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of art — tilting at windmills?
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Abstract Microorganisms (bacteria, archaea and fungi), in
addition to lichens and insect pests, cause problems in the
conservation of cultural heritage because of their biodeteriorative
potential. This holds true for all types of historic artefacts, and
even for art made of modern materials, in public buildings,
museums and private art collections. The variety of biodeteri-
oration phenomena observed on materials of cultural heritage
is determined by several factors, such as the chemical com-
position and nature of the material itself, the climate and
exposure of the object, in addition to the manner and frequen-
cy of surface cleaning and housekeeping in museums. This
study offers a review of a variety of well-known biodeterio-
ration phenomena observed on different materials, such as
stone and building materials, objects exhibited in museums
and libraries, as well as human remains and burial-related
materials. The decontamination of infected artefacts, exhibi-
tion rooms and depots incurs high expenditure for museums.
Nevertheless, the question has to be raised: whether the pro-
cess of biodeterioration of cultural heritage can or should be
stopped under all circumstances, or whether we have to accept
it as a natural and an implicit consecution of its creation. This
study also highlights critically the pros and cons of biocide
treatments and gives some prominent examples of successful
and unsuccessful conservation treatments. Furthermore, an
outlook on the future research needs and developments in this
highly interesting field is given.
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Introduction

Biodeterioration can be defined as “any undesirable change in
a material brought about by the vital activities of organisms”
(Allsopp 2011). Bacteria, archaea, fungi and lichens as well as
insect pests are constantly causing problems in the conserva-
tion of cultural heritage because of their biodeteriorative po-
tential. This holds true for all types of historic artefacts and
even for art made of modern materials (e.g., polymers; Sabev
et al. 2006) in public museums and in private art collections.
Fungi, bacteria and lichens are also found onmural paintings in
churches, caves and catacombs, and even as biodeteriogens of
architectural surfaces and stone monuments in outdoor envi-
ronments (Ettenauer et al. 2010; Piñar and Sterflinger 2009;
Saarela et al. 2004; Steiger et al. 2011; Sterflinger 2000; Urzì
2004). The oldest and most precious objects suffering from
serious fungal invasions are rock art caves, such as the caves of
Lascaux in France (Bastian and Alabouvette 2009).

Although the history of biodeterioration of houses and art is
long and cases of red and green “leprosies” in houses have
been described in the Bible (e.g., Leviticus Chap. 14, v. 36), its
importance has been neglected for a long time, during which
chemical and physical processes were believed to be the
dominant factors of material decay. In recent decades, how-
ever, the dogma has changed and it is now generally agreed
that fungi and bacteria not only cause serious aesthetical
destruction of paintings, costumes, ceramics, mummies,
books and manuscripts, they inhabit and penetrate into the
materials, resulting in material loss, due to acid corrosion,
enzymatic degradation and mechanical attack.

Decontamination of infected artefacts, exhibition rooms
and depots results in high expenditure for museums (Allsopp
et al. 2004; Cappitelli et al. 2009; Koestler et al. 2003;
Mesquita et al. 2009; Nittérus 2000a; Pangallo et al. 2009;
Sterflinger 2010). Allsopp (2011) stated that the annual world
loss of non-food materials due to fungal attack is US$40
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billion. However, the cultural and historical value of many
paintings, books and manuscripts is inestimable and thus, can-
not be expressed merely in terms of money. Nevertheless, the
question has to be raised: whether the process of biodeteriora-
tion of cultural heritage can or should be stopped under any
circumstances, or whether we have to accept it as a natural and
implicit consecution of its creation.

Microorganisms associated with biodeterioration
phenomena observed on materials of cultural heritage

The biodeterioration phenomena observed on materials of
cultural heritage are determined by several factors: (1) the
chemical composition and nature of the material itself, (2)
the climate and exposure of the object, (3) the manner and
frequency of surface cleaning and housekeeping in mu-
seums. Some well-known examples are detailed below.

Biodeterioration of stone and building materials

Microorganisms contribute significantly to the overall de-
terioration phenomena observed on stone and other build-
ing materials, such as concrete, mortar, slurries and paint
coatings, glass and metals used in architecture (Piñar and
Sterflinger 2009). On building stone exposed to the envi-
ronment, fungi may be the most important biodeteriorative
organisms because they are extremely erosive (Scheerer
et al. 2009; Sterflinger 2000). Depending on the physical
properties of the material, fungi may penetrate inside the
stone. The phenomenon of bio-pitting— the formation of pits
in sizes ranging up to 2 cm in diameter and depth in stone— is
caused mainly by black fungi. Bio-pitting occurs predomi-
nantly on marble and limestone, but it has also been observed
on antique glass (Piñar et al. 2013a).There are two major
morphological and ecological groups of stone-inhabiting and
stone-dwelling fungi. These have adapted to different envi-
ronmental conditions. In moderate or humid climates, the
fungal communities on rock are dominated by hyphomycetes
(mold) that form mycelia (hyphal networks) in the porous
space of the stones (Sterflinger 2000; Rosling et al. 2009).
Since the settlement of spores from the air is the first step for
fungal colonization, the species diversity of stone fungi is
rather similar to the diversity of common airborne spores.
Alternaria , Cladosporium , Epicoccum , Aureobasidium and
Phoma are the most important species (Sterflinger and
Prillinger 2001). In arid and semi-arid environments, such as
those found in the Mediterranean area, the climatic conditions
are too extreme for most hyphomycetes, therefore the com-
munities shift towards the so-called black yeasts and
microcolonial fungi. Black fungi belonging to the genera
Hortaea , Sarcinomyces , Coniosporium , Capnobotryella ,
Exophiala, Knufia and Trimmatostroma form small black

colonies on and inside the stone and often occur in close
association with lichens (Sterflinger 2005). Due to the thick
walls they develop, fungi also resist chemical attack and,
therefore, resist biocides and other anti-microbial treatments.
Black fungi dwell deep inside granite, calcareous limestone
and marble, which they erode by both chemical and mechan-
ical attack. They are the main culprits for the phenomenon of
bio-pitting. Due to the strong melanization of the cell walls,
stones colonized by these fungi exhibit black spots or may be
completely covered by a black layer. In addition to outdoor
environments, black fungi are also found on rock surfaces of
caves and catacombs (Saarela et al. 2004) especially where the
naturally high humidity has been actively decreased in order
to suppress algal growth on precious wall paintings.

Cyanobacteria, algae and lichens contribute to the
weathering of stone in humid as well as in semi arid and arid
environments (Cutler et al. 2013; Lamprinou et al. 2013). They
produce a characteristic phenomenon consisting of large green-
black stains (Figs. 1 and 2a). The ability of cyanobacteria to
adapt to different light qualities by chromatic adaptation, also
allows them to develop on stone in archaeological hypogea
with low light intensities, as in the case of crypts, caves and
catacombs. There, they may be one of the most important
deterioration agents for wall paintings and inscriptions. In such
subsurface environments Eucapsis , Leptolyngbya , Scytonema
and Fischerella have been the most frequently encountered
cyanobacterial taxa (Bellezza et al. 2003).

The role of chemoheterotrophic bacteria in the weathering
of rock probably depends largely on the environmental con-
ditions: while bacteria might evolve in humid environments
and form biofilms within the porous space of building stone,
in arid and semi arid environments their occurrence might be
limited. However, chemoheterotrophs are not only contribut-
ing to the weathering of rock. This group of microorganisms
has been shown to have some impact on the consolidation of
rock and plaster because they enhance calcium carbonate
precipitation by passive and active processes. Strains of
Bacillus cereus and Myxococcus xanthus have been used to

Fig. 1 Sculpture made of white Carrara marble with black discolor-
ations caused by fungi and lichens; Boboli Park, Florence, Italy
(Photo: Sterflinger)
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actively bio-induce calcite precipitation to reinforce monu-
mental stone (Castanier et al. 1999; Ettenauer et al. 2011;
Fernandes 2006; Jimenez-Lopez et al. 2007; Piñar et al.
2010; Rodriguez-Navarro et al. 2003; Tiano et al. 1999).

Members of the Actinobacteria phylum inhabit stone more
effectively than most of the single-celled bacteria. This fact can
be attributed to their filamentous growth and also to their
effective utilization of various nitrogen and carbon sources
(Saarela et al. 2004). Heterotrophic bacteria include a variety
of genera such as Alcaligenes , Arthrobacter , Bacillus ,
Paenibacillus , Flavobacterium , Pseudomonas , Micrococcus ,
Staphylococcus , Nocardia ,Mycobacterium , Streptomyces and
Sarcina , which are the species most frequently isolated from
wall paintings (Bassi et al. 1986; Ciferri 1999; Heyrman et al.
1999; Palla et al. 2002; Pangallo et al. 2012; Suihko et al. 2007)
but also in caves and catacombs (De Leo et al. 2012). In some
cases, especially when organic layers— e.g., saccharose, starch
or cellulose — have been applied for the fixation of a wall
painting, common indoor fungi like Cladosporium or
Alternaria may also inhabit wall paintings and plaster
(Fig. 3a, b).

Awell-known phenomenon often observed on buildings and
wall paintings, especially on those under non-controlled climat-
ic conditions, is the formation of salt efflorescence on the wall
surfaces (Amoroso and Fassina 1983). Salt may be available in
the wall itself, from biological processes (ammonium salts) or
simply due to co-migration with infiltrating water. Due to
changes in physical parameters, i.e., temperature or humidity,
salts can precipitate on the exposed surfaces. The crystallization
of salts on walls and wall paintings results in a destructive
effect. Some salts can crystallize to different hydrates, occupy-
ing a larger space and producing an additional pressure that
eventually leads tomaterial loss and destruction due to cracking
and detachment of the walls (Saiz-Jimenez and Laiz 2000;
Piñar et al. 2009, 2013b). Moreover, the salt efflorescence
mimics the conditions found in extreme habitats favor-
ing the proliferation of halotolerant/halophilic microorganisms.

Halophilic species of the Gammaproteobacteria (such as the
genera Idiomarina , Salinisphaera and Halomonas ) and
Firmicutes (Halobacillus and Bacillus spp.), but also species
of the phylaBacteroidetes andActinobacteria (asRubrobacter)
have often been detected on salt-attacked monuments. In addi-
tion, the most important genera of archaea found in such envi-
ronments are Halococcus and Halobacterium (Ettenauer et al.
2010, 2013 submitted; Imperi et al. 2007; Jurado et al. 2012;
Laiz et al. 2009; Piñar et al. 2001; 2009; 2013b; Saiz-Jimenez
and Laiz 2000). Many of these microorganisms contain carot-
enoid pigments such as β-carotene, α-bacterioruberin and de-
rivatives, and salinixanthin in their cell membranes (Oren
2009). Their proliferation produces typical rosy stains on the
wall surfaces, significantly influencing the optical appearance of
wall paintings and historical plaster (Fig. 2a, b).

Biodeterioration in museums and libraries

In museums and collections, as well as in libraries, fungi play
the most important role in biodeterioration. Infections are
mostly airborne — with significant seasonal variations —
and high numbers of spores can accumulate in dust layers
(Kaarakainen et al. 2009). Poor ventilation and non-
homogeneous surface temperature can produce water conden-
sation points and local micro-climates with higher water avail-
ability than in the rest of an indoor environment. These cir-
cumstances are favourable to some fungal species; as a result,
these are able to proliferate in places where the overall envi-
ronmental conditions would otherwise appear to be hostile to
microbial life. Typical fungal infections in libraries, colonizing
documents made of paper, are caused by species of slow-
growing Ascomycetes as well as mitosporic xerophilic fungi
(fungi that thrive in materials with a low water activity, i.e.,
aw=0.70–0.85) of the genera Aspergillus , Paecilomyces ,
Chrysosporium , Penicillium and Cladosporium (Pinzari and
Montanari 2011). Nevertheless, it is worth noting on special
cases of mono-specific infections inside compactus shelving,

Fig. 2 a Green algal and
cyanobacterial stains on mortar
surfaces in the castle of
Rappottenstein (Austria). b
Rosy stains characteristic for
halophilic and halotolerant
archaea and bacteria. (Photos:
Ettenauer)
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which have been attributed mainly to fungal species belonging
to the Eurotium genera, such as Eurotium halophilicum
(Montanari et al. 2012).

A well-known phenomenon that some authors attribute to
fungal activity on paper is the so-called “foxing”, consisting of
small and isolated rusty red-brownish spots which are often
not directly linked to structural degradation of the substratum
(Gallo and Pasquariello 1989). Since the earliest studies,
foxed spots have been controversially attributed to biological
agents (fungi and bacteria) or to chemical factors (iron oxida-
tion, organic and inorganic dust particles, etc.). Recent studies
on the foxing problem, both via scanning electronmicroscopy,
and by chemical and microbiological analysis, also led to
inconclusive results (Arai 2000; Choi 2007), but recent re-
search has agreed on the fungal nature of the phenomenon
(Michaelsen et al. 2009, 2010; Rakotonirainy et al. 2007) and
on the implication of bacteria in the deterioration of paper (De
Paolis and Lippi 2008; Michaelsen et al. 2010).

A very different infection can occur in libraries and ar-
chives when water suddenly becomes available, such as in
the case of flooding. In this case, molds associated with water
damage consist of fungal species that need a high water
activity. These molds can produce coloured stains (i.e.,
Chaetomium spp., Monoascus spp., and Epicoccum spp.),
strong odours (i.e., Trichoderma spp.) and toxic compounds
(i.e., Stachybotrys spp.).

Fungal degradation of library materials and paintings
causes different kinds of damage depending on the species

of organism responsible for the attack and the characteristics
of the substratum. Damage can occur because of mechanical
stress, production of staining compounds or enzymatic action
(Blyskal 2009; López-Miras et al. 2013; Pinzari et al. 2010;
Santos et al. 2009; Sterflinger 2010). Most of the filamentous
fungi associated with the damage of paper and oil paintings on
canvas can dissolve cellulose fibres with the action of cellu-
lolytic enzymes, or may discolour the support, dissolve glues
and inks or degrade the oil binders (Fig. 4a).

The degradation of documents made of parchment —
which is mainly composed of collagen — is a complex pro-
cess, which involves the chemical oxidative deterioration of
amino acid chains and hydrolytic cleavage of the peptide
structure. Microorganisms can hydrolyze collagen fibres and
other protein-based materials, but can also modify the inor-
ganic components, or produce pigments and organic acids
which discolour the parchment. Bacteria displaying proteolyt-
ic activities play a major role in the deterioration of ancient
documents and books made of parchment. Species belonging
to the genera Bacillus , Staphylococcus , Pseudomonas ,
Virgibacillus and Micromonospora have been isolated from
deteriorated parchments (Kraková et al. 2012). In addition,
some alkaliphilic bacteria (microbes that thrive in environ-
ments with a pH of 9 to 11) and several species of the
Actinobacteria have been detected in connexion with a typical
damage phenomenon, namely a parchment discoloration
consisting of purple spots (Pinzari et al. 2012; Piñar et al.
2011; Strzelczyk and Karbowska-Berent 2000). Parchment

Fig. 3 a , b Growth of the fungus
Cladosporium sp. on a modern
wall painting (Karl Weiser 1952),
Weyregg, Austria. (Photos:
Sterflinger)

Fig. 4 a White fungus growing
in the craquelees of an oil
painting (Stift Lilienfeld,
Austria); b growth of black
fungi on the wall paintings of
the Paulus grotto near Ephesus,
Turkey. (Photos: Sterflinger)
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also provides good conditions for the development of proteo-
lytic fungi, among which numerous representatives of
Ascomycetes such as Chaetomium and Gymnoascus , as well
as mitosporic fungi in the genera Acremonium , Aspergillus ,
Aureobasidium , Epicoccum , Trichoderma , and Verticillium .

Biodeterioration of human remains and related buried
or exhibited materials

Very special cases of biodeterioration occur whenever nutrient-
rich materials are involved and the climate is non-controlled.
This is the case for mummies and related materials, such as
clothes, documents or stuffing materials buried or exhibited;
conserved in churches and crypts (Jurado et al. 2010; Pangallo
et al. 2013; Piombino-Mascali et al. 2011; Piñar et al. 2013b).
A very impressive example of this kind of deterioration is
represented by the mummies of the Capuchin Catacombs in
Palermo, Italy. First observations revealed a heavy mold con-
tamination on the surface of the mummies, but deep molecular
analyses revealed complex microbial communities, consisting
of bacteria, archaea, and fungi, colonizing the mummies and
related materials. Sequences related to specialized microorgan-
isms belonging to taxa well known for their cellulolytic and
proteolytic activities were detected on cellulosic and keratin-
and collagen-rich materials, respectively. Additionally, se-
quences related to the human skin microbiome and to some
pathogenic bacteria (order Clostridiales) and fungi (genus
Phialosimplex) were identified on the mummies. There are
also other well-known examples which show the colonization
of preserved bodies by opportunistic fungi, such as the case of
the restoration of the body of Ramses II, performed in Paris in
1976–1977 (Mouchacca 1985) and the high fungal contami-
nation of the air and dust of the Egyptian mummy chamber at
the Baroda Museum in India (Arya et al. 2001). Additionally,
saprophytic fungi and bacteria were isolated from a mummy
from the collection of the Archaeological Museum in Zagreb,
Croatia (Čavka et al. 2010). All these studies clearly demon-
strate that specialized microorganisms are threatening the con-
servation of human remains and relatedmaterials, and that high
concentrations of air-borne fungal spores may even pose a
potential health risk for visitors (Piñar et al. 2013b).

To kill or not to kill? Antimicrobial treatments
in restoration and conservation

For disinfection of recent and progressive microbiological
damage, a limited range of physical and chemical methods
are available (Allsopp et al. 2004). Chemical treatments in-
clude liquid biocides and fumigation with gases. The choice of
an appropriate biocide is limited by the European Union’s
Biocidal Products Directive (BPD) (http://ec.europa.eu/
environment/biocides/index.htm). Although the number of

chemical classes listed by Paulus (2004) includes a wide
variety, such as alcohols, aldehydes, phenols, acids, acid esters,
amides, carbamates, dibenzamidines, pyridines, azoles, hetero-
cyclics, activated halogen compounds, surface active agents,
organometallics and oxidizing agents, the number of products
suitable for cultural heritage is comparatively limited because
only a small number of agents have been tested with respect to
their compatibility with historic materials, such as pigments,
organic binders or paper, and only a very few studies exist on
the long term effects of the biocides, such as possible colour
changes or degradation products. Biocides frequently used in
restoration are: (1) formaldehyde releasers (Sterflinger and Sert
2006; Pinar et al. 2009), (2) quaternary ammonium compounds
with an optimal chain length of C14–C16 (Diaz-Herraiz et al.
2013), (3) isothiazolinone, a more recent biocide, which was
documented to be not only effective but even preventive on
paper objects (Polo et al. 2010) and 4) the most common
disinfectant used in microbiology: ethanol can also have a
good fungitoxic effect if the contact time is at least 2–3 min
(Nittérus 2000b). A broad spectrum of chemical and non-
chemical mass treatments has been utilized to kill microfungi
attacking paper objects in an attempt to inhibit degradation
(Magaudda 2004). Ethylene oxide (EtO) fumigation is banned
in some countries because it is extremely toxic, but it still
represents the most efficacious system for mass treatment of
mouldy library materials. Gamma radiation is very effective
against fungi and their spores. Since the dose for fungi must be
in excess of 10–20 kGy (Nittérus 2000a), this method also
affects many materials and its application is restricted. The
application of gamma rays can result in cumulative
depolymerisation of the underlying cellulose and in severe
ageing characteristics (Adamo et al. 1998; Butterfield 1987).

Besides the compatibility with the materials of the treated
artefacts, themost challenging aspect of biocide treatments is the
fact that, in many cases, objects are infested by a mixed com-
munity of microorganisms with different levels of susceptibility
towards the chemical compound applied. For microbiologists it
is quite easy to understand that a biocide treatment might
therefore exert a selective pressure on the microbial community
and, in the worst case, the community may be turned into one
that is less sensitive or even resistant to the biocides, and might
become even more harmful to the object. Prominent and noto-
rious examples are the so-called Cave of St. Paul in Ephesus
(Turkey) and the wall paintings of Lascaux (France). In the
Cave of St. Paul, a massive algal and cyanobacterial bloom
covered the early Christian wall paintings. After several treat-
ments with quaternary ammonium compounds, a more resistant
community — which included melanized fungi — developed,
causing severe aesthetical damage to the surfaces (Pillinger et al.
2008) (Fig. 4b). In the Lascaux Caves, a spectacular series of
biocide treatments were carried out, starting in 1963, with the
last being reported in 2009 (Martin-Sanchez et al. 2012). Here,
antibiotics, such as penicillin, streptomycin and kanamycin —
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but also formol (10 % aqueous solution of formaldehyde),
various products based on benzalkonium chloride and
isothiazolinone — were applied. These successive treatments
triggered the development of white fungal stains caused by
Fusarium solani , the growth of resistant Pseudomonas
fluorescens strains and finally, the growth of melanized fungal
species, such as Ochroconis lascauxensis , O. anomala and
Exophiala castellanii (Saiz-Jimenez et al. 2012).

In contrast to this, good results were achieved against a
mono-specific infestation of Aspergillus glaucus inhabiting
the painting and fixation layer of the 12th century wooden
ceiling in Zillis (Switzerland). There, the individual wooden
panels of the ceiling were successfully treated with the
application of organotin (TBTO), a biocide that is efficient
but which has been abandoned in Europe because of its
high environmental toxicity. However, also in Zillis, the
most important control factor was a system for climate
control (Bläuer-Böhm et al. 1997; Böhm et al. 2001).

In the past — especially in the 1960s and 1970s — a
number of highly toxic organochloride compounds like lin-
dane or pentachlorophenole (PCB) were used for decontami-
nation of wooden objects and textiles. Since these agents are
chemically very stable, they might still persist in many of the
objects treated and thus are a health risk for restorers that
handle these objects today. Other past treatments might ham-
per or falsify biological, chemical or physical analysis.
Fumigation with ethylenoxide, for example, interferes with
biological analysis since it intercalates with DNA and RNA
which cannot be recovered anymore (Michaelsen et al. 2013).
The lack of documentation in the past complicates today’s
restoration and conservation work. Today, documentation of
objects and their restoration history is one of the most impor-
tant responsibilities in conservation as a basis for our progeny.

Treatments and monitoring

One of the major obstacles in treating contaminated art works
with biocides and physical methods like Gamma radiation or
heat was, and still is, the lack of appropriate monitoring
methods. For the taxon analysis of microbial communities on
art works, it is widely accepted that not all fungi, and only an
extremely small fraction of archaea and bacteria, can be culti-
vated on laboratorymedia and that molecular methods based on
DNA are necessary to evaluate the microbial diversity in a
sample (Ettenauer et al. 2012; González and Saiz-Jimenez
2005; Laiz et al. 2003; Michaelsen et al. 2006; Piñar et al.
2001; Schabereiter-Gurtner et al. 2001). Curiously, viable cell
counts are still the method of choice to prove microbial activity
versus non-activity, if any test is carried out tomonitor the effect
of an antimicrobial treatment at all. Since the late 1980s, when it
was generally agreed that microorganisms played a consider-
able role in the preservation of art objects and historical

buildings, significant effort was applied to ascertaining the
biodiversity in the component materials of works of art. This
was an important basis for innovative and optimized preserva-
tion concepts. Today, it is absolutely necessary to complement
these data by studying the physiological activity of the various
microbes on and in materials (a) in order to get a deeper
understanding of biodeterioration processes, (b) to be able to
monitor the effect and success of antimicrobial treatments and
(c) to develop alternative and non-toxic treatment methods, e.g.,
special climatization concepts in order to stop or to slow down
the biodeteriorative action of the microorganisms. In the past,
several attempts were made to quantify microbial activity based
on chemical reactions: Sterflinger et al. (1994) developed a non
destructive method, the “respiration bell-jar” to trap CO2, in
order to monitor respiration on stone surfaces. Redox indicators
such as triphenytetrazoliumchloride were used to confirm and
evaluate microbial activity on decaying stones (Warscheid
1990). Recently, many companies have offered luminometers
that detect and quantify ATP in swab samples and give an
estimation of biological activity on surfaces like paper, paint-
ings or other materials (Berthold and Tarkkanen 2013;
Rakotonirainy and Arnold 2008). While these methods give a
rough estimation of the microbial activity in general, analysing
the expression of genes would give detailed information about
the metabolic state and about the biodeterioration process and
potential — as in, for example, following the activity of cellu-
lolytic and keratinolytic enzymes on paper and parchment
(Kraková et al. 2012). Although RT qPCR is a routine tool
for scientific questions nowadays, it is still not used for routine
monitoring of treatments, and studies on RNA in samples of
cultural heritage are still rare (Martin Sanchez et al. 2013;
Michaelsen et al. 2013; Portillo et al. 2008, 2009). This is
because the costs for molecular analysis are still high in relation
to the overall costs that are usually available for the restoration
and conservation of an object. However, recent genomics and
transcriptomics technology opens more possibilities to under-
standing the activity and function of whole microbial commu-
nities. Sequencing of meta-transcriptomes and metagenomes,
with the aid of next-generation sequencing technology, could
assist in understanding how historic materials are attacked by
microbes, how microbes interact with those materials and with
each other (e.g., in a biofilm), and in monitoring specifically the
effect of biocide treatments on the viability, the function and
possible community shifts. This would also help to overcome
the so-called “viable but not cultivable” state in bacteria
that can occur as a reaction to antibiotic and biocide
treatments (Oliver 2009).

Outlook

The most important factors for prevention of biogenic damage
on historic objects are: (1) climate control, (2) frequent cleaning
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and (3) phenomenological monitoring (Barton and Wellheiser
1985; Dicus 2000; Pinzari 2011; Sterflinger 2010). The
importance of simple cleaning is still underestimated,
despite the fact that it is well known that dust layers
on objects carry high numbers of fungal spores and
bacteria, and also serve as a nutrient source for those
organisms. Microbiologists must increase the awareness
of these preventative measures by consulting with and
instructing restorers, preservationists and museum cura-
tors. We must learn from the mistakes made with bio-
cide treatments in the past, and apply the following
principles:

(1) More emphasis must be focused on simple prevention
measures such as the cleaning of dust layers and
frequent observation of objects.

(2) Biocide treatments must be applied with extreme
caution and only after a stringent series of tests
adapted to the requirements of a particular object.
In restoration and conservation, exceptional rules are
necessary for the application of efficient toxic sub-
stances, which may be not listed in the EU biocide
directive.

(3) More effort is necessary in the development of alter-
native decontamination methods, e.g., the gamma ra-
diation (Magaudda 2004) modification of light
(Albertano et al. 2005) and micro-climates (Camuffo
1998; Pinzari and Montanari 2011).

(4) Monitoring methods must be optimized in order to
be able to assess the effects of conservation treat-
ments, climate change or biocide application. This
could be done based on state of the art microbio-
logical methods such as genome and transcriptome
sequencing.

(5) In the case where we cannot ensure that a freshly
excavated object can be preserved and protected
against biodeterioration, it should remain buried in
soil or under layers of paint or plaster (e.g., for
wall paintings) until better methods are available
for preservation. A paradigm change is necessary
in order to learn that not everything that is discov-
ered must (or can) be exhibited and opened to the
public.
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