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Abstract

Background: Dental calculus, calcified oral plaque biofilm, contains microbial and host biomolecules that can be

used to study historic microbiome communities and host responses. Dental calculus does not typically accumulate

as much today as historically, and clinical oral microbiome research studies focus primarily on living dental plaque

biofilm. However, plaque and calculus reflect different conditions of the oral biofilm, and the differences in

microbial characteristics between the sample types have not yet been systematically explored. Here, we compare

the microbial profiles of modern dental plaque, modern dental calculus, and historic dental calculus to establish

expected differences between these substrates.

Results: Metagenomic data was generated from modern and historic calculus samples, and dental plaque

metagenomic data was downloaded from the Human Microbiome Project. Microbial composition and functional

profile were assessed. Metaproteomic data was obtained from a subset of historic calculus samples. Comparisons

between microbial, protein, and metabolomic profiles revealed distinct taxonomic and metabolic functional profiles

between plaque, modern calculus, and historic calculus, but not between calculus collected from healthy teeth and

periodontal disease-affected teeth. Species co-exclusion was related to biofilm environment. Proteomic profiling

revealed that healthy tooth samples contain low levels of bacterial virulence proteins and a robust innate immune

response. Correlations between proteomic and metabolomic profiles suggest co-preservation of bacterial lipid

membranes and membrane-associated proteins.

Conclusions: Overall, we find that there are systematic microbial differences between plaque and calculus related

to biofilm physiology, and recognizing these differences is important for accurate data interpretation in studies

comparing dental plaque and calculus.
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Background

Dental calculus is a mineralized oral plaque biofilm that

preserves biomolecules such as DNA and protein over

long periods of time in the archeological record [1–7],

and as such, it has the potential to offer insight into

human microbiome evolution. Most clinical oral micro-

biome studies focus on dental plaque rather than calcu-

lus, in part because it is easier to study, it represents a

living (and thus active) biofilm, and because dental

plaque is directly responsible for oral pathology [8].

Comparatively less is known about the structure and for-

mation of dental calculus, and studies of modern calcu-

lus are additionally hampered by the fact that deposits

are smaller and less prevalent in living populations prac-

ticing tooth brushing and other forms of active oral

hygiene [9, 10]. Although calculus forms from dental
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plaque, microbial profile differences have been noted be-

tween historic calculus and modern dental plaque [1, 2],

but reasons for these differences, such as degree of biofilm

maturation, have not yet been sufficiently investigated. In

order to advance the studies of oral microbiome evolution,

it is necessary to understand the basis of observed differ-

ences between the microbial profiles of ancient dental

calculus and modern dental plaque.

Oral biofilm development and maturation have been

characterized both in vitro and in vivo, and the micro-

bial succession of dominant species over hours and days

is well-described [11–14]. This has led to the classifica-

tion of some oral taxa as “early colonizers” and others as

“late colonizers” [15], and progressive taxonomic shifts

are correlated with structural and resource changes in

the biofilm through time. Early colonizers, for example,

are typically facultative anaerobes and often saccharoly-

tic, feeding primarily on salivary mucins and other glyco-

proteins [16]. During the course of biofilm growth and

maturation, oxygen is progressively depleted and proteo-

lytic obligate anaerobes, including methanogens and

sulfate-reducers, rise in abundance [16], thus resulting in

the formation of a fully mature oral biofilm profile. This

mature community is likely the biofilm stage historically

preserved in dental calculus. The microbial profiles of

ancient dental calculus often contain high proportions of

proteolytic obligate anaerobes, including Tannerella,

Porphyromonas, Methanobrevibacter, and Desulfobulbus

[1, 2], and therefore resemble a fully mature oral biofilm.

However, today, frequent removal of supragingival

plaque by tooth brushing and professional dental clean-

ing prevents the biofilm from fully maturing. This po-

tentially makes a direct comparison with contemporary

dental plaque, especially plaque regularly disrupted by

oral hygiene regimens, more complicated.

Several species that characterize mature oral biofilms

are strongly associated with oral disease in dental

plaque. Socransky et al. [17] assessed the subgingival

plaque bacterial profiles by cluster analysis and described

5 now-classic microbial complexes, named by color:

yellow, purple, green, orange, and red. They further de-

termined that the orange, and especially red, complexes

were associated with clinical parameters of periodontal

disease. Consequently, the trio of anaerobic, proteolytic,

and asaccharolytic species known as the “red com-

plex”—Porphyromonas gingivalis, Tannerella forsythia,

and Treponema denticola—have come to be widely

regarded as specific indicators of oral disease [18–22],

despite being more abundant in mature plaque generally.

Whether these species are specifically representative of

disease-associated biofilms in ancient dental calculus is

not yet clear.

Here, we compare microbial community profiles

among modern dental plaque, modern dental calculus,

and historic dental calculus in order to establish charac-

teristic microbial profile differences between plaque and

calculus, as well as between calculus samples before and

after the twentieth century modernization efforts in oral

hygiene, sanitation, and medicine. In addition, we inves-

tigated the differences in microbial profiles between

calculus from healthy tooth sites and diseased tooth

sites, to understand whether the microbial species

distinctions between healthy tooth biofilm profiles and

disease tooth biofilm profiles reported in dental plaque

are also present in calculus. We found that species pro-

files of plaque and calculus are similar, but with notable

exceptions related to biofilm maturity, while disease-

associated species are generally more abundant in calculus

despite tooth health status. Finally, we demonstrate that

integration of taxonomic, proteomic, and metabolomic

profiles of historic calculus can reveal preservation pat-

terns that would not be clear from single-omics profiling.

Results

Authentication of a preserved oral biofilm in calculus

samples

Overall, source estimation analysis indicates good oral

microbiome preservation across the datasets. Source-

Tracker analysis of historic and modern calculus sam-

ples (Additional file 1: Figure S1) demonstrated that

both sample groups have a predominantly oral microbial

signature. The strong gut signature in several samples is

characteristic of calculus and a known artifact of using

QIIME to classify filtered 16S rRNA metagenomic reads,

whereby several characteristically oral taxa (e.g., Lacto-

bacillales spp.) are systematically misclassified as close

relatives in the gut [23]. Additionally, the strong “un-

known” signature in several samples likely stems from

the presence of similar taxa found in both oral and gut

source samples, such as Methanobrevibacter spp. and

Tisseriellaceae [5]. Prior to analysis, historic calculus

sample sequence reads were assessed for the presence of

damage patterns that characterize ancient DNA. Map-

Damage plots of reads that mapped to the genome of

the oral bacterium Tannerella forsythia, a species both

prevalent and abundant in historic dental calculus, and

to the human genome display elevated C to T

transitions at molecule ends (Additional file 1: Figure

S2), indicative of deamination, a pattern typical of

authentic ancient DNA.

Dental calculus and plaque biofilm communities are

distinct

To investigate whether there are systematic differences

in microbial communities between modern dental

plaque and ancient and modern dental calculus, we

compared the communities found in modern supra- and

subgingival plaque from the Human Microbiome Project
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(HMP), modern calculus, and 200-year-old historic cal-

culus (Table 1). A principal component analysis (PCA)

of the species profiles of each group clustered the mod-

ern plaque samples distinctly from the calculus samples,

while the modern and historic calculus samples were

intermixed (Fig. 1a), suggesting that the differences

between microbial profiles of plaque and calculus are

more pronounced than between historic and modern

calculus. We investigated whether periodontal disease or

caries on the sampled tooth explained the clustering of

the calculus samples, but no clustering was observed

based on the presence or absence of disease in historic

samples (Fig. 1b). The modern samples appear to cluster

by health status with the exception of a single disease

site sample, although additional samples are needed to

confirm this trend. Further, the distribution of calculus

sample points is not related to the sequencing depth or

sequencing run. Among HMP samples, separation was

observed for supra- or subgingival plaque (Additional

file 1: Figure S3).

Because the HMP samples were collected from pa-

tients with no overt evidence of periodontal disease or

caries, we investigated the differences between healthy

tooth site plaque and healthy tooth site calculus by per-

forming a PCA using all HMP samples and only healthy

site calculus from both modern and historic sources.

Again, the HMP samples clustered distinctly from the

calculus samples, with no separation of modern and his-

toric calculus (Fig. 2a), but were not significantly differ-

ent by adonis test. Twenty-six species were significantly

(q ≤ 0.05, effect size ≥ 1) differentially abundant between

plaque and calculus samples (Fig. 2b), with 13 more

abundant in plaque and 13 more abundant in calculus.

Many of the taxa with higher abundance in calculus are

“late colonizers” (i.e., Desulfobulbus, Methanobrevibac-

ter, Tannerella) associated in modern patients with ma-

ture biofilms and periodontal disease. Sparse partial

squares-discriminant analysis (sPLS-DA) of the plaque

and healthy site calculus samples allowed us to visualize

how informative our sample sets are for classifying

plaque and calculus based on microbial profile and to

select the species that contribute most to classifying

each sample. The two groups clustered tightly in the

PLS-DA (Fig. 2c) indicating that they have distinct pro-

files, which was confirmed by the low classification bal-

anced error rate (BER) (< 0.0001, Additional file 2: Table

S3), and many of the same species that contribute to

classification are differentially abundant (Additional file

1: Figure S4A).

We then tested whether plaque and calculus from a

tooth affected by either caries or periodontal disease

were equally distinct. A PCA plot indicated that the

plaque and calculus samples were clustered mostly dis-

tinctly but with a slight overlap between plaque and

modern calculus (Fig. 2d), but group separation was not

significant by adonis test. Fourteen species were more

abundant in diseased tooth site calculus than healthy site

plaque, and 13 were more abundant in healthy site

plaque (q ≤ 0.05, effect size ≥ 1) (Fig. 2e). Of the 14

species with greater abundance in disease site calculus,

11 are also more abundant in healthy site calculus, but

other species including Porphyromonas gingivalis,

Treponema denticola, and Filifactor alocis, all of which

are strongly associated with periodontal disease site

plaque [17, 24], are significantly more abundant only

when comparing disease site calculus to healthy site

plaque. Sparse PLS-DA again demonstrated that our

samples are sufficiently informative to classify healthy

site plaque and disease site calculus based on microbial

profile (Fig. 2f ), which was confirmed by the low classifi-

cation balanced error rate (BER) (< 0.0008, Additional

file 2: Table S3), and the species that contribute most to

the classification are differentially abundant between the

two groups (Additional file 1: Figure S4B). We repeated

these analyses comparing healthy site plaque profiles to

calculus only affected by periodontal disease (i.e., exclud-

ing caries) and found nearly identical trends (Additional

file 1: Figure S5A-D).

Health-associated communities of dental plaque and

calculus are distinct

We next explored the microbial profile differences

between healthy site plaque and healthy site modern cal-

culus or healthy site historic calculus samples independ-

ently to look for time-related differences in microbial

communities of the two substrates. Differences would

suggest that there are shared properties of health-

associated communities that are important for maintain-

ing health, which could be further investigated for un-

derstanding host-microbiome interactions that promote

health and prevent disease. Both modern and historic cal-

culus samples independently cluster distinctly from mod-

ern plaque in PCA plots, even with few modern calculus

samples (Fig. 3a, d), supporting that microbial profiles of

Table 1 Sample demographics

Plaque Modern calculus Historic calculus

Source HMP This study This study

N 20 10 43

Periodontal disease*

Yes 0 6 18

No 20 4 25

Caries*

Yes 0 10 8

No 20 0 35

*On the tooth/teeth sampled. Detailed sample metadata is presented in

Additional file 2: Table S1

Velsko et al. Microbiome           (2019) 7:102 Page 3 of 20



healthy calculus, both historic and modern, are distinct

from plaque, but group separation was not significant by

adonis test. Twenty-seven species were significantly differ-

entially abundant between plaque and historic healthy site

calculus (q ≤ 0.05, effect size ≥ 1) (Fig. 3b), with 13 more

abundant in historic healthy site calculus and 14 more

abundant in plaque. Most of the species differentially

abundant between plaque and healthy site historic calcu-

lus are the same as those that are differentially abundant

between plaque and all healthy site calculus samples, so

the modern calculus profiles fall within the variation of

the historic samples. In contrast, no species were signifi-

cantly differentially abundant between the plaque and

modern healthy site calculus; however, this may be be-

cause we have only four samples.

Sparse PLS-DA grouped the plaque into a tight clus-

ter compared to the calculus samples (Fig. 3c, e), while

the calculus samples, both modern and historic, were

more dispersed. In both sPLS-DAs, the BER for plaque

was < 0.0001, demonstrating highly accurate sample

classification, and the historic healthy site samples had

a similarly low BER while the modern healthy site

samples were classified less reliably (Additional file 2:

Table S3). Many of the species contributing most

strongly to the grouping are the same as those that

contribute to grouping the calculus samples in our

initial plaque vs. all calculus microbial profile compar-

isons (Additional file 1: Figure S6A,B). When compar-

ing modern plaque profiles to historic healthy site

calculus profiles, many of the species contributing

most to the classification of the groups are the same

as those that are differentially abundant between the

two, yet the species with the strongest contributions

to the classification are not those with the greatest dif-

ferential abundance. Several of the species contribut-

ing to the classification of both modern and historic

healthy site calculus are strongly associated with peri-

odontal disease in modern populations, including the

“red complex” members Porphyromonas gingivalis and

Tannerella forsythia, as well as Filifactor alocis, an

emerging periodontal pathogen [25], again indicating

that the presence and abundance of these species in

calculus cannot be used as indicators of biofilm

pathogenicity.

Signatures of health and of disease are shared in modern

and historic calculus samples

Since we found that plaque and calculus contain distinct

microbial profiles, we tested whether modern and his-

toric calculus microbial profiles are distinct from each

other. Although they are the same substrate, the effects

of modern hygiene practices such as tooth brushing and

fluoridation of drinking water on biofilm development

and calculus formation are not well understood. Princi-

pal component analyses comparing historic and modern

healthy site calculus (Fig. 4a) or historic and modern dis-

ease site calculus (Fig. 4c) microbial profiles did not

cluster the modern and historic samples distinctly. Only

Campylobacter rectus was significantly differentially

abundant between healthy site historic and modern

calculus (Additional file 1: Figure S7A), and no species

were significantly differentially abundant between dis-

ease site historic and modern calculus. Sparse PLS-DAs

clustered historic and modern calculus samples

separately for both healthy site and disease site samples

(Fig. 4b, d), indicating that the microbial profiles can dis-

criminate health status in modern calculus. However,

the BER for historic samples was much smaller than for

modern samples in both sPLS-DAs (Additional file 2:

Table S3), which may be due to the low modern sample

numbers. Several species that contribute most to the

classification of modern calculus, both healthy site and

disease site, are “early colonizer,” health-associated spe-

cies within the genera Actinomyces, Streptococcus, and

Veillonella (Additional file 1: Figure S7B,C), which are

not characteristic of historic calculus samples. Classifica-

tion of historic calculus samples, both healthy site and

disease site, is driven by many of the same species that

A B

Fig. 1 Dental plaque and dental calculus contain distinct microbial communities. a Principal component analysis (PCA) clusters modern dental

plaque distinctly from modern and historic dental calculus, while calculus samples do not separate by time period. b PCA clustering of calculus

samples is not related to health status
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)

Fig. 2 Microbial profile differences between plaque and calculus of differing health status. a Principal component analysis (PCA) clusters plaque

and healthy site calculus distinctly. b Distinct species are significantly more abundant in plaque and healthy site calculus. c Microbial profile

differences between plaque and all healthy site calculus are sufficient for discrimination of sample types by sparse partial least squares-

discriminant analysis (sPLS-DA). Ellipses indicate 95% confidence intervals. d PCA clusters plaque and disease site calculus distinctly. e Distinct

species are significantly more abundant in plaque and disease site calculus. f Microbial profile differences between plaque and all disease site

calculus are sufficient for discrimination of sample types by sPLS-DA. Ellipses indicate 95% confidence intervals

A

C

B

D E

Fig. 3 Healthy site calculus microbial profile differs from plaque independent of sample age. a Principal component analysis (PCA) of plaque and

historic healthy site calculus cluster samples by type. b Distinct species are significantly more abundant in plaque and historic healthy site

calculus. c Microbial profile differences between plaque and historic healthy site calculus are sufficient for discrimination of sample types by

sparse partial least squares-discriminant analysis (sPLS-DA). Ellipses indicate 95% confidence intervals. d PCA clusters plaque and modern healthy

site calculus distinctly. e Microbial profile differences between plaque and modern healthy site calculus are sufficient for discrimination of sample

types by sPLS-DA. Ellipses indicate 95% confidence intervals
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are differentially abundant in historic calculus compared

to plaque (Fig. 2b) and that contribute to the classifica-

tion of historic samples compared to plaque (Additional

file 1: Figure S5D), including C. rectus, Desulfobulbus sp.

oral taxon 041 (aka Desulfobulbus oralis [26]), and F.

alocis (Additional file 1: Figure S7B,C).

Microbial community differences between health and

disease in calculus are poorly resolved

Modern healthy site plaque and periodontal disease site

plaque or caries site plaque often contain distinct micro-

bial profiles that are considered signatures of health and

disease. We examined modern and historic calculus

samples to investigate if the microbial communities of

these samples, like plaque, are distinct. Healthy site and

periodontal disease site calculus samples did not cluster

separately in PCA plots for either modern or historic

samples (Fig. 4e, g). Neither historic nor modern calcu-

lus samples had significantly differentially abundant spe-

cies between healthy site and periodontal disease site

samples. Sparse PLS-DA clustered modern disease site

calculus samples tightly, while healthy site samples were

more dispersed but still a distinct cluster (Fig. 4f );

however, the BER for both sPLS-DAs (Additional file 2:

Table S3) was high, which may be due to the low mod-

ern sample numbers and/or high variability. In contrast,

sPLS-DA clustering of historic healthy site and peri-

odontal disease site calculus did not tightly or distinctly

cluster the groups (Fig. 4h), suggesting the microbial

communities of healthy and disease site historic samples

are more similar to each other than are modern calculus

healthy and disease site communities.

The species that contribute most to the classification

of healthy site and disease site calculus largely do not

overlap with those species that distinguish calculus from

plaque, or healthy site and disease site plaque, as re-

ported in the literature (Additional file 1: Figures S7D,

S7E). For example, Bacteriodetes oral taxon 274, Cam-

pylobacter gracilis, and Pseudopropionibacterium propio-

nicum distinguish modern healthy site calculus, while

Gemella hemolysans characterized modern periodontal

disease site calculus. While P. gingivalis and T. forsythia

characterized historic periodontal disease site from his-

toric healthy site calculus as they do in modern plaque,

additional species that did so are not well-characterized

in modern healthy and disease site plaque, such as “early

A B C D

E F G H

Fig. 4 Modern and historic calculus microbial community profiles overlap. a Principal component analysis (PCA) does not cluster modern and historic

healthy site calculus distinctly. b Historic and modern healthy site calculus contain sufficient discriminatory taxa for distinct clustering by sparse partial least

squares-discriminant analysis (sPLS-DA). c PCA does not cluster modern and historic disease site calculus distinctly. d Historic and modern disease site

calculus contain sufficient discriminatory taxa for distinct clustering by sPLS-DA. e Modern healthy and disease site calculus microbial profiles are not

distinctly different and are not separated by PCA. f Modern healthy and disease site calculus contain sufficient discriminatory taxa for distinct clustering by

sPLS-DA. g Historic healthy and disease site calculus microbial profiles are not distinctly different and are not separated by PCA. h Modern healthy and

disease site calculus do not contain sufficient discriminatory taxa for distinct clustering by sPLS-DA. Ellipses indicate 95% confidence intervals
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colonizer” Actinomyces cardiffensis and A. timonensis, as

well as several unnamed species in the genera Bacteroi-

detes, Neisseria, and Atopobium (Additional file 1: Figure

S7E). The four historic calculus samples collected from

the teeth with both caries and periodontal disease did

not appear to have microbial profiles distinct from the

samples collected from the teeth with only periodontal

disease, as they were distributed throughout the other

samples in both the PCA and sPLS-DA plots (Additional

file 1: Figure S8).

Absence of caries-specific microbial profiles in dental

calculus

We additionally examined the differences in microbial

profiles of historic caries and healthy site calculus. The

caries and healthy site samples did not cluster distinctly

in PCA (Additional file 1: Figure S9A) nor were there

any significantly differentially abundant species between

the groups. Healthy site and caries site calculus sample

clusters overlapped in sPLS-DA plots (Additional file 1:

Figure S9B), and the classification BERs were > 0.1

(Additional file 2: Table S3), indicating that classifying

the groups with our data is not reliable. Many of the

species that contribute most to the classification of the

caries site samples are species that classify historic

periodontal disease site from healthy site calculus

(Additional file 1: Figure S9C). Three of the five samples

with both caries and periodontal disease are the furthest

points from the healthy site samples in the sPLS-DA

plot (Additional file 1: Figure S9B), so it is likely that the

signature of periodontal disease and not of caries is

responsible for the clustering and classification.

Microbial co-exclusion patterns in plaque and calculus

reflect biofilm maturity

To further investigate the differences in microbial profiles

between plaque and calculus, we compared the patterns

of species co-exclusion within each substrate using the

program CoEx [27]. Species co-exclusion, or a negative

correlation between the presence and abundance of two

species, may indicate competition, antagonistic interac-

tions, or different environmental preferences and may

offer insights into the microbial community differences

we observed between plaque and calculus. We visualized

co-exclusion patterns in plaque, modern calculus, and his-

toric calculus samples using network graphs (Fig. 5,

Additional file 1: Figure S10A,B), with nodes representing

species and edges representing co-exclusion, with stronger

co-exclusions indicated by thicker, darker lines. Nodes

were colored based on oxygen tolerance (aerobe, faculta-

tive anaerobe, anaerobe), use of sugars as a carbon source

(saccharolytic, asaccharolytic), Gram stain (positive, nega-

tive), and phylum, to determine if co-exclusion was related

to these characteristics.

No clear relationship was observed with Gram stain or

phylum for plaque, modern calculus, or historic calculus

(Additional file 1: Figure S10B). However, the majority

of most strongly supported co-exclusions, those visual-

ized in our graphs (Fig. 5), are between species with

different oxygen tolerance (85% in plaque, 91% in mod-

ern calculus, 96% in historic calculus), different carbon

source utilization (48% plaque, 51% modern calculus,

75% historic calculus), or both (43% plaque, 51% modern

calculus, 73% historic calculus). The co-exclusion pat-

terns between plaque and calculus are largely unique to

the sample type (plaque, modern calculus, or historic

calculus), with only 1.5% of all co-exclusions in modern

calculus and 0.54% of all co-exclusion in historic

calculus also reported in plaque, while these shared co-

exclusions make up only 0.8% of all plaque co-

exclusions (Additional file 2: Table S5). Historic and

modern calculus samples have more shared co-exclusion

patterns with each other than with plaque, with 19% of

all co-exclusions in modern calculus and 6.8% of all co-

exclusion in historic calculus reported in both, suggest-

ing different environmental conditions in calculus

compared to plaque.

Microbial complexes in plaque and calculus

The majority of species detected in plaque and calculus

samples were shared between the groups, with 109 of

199 species detected in all three groups (Fig. 6a). The

average number of species detected in historic calculus

was less than in modern calculus or plaque (Additional

file 2: Table S4), and the wide standard deviation in each

group may be partially related to the sequencing depth

(Additional file 1: Figure S11). Because the proportions

of several species in our calculus samples deviated

strongly from those in the plaque samples, we next

investigated the differences in species profiles using

Socransky’s microbial complexes scheme [17]. These

complexes, named by color, consist of species from sub-

gingival plaque that were significantly associated with

each other by cluster analysis, and the clusters are

associated with clinical periodontal parameters of health

(purple, yellow, and green complexes) and disease

(orange and red complexes). For each complex, we

summed the proportion of all of the species that com-

prise it within the plaque, all modern calculus, and all

historic calculus, as well as separating the calculus

samples by disease status, presented as a bubble chart

(Fig. 6b). Separately, we summed the proportion of all

Veillonella, Actinomyces, Streptococcus, and Capnocyto-

phaga species (Fig. 6b), as they are closely related to the

species making up the purple, yellow, and green com-

plexes, and assessed these groups in parallel.

The differences in the proportions of each complex as

well as the species groups between plaque, modern
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calculus, and historic calculus indicate that modern cal-

culus profiles are intermediate between plaque and his-

toric calculus. Overall proportions of yellow, green, and

orange complex species are similar across the three

groups, while the purple complex is far lower in abun-

dance in historic calculus than plaque, and the red com-

plex is greater in both historic and modern calculus than

in plaque. The proportions of the yellow complex and all

Streptococcus species are significantly different in all

calculus samples than modern plaque (p < 0.05), while

the proportions of the red complex, Veillonella species,

and Actinomyces species are significantly different be-

tween historic calculus and modern plaque (p < 0.05).

The relative proportion of each species in each complex

(Additional file 1: Figures S12, S13) demonstrates that

the patterns of species abundance are different between

plaque, modern calculus, and historic calculus, while

there is very little difference in the proportions between

healthy site and disease site historic calculus samples.

Notably, the red complex species are much higher in

calculus than plaque (Additional file 1: Figure S12), par-

ticularly Tannerella forsythia, a difference that we found

that drives the classification of calculus from plaque

(Additional file 1: Figure S4A,B), while disease site his-

toric calculus has higher levels of red complex species

than healthy site calculus, a pattern also seen in plaque

of periodontal disease patients.

Functional prediction in calculus is poorly predictive of

health status

Predicting metabolic functional capacity of a microbial

community through gene content analysis is a way of in-

ferring its potential activity in the absence of transcripto-

mics, proteomics, or metabolomics profiling. Differences

in metabolic functions of microbial communities may

indicate shifts in community activity associated with a

changing environment, often linked to disturbed host

physiology [28, 29]. Here, we compared the metabolic

Fig. 5 Microbial co-exclusion patterns reflect oxygen use and carbon source. Network graphs presenting species as nodes and co-exclusion

between species as edges, where darker lines indicate stronger co-exclusions. Nodes are colored based on oxygen tolerance (left) and carbon

source (right). Identical networks with labels indicating the bacterial species are presented in Additional file 1: Figure S10A,B. Historic calculus has

more co-exclusions between species with different oxygen tolerance and carbon source than does plaque or modern calculus
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functional profiles of our historic calculus and modern

plaque samples based on SEED subsystem classification

to determine if the microbial communities in these two

substrates were systematically enriched or depleted in

any metabolic pathway categories (Additional file 2:

Table S6). A PCA of the SEED profiles of plaque and

historic calculus show some separation of the substrates

(Fig. 7a, Additional file 1: Figure S14A), but group separ-

ation was not significant and no SEED categories were

significantly differentially abundant between them. The

sPLS-DA plot indicates that the sample types are

discriminative, but the calculus samples are more vari-

able than the plaque samples (Fig. 7b), which is reflected

in the BER between the sample types (Additional file 2:

Table S3). The SEED categories Iron Acquisition and

Potassium Metabolism, which are associated with

healthy site plaque in our results, and Protein Me-

tabolism and Sulfur Metabolism, which are associ-

ated with healthy site calculus in our results

(Additional file 1: Figure S14B), are associated with

periodontal disease through clinical and laboratory

studies [28, 30]. This was unexpected, given that we

A B C D

Fig. 7 Potential metabolic functional profiles differ by sample type but not health status. a SEED metabolic functional category profiles separate

plaque and historic calculus in a principal component analysis. b SEED profiles of plaque and historic calculus are sufficiently discriminatory to

cluster samples by type in the sparse partial least squares-discriminant analysis (sPLS-DA). c Healthy and periodontal disease site historic calculus

SEED profiles overlap and are not distinctly separated by PCA. d Historic healthy and disease site calculus SEED profiles overlap and are not

sufficiently discriminatory for distinct clustering by sPLS-DA

Fig. 6 Microbial species differences between plaque, modern calculus, and historic calculus. a The majority of taxa detected are shared between

plaque, modern calculus, and historic calculus. b Relative abundance of Socransky’s bacterial complexes in plaque and calculus, presented by age

and health status. *p < 0.05 vs. modern plaque, xp < 0.05 vs. modern healthy site calculus
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have demonstrated that the microbial profile of

calculus contains microbial signatures characteristic

of periodontal disease, and we expected the SEED

profiles to similarly reflect signatures of disease in

calculus but not plaque.

Because previously published transcriptomic analyses

of plaque from healthy and periodontitis sites indicate

differential expression of specific metabolic pathways in

each condition, even when microbial profiles vary be-

tween samples of the same condition [31, 32], we further

assessed if potential metabolic profiles differ between

our historic calculus samples from periodontitis-affected

and healthy sites. However, a PCA of SEED categories

between healthy site and disease site calculus showed no

separation of these groups (Fig. 7c). Furthermore, sPLS-

DA was not able to sufficiently distinguish between the

sample types for distinct classification (Fig. 7d), the BER

for sample classification was high for both sample types

(Additional file 2: Table S3), and only five SEED categories

were informative enough for classification (Additional file

1: Figure S14C). Sulfur metabolism and potassium metab-

olism in our data contribute to the classification of healthy

site samples but in plaque are associated with periodon-

titis [28, 33]. The differences in SEED profiles between

plaque and calculus and our inability to distinguish

between SEED profiles of healthy and disease site calculus

results are consistent with the taxonomic profile differ-

ences we observed. Both results support that calculus

samples contain species and gene content profiles distinct

from plaque, but differences in disease and healthy site

profiles are not evident at the taxonomic/genetic level.

This is reinforced by the consistent relative abundance of

the top 15 most abundant SEED categories across all

historic calculus samples despite health status (Additional

file 1: Figure S15).

Proteomic profiles of historic healthy site calculus

In contrast to genetic data, proteins dynamically reflect

biofilm and host processes and may be more useful for

understanding active cellular processes in the oral envir-

onment. Therefore, to gain insight into the protein

profile of our historic calculus samples, we performed

shotgun proteomics on a subset of healthy site historic

dental calculus samples (n = 10) and manually annotated

the functional properties of all proteins. This dataset was

previously assessed for the presence of dietary proteins,

but none were identified [6]. We found that the majority

of proteins (94.9%) were derived from bacteria, and the

remaining 5.9% were from the human host (Additional

file 2: Table S7). Consistent with previous studies [2, 34],

immune response proteins make up nearly 50% of all hu-

man proteins identified in each calculus sample (Fig. 8a),

with innate response-related molecules (e.g., myeloperoxi-

dase, cathepsin G) more prevalent and abundant than

immunoglobulins of the adaptive response. Many of the

identified blood-associated proteins (e.g., antithrombin-

III) are known to be involved in clotting and likely come

from the gingival crevicular fluid. Alpha-amylase, the sole

protein in the digestion category, was found to be the

third most abundant protein after the innate immune pro-

tein alpha-1-antitrypsin and the blood protein serum albu-

min; however, none of the human proteins was detected

in all 10 samples (Fig. 8b).

Bacterial protein categories were represented more

evenly across the samples than the human protein

categories (Fig. 8c). Those involved in central carbon

metabolism dominate the bacterial protein profile, while

membrane proteins are the second most abundant cat-

egory, accounting for approximately 12% of the bacterial

proteins in each sample. When including membrane-

associated proteins involved in virulence, such as the

Porphyromonas gingivalis gingipains and fimbrial pro-

teins, the membrane-bound proteins make up 16% of all

bacterial proteins. Proteins related to virulence were the

fourth most abundant category, and we looked at these

in more detail to understand why we observed a robust

immune response signal in samples from apparently

healthy teeth. Flagellar proteins were abundant in nine

samples, as were the immunogenic Tannerella forsythia

surface layer proteins A and B (Fig. 8d). Samples with

gingipains, including either or both of arginine gingipain

Gingipain R1, a highly antigenic Porphyromonas

gingivalis protease [35], or lysine gingipain, also had P.

gingivalis-specific major and minor fimbriae and

hemagglutinin, which are involved in adherence to host

epithelial cells.

Correlations between taxonomic, proteomic, and

metabolomic profiles

Previous research has shown that a wide range of small

molecule metabolites preserve in dental calculus, pos-

sibly enabling integrative multi-omic studies of historic

dental calculus. The metabolite profiles of a subset of

our historic dental calculus samples were previously

studied in Velsko et al. [5], and we incorporated these

results into this study by testing for correlations between

our genomic, proteomic, and metabolomic data in the

samples for which we have overlapping datasets. We per-

formed regularized canonical correlation analysis (rCCA)

between the taxonomic and protein profiles (n = 9), taxo-

nomic and metabolomic profiles (n = 11), proteomic and

metabolomic profiles (n = 7), and bacterial and human

protein profiles (n = 10) and visualized the strongest cor-

relations (~ 350 edges with the highest correlation values)

with network graphs (Fig. 9, Additional file 1: Figures S16-

S19). The nodes indicate the species/proteins/metabolites,

and the edges are the canonical correlation value, where
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smaller darker lines are lower values and the thicker,

lighter lines are higher values.

All of the ~ 350 strongest correlations between taxonomy

and metabolites, proteins and metabolites, and bacterial

and human proteins were positive, and all but four of the

strongest correlations between taxonomy and proteins were

positive. The biological basis for the correlations between

taxonomy and proteins or metabolites is unclear, but the

protein and metabolite correlations appear to be related to

immunological interactions and biomolecule preservation

patterns. For example, in examining the strongest bacterial-

human protein correlations (Fig. 9a), just over half of the

A

B

C

D

Fig. 8 Historic calculus protein profiles reflect host homeostasis. Filled area charts presenting relative abundance in each sample of a host protein

categories, b human proteins detected in at least 50% of the samples, c bacterial protein categories, and d bacterial virulence protein categories
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bacterial proteins (19/36) are membrane-associated and

half of the human proteins (9/18) are involved in the im-

mune response, which may be because surface proteins are

exposed for immune system interactions. In the strongest

metabolite-protein correlations, the majority of metabolites

in the network are lipids, which is consistent with the ob-

servation that lipids are the most abundant metabolite class

in historic dental calculus [5]. Of the 33 proteins in the net-

work graph, 23 are from bacteria, and 10 of these (43%) are

membrane-associated. This is the highest proportion of all

bacterial protein classes represented in the strongest corre-

lations. Nine of the 17 lipid metabolites are known compo-

nents of bacterial membrane lipids, and therefore,

membrane-associated proteins may be stably preserved by

the relatively chemically inert lipid membranes.

Discussion

We have demonstrated that microbial profiles of historic

and modern calculus are highly similar to each other,

albeit with several notable differences, and both are

A

B

Fig. 9 Canonical correlations between historic sample proteins and metabolites. The strongest canonical correlations in historic calculus are

presented as network graphs where the nodes are proteins/metabolites and edges represent canonical correlations, with darker, thinner lines

lower values and thicker, lighter lines higher values. Nodes are sized by the number of edges they have and are colored based protein on

metabolite category. a Bacterial and human protein correlations ≥ 0.9. b All protein and metabolite correlations ≥ 0.9. Graphs with node names

are included in Additional file 1: Figures S18-S19
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distinct from dental plaque. The systematic microbial

profile differences observed between plaque and calculus

complicate our ability to infer microbial population

shifts related to dietary, social, medical, or geographic

changes in populations, and studies should take care

when comparing microbial profiles between the two sub-

strates, as this can lead to inappropriate data interpret-

ation [36]. For example, microbial species profiles

between dental plaque and calculus can be strikingly dif-

ferent, such that substantial community shifts appear to

have occurred over the last several hundred years, con-

current with industrialization in Western societies [1].

To overcome this challenge, we strongly recommend

using reference datasets derived from modern dental

calculus, such as the one provided in this study, rather

than dental plaque, when performing investigations of

oral microbiome ecological and evolutionary change.

Our results suggest that species strongly associated

with periodontal disease today may in part be more fre-

quently detected and more abundant in archeological

calculus simply because past oral biofilms represent

more mature microbial communities. The modern

calculus samples examined in this study contain high

proportions of “early colonizer” Veillonella and Capno-

cytophaga species similar to those in plaque, yet the his-

toric calculus samples have very little Veillonella and

lower proportions of Capnocytophaga, while proportions

of “early colonizer” Actinomyces in modern calculus ap-

pear intermediate between plaque and historic calculus.

Similarly, the proportions of “orange complex” and “red

complex” species in modern calculus are intermediate

between historic calculus, in which they are high, and

plaque, in which they are low. Notably, the “red com-

plex” species P. gingivalis, T. denticola, and T. forsythia

are found in substantially higher proportions in dental

calculus compared to plaque, whether the calculus is

modern or historic and from a healthy site or a disease-

affected site. The presence/absence and abundance in

archeological calculus of P. gingivalis, T. forsythia, and S.

mutans have been used as proxies for the presence of

oral disease and biofilm pathogenicity [1, 2], yet this is

unlikely to be reliable.

In contrast to red complex bacteria, S. mutans, a

species strongly associated with dental caries, is often

difficult to detect in historic calculus, even from samples

collected from teeth with severe carious lesions, and we

did not detect it in our samples (Additional file 2: Table

S2). This may be related to S. mutans biofilm physiology,

which is now being clarified with next-generation

sequencing [37–39]. Although this species grows prolifi-

cally in a laboratory setting and can thrive under a range

of environmental conditions [40], it is less common in

biofilms from early compared to advanced caries lesions

[37–39]. If S. mutans grows best in deep, advanced

lesions that have reached the dentin or pulp, it may be

infrequently detected in calculus from the tooth surface

and subsequently lost during decomposition of the soft

tissues of the pulp. Additionally, S. mutans produces

acids that demineralize the tooth enamel and dentin;

these acids will also inhibit biofilm mineralization, such

that biofilms with abundant acid-producing S. mutans

may not calcify (and therefore not preserve) to the

extent of biofilms without S. mutans.

Examining the potential metabolic functional profile of

the microbial gut [41] and subgingival plaque [42] com-

munities has revealed the differences in enriched gene

classes between health- and disease-associated commu-

nities. Such gene content differences potentially explain

which bacterial metabolic pathways are altered concomi-

tant with host disease, providing possible explanations

for disease development and progression. Dental calcu-

lus microbial gene content does not appear to be

similarly reflective of health status, as healthy and peri-

odontitis site calculus samples had highly congruent

SEED category profiles. Rather, for dental calculus, gene

expression measured by proteomics and/or metabolo-

mics may be a more accurate and reliable method of dis-

tinguishing healthy and disease site biofilm metabolic

activity [5, 29, 31, 32, 43].

In this study, we were unable to explore protein-level

differences in healthy site and disease site historic calcu-

lus, however, as all ten of the calculus samples we used

for proteomic profiling came from teeth with no evi-

dence of periodontal disease. These samples still aid our

understanding of health-associated biofilm environ-

ments, which is crucial to differentiating health from

disease states, and for understanding disease develop-

ment and progression. A robust immune response

characterizes periodontal disease, and an innate inflam-

matory response is conventionally associated with early

disease, while an adaptive response is associated with ad-

vanced disease [44]. Gingivitis, an early stage soft tissue

inflammatory condition, is likely to have affected many,

if not all, of the teeth from which healthy site calculus

was collected, and we saw a protein profile that reflected

an early inflammatory response. Innate immune re-

sponse proteins dominated the host response protein

profile, and as has been reported previously in calculus

[2], many of these proteins are produced by neutrophils.

Several proteins involved in regulating immune re-

sponses were also detected in the calculus samples, in-

cluding leukocyte elastase inhibitor and serpins B3, B6,

and B10 and may indicate appropriate control of inflam-

mation at healthy tooth sites.

There are correlations between detection of species-

specific proteins and the relative abundance of a given

species by DNA sequencing. Samples in which P.

gingivalis-specific proteins or T. forsythia-specific
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proteins were detected have a higher relative abundance

of those species as determined by genetic sequencing

than the samples in which no P. gingivalis- or T. for-

sythia-specific proteins were detected. This may indicate

a minimum relative abundance of a species for its pro-

teins to be reliably detected in shotgun proteomics, as

well as suggesting that the activity of these species was

not disproportionate with their relative abundance. It

will be of interest in future studies to determine if the

proportion of proteins detected (i.e., the apparent activ-

ity level) from periodontal disease-associated species

such as P. gingivalis or T. forsythia is disproportionately

higher in samples collected from teeth with evidence of

periodontal disease.

Conclusions
Ancient dental calculus is an exceptional substrate that

allows the direct investigation of oral microbiome evolu-

tion, host immune responses, and dietary change

through time. Clinical studies of the oral microbiome

typically focus on dental plaque, the living biofilm from

which calculus forms, rather than calculus, and to date,

many studies have treated the two substrates inter-

changeably. We have shown, however, that while these

two substrates share considerable taxonomic overlap,

they are microbiologically distinct from each other.

Modern oral hygiene practices that disrupt natural oral

biofilm development and maturation may be responsible

for the major differences we observed, and thus caution

should be exercised when quantitatively comparing the

two substrates. To more accurately study how the oral

microbiome has evolved through time in relation to hu-

man cultural and dietary changes, we recommend using

modern calculus rather than plaque biofilms as a refer-

ence. In addition, studies of ancient dental calculus that

incorporate metagenomic, metaproteomic, and/or meta-

bolomic data have the potential to reveal substantial

insight into the oral biofilm and host physiology,

approximating the detailed profiles that can be generated

on modern microbiome samples. Such multi-omic stud-

ies would provide an authentic historic example of

human-microbiome co-evolution and could offer unique

insights into health and disease processes.

Materials and methods

Historic and modern calculus sample collection

Fresh dental calculus samples (n = 10) were obtained

from a private dental office in Jaén, Spain, during routine

dental cleaning. Calculus was collected by dental profes-

sionals using a dental scaler following standard calculus

removal procedures. The collection site (healthy or dis-

eased) was selected arbitrarily by the dentist. All samples

were obtained under informed consent, and this re-

search was reviewed and approved by the University of

Oklahoma Health Sciences Center Institutional Review

Board (IRB #4543). Historic dental calculus (ca. 1770–

1855) (n = 48) was collected from the skeletons in the

Radcliffe Infirmary Burial Ground collection [45], housed

at Oxford Archaeology in Oxford, UK. All of the skeletons

were excavated from earth-cut graves and had either been

contained within wooden coffins, subsequently decom-

posed, or had been buried in shrouds without coffins, and

the skeletons are not personally identifiable.

The oral health of each skeleton was recorded with

reference to the presence or absence of caries and peri-

odontal disease following previous guidelines [46, 47].

Briefly, periodontal disease refers to the inflammatory

loss of the alveolar bone and was recorded following

Ogden [47]. This method involves a 4-point scoring

system (1–4 in which 1 is “no disease” and 4 is “severe

periodontitis”) and controls for confusion with compen-

satory eruption by focusing on the morphology of the

alveolar margin, rather than the amount of tooth root

exposed (ibid).

The sex and approximate age at death for each skel-

eton were estimated following established osteological

criteria [48–53] and are presented in Additional file 2:

Table S1. Genetic sex was assessed through high-

throughput sequencing (HTS) of DNA extracted from

the calculus fragments (see below) following previously

described methods [54–56]. Genetic sex determinations

were consistent with those made using osteological ap-

proaches for most of the samples (Additional file 2:

Table S1). In the four cases of conflicting assignments

between genetic and osteological analyses, the osteo-

logical assessment was noted as uncertain, and genetic

sex was used for all subsequent analyses. In several

instances, insufficient human DNA was recovered for

genetic sex determination, and the osteologically deter-

mined sex was used for subsequent analyses.

Historic calculus samples were collected on site as

follows: surfaces of the teeth and calculus were cleaned

with Kimwipes moistened with 5% NaOCl followed by

water prior to sampling to remove traces of burial soil.

The jaws, or individual teeth if they were loose, were

photographed, and sampling was performed wearing

gloves and a mask over the nose and mouth. Calculus

was collected from each individual using a dental scaler

onto a clean piece of aluminum foil and then transferred

into a sterile 1.5 mL tube. Between individuals, the scaler

was cleaned using 5% NaOCl and rinsed with ultra-pure

water. The samples were transferred to the Research La-

boratory for Archaeology and the History of Art at the

University of Oxford for DNA and protein extraction.

Metadata collected for each sample are presented in

Additional file 2: Table S1 and include the following: es-

timated age and sex (see below), mandible/maxilla,

tooth, tooth surface (buccal/lingual), deposit location on
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tooth (crown, root, cemento-enamel junction), deposit

density (thick or thin), deposit spread (contained ring or

“blanket” over the tooth surface), single tooth sample or

pooled sample, presence of caries and/or periodontitis

on the sampled tooth, and presence of caries and/or

periodontitis on non-sampled teeth (whole mouth caries

or whole mouth periodontal disease)

DNA extraction

All Radcliffe calculus sample DNA extraction and library

building were performed in the PalaeoBARN dedicated

ancient DNA laboratory at the University of Oxford Re-

search Laboratory for Archaeology and the History of

Art. The Radcliffe calculus samples were sectioned, and

pieces of approximately the same size as a previously

weighed 40mg piece of calculus were selected for DNA

extraction. The modern calculus samples were extracted

using the DNeasy PowerSoil kit (QIAGEN) as used in

the Human Microbiome Project extractions. For details,

see Additional file 1: Supplemental Methods.

DNA library construction and high-throughput

sequencing

Shotgun Illumina libraries of the Radcliffe calculus

samples were constructed following previously de-

scribed methods [57] with the AccuPrime PFX (Invi-

trogen) and KAPA HiFi Uracil+ (Roche) polymerases.

Libraries were dual-indexed with one internal 6 bp

index and one external 6 bp index. The proof-reading

capability of the AccuPrimePFX enzyme impairs PCR

amplification from templates with DNA damage

(cytosine deamination), while the KAPA HiFi Uracil+

enzyme does not have this capability. Four samples

failed to build successful libraries with the AccuPrime

PFX polymerase, which was later determined to be

due to an error with the internal index on those sam-

ples, and these libraries are not included in the

downstream microbial profiling analyses. The four

samples were successfully built into libraries with the

KAPA HiFi Uracil+ polymerase using different in-

ternal indices and were included in damage pattern

assessment analysis. For details, see Additional file 1:

Supplemental Methods.

DNA sequence processing

Prior to analysis, reads were de-multiplexed, quality-

checked, and trimmed of adapters using AdapterRemoval

v.1 (Lindgreen 2012) with the following non-default pa-

rameters: --maxns 0, --trimns, --trimqualities --minquality

30, --minlength 25, --collapse, and --minalignmentlength

10. The AccuPrimePFX enzyme-generated reads were

used for all subsequent analyses, while the KAPA HiFi

Uracil+ enzyme-generated reads were used for DNA dam-

age pattern analysis with mapDamage2 [58, 59].

For the 10 modern calculus samples, sequencing reads

were processed using the EAGER pipeline v1.92.55 [60].

In brief, reads were quality checked with FastQC

(https://www.bioinformatics.babraham.ac.uk/projects/fas

tqc/). Forward and reverse reads were trimmed and

merged using AdapterRemoval2 [61], with the following

parameters: --trimns –trimqualities –minlength 30 –

minquality 20 –minadapteroverlap 1. Merged reads were

then mapped to the human reference genome (HG19,

http://hgdownload.cse.ucsc.edu/downloads.html#human)

using bwa aln [62] v0.7.12, with -n 0.01 -l 32. Samtools

v1.3 [63] was then used to convert to bam format, gener-

ate mapping statistics, and extract unmapped reads

using the view function’s -f4. The samtools fastq func-

tion was then used to convert the unmapped reads back

to fastq format for downstream taxonomic profiling.

Ten supragingival plaque samples and ten subgingival

plaque samples from the Human Microbiome Project

(HMP) cohort were downloaded from the HMP web

server. Only the pair1/pair2 files were processed, and

singletons were excluded. The samples were quality-

checked and trimmed of adapters using AdapterRemoval

with the same settings as for the historic calculus

samples above.

Genetic assessment of historic calculus sample

preservation

Preservation was assessed by damage pattern

characterization and microbial source profiling. Damage

patterns were assessed using mapDamage2 [59] on the

Radcliffe calculus libraries that were generated with the

KAPAHiFi Uracil+ polymerase. For mapDamage, all

calculus sample reads were mapped to the Tannerella

forsythia 92A2 genome (assembly GCA_000238215.1)

using bwa aln with the flags -l 1024 -n 0.03 [64], and du-

plicates were removed from the alignment using sam-

tools [63]. The mapped, non-duplicate reads were

assessed for cytosine to thymine transitions and break-

points coinciding with depurination in mapDamage2,

run with default parameters. The Bayesian analysis-

based program SourceTracker [65] was used to estimate

the source composition of the AccuPrimePFX enzyme-

generated library microbial communities as assessed

from 16S rRNA gene reads processed in QIIME, exactly

as described in [5]. Human reads were identified as de-

scribed in [5].

Genetic microbial taxonomic profiling

The microbial profile of the Radcliffe historic calculus,

Human Microbiome Project supra- and subgingival

plaque samples, and modern calculus samples were deter-

mined by MetaPhlAn2 [66, 67], a profiler selected based

on Velsko et al. [23]. All analysis-ready reads from the

Radcliffe historic and Spanish modern datasets were
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profiled using MetaPhlAn2 in default parameters, while

the HMP samples were subset to 10,000,000 analysis-

ready reads using seqtk sample (https://github.com/lh3/

seqtk) before profiling, to keep the number of input reads

within the range of the historic calculus samples. The

species-level assignments were extracted from the

MetaPhlAn2 output tables (Additional file 2: Table S2)

and used for all further analyses. Bubble charts of the rela-

tive abundance of species or species complexes (defined

by Socransky et. al [17]) were generated with ggplot2

(https://ggplot2.tidyverse.org/) in R.

Principal component analysis

Principal component analysis (PCA) was performed

using the R package mixOmics [68]. The species-level

relative abundance tables generated by MetaPhlAn2

were filtered to include only species present at > 0.02%

relative abundance and used as an input. Within the

mixOmics package, the tables were offset by + 1 to allow

the use of the centered-log ratio (CLR) transformation,

followed by total sum scaling (TSS) normalization. Prin-

cipal component analysis was run with 10 components,

CLR data transformation (Gloor), and data centering.

Scree plots were visually inspected to assess the vari-

ation explained by each component. Plots of each PCA

were generated with mixOmics. Group differences were

tested on the distance matrices using adonis in the vegan

R package, with 999 permutations, and p < 0.05 consid-

ered significant. No groups tested were significantly

different. Analyses were also performed without total

sum scaling normalization and all results were identi-

cal—the proportion of variance explained by each of the

components was identical between TSS-normalized and

non-TSS-normalized datasets.

Assessment of differentially abundant taxa

Differential abundance of species between selected sam-

ple groups was determined using the program Statistical

Analysis of Metagenomic Profiles (STAMP) [69, 70].

Tables filtered to include only species at > 0.02% relative

abundance were analyzed by White’s non-parametric

two-sided t test with bootstrapping to determine the dif-

ference between proportion (DP) with cutoff 95% and

Storey’s FDR. Corrected p values (q values) of ≤ 0.05 to-

gether with an effect size ≥ 1 were considered significant.

To determine if the proportion of species complexes

(Fig. 6b) were different between plaque and calculus

samples, an ANOVA with multiple comparisons and

uncorrected Dunn’s test was performed, and p < 0.05

was considered significant.

Sparse partial least squares-discriminant analysis

Sparse partial least squares-discriminant analysis (sPLS-

DA) was performed for each metadata category of

interest (sample source, sample health status) with the

species tables using the R package mixOmics [68], fol-

lowing the example Case Study sPLSDA: SRBCT avail-

able on the mixOmics website (http://mixomics.org/

case-studies/splsda-srbct/). sPLS-DA is a method of data

analysis that starts with the knowledge of the classifica-

tion of each sample. It then looks for the data (in this

case species) that maximize the differences between the

sample categories, i.e., the data that discriminate the

sample categories from each other. sPLS-DA is used for

sample classification, unlike PCA, which is used for data

exploration, and can be applied to biomarker discovery,

and further for classification of samples from unknown

sources in the future.

The input tables and data pre-processing were identi-

cal to that in the PCA section described above (offset by

+ 1, TSS). In brief, a PLS-DA was run with 5 compo-

nents and CLR transformation to assess the number of

components to be included in the sPLS-DA. The sPLS-

DA was tuned using the tune.splsda function to deter-

mine the optimal number of variables to select, then the

sPLS-DA was run with the selected number of variables.

Plots of each sPLS-DA were generated in mixOmics

with plotVar. The top 20 species or genera contributing

to the loadings of components 1 and 2 were plotted with

plotLoadings function. These are the taxa that contrib-

ute the most to the separation of the two groups being

compared. The balanced error rate (BER) of group clas-

sification for each sPLS-DA (Additional file 2: Table S3)

was calculated with the tune.splsda function in mixO-

mics. The BER is a measure of performance calculated

from sensitivity and specificity, and lower numbers

indicate more accurate classification.

Assessment of microbial co-exclusion patterns

We assessed microbial species co-exclusion patterns in

our sample groups using the program CoEx [27].

Relative abundance tables filtered to include only

species/genera at > 0.02% were used as input, with the

following parameters: -n 50 -f 100 -t 10000 -p 0.05 -z

0.6 -norm. For graphical assessment of co-exclusion pat-

terns, the data were visualized as network graphs with

the species/genera as nodes and the co-exclusion value

as edges, using Gephi [71]. To make the network graphs

readable, only the top 60 species-level co-exclusion inter-

actions and top 40 genus-level co-exclusion interactions

that met the following criteria were plotted: p < 0.05, co-

exclusion value < 0.1, false discovery rate for the given p

value < 1%. The nodes were colored by Gram stain

(positive, negative, unknown), oxygen tolerance (aerobe,

facultative anaerobe, anaerobe, unknown), utilization of

sugars as a carbon source (saccharolytic, asaccharolytic),

and by phylum, to look for characteristics that play a role

in co-exclusion patterns.
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Gene functional categorization with SEED

To generate SEED protein category classification [72] for

the Radcliffe calculus and HMP plaque samples, the

analysis-ready reads for both were profiled using MALT-

X [36] in default mode with a custom database of

NCBI RefSeq genomes of bacteria, viruses, archaea, and

plasmids from Velsko et al. [23]. SEED categorization

was added in MEGAN v. 6.10 [73] using the acc2seed-

May2015XX mapping file. SEED tables were exported

from MEGAN (Additional file 2: Table S6), and categor-

ies that were present at less than 0.02% abundance were

removed for analysis, for consistency with taxonomic

profiling. The highest level of SEED categorization was

used for all analyses, which included PCA, differential

abundance assessment, and sPLS-DA as described above

for analysis of taxonomic profiles.

Proteomics

The historic Radcliffe Infirmary proteomic data pre-

sented here are from Hendy et al. [6], and sample pro-

cessing is described therein. The 10 historic samples

were selected based on having sufficient material for

protein extraction after pieces were used for DNA

extraction and include both males and females. All den-

tal calculus samples were obtained from teeth without

evidence of periodontal disease. Peptides were extracted

using the GASP method, and shotgun sequenced at the

Oxford Target Discovery Institute. Mass spectrometry

data were analyzed according to Jeong et al. [74] with

minor changes. Briefly, spectral data generated via MS/

MS were converted to Mascot generic format using the

application MSConvert [75]. The resulting files were

searched for peptide spectral matches using Mascot

(Matrix ScienceTM, version 2.6) against SwissProt and a

database made up of 463 annotated bacterial genomes

from the Human Oral Microbiome Database [76] (down-

loaded 2017). Each database also contained a reverse

decoy of every sequence which was used in the down-

stream analysis to calculate the false discovery rate (FDR).

Duplicate peptides were removed, and only the proteins

supported by a minimum of two peptides, each with an E

value ≤ 0.01, were used to calculate FDR at both the

protein and peptide level across the dataset [74].

For data analysis, all protein names were manually

checked and variations on the same protein were made

consistent (i.e., variations of “GroEL” such as “chaperone

GroEL” were re-named “GroEL”). Proteins were manu-

ally assigned to a broad-level category based on KEGG

orthology when available, and based on functional de-

scriptions when no KEGG entry was found, to examine

active cellular processes (Additional file 2: Table S7).

Graphs showing the relative abundance of protein

categories were generated in R.

Metabolomics

The historic Radcliffe Infirmary and modern metabolite

data presented here are from Velsko et al. [5]. All me-

tabolites detected in at least one historic calculus sample

were included in regularized canonical correlation

analyses described below.

Regularized canonical correlation analysis

We used the mixOmics R package [68] to perform regu-

larized canonical correlation analyses on the taxonomic,

proteomic, and metabolomic datasets. The tables used

for analysis were filtered using the same criteria as

above: only species present at greater than 0.02% abun-

dance, only proteins detected at least twice by independ-

ent peptides, and metabolites detected in at least one

historic sample. The input tables were offset by + 1, and

the rCCA was run using the shrinkage method to esti-

mate penalization parameters. The matrix of canonical

correlation values was exported, and the strongest corre-

lations were visualized as network graphs with Gephi as

above for co-exclusion patterns. Nodes are species, pro-

teins, or metabolites, and edges are canonical correlation

values. Cutoff correlation values for network graph

visualization were selected as follows because these were

round numbers that left similar numbers of edges (343–

368 edges): 0.9 for proteins-metabolites and bacterial-

human proteins, 0.82 for species-proteins, and 0.75 for

species-metabolites.

Additional files

Additional file 1: Supplementary Materials and Methods and

Supplementary Figures. (PDF 8386 kb)

Additional file 2: Supplemental Tables S1-S7. (XLSX 313 kb)
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