

and GeoChip (He et al. 2007) provide a convenient way of

screening 16S rRNA and functional gene sequence libraries, re-

spectively. These tools have the potential to be much cheaper and

provide much greater dynamic range than sequencing studies but

require that the sequences be known in advance so that they can

be printed on the chip (DeSantis et al. 2007). For example, this

approach was recently used to track development of the human

gut microbiota in infancy (Palmer et al. 2007). An additional ad-

vantage of microarrays is that probes with broad but defined

specificity, for example, at the family or phylum level, can be used

to estimate the abundance of the group as a whole, even if probes

for more specific taxa are missing. Normalization can be an issue

and is probe dependent: This issue is analogous to issues with

primer bias that affect sequencing and fingerprinting, and the

most important consideration is to use the same technique for all

samples that are to be analyzed together.

Both the sequence tag approach and the microarray ap-

proach can be used to generate data suitable for the community

analysis techniques described below, essentially by mapping each

sequence tag (or spot on the microarray) onto the closest full-

length sequence in the database and using that sequence as a

proxy. Sequencing studies are thus most useful when the samples

have been poorly characterized and the discovery of many new

gene or species lineages is anticipated. 16S rRNA sequencing

studies are especially useful for characterizing which kinds of

organisms are present in a wide range of samples (especially when

differences at or above the genus level distinguish the samples),

whereas metagenomic sequencing studies are especially useful for

characterizing microbial assemblages at a functional level (see

below).

How should I perform my sequencing?

What are my choices for sequencing technology?

There are several choices of sequencing technology. Capillary

(Sanger) sequencing currently produces longer reads of up to

800 bases, which are very useful for inferring gene functions for

metagenomics (Wommack et al. 2008). However, pyrosequencing

(Ronaghi et al. 1996, 1998; Margulies et al. 2005) is orders of

magnitude cheaper and faster and also eliminates the laborious

step of preparing clone libraries. The benefit of a large number of

short reads clearly outweighs the drawbacks of short read lengths

for many kinds of rRNA-based community analysis: 200-base

reads, accounting for ;12% of the data in the 16S rRNA gene, yield

community clustering results as accurate as those obtained using

70% of the original number of full-length sequences in a compar-

ison across different habitats (Liu et al. 2007), and Sanger and

pyrosequencing data provided comparable results in fecal samples

from both rhesus macaques (McKenna et al. 2008) and in lean and

obese humans (Turnbaugh et al. 2009). Given that Sanger se-

quencing is at least an order of magnitude more expensive than

pyrosequencing, requires that DNA templates be clonable into

a common host (E. coli), and has markedly lower throughput/

instrument, the latter is clearly the most cost-effective option

for testing hypotheses about the distribution of microbial diver-

sity among samples at this point.

A key pyrosequencing innovation currently used in both 16S

rRNA and metagenomic studies is multiplexing. Because far more

sequences are generated in a single pyrosequencing run than are

needed for many kinds of community analyses, it is often desirable

to split a single run across many samples. Two general strategies

are physical separation of samples and barcoded pyrosequencing:

These approaches can be used in combination as each part of the

plate may be used to run many barcoded samples.

Barcoded pyrosequencing uses molecular barcoding techni-

ques that were initially developed in the 1980s (Church and

Kieffer-Higgins 1988; Shoemaker et al. 1996). Sequences in each

sample are tagged with a unique barcode either by ligation or, for

amplicon sequencing, by using a barcoded primer when ampli-

fying each sample by PCR (Fig. 2). Several different barcoding

strategies have been used with pyrosequencing (Binladen et al.

2007; Hoffmann et al. 2007; Huber et al. 2007; Parameswaran et al.

2007; Fierer et al. 2008; Hamady et al. 2008). Of these, we rec-

ommend the use of error-detecting and error-correcting codes

that use formal mathematical techniques to define barcodes in

such a way that a certain number of errors can be detected and

corrected: For example, using Hamming codes of eight bases

can detect all double-bit errors and correct all single-bit errors

(Hamady et al. 2008), and Golay codes of 12 bases can correct all

triple-bit errors and detect all quadruple-bit errors. Both types of

barcodes have been used to sequence several hundred samples per

run (Fierer et al. 2008; Hamady et al. 2008) and can theoretically

accommodate thousands. One important issue with barcoding

is variability in reads per sample; however, the sources of this

Microbiome analysis
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variability are relatively poorly understood at this point, and

existing studies of bias due to the use of barcoded primers

(Binladen et al. 2007), while useful, have been limited. Systematic

studies of the effects of specific barcodes on community structure

remain to be performed, although the available evidence suggests

that technical or biological replicates sequenced using different

barcodes typically cluster together (Hamady et al. 2008; Turnbaugh

et al. 2009).

In principle, all of these barcoding techniques can be used for

metagenomics by ligating a barcode to fragmented DNA sequen-

ces in each sample (Meyer et al. 2008b), although this is still very

much an emerging technique.

What read length should I aim for?

For 16S rRNA studies 250-base reads can be essentially as good as

full-length sequences for many microbial community compar-

isons and can even be useful for taxonomy assignment, provided

that the region of the 16S rRNA is carefully chosen, for example,

the V2 or V4 regions (Liu et al. 2007, 2008; Wang et al. 2007). The

increased number of reads makes these types of studies an ex-

ceptional bargain compared to Sanger sequencing of full-length

amplicons. However, to define new bacterial phyla, or in cases in

which the sequences obtained are highly divergent from related

sequences in the reference databases, obtaining the full-length

sequence (e.g., by repeating the PCR using a very specific primer

designed to match the short read and a universal primer near the

other end of the 16S rRNA) is essential. For metagenomics, the

read length is much more important owing to the difficulty of

identifying the function and/or species of each gene from rela-

tively short reads. The increase in read length from 250 to 400

bases with the Titanium kit should make a large difference to the

fraction of reads that can be accurately assigned (Huson et al.

2007; Mavromatis et al. 2007; Dalevi et al. 2008; Krause et al. 2008;

Wommack et al. 2008). However, the increase to 400 bases has

relatively little effect on 16S rRNA taxonomic assignment (Liu

et al. 2007).

What sampling depth is needed?

The number of sequences required to characterize a sample

depends on the goal of the study, the diversity of species in the

sample, the read length, and, for amplicons, the choice of gene

and region for sequencing.

If the goal is to estimate the major bacterial phyla in each

sample, relatively few sequences per sample are needed. For ex-

ample, in 22 human gut samples with depth of coverage of at

least 350 sequences/individual, communities averaged 75% Fir-

micutes and 18% Bacteroidetes (Fig. 3; Ley et al. 2008b). It would

thus take little sequencing effort to conclude that these are the

two dominant phyla in this habitat: With only 50 sequences, we

would already conclude that the total proportion of sequences in

the remaining phyla was 14% 6 4%. As with all statistical ques-

tions, large differences can be detected with smaller samples. For

example, sequence jackknifing showed that only 17 sequences

were needed to reliably cluster microbial assemblages in two oli-

gotrophic subtropical seawater samples together, and to separate

these samples from other marine microbial assemblages from

sediments, terrestrially impacted seawater, and sea ice (Lozupone

and Knight 2005). As few as 100 sequences per sample were suf-

ficient to detect the major patterns of variation among the mi-

crobial communities in the guts of diverse mammals (Ley et al.

2008a). Thus, large-scale patterns can be recovered with shallow

sampling, even when this sampling only scratches the surface of

the diversity in the communities (see also Fig. 4 for comparison

of phylogenetic and taxon-based techniques at different depths

of coverage). For pyrosequencing studies of 16S rRNA, depth of

coverage of about 1000 sequences/sample seems to provide a good

balance between number of samples and depth of sampling. This

Figure 2. Overview of barcoded pyrosequencing workflow. The sample-specific barcodes are introduced into each sample during the PCR step (for
amplicon sequencing), or through ligation (for metagenomics). After sequencing, individual sequences can then be traced back to individual samples
using the barcodes they contain. The sequences from each sample are then separated, aligned, and then either used directly for taxa-based analyses or
used to build trees for phylogenetic analyses. OTU, operational taxonomic unit.
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depth of coverage allows us to infer the frequencies of species at

1% abundance with reasonable accuracy (we expect to observe 10

sequences at this level, with standard deviation of 3.1 sequences),

although it will miss many of the rare species.

If the goal is complete characterization of all sequences in

a sample, vast numbers of sequences may be required if many

species are rare or if the diversity is high, such as in seawater and

soils (Sogin et al. 2006; Roesch et al. 2007). Such a tiny fraction of

the total number of cells is sampled (a full 454 run currently

recovers ;5 3 105 sequences, so if there are ;1014 microbes in

the gut, only about five cells in every billion are sampled, as-

suming one rRNA molecule per cell) that characterizing the full

diversity is not a reasonable goal.

It is important to note that there is no abundance threshold

below which we can disregard microbes as unimportant: Many

pathogens are rare and can be detected at low levels using PCR-

based assays in clinically relevant settings. Thus, the appropriate

trade-off between depth of coverage and number of samples is

likely to vary depending on the goal of the study.

It is likely that the frequent practice of using a full FLX run

for metagenomic characterization is inefficient: If the goal is to

infer the frequencies of approximately 250 functional categories,

a few tens of thousands of sequences (rather than hundreds of

thousands of sequences) should suffice. Fewer sequences may

be needed once longer reads are routinely available with the

Titanium, because more of these longer reads can be assigned

functions. Details about rare genes, or about the coverage of par-

ticular functions by rare organisms, will be missed by this shallow

coverage, but clustering of communities based on overall func-

tions should still be possible. The prospect of extending meta-

genomic studies to dozens of samples per run could transform

our understanding of how functional communities are assembled

from different components.

Which region of the rRNA should I sequence?

Because the full 16S rRNA cannot be sequenced using high-

throughput methods, a shorter region of the sequence must be

selected to act as proxy. Currently, there is no consensus on

a single ‘‘best’’ region, and consequently different groups are se-

quencing different regions (or multiple regions). This diversity of

methods hinders direct comparisons among studies, and we rec-

ommend standardization on a single region. Of the nine variable

regions (Neefs et al. 1990), several of the more popular regions

include the regions surrounding V2, V4, and V6: In general,

a combination of variable and moderately conserved regions

seems to be optimal for performing analyses at different phylo-

genetic depths. Wang et al. (2007) and Liu et al. (2008) report that

V2 and V4 give the lowest error rates when assigning taxonomy,

and these regions are also suitable for community clustering (Liu

et al. 2007). However, several other regions are also in use (Baker

et al. 2003; Edwards et al. 2006; Sogin et al. 2006; Huse et al. 2007;

Roesch et al. 2007; Andersson et al. 2008).

Both the choice of region and the design of the primers are

critical, and poor choice of primers can lead to radically different

biological conclusions (Andersson et al. 2008; Liu et al. 2008). It

is well known that primer bias due to differential annealing leads

to the over- or underrepresentation of specific taxa, and some

groups can be missed entirely if they match the consensus se-

quence poorly (von Wintzingerode et al. 1997; Kanagawa 2003).

Solutions proposed include using mixtures of large numbers of

primers (Frank et al. 2008), although this approach introduces

substantial additional complexity and free parameters (e.g., the

ratios in which the primers are mixed). Issues of primer bias

can be important. For example, although some widely used

primers such as 8F (Meyer et al. 2004; Edwards et al. 2006; Frank

et al. 2008), 337F (Huse et al. 2007), 338R (Harris et al. 2004;

Hamady et al. 2008), 515F (Marcille et al. 2002; Meyer et al.

2004), 915F (Marcille et al. 2002), 930R (Marcille et al. 2002),

1046R (Sogin et al. 2006), and 1061R (Andersson et al. 2008)

match >95% of the sequences in RDP from all of the major

bacterial phyla in the gut (Firmicutes, Bacteroidetes, Actino-

bacteria, Verrucomicrobia, and Proteobacteria), others miss spe-

cific divisions: 784F (Andersson et al. 2008) is biased against

Verrucomicrobia, 967F (Sogin et al. 2006) matches <5% of Bac-

teroidetes, and 1492R (Meyer et al. 2004) matches 61% of Acti-

nobacteria, 54% of Proteobacteria, and fewer than half of the

other divisions. These matches were measured using ProbeMatch

on the Ribosome Database Project (RDP) site (http://rdp.cme.

msu.edu/probematch), using a search restricted to ‘‘good’’ se-

quences with coverage over the primer range and allowing up to

two mismatches. Comparisons of relative abundance among

Figure 3. (A) Phylum-level abundance and (B) shared ‘‘species’’ (represented here as 97% OTUs, approximately species level) in 22 human gut
samples with depth of coverage of at least 350 sequences per individual. These data are taken from a meta-analysis (Ley et al. 2008a) covering several
large Sanger-sequencing studies of humans in different populations (Suau et al. 1999; Hayashi et al. 2002a,b, 2003; Eckburg et al. 2005; Ley et al.
2006c; Nagashima et al. 2006). Interestingly, the results are very consistent with results from both Sanger sequencing and pyrosequencing within
a North American population of lean and obese twins (Turnbaugh et al. 2009). Note: No species-level OTUs were shared across all samples with 350
sequences per sample; 1813 OTUs were only present in one sample; the total number of OTUs was 2320.
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different studies should thus be treated with caution. However,

meta-analysis of presence/absence data from different studies is

extremely useful for revealing broad trends, even when different

studies use different primers (Lozupone and Knight 2007; Ley

et al. 2008b).

With so many new bacterial phyla being discovered by

culture-independent methods (Rappe and Giovannoni 2003; Ley

et al. 2006a), it is very likely that we are still missing many im-

portant components of the biosphere with current primer sets. As

more sequence data and better taxonomic assignments become

available, improved primer sets, with better coverage (including

primers for archaea and eukaryotes), will likely provide a sub-

stantial advance over current degenerate primer techniques. In

particular, 16S rRNA reads from metagenomic studies provide

a source of sequences that is not subject to PCR primer bias (al-

though other biases may, of course, be present) and therefore

covers taxa that are missed by existing but popular primer sets.

Another promising approach is the use of miniprimers (Isenbarger

et al. 2008), which, together with an engineered DNA polymerase,

may allow greater coverage of desired groups.

Should I analyze individual samples or pool samples
before sequencing?

One widespread approach in clinical and environmental studies is

to reduce variability due to idiosyncratic effects by pooling DNA

Figure 4. Comparison of phylogenetic and nonphylogenetic methods for comparing communities. (A–D) Sequences are from stool and six different
biopsy sites along the distal gut from three unrelated healthy human subjects (Eckburg et al. 2005); (E) sequences are from 162 free-living communities
and 159 vertebrate gut communities (Ley et al. 2008b). Fragments are labeled as either full-length, V2 or V4 (250-nt reads ending at 338R or starting at
515F, respectively), or V6 (80-nt reads ending at 1046R). (A) Effect of fragment on phylogenetic assignment: Each circle is one of the three individual
human subjects, pooling sequences from all sites. Note increase in unclassified reads produced by V6; results from V2 and V4 are very similar to those
obtained from the full-length sequences. Assignments performed using RDP. (B) Effect of three different distance measures for principal coordinates
analysis on the full-length 16S rRNA sequence data: UniFrac (a phylogenetic method), and Euclidean and Kulczynski distances on the sample by OTU
matrix (two examples of taxon-based methods). Only the relative positions of and distances between points are relevant: The choice of direction along
each axis is a mathematical artifact. Individual points are samples, colored according to the three subjects that the samples came from (i.e., the three
colors represent three subjects: The same color scheme is used for panels C and D). In this data set, all methods give broadly equivalent results and cluster
the samples by individual, not by sample location (stool or individual sites along the distal gut mucosa). (C) Effect of reducing the number of sequences
per sample on the UniFrac clustering, comparing the results obtained using all sequences to results obtained using a random sample of sequences. (Right
panel) Clustering is still good, as measured by the consistency of clustering together the samples from the same individual as in panel B, at 25 sequences
per sample, although there is more scatter as the number of sequences per sample decreases. (D) Effect of the different regions on clustering with UniFrac
using either (top row) all sequences or (bottom row) 25 sequences/sample. For this analysis, we take each full-length sequence, computationally clip out
the part of the sequence corresponding to each region to simulate 454 data, and repeat the analysis: The analysis thus includes the effect of the region
sequenced, but not the effect of primer bias that may differentially amplify specific taxa. Again, we expect the samples from each individual to cluster
together, and a mixture of samples from different individuals indicates poor performance. V6 is especially affected at low sample coverage, and V2 is
especially unaffected. (E) Effect of different clustering measures, indicated on each panel, on the data set from Ley et al. (2008a), showing only the
(yellow) vertebrate gut and (red) free-living samples. This data set is very heterogeneous and includes many samples with low numbers of sequences per
sample or where nonoverlapping regions of the 16S rRNA were chosen for sequencing. In this data set, UniFrac, which is a phylogenetic metric, performs
very well, separating the samples into two groups; in contrast, the other three methods, which are all taxon based, perform poorly with obvious clustering
artifacts such as spikes leading off at right angles from one another, and fail to separate the two types of samples into two discrete clusters. Note that this
figure is not based on the Arb parsimony insertion tree used in Ley et al. (2008a) but rather on a tree constructed de novo from the NAST-aligned
sequences using Clearcut (Sheneman et al. 2006). The artifacts in the taxon-based methods are due to lack of overlap at the species level among different
kinds of samples. An exploration of primer effects in a subset of these data shows that sample type is more important than region sequenced or length of
amplicon (Liu et al. 2007).
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from the samples before PCR. The hypothesis is that this pooling

will make the differences between groups more apparent and also

reduce the overall cost of the analysis. With the availability of

barcoded pyrosequencing, we strongly recommend against pool-

ing in favor of tagging each sample with a unique barcode. The

pooling can always be performed computationally at the end of

the analysis, and, given the variability in 16S rRNA lineages ob-

served among samples in many mammalian-associated body

habitats including the gut (Eckburg et al. 2005; Ley et al. 2005,

2006c, 2008a; Turnbaugh et al. 2006, 2008; Frank et al. 2007; Li

et al. 2008), vagina (Coolen et al. 2005; Hyman et al. 2005; Zhou

et al. 2007), vulva (Brown et al. 2007), breast milk (Martin et al.

2007), the mouth (Aas et al. 2005; Nasidze et al. 2009), and skin

(Gao et al. 2007; Grice et al. 2008), it is crucial to know whether

the apparent differences between groups are due to a consistent

shift in each sample or to very large shifts in a small subpopula-

tion of samples. When heterogeneity is high, less accurate data

about a large number of samples will be much more informative

than more accurate data about a small number of samples, or

about pooled samples, especially when developing biomarkers for

classification of healthy and diseased individuals.

How should I analyze my data?
Once the sequences are collected, the next challenge is data

analysis. Especially with pyrosequencing, many established tools

for alignment, phylogenetic inference, and defining taxonomic

groups by sequence similarity (OTUs, or operational taxonomic

units) cannot handle the vast data sets produced.

How should I filter out low-quality reads?

There are two main issues with low-quality data: errors in the se-

quence and chimeras resulting from recombination between

sequences. Although error rates for pyrosequencing were rela-

tively high with the older GS 20 instrument, they are lower for the

GS FLX (Droege and Hill 2008). On a known template, the error

rate was 0.4% overall, but 96% of these errors were insertions or

deletions in homopolymer runs rather than nucleotide sub-

stitutions in high-complexity regions, leading to a substitution

rate of 0.042% (Quinlan et al. 2008). Most errors are concentrated

in a few exceptionally bad reads; thus the usual, conservative

practice is to discard sequences that contain any errors in the

primer (including the barcode, if present) and sequences where

the average quality score is below 25 (Huse et al. 2007). An update

of the Huse et al. (2007) study for the FLX and Titanium methods

would be a valuable addition to the literature.

Chimeras can be detected in small 16S rRNA data sets using

several techniques (Huber et al. 2004; Ashelford et al. 2006), al-

though no solution yet exists for the large data sets produced by

pyrosequencing. Publicly available databases are unfortunately

rife with chimeric sequences (DeSantis et al. 2006a), so some

caution with taxonomy assignment is warranted. However, al-

though chimeras can affect estimates of diversity within a sample,

because they are generated uniquely within each sample, they

have relatively little effect on patterns of similarities and differ-

ences among communities (Ley et al. 2008a).

Should I perform taxon-based or phylogenetic analyses?

In general, ecological analyses of diversity can be split along three

major axes (Magurran 2004; Ley et al. 2008b). First, an analysis can

examine either ‘‘alpha diversity’’ (how many kinds of taxa or lin-

eages are in one sample) or ‘‘beta diversity’’ (how taxa or lineages

are shared among samples, e.g., along a gradient). Second, an

analysis can be either ‘‘qualitative,’’ examining only presence-

absence data, or ‘‘quantitative,’’ also taking into account relative

abundance. (Qualitative analyses and quantitative analyses are

also called analyses of community membership and community

structure, respectively, although community structure is some-

times also considered to include spatial or temporal structure.)

Third, an analysis can be either ‘‘phylogenetic,’’ making use of

a phylogenetic tree to relate the sequences, or ‘‘taxon based,’’

treating all taxa at a given rank (e.g., species) as phylogenetically

equivalent. In practice, most sequences come from uncultured

microbes that have not been formally described, and so taxa are

operationally defined by sequence similarity. For example, 97% of

OTUs contain sequences that have 97% sequence identity. In

this classification, the widely used Chao1 index (Chao 1984)

for estimating the minimum number of species in a sample is a

quantitative, taxon-based, alpha diversity metric; unweighted

UniFrac (Lozupone and Knight 2005) is a qualitative, phyloge-

netic, beta diversity metric. In general, taxon-based and phyloge-

netic methods provide different but equally useful insights, and

both should be performed.

Taxon-based analyses are especially useful for asking how

many different ‘‘species’’ (or other taxonomic units) are likely to be

in a sample (Chao 1984; Schloss and Handelsman 2005), for

comparing which OTUs are shared among particular subsets of

samples (Schloss and Handelsman 2006), or for building networks

that relate species and samples to one another (Ley et al. 2008a).

(But see below for discussion of how the OTU selection method

can affect the results.) Incidence matrices recording which OTUs

occurred in each sample can also be used as input to standard

community clustering methods (Magurran 2004), although, in

our experience, phylogenetic methods tend to be more illumi-

nating for community clustering when samples are extremely

heterogeneous and when the number of sequences per sample is

low (Fig. 4). The main reason for the increased power of phylo-

genetic methods in this context is that taxon-based methods are

not free of assumptions about phylogeny; rather, they implicitly

assume the so-called ‘‘star phylogeny,’’ in which all taxa are

equally related to one another. This assumption is problematic

because it ignores the correlation between evolutionary related-

ness and ecological similarity. Although errors in phylogenetic

reconstruction can affect the clustering results, regardless of re-

construction method, a tree will provide a more accurate model

of the real data than will the star phylogeny. In practice, differ-

ent phylogenetic reconstruction methods give similar results

(Lozupone et al. 2007), so speed of reconstruction is usually the

overriding concern (especially with large data sets). Phylogenetic

methods are also useful for asking how much evolutionary

history is unique to a particular sample and for identifying

samples likely to contain additional unique deep-branching line-

ages (Lozupone and Knight 2007).

What level of taxonomic classification is important?

Depending on the question to be answered, taxonomic differences

at different depths might be important. For detecting pathogens,

16S rRNA has important limitations: Approaches that cover

many genes, such as MLST (multi-locus sequence typing) (Maiden

et al. 1998), can be critical for resolving drug-resistant or virulent

strains from their close but less harmful relatives. However, these
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techniques typically rely on detailed knowledge of which organ-

isms in the sample are of interest, and are less useful for broad

phylogenetic characterization or discovery of new phyla or other

high-level taxa. One advantage of the 16S rRNA gene is that it

contains both fast- and slow-evolving regions, so it can be used to

resolve phylogenetic relationships at different depths. However,

with short sequence reads, only specific sections can be chosen for

sequencing, and some regions recapture the patterns obtained

with the full-length sequences much better than others. In general,

however, it is not yet known whether we should concern ourselves

with strain-level, species-level, genus-level, or higher-order differ-

ences among samples when searching for differences in functions.

The human gut microbiota consists of a relatively small number

of deep-branching taxa with enormous diversity at the tips (Ley

et al. 2006b). On the other hand, given that the gut microbiota of

different humans show very different patterns of abundance even at

the phylum level (Fig. 3), pursing these large differences seems an

obvious first step. It is likely that only additional data about

microbiomes in health and disease will resolve this issue.

The above discussion assumes that we can identify the taxa

accurately and integrate them into an existing taxonomy. How-

ever, there are several competing taxonomies that differ sub-

stantially (DeSantis et al. 2006a), and several different algorithms

for grouping sequences by similarity into OTUs that differ radi-

cally in their results (Schloss and Handelsman 2005). Two popular

methods for selecting OTUs are the nearest-neighbor algorithm

(in which a sequence is added to an OTU if it is similar to any

sequence already in that OTU), and the furthest-neighbor algo-

rithm (in which a sequence is added to an OTU if it is similar to

all other sequences already in that OTU). In general, these algo-

rithms can produce remarkably different results (Fig. 5). In pyro-

sequencing data, the nearest-neighbor algorithm often produces

a single huge OTU, although the basis for this effect is still un-

known (M. Hamady and R. Knight, unpubl.).

The final issue is to choose a method for inserting new, un-

classified sequences into the taxonomy. There are several general

methods for performing this task: Sequences can be matched by

similarity to an existing sequence in the database by BLAST,

pairwise alignment, or by the count of oligonucleotide frequen-

cies; or they can be inserted into a phylogenetic tree and then

assigned to the group that they fall into. In practice, different

taxonomies produce large differences in the representation of

different bacterial groups in a sample, but once a taxonomy is

chosen, the various methods for inserting sequences into that

taxonomy usually give consistent results (Liu et al. 2008). The RDP

classifier, which matches sequences to groups using oligonucleo-

tide frequencies, is especially fast (Wang et al. 2007), although the

Greengenes classifier (DeSantis et al. 2006a), which uses a BLAST-

based approach, may provide comparable or better accuracy. (The

SILVA classification workflow [Pruesse et al. 2007], which uses

alignment and nearest-neighbor matching or tree insertion, was

released after this comparison was performed, but is also likely to

be useful.) These methods are typically used to make a pie chart or

bar graph showing the representation of each phylum in each

sample, as in Figure 3. One major emerging issue is the massive

amount of uncharacterized data in the public databases: When

trying to classify newly sequenced data by BLAST, query sequences

are far more likely to hit sequences with vague annotations such as

‘‘uncultured soil bacterium’’ rather than a cultured isolate with

well-characterized genetics and biochemistry. Overcoming the

challenges associated with storing metadata about each sample,

especially using a consistent structured vocabulary and ontology

for sample annotation, will be critical for making the data col-

lected by the HMPs a useful resource (Garrity et al. 2008).

At the metagenomic level, a typical approach is to produce

a heat map showing the abundance of each function or each

taxonomic group in each metagenomic sample, and use standard

(nonphylogenetic) clustering techniques to relate the samples to

one another according to the functions they contain (Tringe et al.

2005; Turnbaugh et al. 2006, 2008, 2009; Huson et al. 2007;

Dinsdale et al. 2008; Schloss and Handelsman 2008). Extension of

phylogenetic analysis techniques to these kinds of data (Lozupone

et al. 2008) is likely to allow improved resolution, as they have for

16S rRNA analyses. Metagenomic sequences also provide impor-

tant opportunities for emerging techniques such as metabolic

network reconstruction (Markowitz et al. 2008; Meyer et al. 2008a)

and multivariate analyses that relate changes in pathway repre-

sentation to environmental gradients (Gianoulis et al. 2009):

Combining multiple approaches is essential at this point.

Figure 5. Different methods for selecting OTUs produce different
results. (A,B) If sequences are arranged so that each sequence has
a neighbor within the OTU threshold (e.g., 97%) but these neighbors are
not similar to one another, that is, the variation is not in the same di-
rection, (A) the nearest-neighbor algorithm will produce one OTU be-
cause every sequence is connected to every other sequence through
a chain of neighbors within threshold, but (B) the furthest-neighbor al-
gorithm will produce a series of OTUs where all members of each OTU are
similar to one another. (OTU boundaries are indicated by dashed lines.)
Note that the precise OTUs produced by the furthest-neighbor algorithm
will vary every time owing to the choice of the randomly chosen seed
sequence for each (gray) OTU. (C,D) If sequences are arranged so that
there is one outlier that is within threshold of only one of the other
sequences, (C) the nearest-neighbor algorithm will produce a single OTU,
(D) but the furthest-neighbor algorithm will produce two OTUs in which
one of the two most distant sequences is excluded from the main OTU at
random. (E,F ) If sequences are arranged so that all sequences are within
threshold of a central sequence but are outside threshold from each other,
(E) the nearest-neighbor algorithm will again produce one OTU, (F) but
the furthest-neighbor algorithm will group one sequence with the central
sequence at random and break the other sequences into their own OTUs.
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Is there a core? Key themes emerging from recent
studies of the microbiome
The major challenge facing the various Human Microbiome

Projects is: How can we best relate differences in community

composition to differences in function, especially for relating

microbial changes to human health and disease?

New techniques, including high-throughput phylogenetic

methods and network-based analyses, allow us to answer large-

scale questions about placing human microbiomes in context that

previously could not be addressed. In particular, the availability of

hundreds of samples covered at thousands of sequences/sample

allows us to characterize the variability among different humans,

which is essential for providing a baseline for studies of microbes

associated with specific diseases.

Different people harbor remarkably dissimilar microbiota

in their guts (Fig. 2; see also Eckburg et al. 2005; Frank et al. 2007;

Ley et al. 2008a; Turnbaugh et al. 2009), in their saliva (Nasidze

et al. 2009), and on their hands (Fierer et al. 2008; Grice et al.

2008), both in terms of which species are present and in terms of

the relative ratios of the bacterial phyla. This amazing degree of

variability among individuals will greatly complicate the Hu-

man Microbiome Project’s ability to deliver on the promise of

identifying microbes that are biomarkers for specific diseases.

Studies of the guts of different individual mice (Ley et al. 2005)

and macaques (Hoffmann et al. 2007) reinforce the point that

this variability within species is likely to be a recurring theme.

In particular, comparative studies must be very cautious in at-

tributing observed differences in the microbiota to differences

among species rather than to differences among individuals, al-

though when dozens of species are studied, the broad-scale trends

will be apparent even with one individual per species (Ley et al.

2008a).

Our current depth of coverage allows us to rule out the pos-

sibility that all humans share any species (approximated here as

97% OTUs) in the gut at the 1% level of abundance, and that all

hands share any bacterium at the 2% level of abundance. This

calculation is performed as follows (Turnbaugh et al. 2008). As-

sume that the true level of abundance of a species s in all samples is

x%. We can then calculate the probability that in n sequences we

missed s completely using Poisson sampling statistics: Pr(missed) =

e�xn. If we then have N samples of equal size, we can calculate

the probability that we only observed the species in at most n

of the N samples using the binomial distribution. We can then

vary x until the probability of missing s in the actual number of

samples N is a specified significance level a, say, 0.05. If sample

sizes are unequal, the binomial distribution cannot be used, but an

empirical distribution can be obtained by simulation. Using this

approach on the human gut samples from Ley et al. (2008a),

evenly sampled, we can rule out the possibility that any species

is at more than 0.9% in the gut of all humans studied with depth

of coverage of at least 350 sequences/sample. This result remains

consistent using pyrosequencing data at several thousand ampli-

con sequences/fecal sample (Turnbaugh et al. 2009). Using this

approach on human hand samples (Fierer et al. 2008), we can rule

out the possibility that any species is at more than 2% on all hands

sampled. This latter result is especially surprising because on

average one species comprises 37% of the community on a given

hand. It is possible that (1) we all share a much greater propor-

tion of these species at much lower abundance that could be

detected with deeper sequencing or with qPCR or culture-based

techniques, and (2) many species are very abundant in individual

samples. However, we can already rule out the possibility that

there are species that we all share at high abundance. Nonetheless,

at the phylum level, we all share the same few groups in a given

body habitat (Ley et al. 2006b; Dethlefsen et al. 2007), albeit at

radically different levels of abundance. At what taxonomic level, if

any, will we start to see a shared core among humans, and/or

a set of human-specific lineages that differentiates us from other

mammals?

One intriguing recent result is that species-level variability

appears to be associated with extensive functional redundancy, in

which completely different microbial communities converge on

the same functional state. For example, at the metagenomic level,

different habitats (soils, lakes, etc.) converge on similar functional

gene repertoires (Dinsdale et al. 2008). Using the same set of

samples from lean and obese twins, completely different species

assemblages appear to lead to very similar functional profiles, as

measured by the representation of KEGG pathways (Turnbaugh

et al. 2009). This result has a clear parallel in macroecosystems: For

example, a grassland in North America and a grassland in Africa

will share many obvious ecological similarities (with respect to,

say, forests) yet will have none of their species in common and

may have some ecosystem functions, such as pollination, per-

formed by phylogenetically independent guild members (e.g.,

bees versus bats). Exploration of this relationship between species

assemblages and ecosystem function will be a key result of

microbiome studies and may provide new insights into assembly

of a wide range of ecosystems.

Thus, we can rule out the possibility that there is a large core

microbiome at the species level, although at higher-order taxo-

nomic levels (e.g., phylum), the communities begin to resemble

one another more (although there is still immense variability in,

e.g., the ratio of Firmicutes to Bacteroidetes). There may be a con-

sistent functional signature, however, and discovering these rela-

tionships to metabolic function (Li et al. 2008; Turnbaugh et al.

2009) will be an especially important outcome of HMPs. Untan-

gling the relationships among these very high-dimensional

data sets will also require methods developed to handle millions

or even billions of sequences from thousands to millions of

samples. Key limiting factors will be algorithms to reduce com-

putational complexity and ontologies to allow convenient re-

trieval of relevant data sets from vast numbers of community

samples. Interdisciplinary studies combining ecology, microbiol-

ogy, advanced computational methods, genomics, culture-based

studies, and so on will be essential (Ley et al. 2008b). At this

stage, we need to be judicious in interpreting microbiome results

because so much variability is being uncovered, but the prospects

for discovery and impacts on human health are inspiring.

Acknowledgments
We thank Cathy Lozupone, Jeffrey Gordon, Ruth Ley, Peter
Turnbaugh, Elizabeth Costello, Daniel McDonald, and Justin
Kuczynski for helpful discussions and comments on drafts of the
manuscript; and Sean Eddy and Manuel Lladser for helpful dis-
cussions about the statistical analysis. M.H. was supported by an
NSF EAPSI fellowship (OISE0812861) and the NIH Molecular
Biophysics Training Grant (T32GM065103). The ideas in this re-
view arose from work in the Knight and Gordon laboratories
supported by the NIH (P01DK078669), the Crohn’s and Colitis
Foundation of America, the Bill and Melinda Gates Foundation,
and from discussion at the Banbury Center Conference ‘‘Living
on Human Beings: Metagenomic Approaches and Challenges,’’
March 2–5, 2008.

Microbiome analysis

Genome Research 1149
www.genome.org



References

Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. 2005. Defining the
normal bacterial flora of the oral cavity. J Clin Microbiol 43: 5721–5732.

Anderson IC, Cairney JW. 2004. Diversity and ecology of soil fungal
communities: Increased understanding through the application of
molecular techniques. Environ Microbiol 6: 769–779.

Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L.
2008. Comparative analysis of human gut microbiota by barcoded
pyrosequencing. PLoS One 3: e2836. doi: 10.1371/
journal.pone.0002836.

Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ. 2006. New
screening software shows that most recent large 16S rRNA gene clone
libraries contain chimeras. Appl Environ Microbiol 72: 5734–5741.

Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-
specific 16S primers. J Microbiol Methods 55: 541–555.

Binladen J, Gilbert MT, Bollback JP, Panitz F, Bendixen C, Nielsen R,
Willerslev E. 2007. The use of coded PCR primers enables high-
throughput sequencing of multiple homolog amplification products by
454 parallel sequencing. PLoS One 2: e197. doi: 10.1371/
journal.pone.0000197.

Brown CJ, Wong M, Davis CC, Kanti A, Zhou X, Forney LJ. 2007.
Preliminary characterization of the normal microbiota of the human
vulva using cultivation-independent methods. J Med Microbiol 56:
271–276.

Chao A. 1984. Nonparametric estimation of the number of classes in
a population. Scand J Stat 11: 265–270.

Church GM, Kieffer-Higgins S. 1988. Multiplex DNA sequencing. Science
240: 185–188.

Coolen MJ, Post E, Davis CC, Forney LJ. 2005. Characterization of microbial
communities found in the human vagina by analysis of terminal
restriction fragment length polymorphisms of 16S rRNA genes. Appl
Environ Microbiol 71: 8729–8737.

Dalevi D, Ivanova NN, Mavromatis K, Hooper SD, Szeto E, Hugenholtz P,
Kyrpides NC, Markowitz VM. 2008. Annotation of metagenome short
reads using proxygenes. Bioinformatics 24: i7–i13.

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T,
Dalevi D, Hu P, Andersen GL. 2006a. Greengenes, a chimera-checked
16S rRNA gene database and workbench compatible with ARB. Appl
Environ Microbiol 72: 5069–5072.

DeSantis, TZ Jr, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM,
Phan R, Andersen GL. 2006b. NAST: A multiple sequence alignment
server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:
W394–W399.

DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL.
2007. High-density universal 16S rRNA microarray analysis reveals
broader diversity than typical clone library when sampling the
environment. Microb Ecol 53: 371–383.

Dethlefsen L, McFall-Ngai M, Relman DA. 2007. An ecological and
evolutionary perspective on human–microbe mutualism and disease.
Nature 449: 811–818.

Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M,
Desnues C, Haynes M, Li L, et al. 2008. Functional metagenomic
profiling of nine biomes. Nature 452: 629–632.

Dollhopf SL, Hashsham SA, Tiedje JM. 2001. Interpreting 16S rDNA T-RFLP
data: Application of self-organizing maps and principal component
analysis to describe community dynamics and convergence. Microb Ecol
42: 495–505.

Droege M, Hill B. 2008. The Genome Sequencer FLX System—longer reads,
more applications, straight forward bioinformatics and more complete
data sets. J Biotechnol 136: 3–10.

Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill
SR, Nelson KE, Relman DA. 2005. Diversity of the human intestinal
microbial flora. Science 308: 1635–1638.

Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson
DM, Saar MO, Alexander S, Alexander EC Jr, Rohwer F. 2006. Using
pyrosequencing to shed light on deep mine microbial ecology. BMC
Genomics 7: 57. doi: 10.1186/1471-2164-7-57.

Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacterial
communities. Proc Natl Acad Sci 103: 626–631.

Fierer N, Hamady M, Lauber CL, Knight R. 2008. The influence of sex,
handedness, and washing on the diversity of hand surface bacteria. Proc
Natl Acad Sci 105: 17994–17999.

Fisher MM, Triplett EW. 1999. Automated approach for ribosomal
intergenic spacer analysis of microbial diversity and its application to
freshwater bacterial communities. Appl Environ Microbiol 65: 4630–
4636.

Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR.
2007. Molecular-phylogenetic characterization of microbial

community imbalances in human inflammatory bowel diseases. Proc
Natl Acad Sci 104: 13780–13785.

Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. 2008.
Critical evaluation of two primers commonly used for amplification of
bacterial 16S rRNA genes. Appl Environ Microbiol 74: 2461–2470.

Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW,
Delong EF. 2008. Microbial community gene expression in ocean
surface waters. Proc Natl Acad Sci 105: 3805–3810.

Gao Z, Tseng CH, Pei Z, Blaser MJ. 2007. Molecular analysis of human
forearm superficial skin bacterial biota. Proc Natl Acad Sci 104:
2927–2932.

Garrity GM, Field D, Kyrpides N, Hirschman L, Sansone SA, Angiuoli S,
Cole JR, Glockner FO, Kolker E, Kowalchuk G, et al. 2008. Toward
a standards-compliant genomic and metagenomic publication record.
OMICS 12: 157–160.

Gianoulis TA, Raes J, Patel PV, Bjornson R, Korbel JO, Letunic I, Yamada T,
Paccanaro A, Jensen LJ, Snyder M, et al. 2009. Quantifying
environmental adaptation of metabolic pathways in metagenomics.
Proc Natl Acad Sci 106: 1374–1379.

Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI,
Relman DA, Fraser-Liggett CM, Nelson KE. 2006. Metagenomic analysis
of the human distal gut microbiome. Science 312: 1355–1359.

Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW,
Wolfsberg TG, Turner ML, Segre JA. 2008. A diversity profile of the
human skin microbiota. Genome Res 18: 1043–1050.

Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R. 2008. Error-correcting
barcoded primers for pyrosequencing hundreds of samples in
multiplex. Nat Methods 5: 235–237.

Harris JK, Kelley ST, Pace NR. 2004. New perspective on uncultured bacterial
phylogenetic division OP11. Appl Environ Microbiol 70: 845–849.

Hayashi H, Sakamoto M, Benno Y. 2002a. Fecal microbial diversity in a strict
vegetarian as determined by molecular analysis and cultivation.
Microbiol Immunol 46: 819–831.

Hayashi H, Sakamoto M, Benno Y. 2002b. Phylogenetic analysis of the
human gut microbiota using 16S rDNA clone libraries and strictly
anaerobic culture-based methods. Microbiol Immunol 46: 535–548.

Hayashi H, Sakamoto M, Kitahara M, Benno Y. 2003. Molecular analysis of
fecal microbiota in elderly individuals using 16S rDNA library and T-
RFLP. Microbiol Immunol 47: 557–570.

He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, Huang Z, Wu W,
Gu B, Jardine P, et al. 2007. GeoChip: A comprehensive microarray for
investigating biogeochemical, ecological and environmental processes.
ISME J 1: 67–77.

Hoffmann C, Minkah N, Leipzig J, Wang G, Arens MQ, Tebas P, Bushman
FD. 2007. DNA bar coding and pyrosequencing to identify rare HIV drug
resistance mutations. Nucleic Acids Res 35: e91. doi: 10.1093/nar/
gkm435.

Huber JA, Mark Welch DB, Morrison HG, Huse SM, Neal PR, Butterfield DA,
Sogin ML. 2007. Microbial population structures in the deep marine
biosphere. Science 318: 97–100.

Huber T, Faulkner G, Hugenholtz P. 2004. Bellerophon: A program to detect
chimeric sequences in multiple sequence alignments. Bioinformatics 20:
2317–2319.

Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM. 2007. Accuracy
and quality of massively parallel DNA pyrosequencing. Genome Biol 8:
R143. doi: 10.1186/gb-2007-8-7-r143.

Huson DH, Auch AF, Qi J, Schuster SC. 2007. MEGAN analysis of
metagenomic data. Genome Res 17: 377–386.

Hyman RW, Fukushima M, Diamond L, Kumm J, Giudice LC, Davis RW.
2005. Microbes on the human vaginal epithelium. Proc Natl Acad Sci
102: 7952–7957.

Isenbarger TA, Finney M, Rios-Velazquez C, Handelsman J, Ruvkun G. 2008.
Miniprimer PCR, a new lens for viewing the microbial world. Appl
Environ Microbiol 74: 840–849.

Kanagawa T. 2003. Bias and artifacts in multitemplate polymerase chain
reactions (PCR). J Biosci Bioeng 96: 317–323.

Korlach J, Marks PJ, Cicero RL, Gray JJ, Murphy DL, Roitman DB, Pham TT,
Otto GA, Foquet M, Turner SW. 2008. Selective aluminum passivation
for targeted immobilization of single DNA polymerase molecules
in zero-mode waveguide nanostructures. Proc Natl Acad Sci 105:
1176–1181.

Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer F,
Edwards RA, Stoye J. 2008. Phylogenetic classification of short
environmental DNA fragments. Nucleic Acids Res 36: 2230–2239.

Lederberg J. 2000. Infectious history. Science 288: 287–293.
Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005.

Obesity alters gut microbial ecology. Proc Natl Acad Sci 102: 11070–
11075.

Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA,
Bryant DA, Sogin ML, Pace NR. 2006a. Unexpected diversity and

Hamady and Knight

1150 Genome Research
www.genome.org



complexity of the Guerrero Negro hypersaline microbial mat. Appl
Environ Microbiol 72: 3685–3695.

Ley RE, Peterson DA, Gordon JI. 2006b. Ecological and evolutionary forces
shaping microbial diversity in the human intestine. Cell 124: 837–848.

Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 2006c. Microbial ecology: Human
gut microbes associated with obesity. Nature 444: 1022–1023.

Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS,
Schlegel ML, Tucker TA, Schrenzel MD, Knight R, et al. 2008a. Evolution
of mammals and their gut microbes. Science 320: 1647–1651.

Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. 2008b. Worlds
within worlds: Evolution of the vertebrate gut microbiota. Nat Rev
Microbiol 6: 776–788.

Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J,
Pang X, Wei H, et al. 2008. Symbiotic gut microbes modulate human
metabolic phenotypes. Proc Natl Acad Sci 105: 2117–2122.

Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R. 2007. Short
pyrosequencing reads suffice for accurate microbial community
analysis. Nucleic Acids Res 35: e120. doi: 10.1093/nar/gkm541.

Liu Z, DeSantis TZ, Andersen GL, Knight R. 2008. Accurate taxonomy
assignments from 16S rRNA sequences produced by highly parallel
pyrosequencers. Nucleic Acids Res 36: e120. doi: 10.1093/nar/gkn491.

Lo I, Denef VJ, Verberkmoes NC, Shah MB, Goltsman D, DiBartolo G, Tyson
GW, Allen EE, Ram RJ, Detter JC, et al. 2007. Strain-resolved community
proteomics reveals recombining genomes of acidophilic bacteria. Nature
446: 537–541.

Lozupone C, Knight R. 2005. UniFrac: A new phylogenetic method for
comparing microbial communities. Appl Environ Microbiol 71: 8228–
8235.

Lozupone CA, Knight R. 2007. Global patterns in bacterial diversity. Proc
Natl Acad Sci 104: 11436–11440.

Lozupone C, Hamady M, Knight R. 2006. UniFrac—an online tool for
comparing microbial community diversity in a phylogenetic context.
BMC Bioinformatics 7: 371. doi: 10.1186/1471-2105-7-371.

Lozupone CA, Hamady M, Kelley ST, Knight R. 2007. Quantitative and
qualitative beta diversity measures lead to different insights into factors
that structure microbial communities. Appl Environ Microbiol 73: 1576–
1585.

Lozupone CA, Hamady M, Cantarel BL, Coutinho PM, Henrissat B, Gordon
JI, Knight R. 2008. The convergence of carbohydrate active gene
repertoires in human gut microbes. Proc Natl Acad Sci 105: 15076–
15081.

Magurran AE. 2004. Measuring biological diversity. Blackwell, Oxford, UK.
Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q,

Zhou J, Zurth K, Caugant DA, et al. 1998. Multilocus sequence typing: A
portable approach to the identification of clones within populations of
pathogenic microorganisms. Proc Natl Acad Sci 95: 3140–3145.

Marcille F, Gomez A, Joubert P, Ladire M, Veau G, Clara A, Gavini F, Willems
A, Fons M. 2002. Distribution of genes encoding the trypsin-dependent
lantibiotic ruminococcin A among bacteria isolated from human fecal
microbiota. Appl Environ Microbiol 68: 3424–3431.

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J,
Braverman MS, Chen YJ, Chen Z, et al. 2005. Genome sequencing in
microfabricated high-density picolitre reactors. Nature 437: 376–380.

Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, Chen
IM, Grechkin Y, Dubchak I, Anderson I, et al. 2008. IMG/M: A data
management and analysis system for metagenomes. Nucleic Acids Res
36: D534–D538.

Martin R, Heilig HG, Zoetendal EG, Jimenez E, Fernandez L, Smidt H,
Rodriguez JM. 2007. Cultivation-independent assessment of the
bacterial diversity of breast milk among healthy women. Res Microbiol
158: 31–37.

Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy AC,
Rigoutsos I, Salamov A, Korzeniewski F, Land M, et al. 2007. Use of
simulated data sets to evaluate the fidelity of metagenomic processing
methods. Nat Methods 4: 495–500.

McKenna P, Hoffmann C, Minkah N, Aye PP, Lackner A, Liu Z, Lozupone
CA, Hamady M, Knight R, Bushman FD. 2008. The macaque gut
microbiome in health, lentiviral infection, and chronic enterocolitis.
PLoS Pathog 4: e20. doi: 10.1371/journal.ppat.0040020.

Medini D, Serruto D, Parkhill J, Relman DA, Donati C, Moxon R, Falkow S,
Rappuoli R. 2008. Microbiology in the post-genomic era. Nat Rev
Microbiol 6: 419–430.

Meyer AF, Lipson DA, Martin AP, Schadt CW, Schmidt SK. 2004. Molecular
and metabolic characterization of cold-tolerant alpine soil Pseudomonas
sensu stricto. Appl Environ Microbiol 70: 483–489.

Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T,
Rodriguez A, Stevens R, Wilke A, et al. 2008a. The metagenomics RAST
server—a public resource for the automatic phylogenetic and functional
analysis of metagenomes. BMC Bioinformatics 9: 386. doi: 10.1186/
1471-2105-9-386.

Meyer M, Stenzel U, Hofreiter M. 2008b. Parallel tagged sequencing on the
454 platform. Nat Protocols 3: 267–278.

Nagashima K, Mochizuki J, Hisada T, Suzuki S, Shimomura K. 2006.
Phylogenetic analysis of 16S ribosomal gene sequences from human
fecal microbiota and improved utility of terminal restriction fragment
length polymorphism profiling. Biosci. Microflora 25: 99–107.

Nasidze I, Li J, Quinque D, Tang K, Stoneking M. 2009. Global diversity in
the human salivary microbiome. Genome Res. doi: 10.1101/
gr.084616.108.

Neefs JM, Van de Peer Y, Hendriks L, De Wachter R. 1990. Compilation of
small ribosomal subunit RNA sequences. Nucleic Acids Res (Suppl.) 18:
2237–2317.

Pace NR. 1997. A molecular view of microbial diversity and the biosphere.
Science 276: 734–740.

Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO. 2007. Development
of the human infant intestinal microbiota. PLoS Biol 5: e177. doi:
10.1371/journal.pbio.0050177.

Parameswaran P, Jalili R, Tao L, Shokralla S, Gharizadeh B, Ronaghi M, Fire
AZ. 2007. A pyrosequencing-tailored nucleotide barcode design unveils
opportunities for large-scale sample multiplexing. Nucleic Acids Res 35:
e130. doi: 10.1093/nar/gkm760.

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO.
2007. SILVA: A comprehensive online resource for quality checked and
aligned ribosomal RNA sequence data compatible with ARB. Nucleic
Acids Res 35: 7188–7196.

Quinlan AR, Stewart DA, Stromberg MP, Marth GT. 2008. Pyrobayes:
An improved base caller for SNP discovery in pyrosequences. Nat
Methods 5: 179–181.

Rappe MS, Giovannoni SJ. 2003. The uncultured microbial majority. Annu
Rev Microbiol 57: 369–394.

Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub
SH, Camargo FA, Farmerie WG, Triplett EW. 2007. Pyrosequencing
enumerates and contrasts soil microbial diversity. ISME J 1: 283–290.

Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P. 1996. Real-
time DNA sequencing using detection of pyrophosphate release. Anal
Biochem 242: 84–89.

Ronaghi M, Uhlen M, Nyren P. 1998. A sequencing method based on real-
time pyrophosphate. Science 281: 365. doi: 10.1126/
science.281.5375.363.

Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR,
Loiacono KA, Lynch BA, MacNeil IA, Minor C, et al. 2000. Cloning the
soil metagenome: A strategy for accessing the genetic and functional
diversity of uncultured microorganisms. Appl Environ Microbiol 66:
2541–2547.

Savage DC. 1977. Microbial ecology of the gastrointestinal tract. Annu Rev
Microbiol 31: 107–133.

Schloss PD, Handelsman J. 2005. Introducing DOTUR, a computer program
for defining operational taxonomic units and estimating species
richness. Appl Environ Microbiol 71: 1501–1506.

Schloss PD, Handelsman J. 2006. Introducing SONS, a tool for operational
taxonomic unit-based comparisons of microbial community
memberships and structures. Appl Environ Microbiol 72: 6773–6779.

Schloss PD, Handelsman J. 2008. A statistical toolbox for metagenomics:
Assessing functional diversity in microbial communities. BMC
Bioinformatics 9: 34. doi: 10.1186/1471-2105-9-34.

Sheneman L, Evans J, Foster JA. 2006. Clearcut: A fast implementation of
relaxed neighbor joining. Bioinformatics 22: 2823–2824.

Shoemaker DD, Lashkari DA, Morris D, Mittmann M, Davis RW. 1996.
Quantitative phenotypic analysis of yeast deletion mutants using
a highly parallel molecular bar-coding strategy. Nat Genet 14:
450–456.

Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR,
Arrieta JM, Herndl GJ. 2006. Microbial diversity in the deep sea and
the underexplored ‘‘rare biosphere.’’. Proc Natl Acad Sci 103: 12115–
12120.

Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J.
1999. Direct analysis of genes encoding 16S rRNA from complex
communities reveals many novel molecular species within the human
gut. Appl Environ Microbiol 65: 4799–4807.

Thompson JD, Higgins DG, Gibson TJ. 1994. ClustalW: Improving the
sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Res 22: 4673–4680.

Tringe SG, Hugenholtz P. 2008. A renaissance for the pioneering 16S rRNA
gene. Curr Opin Microbiol 11: 442–446.

Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW,
Podar M, Short JM, Mathur EJ, Detter JC, et al. 2005. Comparative
metagenomics of microbial communities. Science 308: 554–557.

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI.
2006. An obesity-associated gut microbiome with increased capacity for
energy harvest. Nature 444: 1027–1031.

Microbiome analysis

Genome Research 1151
www.genome.org



Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI.
2007. The human microbiome project. Nature 449: 804–810.

Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. 2008. Diet-induced obesity is
linked to marked but reversible alterations in the mouse distal gut
microbiome. Cell Host Microbe 3: 213–223.

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE,
Sogin ML, Jones WJ, Roe BA, Affourtit JP, et al. 2009. A core gut
microbiome in obese and lean twins. Nature 457: 480–484.

Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson
J, Lefsrud MG, Apajalahti J, Tysk C, Hettich RL, et al. 2008. Shotgun
metaproteomics of the human distal gut microbiota. ISME J 3:
179–189.

von Wintzingerode F, Gobel UB, Stackebrandt E. 1997. Determination of
microbial diversity in environmental samples: Pitfalls of PCR-based
rRNA analysis. FEMS Microbiol Rev 21: 213–229.

Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naı̈ve Bayesian classifier for
rapid assignment of rRNA sequences into the new bacterial taxonomy.
Appl Environ Microbiol 73: 5261–5267.

Wilson KH, Wilson WJ, Radosevich JL, DeSantis TZ, Viswanathan VS,
Kuczmarski TA, Andersen GL. 2002. High-density microarray of small-
subunit ribosomal DNA probes. Appl Environ Microbiol 68: 2535–2541.

Wommack KE, Bhavsar J, Ravel J. 2008. Metagenomics: Read length
matters. Appl Environ Microbiol 74: 1453–1463.

Zaneveld J, Turnbaugh PJ, Lozupone C, Ley RE, Hamady M, Gordon JI,
Knight R. 2008. Host–bacterial coevolution and the search for new drug
targets. Curr Opin Chem Biol 12: 109–114.

Zhou X, Brown CJ, Abdo Z, Davis CC, Hansmann MA, Joyce P, Foster JA,
Forney LJ. 2007. Differences in the composition of vaginal microbial
communities found in healthy Caucasian and black women. ISME J 1:
121–133.

Hamady and Knight

1152 Genome Research
www.genome.org


