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There is considerable interest in understanding the biological mechanisms that regulate carbon
exchanges between the land and atmosphere, and how these exchanges respond to climate change.
An understanding of soil microbial ecology is central to our ability to assess terrestrial carbon
cycle–climate feedbacks, but the complexity of the soil microbial community and the many ways that
it can be affected by climate and other global changes hampers our ability to draw firm conclusions
on this topic. In this paper, we argue that to understand the potential negative and positive
contributions of soil microbes to land–atmosphere carbon exchange and global warming requires
explicit consideration of both direct and indirect impacts of climate change on microorganisms.
Moreover, we argue that this requires consideration of complex interactions and feedbacks that
occur between microbes, plants and their physical environment in the context of climate change,
and the influence of other global changes which have the capacity to amplify climate-driven effects
on soil microbes. Overall, we emphasize the urgent need for greater understanding of how soil
microbial ecology contributes to land–atmosphere carbon exchange in the context of climate
change, and identify some challenges for the future. In particular, we highlight the need for a
multifactor experimental approach to understand how soil microbes and their activities respond to
climate change and consequences for carbon cycle feedbacks.
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Introduction

Ongoing global climate change caused by human-
induced increases in greenhouse gases represents
one of the biggest scientific and political challenges
of the 21st century. Of these, perhaps the greatest is
the need to better understand the biological me-
chanisms regulating carbon exchanges between the
land, oceans and atmosphere and how these
exchanges will respond to climate change through
climate–ecosystem feedbacks, which could amplify
or dampen regional and global climate change
(Heimann and Reichstein, 2008). Terrestrial ecosys-
tems play a major role in such climate-feedbacks
because they release and absorb greenhouse gases,
such as carbon dioxide, methane and nitrous oxides,
while storing large quantities of carbon in living
vegetation and soils, thereby acting as a significant
global carbon sink (Schimel et al., 1994). Many
interacting factors affect the sink activity of terres-
trial ecosystems, including natural and anthropo-

genic disturbances (Magnani et al., 2007),
agricultural land use (Smith et al., 2008), nitrogen
(N) enrichment (Beedlow et al., 2004), sulphur
deposition (Monteith et al., 2007) and changes in
atmosphere ozone concentration (Sitch et al., 2007).
The influence of climate change on the soil carbon
sink remains a major area of uncertainty, especially
as there is scope for warming to increase the
liberation of carbon dioxide from soil to atmosphere
due to enhanced microbial breakdown of soil
organic matter. Such acceleration in carbon loss
from soil could significantly exacerbate the soil
carbon cycle feedback if predicted climate change
scenarios are correct (Cox et al., 2000; Friedlingstein
et al., 2006).

Ultimately, the net effect of climate change on
ecosystem carbon budgets depends on the balance
between photosynthesis and respiration (that is,
autotrophic root respiration and heterotrophic soil
microbial respiration). While our knowledge of the
assimilatory component (that is photosynthesis) of
the carbon cycle and its response to climate change
is well advanced (Bahn et al., 2008), there are
considerable gaps in our understanding of the
response of soil respiration (Trumbore, 2006). This
lack of understanding of soil respiration and its

Correspondence: Richard Bardgett, Department of Biological
Sciences, University of Lancaster, Bailrigg, Lancaster, Lancashire
LA1 4YQ, UK.
E-mail: r.bardgett@lancaster.ac.uk

The ISME Journal (2008) 2, 805–814
& 2008 International Society for Microbial Ecology All rights reserved 1751-7362/08 $30.00

www.nature.com/ismej

http://dx.doi.org/10.1038/ismej.2008.58
mailto:r.bardgett@lancaster.ac.uk
http://www.nature.com/ismej


sensitivity to climate change stems from the fact that
it is regulated by a myriad of factors including
complex interactions and feedbacks between cli-
mate, plants, their herbivores and symbionts and
free-living heterotrophic soil microbes (Wardle
et al., 2004; Högberg and Read, 2006; De Deyn
et al., 2008). The issue is complicated further by the
knowledge that soil microbes act as important
determinants of plant community diversity and
productivity (Wardle et al., 2004; van der Heijden
et al., 2008) and hence the quality and quantity of
carbon input to soil (De Deyn et al., 2008). In this
paper, we argue that to understand the potential
negative and positive contributions of soil microbes
to global warming requires explicit consideration of
both direct and indirect impacts of climate change
on soil microorganisms and the capacity for feed-
back to greenhouse gas production. We illustrate
this by examining the role that microbial feedbacks
play in regulating soil land–atmosphere carbon
exchange, and, in doing so, emphasize the urgent
need for greater understanding of how soil microbial
ecology contributes to climate change.

Soil microbes, ecosystem carbon
exchange and climate change

There are a myriad of ways that soil microbes and
their metabolic activity can influence land–atmo-
sphere carbon exchanges, but these can broadly be
divided into those that affect ecosystem carbon
dioxide and methane uptake, and those that control
carbon loss from soil through respiration and
methane production (Figure 1). Importantly, climate
change has both direct and indirect effects on the
activities of soil microbes that feedback greenhouse
gases to the atmosphere and contribute to global
warming: direct effects include the influence on soil
microbes and greenhouse gas production of tem-
perature, changing precipitation and extreme
climatic events, whereas indirect effects result from
climate-driven changes in plant productivity and
diversity which alter soil physicochemical condi-
tions, the supply of carbon to soil and the structure
and activity of microbial communities involved in
decomposition processes and carbon release from
soil. Here, we use direct and indirect effects of
climate change as a framework to illustrate the role
of soil microbes and microbial metabolism in carbon
cycle feedbacks and the consequences for climate
change.

Direct climate-microbe feedbacks
One of the most widely discussed contributions of
soil microbes to climate change is their role in soil
organic matter decomposition and the notion that
global warming will accelerate rates of heterotrophic
microbial activity, thereby increasing the efflux of
CO2 to the atmosphere and exports of dissolved

organic carbon by hydrologic leaching (Jenkinson
et al., 1991; Davidson and Janssens, 2006). Because
rates of soil respiration are thought to be more
sensitive to temperature than primary production
(Jenkinson et al., 1991; Schimel et al., 1994), it is
predicted that climate warming will increase the net
transfer of carbon from soil to atmosphere, thereby
creating a positive feedback on climate change (Cox
et al., 2002). While it is well established that
temperature is an important determinant of rates of
organic matter decomposition, the nature of the
relationship between temperature and heterotrophic
microbial respiration and its potential to feedback to
climate change, are far from clear (Davidson and
Janssens, 2006; Trumbone, 2006).

A prime cause of this uncertainty is the inherent
complexity and diversity of soil organic matter and
the likelihood that the temperature dependence of
microbial decomposition of soil carbon compounds
of differing chemical composition and substrate
quality will vary (Davidson and Janssens, 2006).
For example, there is evidence that the temperature
sensitivity of litter decomposition increases as the
quality of organic carbon consumed by microbes
declines (Fierer et al., 2005), which is consistent
with kinetic theory which indicates greater tem-
perature sensitivity for decomposition of recalci-
trant carbon pools (Knorr et al., 2005). However,
there is still much uncertainty on this subject. For
example, other studies suggest that the temperature
sensitivity of more recalcitrant substrates is similar
(Fang et al., 2005; Conen et al., 2006) or less than
(Luo et al., 2001; Melillo et al., 2002; Rey and Jarvis,
2006) that of more labile substrates, while a recent
synthesis of new and previously published soil C
incubation data showed that temperature sensitivity
of relatively more resistant organic matter is greater
than that of relatively more labile substrates (Conant
et al., 2008). There is also considerable potential for
various environmental constraints, such as physical
and chemical protection of organic matter, to
decrease substrate availability for microbial attack,
thereby dampening microbial responses to warming
(Davidson and Janssens, 2006). The picture is
further complicated by uncertainty about how
reactive different microbial groups and species are
to temperature change (Kandeler et al., 1998;
Bardgett et al., 1999), and whether short-term
increases in carbon mineralization—which are com-
monly observed in warming experiments in the field
(Luo et al., 2001; Melillo et al., 2002)—will be
sustained due to depletion of substrate availability
and acclimation of soil microbial communities to
higher temperature (Kirschbaum, 2004). This micro-
bial process level uncertainty extends to unreliable
model predictions of soil carbon feedbacks to
climate change (Kirschbaum, 2006), and resolving
this issue represents a major research challenge for
the future.

It is likely that climate change-related increases in
the frequency of extreme weather events, such as
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drought and freezing, will have even greater effects
on microbes and their activities than overall changes
in temperature and precipitation. It is well estab-
lished that both drought and freezing can have
substantial direct effects on microbial physiology
and the composition of the active microbial com-
munity, with important consequences for ecosys-
tem-level carbon and nutrient flows (Schimel et al.,
2007). However, effects of these stressors on micro-
bial communities and consequences for carbon
exchange are likely to vary substantially across
ecosystems. Increased frequency and intensity
of drought in drier ecosystems, for example, may
result in moisture-limiting conditions for microbial
activity, creating a negative feedback on microbial de-
composition and soil carbon loss as microbial
respiration. This view is supported by studies
of forest ecosystems which report significant falls
in litter phenol oxidase activity and isoenzyme

diversity, and soil bacterial and fungal biomass
during dry periods (Nardo et al., 2004; Krivtsov
et al., 2006) and by a manipulation experiment in
dry Californian annual grassland, where the addi-
tion of water increased soil phenol oxidase activity
(Henry et al., 2005). Rewetting of dry soil can also
lead to a pulse of CO2 through increased microbial
mineralization of cytoplasmic solutes, and in the
longer-term, by decreasing the total amount of soil
organic matter that is physically protected within
microaggregates (Fierer and Schimel, 2003). How-
ever, this response to rewetting is less pronounced
in soils that are frequently exposed to natural drying
and rewetting cycles (Birch, 1958; Fierer and
Schimel, 2002). In contrast, increased drought and
drying in wetlands and peatlands will create more
favourable conditions for microbial activity, by
lowering the water table and introducing oxygen
into previously anaerobic soil. This has been shown
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Figure 1 Direct and indirect effects of climate change on soil microbial communities and routes of feedback to global warming through
carbon dioxide production. Direct effects include the influence on soil microbes and greenhouse gas production of temperature, changing
precipitation and extreme climatic events, whereas indirect effects result from climate-driven changes in plant productivity and
vegetation structure which alter soil physicochemical conditions, the supply of carbon to soil and the structure and activity of microbial
communities involved in decomposition processes and carbon release from soil. Background image courtesy of Jill Colquhoun Bardgett.
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to increase the activity of phenol oxidases (Freeman
et al., 2004a; Zibilske and Bradford, 2007), which
play a pivotal role in the breakdown of complex
organic matter and the cycling of phenolic
compounds that may interfere with extra-cellular
enzymes (Benoit and Starkey, 1968; Albers et al.,
2004). Through what has been described as the
‘enzymic latch mechanism’ (Freeman et al., 2001),
changes in the activity of extracellular phenol
oxidases may directly affect the retention of carbon
in soil through the breakdown of otherwise
highly recalcitrant organic matter and by releasing
extracellular hydrolase enzymes from phenolic
inhibition (Freeman et al., 2001, 2004a). Because
peatlands and wetlands are one of the largest stocks
of terrestrial carbon (Ward et al., 2007), such
enhanced breakdown of recalcitrant organic matter
under drying could have major implications for the
global carbon cycle (Freeman et al., 2004a).

While the increase in O2 availability that accom-
panies drought promotes organic matter decomposi-
tion in wetlands and peatlands, thereby increasing
CO2 release, opposing effects occur for methano-
genic pathways, in that methane emissions are
reduced. Water table depth is a strong predictor of
methane emissions (Roulet and Moore, 1995), and
while this is generally assumed to be due to toxic
effects of O2, there is also evidence that methano-
gens are more sensitive to desiccation (Fetzer et al.,
1993). Also, toxic effects on methanogens of
oxidized products of denitrification have been noted
(Kluber and Conrad, 1998), while net methane
emissions are also suppressed under drought con-
ditions by the action of methanotrophic bacteria
(King, 1992; Freeman et al., 2002). While not a focus
of this paper, it is important to note that drought also
has marked effects on nitrous oxide (N2O) emission
from soils—a potent greenhouse gas that is
increasing in atmospheric concentrations at the rate
of 0.2–0.3% per year (Houghton et al., 1996)—with
responses depending on the severity of drought:
modest summer drought scenarios may have little
effect on soil N2O emissions, whereas more extreme
drought can increase the rate of N2O emission
substantially (Dowrick et al., 1999).

While overall changes in temperature are likely to
have strong effects on microbial communities and
decomposition processes in arctic and alpine re-
gions, climate change-related reductions in snow
cover will also be of high importance. It has been
estimated that 25% of Earth’s permafrost could thaw
by 2100 due to climate warming, releasing consider-
able amounts of otherwise protected organic matter
for microbial decomposition (Anisimov et al., 1999),
thus creating a positive feedback on climate change
(Davidson and Janssens, 2006). Also, because snow
is an important insulator of soil biological processes,
predicted reductions in snow cover in alpine and
arctic regions will increase soil freezing, with
consequences for root mortality, nutrient cycling
and microbial processes of decomposition

(Groffman et al., 2001; Bardgett et al., 2005). Strong
microbial responses to freeze–thaw have been
detected in several studies, including increased
microbial activity and greenhouse gas emission
(Christensen and Tiedje, 1990; Sharma et al.,
2006), altered microbial substrate use (Schimel and
Mikan, 2005) and the expression of denitrifying
genes, which lead to the release of N2O gas (Sharma
et al., 2006). However, a recent synthesis of
literature concluded that while freeze–thaw events
might induce gaseous and/or solute losses of N from
soils that are relevant at an annual time scale, they
have little effect or will even reduce soil C losses as
compared with unfrozen conditions (Matzner and
Borken, 2008). Also, recent studies in subalpine
forest in Colorado indicate that reduced snow cover
can suppress rates of soil respiration due to a unique
and highly temperature-sensitive soil microbial
community that occurs beneath snow (Monson
et al., 2006); such responses could have substantial
consequences for winter soil microbial activity,
carbon storage and CO2 efflux in alpine and arctic
regions.

Indirect climate–microbe feedbacks
Climate change can also have marked indirect
effects on soil microbial communities and their
activity—and hence the potential for microbial
feedback to climate change—through its influence
on plant growth and vegetation composition. Such
plant-mediated indirect effects of climate change on
soil microbes operate through a variety of mechan-
isms, with differing routes of feedback to climate
change, but these can broadly be separated into two.
The first mechanism concerns the indirect effects of
rising atmospheric concentrations of carbon dioxide
on soil microbes, through increased plant photo-
synthesis and transfer of photosynthate carbon to
fine roots and mycorrhizal fungi (Johnson et al.,
2005; Högberg and Read, 2006; Keel et al., 2006) and
heterotrophic microbes (Zak et al., 1993; Bardgett
et al., 2005). It is well established that elevated
carbon dioxide increases plant photosynthesis and
growth, especially under nutrient-rich conditions
(Curtis and Wang 1998) and this in turn increases
the flux of carbon to roots, their symbionts and
heterotrophic microbes through root exudation of
easily degradable sugars, organic acids and amino
acids (Dı́az et al., 1993; Zak et al., 1993). The
consequences of increased carbon flux from roots to
soil for microbial communities and carbon exchange
are difficult to predict, because they will vary
substantially with factors such as plant identity,
soil food web interactions, soil fertility and a range
of other ecosystem properties (Wardle 2002; Bard-
gett, 2005). But, some potential outcomes for soil
microbes and carbon exchange include: (i) increases
in soil carbon loss by respiration and in drainage
waters as dissolved organic carbon due to stimula-
tion of microbial abundance and activity, and
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enhanced mineralization of recent and old soil
organic carbon (Zak et al., 1993; Freeman et al.,
2004b; Heath et al., 2005), a phenomenon known as
‘priming’ (Fontaine and Barot 2005; Kuzyakov, 2006;
Dijkstra and Cheng, 2007); (ii) stimulation of micro-
bial biomass and immobilization of soil N, thereby
limiting N availability to plants, creating a negative
feedback that constrains future increases in plant
growth and carbon transfer to soil (Dı́az et al., 1993);
(iii) increased plant-microbial competition for N,
leading to reduced soil N availability and microbial
activity and suppression of microbial decomposi-
tion and ultimately increased ecosystem carbon
accumulation (Hu et al., 2001); (iv) increased growth
of mycorrhizal fungi (Klironomos et al., 1997;
Staddon et al., 2004)—which receive carbon in the
form of photosynthate directly from the host plant
and retain this carbon, controlling its release to the
soil microbial community (Högberg and Read,
2006)—and selection for beneficial fungal strains
that help their host plant meet increased nutrient
demands (Gamper et al., 2005), leading to a possible
positive feedback on plant growth and carbon
assimilation and enhanced stabilization of soil
organic carbon through promotion of soil aggrega-
tion (Rillig and Mummey, 2006; Six et al., 2006); and
(v) changes in root exudation are known to play a
potentially important role through the promotion of
methanogenesis and hence carbon loss from soil as
methane (Ström et al., 2005), but the mechanisms
involved are poorly understood.

The second mechanism concerns indirect effects
of climate change on microbes through shifts in the
functional composition and diversity of vegetation,
which occur over longer timescales of decades to
centuries. It is well established that climate change,
especially warming and altered precipitation re-
gimes, has the potential to alter the distribution of
plant species and functional groups at both local
and global scales (Prentice et al., 1992; Woodward
et al., 2004). For example, recent changes in
precipitation patterns have markedly affected vege-
tation composition in tropical rainforest (Engel-
brecht et al., 2007) and African savanna (Sankaran
et al., 2005), and warming is leading to rapid
replacement of Canadian tundra by boreal forest
(Danby and Hik, 2007) and pan-arctic shrub en-
croachment in arctic tundra (Epstein et al., 2004).
Such changes in vegetation composition can
strongly regulate carbon exchange by affecting
uptake of CO2 by photosynthesis and by modifying
the soil physical environment, for example by
changes in root architecture and rooting depth
(Jackson et al., 1996). But, a key mechanism by
which climate-driven shifts in vegetation composi-
tion influence microbes and their metabolism, and
hence carbon cycle feedback, is through changes in
the quality and quantity of organic matter entering
the soil as plant litter.

Leaf litter quality is known to differ consistently
across plant functional groups (Aerts and Chapin,

2000; Dorrepaal et al., 2005) and correlates strongly
with rates of decomposition and hence hetero-
trophic respiration: slow-growing plants, such as
evergreen shrubs, produce poor quality litter which
is low in nutrients and rich in recalcitrant com-
pounds, such as lignin and phenolic acids and
hence decompose slowly due to retardation of
microbial activity; whereas, fast-growing plants,
such as graminoids and N-fixers, produce relatively
high quality litter that is rich in nutrients and
decomposes very rapidly due to promotion
of microbial activity (Wardle, 2002). Therefore,
climate-driven increases in the dominance of ever-
green shrubs with recalcitrant litter, as is occurring
in the arctic, could constitute a negative feedback on
carbon exchange and global warming due to reduced
heterotrophic respiration (Cornelissen et al., 2007).
Whereas, increased dominance of legumes over
grasses, which is common in grassland subject to
elevated atmospheric carbon dioxide (Hanley et al.,
2004; Ross et al., 2004), could induce a positive
feedback on microbial activity and carbon miner-
alization due to enhanced soil nutrient availability
and decomposition of nutrient rich litter. As noted
above, ecosystem-level shifts in substrate quality
could have implications for the temperature sensi-
tivity of decomposition and hence complicate
further our ability to predict the magnitude of
carbon cycle feedbacks (Fierer et al., 2005).

Plant functional groups also differ markedly in
their mycorrhizal status (Read et al., 2004) and their
mechanism for nutrient uptake, including acquisi-
tion of different chemical forms of nitrogen, both
inorganic and organic (McKane et al., 2002; Weigelt
et al., 2005; Harrison et al., 2007). Therefore,
climate-driven changes in vegetation composition
will alter nutrient competition between plant spe-
cies, and between plants and soil microbes, with
potential consequences for ecosystem nutrient cy-
cling and soil carbon exchange. Our understanding
of the importance for carbon exchange of such
feedbacks between climate change, vegetation and
soil microbial functioning is poor and hence
represents an important research challenge.

Multiple global change drivers and soil
microbes

Most studies to date on the effects of climate change
on biological systems and soil microbes have
examined single factors, such as elevated atmo-
spheric CO2 concentration, warming, or drought.
However, there is considerable potential for interac-
tions between these factors to have additive or
antagonistic effects on soil microorganisms and
their activities related to greenhouse gas production
(Shaw et al., 2002; Mikkelsen et al., 2008). Very little
is known about the effects of multiple and interact-
ing climate drivers on soil microbes and their
contribution to climate change, and, being so
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complex, they are likely to be very difficult, if not
impossible to predict. However, while some studies
show unpredictable responses of soil microbial
communities and their activities to combined effects
of elevated temperature and atmospheric CO2 (for
example, Kandeler et al., 1998), others point to
strong additive effects with significant potential to
feedback on carbon exchange. For example, the
combined and positive effect of elevated tempera-
ture and atmospheric CO2 on microbial decomposi-
tion of peat was found to be greater than when these
factors operated alone (Fenner et al., 2007a, b),
creating an even stronger positive feedback on
carbon loss from soil as DOC and respiration
(Freeman et al., 2004b). Added to this complexity
is the knowledge that other organisms and
trophic groups that influence soil microbes directly,
such as microbial-feeding fauna (Cole et al.,
2000; Johnson et al., 2005), or indirectly through
altering vegetation diversity and productivity
(for example, herbivores, plant pathogens and
parasites) (Van der Putten et al., 2001; Wardle
et al., 2004) or patterns of root exudation (Denton
et al., 1999; Ayres et al., 2007), will also respond to
multiple climate change factors (Wardle, 2002;
Bardgett, 2005). This complexity further hampers
our ability to predict effects of multiple climate
change drivers on soil microbial communities and
carbon exchange feedbacks.

The picture gets even more complex when we
consider other global change phenomena, such as N
deposition, invasion of new species and land use
change, which all have the potential to individually
influence soil microbes through a variety of direct
and indirect pathways, but also interact with climate
change. For example, N enrichment has direct and
differential impacts on extracellular enzymes in-
volved in decomposition processes (Carreiro et al.,
2000; Frey et al., 2004), and on the abundance and
diversity of different components of the soil micro-
bial community, including bacteria, saprophytic
fungi (Donnison et al., 2000; Bardgett et al., 2006)
and mycorrhizal fungi (Egerton-Warburton and Al-
len, 2000; Frey et al., 2004), which are also affected
directly and indirectly by climate change. Also, N
deposition can indirectly influence soil microbes and
decomposition processes through altering vegetation
composition and productivity (for example, Stevens
et al., 2004; van der Heijden et al., 2008) and by
alleviating progressive N limitation of plant growth,
which typically occurs under elevated atmospheric
CO2 (Finzi et al., 2002). Remarkably little is known
about effects of combined global changes on soil
microbial communities, but they clearly have the
potential to amplify, suppress or perhaps even
neutralize climate change driven effects on soil
microbes and their feedback to carbon exchange.
We argue that future studies need to take a multi-
factor experimental approach to understand soil
microbial responses to global changes and their
consequences for carbon cycle feedbacks.

Conclusions and future challenges

An understanding of soil microbial ecology is
central to our ability to assess terrestrial carbon
cycle–climate feedbacks. However, the complexity
of the soil microbial community and its many roles,
coupled with the myriad of ways that climate and
other global changes can affect soil microbes,
hampers our ability to draw firm conclusions on
this topic. Despite this uncertainty, we argue that
progress can be made in understanding the potential
negative and positive contributions of soil microbes
to global warming through consideration of both
direct and indirect impacts of climate change on
microorganisms and the capacity for such effects to
amplify or dampen carbon cycle feedbacks. This is a
major challenge, but we believe that progress can be
made through the use of long-term multifactor field
experiments in relevant biomes, which incorporate
consideration of direct and indirect impacts of
climate change on soil microbes and their contribu-
tion to land–atmosphere carbon exchange, measured
at the whole ecosystem scale. Such studies require a
collaborative approach to link microbial ecology to
whole ecosystem scale flux measures and modelling
of carbon cycle feedbacks.

We have only scratched the surface of the
contribution of soil microbes to climate change,
and, as highlighted above, there are many uncer-
tainties and challenges. In addition to what is
mentioned above, we identify three major chal-
lenges. First, soil microbial communities are ex-
tremely diverse, and one of the greatest challenges
concerns understanding how microbial diversity
responds to climate change and the functional
consequences of this for ecosystem carbon ex-
change, including the uptake, stabilization and
release of carbon from soil as greenhouse gas. The
major hurdle here is that many microbes are
uncultivable, and the function of these noncultiva-
ble microbes is poorly understood because it is
difficult to test how they respond to, or modify, their
environment (van der Heijden et al., 2008). How-
ever, new molecular and stable isotope probing (SIP)
tools are being developed that enable linking of
changes in microbial diversity to ecosystem func-
tion, by focussing on functional genes that are
important for biogeochemical processes and through
directly labelling DNA, RNA and phospholipid fatty
acids (PLFA) of organisms participating in particular
pathways (Zak et al., 2006; Drigo et al., 2007;
Neufeld et al., 2007). These tools have changed the
way microbial ecologists explore the ecophysiology
of microbial populations in the natural environ-
ment, because they enable study of the metabolic
capabilities of uncultivable microorganisms, thus
providing insights into the underlying processes
regulating carbon flow in through different compo-
nents of the soil microflora. For example, RNA-SIP
approaches have been used to demonstrate differ-
ential carbon consumption among root-inhabiting
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microbes, including arbuscular mycorrhizal fungi
(Vandenkoornhuyse et al., 2007) and incorporation
of plant-derived 13C by Archaea (Yahai and Conrad,
2005), pointing to the importance of these micro-
organisms in regulating soil carbon flow. Biomarkers
have also been used to indicate that responses of
soil-borne communities to elevated CO2 are different
for bacteria, fungi and nematodes and vary with
plant type and soil nutrient availability (Drigo et al.,
2007). Second, as already discussed, the diversity of
carbon substrates in soil is considerable, and a major
challenge is to understand the complexity of this
carbon and how climate change and its interaction
with other environmental factors affects its avail-
ability to enzymes that catalyze its degradation.
Finally, as discussed in this paper, soil microbes and
their activities are inextricably linked to above-
ground communities, including plants, herbivores,
pathogens and parasites. Understanding the effects
of climate change on carbon dynamics therefore
requires explicit consideration of the feedbacks that
occur between aboveground and belowground com-
munities and their response to climate change.
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