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Abstract

Background: The caecal microbiota plays a key role in chicken health and performance, influencing digestion and

absorption of nutrients, and contributing to defence against colonisation by invading pathogens. Measures of

productivity and resistance to pathogen colonisation are directly influenced by chicken genotype, but host driven

variation in microbiome structure is also likely to exert a considerable indirect influence.

Methods: Here, we define the caecal microbiome of indigenous Indian Aseel and Kadaknath chicken breeds and

compare them with the global commercial broiler Cobb400 and Ross 308 lines using 16S rDNA V3-V4 hypervariable

amplicon sequencing.

Results: Each caecal microbiome was dominated by the genera Bacteroides, unclassified bacteria, unclassified

Clostridiales, Clostridium, Alistipes, Faecalibacterium, Eubacterium and Blautia. Geographic location (a measure

recognised to include variation in environmental and climatic factors, but also likely to feature varied management

practices) and chicken line/breed were both found to exert significant impacts (p < 0.05) on caecal microbiome

composition. Linear discriminant analysis effect size (LEfSe) revealed 42 breed-specific biomarkers in the chicken

lines reared under controlled conditions at two different locations.

Conclusion: Chicken breed-specific variation in bacterial occurrence, correlation between genera and clustering of

operational taxonomic units indicate scope for quantitative genetic analysis and the possibility of selective breeding

of chickens for defined enteric microbiota.
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Background
Ensuring the secure supply of safe food is a major global

concern. Increasing human population sizes, income

levels and urbanisation all contribute to rising demand

for protein, and therefore livestock [1, 2]. However, key

constraints on animal production include infectious dis-

eases, which can be exacerbated by suboptimal com-

mensal microflora that undermine capacity to thrive [3].

Chickens are the most numerous livestock in the

world, with relatively low production costs and highly ef-

ficient food conversion. More than 60 billion chickens

are produced annually, with production predicted to in-

crease further over the next 20 years, particularly in

South Asia and Africa [4]. The importance of the caecal

microbiome to chicken health and productivity has long

been recognised, especially in food conversion, resistance

to disease and colonisation by zoonotic pathogens [5–8].

In line with other next-generation sequencing (NGS)

microbiome studies [9–15], we have previously identified

Bacteroidetes, Firmicutes and Actinobacteria as highly

abundant phyla within chicken caecal populations, while

functional metagenomics analysis revealed enrichment

of sequences corresponding to carbohydrate metabolism

[16]. However, the influence of host genetics on caecal

microbiome structure is unclear [17–19].

Reports of higher productivity, product quality and/or

pathogen resistance have been attributed to some indigen-

ous chicken breeds. For example, 17 breeds of Indian ori-

gin are currently registered with the National Bureau of

Animal Genetic Resources (NBAGR) at the Indian Council

of Agricultural Research (ICAR) (http://www.nbagr.res.in/

regchi.html). Among these breeds examples such as Aseel

and Kadaknath have been associated with improved egg,

meat and welfare traits such as reduced feather pecking

[20, 21], resistance to infectious disease [22, 23] and im-

mune parameters distinct from those of modern commer-

cial chickens [24, 25]. Variation in immunity-related

pathways can influence microbiome structure in humans

[26] and is also likely to affect chicken microbiomes [27].

Analysis defining the caecal microbiome of native Indian

chicken breeds of Assam state has been reported recently

[7], although the significant impact of environmental fac-

tors makes it impossible to compare between microbiome

studies [28]. Evidence from humans, mice and chickens

suggest that host genotype can exert a strong influence on

microbiome composition [18, 19] and thereby offers a

quantifiable phenotype which may differ between chicken

breeds and individuals, and may be amenable to genetic

selection. Here, we use NGS targeting hypervariable re-

gions within microbial 16S rRNA genes to compare the

caecal lumen microbiota of commercial broiler-type lines,

which are comparable to those used around the world, to

indigenous Indian breeds reared in parallel under con-

trolled commercial-type management conditions. Our

hypothesis was that the caecal lumen microflora would

vary significantly between chicken breeds and lines, offer-

ing opportunities for targeted genetic improvement by se-

lective breeding. Given the importance of primer choice to

successful NGS [29–34], we also compared multiple

primers targeting different variable regions of the 16S

rRNA.

Methods

Chicken breeds and experimental design

Four chicken breeds or lines were chosen for compari-

son in this study including two indigenous Indian breeds

and two global commercial broiler lines. The indigenous

breeds Kadaknath and Aseel were chosen for use at the

Central Poultry Research Station of Anand Agricultural

University, (AAU, Gujarat, India; termed location 1) and

duplicated at Tamil Nadu Veterinary and Animal

Sciences University (TANUVAS, Chennai, Tamil Nadu,

India; location 2) (Additional file 1). Commercial

Broilers of the Cobb400 (AAU) and Ross 308 (TANU-

VAS) lines were used for comparison as representatives

of the local dominant-intensive commercial production

systems [35].

At each location, ten chickens of each breed were

hatched on the same day and reared in neighbouring

pens in single poultry houses, providing independent

replication and controlling against local spatial variation.

Chickens were accommodated in this manner to avoid

husbandry (behavioural) problems from arising when the

chicken breeds were mixed. Care was taken to ensure

that pens were of equal sizes, equidistant to the door

and light sources and received exactly the same hus-

bandry to minimise non-host variation. A deep litter sys-

tem was employed using rice husk as a substrate in

common with local practices. All chickens were fed a

standard maize and soybean-based commercial diet

which included bacitracin methylene disalicylate (BMD)

and maduramycin (10%) for routine prophylaxis.

Sample collection and DNA extractions

At each location, five apparently healthy chickens were

selected at random from each group, caught and eutha-

nized by cervical dislocation at 42 days of age. Both cae-

cal pouches were opened immediately using sterile

scissors and the contents were recovered into sterile

cryovials containing Bacterial Protect RNA reagent

(QIAGEN, Germany) at an approximate 1:1 ratio (w/v).

Each sample was immediately stored in a portable

freezer at − 20 °C, transported to the laboratory and

stored at − 80 °C.

Total genomic DNA was extracted from the pooled

caecal contents of each individual chicken using the

commercially available QIAamp Fast DNA Stool Mini

kit (QIAGEN, Germany) following the manufacturer’s
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instructions with some modifications. Briefly, 300 μL of

caecal content with Bacterial Protect RNA reagent was

added to 1 mL of InhibitEX buffer, vortexed at 2800 rpm

for 1 min to homogenise and incubated at 80 °C for

10 min. The mixture was then centrifuged at 2600 g for

30 s to remove residual solid material and 600 μL of

supernatant was processed as recommended by the

manufacturer. DNA was treated with DNase free RNase

(Macherey-Nagel, Germany) to remove contaminating

RNA. DNA concentration and quality were assessed

using a Qubit 2.0 fluorometer (Invitrogen, ThermoFisher

scientific, MA) and gel electrophoresis. DNA was stored

at − 20 °C until further processing.

16S rRNA gene amplification and MiSeq sequencing

Six hypervariable regions within the 16S rRNA gene

were amplified from caecal DNA sample using three dif-

ferent primer pairs (Additional file 2). Each 25 μL PCR

reaction comprised of 2.5 μL DNA (~5 ng/μL), 5 μL

each forward and reverse primer (1 pM) and 12.5 μL 2X

KAPA HiFi HotStart ReadyMix (Kapa Biosystems, UK).

PCR amplification cycles were as follows, initial denatur-

ation at 94 °C for 3 min, followed by 25 cycles of 98 °C

for 20 s, X °C for 10 s and 72 °C for 12 s, where X was

the annealing temperature optimised at 65, 60 and 66 °C

for primer pairs 1, 2 and 3, respectively, and a final ex-

tension at 72 °C for 40 s. Amplicons were further proc-

essed for library preparation using Illumina’s Nextera XT

library preparation kit (Illumina, USA). Sequencing was

performed using an Illumina MiSeq desktop sequencer

at the Department of Agricultural Biotechnology (a cen-

ter of excellence in biotechnology, AAU, Anand). Trim-

ming of adaptor sequences was performed using

Illumina analysis software V2.5 as recommended by the

manufacturer using default parameters.

Sequence data analysis

All 16S rDNA reads were uploaded to the MG-RAST

V3.6 open source online server for phylogenetic and

functional classification of metagenomics data [36].

Low-quality reads were trimmed using SolexaQA [37]

with default parameters in MG-RAST. Annotations were

made against the RDP (Ribosomal Database Project)

database with a minimum e value of 1E-5 and minimum

identity of 80%. The data were further analysed using

Statistical Analysis of Metagenomic Profiles (STAMP

v2.1.3) [38], METAGENassist [39] and PAST v2.17c [40].

Comparative analysis for taxa in terms of percentage

mean relative frequency was performed using STAMP,

where Benjamini-Hochberg FDR was used for multiple

test corrections to minimise false discovery rates during

multiple group comparative analysis. Further, each taxo-

nomic profile from STAMP was uploaded to META-

GENassist for analysis where data were filtered for

unassigned bacteria and samples were scaled to each

other through normalisation using Pareto Scaling

(mean-centered and divided by the square root of stand-

ard deviation of each variable) [41]. The processed data

were subsequently used for correlation analysis. Principal

coordinate analysis (PCoA), one-way ANOSIM and clus-

tering were done using PAST. The processed quality fil-

tered sequences were downloaded from the MG-RAST

server and used to calculate diversity indices, 2D-PCoA

(unweighted UniFrac) and rarefaction curve using

QIIME where sequences were clustered at 97% similar-

ity. Moreover, for rarefaction curve sequences were rar-

efied at 10,000 sequences per sample. Boxplots were

generated using BoxPlotR [42]. One-way ANOVA was

used to compare three primer pairs while

Mann-Whitney test was used to compare differences

among two locations within PAST software. To deter-

mine the core microbiome of chicken breeds under

study, genus abundance > 0.1 and > 1.0% were taken into

account and Venn diagrams were generated using Venny

2.1 [43]. To identify chicken line-specific biomarkers at

multiple taxonomical levels, the bacterial abundance

profile of birds pooled by (i) breed/line and (ii) location

were analysed using linear discriminant analysis effect

size (LEfSe) [44, 45]. For this analysis, bacterial abun-

dance profiles were calculated at taxonomic levels from

phylum to genus in %. For LEfSe analysis, the

Kruskal-Wallis test (alpha value of 0.05) and LDA score

of > 3.5 were used as thresholds.

Results
Microbiome sequencing

Caecal contents were collected from 30 chickens, split

equally between locations 1 and 2 at the Anand Agri-

cultural University (AAU, Gujarat, India) Central

Poultry Research Station, and Tamil Nadu Veterinary

and Animal Sciences University (TANUVAS, Chennai,

Tamil Nadu, India), respectively. Fifteen birds sampled

from location 1 included five from each of the

indigenous Indian Aseel and Kadaknath breeds,

supplemented by five commercial Cobb400 broilers for

comparison. Fifteen birds sampled at location 2

duplicated those sampled from location 1, with the

exception that Ross 308 commercial broilers were

used instead of Cobb400, representing the local

dominant-intensive commercial production systems

[35]. All chickens were sampled at 42 days of age. Total

DNA was isolated and amplified using three sets of

primers targeting the 16S rDNA hypervariable regions

V1–V2, V3–V4 and V5–V6. We generated 10.35 million

sequences corresponding to 19.41Gbp of data in 90 files

(Additional file 3). The average number of sequences per

sample was 115,010 (Table 1).
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Operational taxonomic unit (OTU) occurrence and data

rarefaction

Initially, caecal microbiome populations associated with

each chicken breed or line were analysed based on dif-

ferent chicken lines irrespective of primer pairs. At both

locations, the commercial broiler groups presented the

highest average number of OTUs (Table 1). The indigen-

ous Kadaknath breed presented the lowest number of

OTUs in each duplicate study. Rarefaction based on the

Chao1 index approached asymptotic for each breed or

line, suggesting the availability of sufficient reads to rep-

resent each microbiome community (Fig. 1a), confirmed

using the Shannon index and number of observed OTUs

(Additional file 4). PCoA of the OTU data for each

chicken breed or line revealed distinct, but overlapping,

profiles including a high level of variation between

geographical locations, supplemented by less pro-

nounced but nonetheless distinct variation between

breeds (Fig. 1b, c). Clustering analysis using 100 boot-

straps in PAST also showed clear separation between the

two locations (Additional file 5). Based on Good’s cover-

age index, on average 95.48% of caecal microbial diver-

sity was covered in this study (Table 1).

Comparison of primer performance

We then compared the three individual primer pairs to

determine which pair provided the most detailed and

discriminating profiles of the caecal microbiome for our

samples. Comparative analysis revealed that species rich-

ness reflected in terms of rarefaction using the Chao1

index, calculated using 10,000 sequences subsampled

from each sample (rarified), were highest for P2 com-

pared to P1 and P3 (p < 9.6E-06) (Fig. 2a). The numbers

of OTUs identified by each primer set were also highest

using P2, and lowest using P3 (p < 1.8E-05) (Fig. 2b).

Rarefaction based on the observed OTUs is shown in

Additional file 6. On an average, 1000, 1040 and 674

OTUs were identified using primer pairs P1, P2 and P3,

respectively. In addition to Chao1 and the number of

observed OTUs, the values of other alpha diversity indi-

ces such as the abundance-based coverage estimator

(ACE) (p < 4.2E-06) and phylogeny-based diversity esti-

mator (PD whole tree) (p < 2.8E-06) were also highest

for P2 and lowest for P3 (Additional file 7), although

values from the Shannon and Simpson indices were less

distinct. All diversity indices showed significant variation

among the three primer-pairs (Additional file 7). Further,

Fig. 1 Rarefaction curve and PCoA for each breed and location sampled, created by combining data from all three primer pairs. a Rarefaction and

b PCoA for each individual chicken breed or line was generated using QIIME where sequences were clustered at 97% similarity and rarified at > 10,000

sequences per sample. c PCoA based on location was generated using the Bray-Curtis distance method using PAST. A-, C-, R- and K- represent the

Aseel, Cobb400, Ross 308 and Kadaknath chicken breeds or lines respectively. -A sampled at location 1 in Anand, -T sampled at location 2 in Tamil Nadu

Table 1 Summary statistics of sequences analysed including average OTU numbers detected and microbial diversity covered. For

each chicken breed or line, the sequencing reads of all three primer pairs were merged and OTUs were clustered at > 97% similarity

using QIIME

Location Breed/line Total sequences Av. sequences/ sample Av. no. OTUs Average microbial diversity covered (% Good’s coverage)

1 Aseel 839,375 55,958 1134 94.6

Kadaknath 1,042,538 69,503 816 95.9

Cobb400 679,158 45,277 1273 94.1

2 Aseel 2,775,511 185,034 735 95.7

Kadaknath 2,548,471 164,390 833 95.6

Ross 308 2,465,845 169,898 645 97.0
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Fig. 2 A rarefaction curve (a), box plot (b) and PCoA (c) for each primer pair. For analysis, respective sequences of each primer pair were

clustered at 97% similarity using QIIME. For rarefaction plots, sequences were rarefied with 10,000 sequences per sample and the Chao1 index

was plotted. PCoA was generated using unweighted unifrac metrics. Box plots were generated using BoxplotR

Fig. 3 PCoA and class and genus level classification of caecal microbiomes from chicken breeds and lines reared at locations 1 and 2 (Anand and

Tamil Nadu). Only sequencing reads produced using primer P2 were used for this analysis. a PCoA using the Bray-Curtis method in PAST. b Box

plot indicating differences in the ranked distances in each group (see Additional file 10 for the pairwise comparison of P values by ANOSIM).

c, d abundance of bacteria in the caeca of chicken lines at class and genus level respectively. Only classes and genera with abundance > 1.0% in

any of the chicken lines was plotted. A-, C-, R- and K- represent the Aseel, Cobb400, Ross 308 and Kadaknath chicken breeds/lines respectively. -A

sampled at location 1 in Anand, -T sampled at location 2 in Tamil Nadu
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PCoA analysis revealed that P1 formed an isolated clus-

ter, while P2 and P3 formed clusters with a partial over-

lap (Fig. 2c). Taxonomically, primer pair P3 revealed a

far greater proportion of sequences attributed to the

phylum Bacteroidetes (Additional file 8). MG-RAST tax-

onomy identifiers for sequences generated with each pri-

mer set for each chicken breed or line indicated an

average of 537, 518 and 422 species from primer pairs

P1, P2 and P3, respectively (Additional file 9). Primer

pair P2, which spans the V3-V4 hypervariable regions of

the 16S rRNA gene, produced the most detailed and dis-

criminatory results and therefore the sequences gener-

ated using this primer set were used for all subsequent

analysis of caecal microbiota.

Variation in caecal microbiome structure between chicken

breeds and lines

Figure 3a shows PCoA of the variation between micro-

biome profiles based upon Bray-Curtis dissimilarity. Co-

ordinate 1, representing 30.1% of the variation, was

associated with the different locations. Coordinate 2

(18.9% of the observed variation) revealed overlap be-

tween the Aseel and commercial broiler clusters within

their respective experimental locations, while both were

distinct from the Kadaknath clusters. ANOSIM analysis

(R = 0.9097, p < 0.01, Sequential Bonferroni correction)

also highlighted significant differences between chicken

breeds (Fig. 3b, Additional file 10). Bacteroidetes was the

dominant phylum in all chicken groups except Cobb400

and Aseel at location 1, where Firmicutes were more

common (Additional file 11). Combined, these two phyla

accounted for 76.6 to 90.8% of total bacterial sequences

from the caeca of all chicken breeds or lines with the ex-

ception of Kadaknath birds at location 2 (46.2%), where

Fusobacteria accounted for 41.3%. Comparing locations,

Fusobacteria were more common in all chicken breeds

or lines raised at location 2, indicating one or more

environment-specific variable(s). Actinobacteria, to-

gether with bacteria left unclassified, were represented

by between 8.5 and 18.3% of sequences from all chicken

breeds or lines.

At class level classification, Bacteroidia (p < 8.9E-06)

were predominant in all chicken breeds or lines

except the Cobb400 reared at location 1, where

Clostridia (p < 4.1E-07) were more common (Fig. 3c,

Additional file 11). Clostridia were abundant in all

chickens raised at location 1. Combined, the Bacteroi-

dia and Clostridia represented the majority of classes

within the caecal microbiota. Sequences representative

of the class Fusobacteriia (p < 1.4E-07) were common

in chickens sampled at location 2, explaining the high

occurrence of the phyla Fusobacteria described above.

At genus level, Bacteroides (p < 7.2E-05) was found to be

most common in all chicken breeds or lines except the

commercial Cobb400 from location 1, where Clostridium

(p < 2.1E-03) and unclassified Clostridiales (p < 1.3E-05)

presented higher proportions. Alistipes (p < 1.0E-07) were

also common in Kadaknath chickens at location 1. The

other genera present, and their relative levels are indicated

in Fig. 3d (see also Additional file 11).

Numbers of OTUs were high with both of the com-

mercial broiler lines presenting 1411 and 1023 OTUs,

followed by Aseel with 1285 and 992 OTUs and

Kadaknath with 900 and 665 OTUs (locations 1 and 2,

respectively). Comparing both locations, chickens raised

at location 1 presented more OTUs than those reared at

location 2 (p < 0.0025, Mann-Whitney test;

Additional file 12).

The core caecal microbiome, breed-specific biomarkers

and correlations among bacteria

We pooled sequencing reads produced using primer pair

P2 from each chicken breed or line into a single pool,

combining samples from both locations. In total, 35 gen-

era each represented more than 0.1% abundance in the

core caecal microbiome of all breeds or lines (Add-

itional files 13 and 14). Twenty one of the 35 genera

belonged to the phylum Firmicutes, representing 11 dif-

ferent families. Seven and five genera belonged to the

Bacteroidetes and Proteobacteria, respectively with the

rest belonging to other diverse phyla. Total of 12 and 10

genera were uniquely detected in Aseel and Cob400

chickens s in excess of this threshold. Comparison of the

datasets found Geobacillus, Cyclobacterium, Caldicellu-

losiruptor, Thermobaculum, Caulobacte, Desulfovibrior

and Cytophaga in all Kadaknath birds, but not in

any other dataset above the 0.1% threshold, and

Slackia, Cronobacter, Phascolarctobacterium, Unclassi-

fied Alphaproteobacteria, Oceanimonas, Deferribacter,

Tepidimicrobium, Candidatus Phytoplasma, Atopobium,

Tannerella, Zunongwangia and Acetobacterium were all

found to be specific to Aseel at the same threshold. Two

and nine of these genera were identified in both

locations for their respective breeds, indicating

consistent breed-specific high-level colonisation. Twelve

genera were found to exceed the 0.1% threshold in a

single commercial broiler line (Cobb400: ten, Ross 308:

two) but not an indigenous breed. Just ten genera

were detected within the core (conserved) caecal

microbiome between all breeds or lines studied when

the threshold was increased to 1% abundance

(Additional files 13 and 14).

LEfSe analysis was performed with the pooled data to

identify specific taxa that varied in abundance consist-

ently by chicken breed or line across the locations and

thus could be used as biomarkers. In total, 42 genera

were identified with LDA scores > 3.5 (Fig. 4a). A clado-

gram for family and genus level abundance is shown in
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Fig. 4b. Comparison between locations 1 and 2 identified

17 genera with LDA scores > 3.5 (Additional file 15). If

biomarkers which appeared at locations were excluded,

11 breed-specific biomarkers were present in Cobb400,

5 in Ross 308 and 4 in Aseel reared at locations 2 and 1,

respectively. Four different biomarkers were present in

the Kadaknath at each location, while Aseel reared at

location 2 presented 1. The genera Fusobacterium,

Campylobacter, Cronobacter and Enterococcus, which are

known to include potential pathogens of poultry and/or

humans, were biomarkers in the Kadaknath raised at lo-

cation 2, with Helicobacter a biomarker at the same lo-

cation in Aseel.

For correlation analysis, data generated using primer P2

was pooled for each breed or line, and relative proportions

at order and genus levels were produced using META-

GENassist, expressed in terms of Pearson’s r correlation.

Genera and order level correlations among microbes in

each breed or line are shown in Fig. 5 and Additional file 16,

respectively. For Aseel, the occurrence of genera which in-

clude potentially pathogenic species such as Campylobac-

ter, Fusobacterium, Enterococcus and Helicobacter

exhibited a positive correlation with each other. Surpris-

ingly, Prevotella, Rikenella and Butyricimonas also showed

negative correlations with most of the genera detected in

Aseel (Fig. 5a). The majority of orders and genera detected

in Cobb400 chickens were positively correlated, with few

negative correlations (Fig. 5b and Additional file 16). Most

genera were positively correlated within the Ross 308 cae-

cal microbiome, although examples such as Prevotella,

Butyricimonas, Enterococcus and Bacteroides were again

negatively correlated (Fig. 5c.) In the Kadaknath genus

level caecal microbiome, two clusters were detected with

separate positive correlations. However, Campylobacter,

Rikenella, Enterococcus, Bacillus and a few other genera

showed negative correlations with most other genera

(Fig. 5d). Cumulatively, Clostridiales, Bacteroidales,

Spirochaetales, Synergistales and Flavobacteriales were

positively correlated with each other in all chicken breeds

or lines except Flavobacteriales in the Kadaknath. Vari-

ation in correlation was also observed between the two

commercial broiler lines, for example in Cobb400, most

bacteria were positively correlated with each other, while

in Ross 308 Butyrivibrio, Bacteroides, Megamonas, Desul-

phonauticus, Pectinatus, in Aseel, Fusobacterium, Helico-

bacter, Veillonella and Symbiobacterium, and in

Kadaknath Rikenella and Bacillus were correlated, with

two genera Enterococcus and Desulphohalobium com-

monly presenting negative correlations with most others.

Discussion

Demand for poultry meat and eggs is increasing dramat-

ically, most notably in South Asia, where a mix of global

commercial-type lines and indigenous chicken breeds

Fig. 4 Chicken breed and line-specific biomarkers. a LEfSe analysis shows differentially abundant genera as biomarkers determined using Kruskal-Wallis

test (P< 0.05) with LDA score > 3.5. b Cladogram representation of the differentially abundant families and genera (only top 50% are plotted here). The

root of the cladogram denotes the domain bacteria. The taxonomic levels of phylum and class are labelled, while family and genus are abbreviated,

with the colours indicating the breed/line hosting the greatest abundance. The size of each node represents their relative abundance

Pandit et al. Microbiome  (2018) 6:115 Page 7 of 13



are kept [35]. As efforts are made to improve the genetic

merit of chickens, it is important to identify those geno-

types best suited to the varied climatic regions and pre-

vailing production systems, including those which favour

a beneficial gut microbiota. The definition of a ‘benefi-

cial’ microbiota is challenging, but comparison of micro-

biome composition and structure between chicken

breeds that have been associated with improved produc-

tion, health or other welfare traits can provide a valuable

source of phenotypic data, with scope to inform genomic

analyses to identify host sequence variation associated

with microbiome composition. In addition, transplant of

‘beneficial’ microbiota might provide another strategy to

improve both production and health in poultry. In

inbred mice, transfer of microbiota between mice differ-

ing in susceptibility to the enteric pathogen Citrobacter

rodentium resulted in a reciprocal transfer of susceptibil-

ity and resistance [46]. Here, we selected a single time

point late in the broiler production cycle to permit as-

sessment of the outcome of colonisation throughout

each chickens’ life. It is important to note that enteric

microbial populations will change over time as a conse-

quence of variables such as the development of immune

competence and environmental interactions. Future

studies will explore fluctuations in microbial diversity as

each chicken breed matures.

Here, we employed 16S rRNA amplicon sequencing as

a measure of bacterial occurrence within chicken caecal

Fig. 5 Correlation among the bacterial genera detected in the caeca of different chicken breeds. Sequencing reads produced using primer pair

P2 were pooled into a single pool for each breed, combining samples from different farm locations. A Pearson’s r correlation was expressed using

METAGENassist. The breeds represented are a Aseel, b Cobb400, c Ross 308 and d Kadaknath
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lumen microbiota. We decided to focus on the lumen

microbiota in order to standardise sample collection be-

tween chickens, and to permit comparison with previous

studies by others [e.g. 15]; but recognise that that the

mucosal-associated microbiota are likely to present dif-

ferent profiles. 16S rRNA amplicon sequencing has been

used widely for classification of diverse microbial com-

munities; however, the bacterial 16S rRNA gene includes

nine hypervariable regions and sequences generated

using different combinations of these regions commonly

present varied profiles of microbial diversity. The

optimal choice of hypervariable region(s) and primer

combination vary between different ecological popula-

tions [47]. Here, we tested three primer sets spanning

the V1–V3, V3–V4 or V5–V6 regions of 16S rRNA gene.

Rarefaction curves based on the Chao1 index and the

number of OTUs detected were comparably close to

asymptotic between primer pairs, indicating that the se-

quences generated per sample were adequate to define

and compare the bacterial diversity present within the

samples. Further, the mean of Good’s coverage (an alpha

diversity index) for all the samples was high (95%). The

bacterial diversity, defined as the number of OTUs and

species detected, was highest using primer set P2

(V3-V4) and least using P3 (V5-V6). Primer set P2 also

illustrated greater species richness using the Chao1

index (accounting for rare OTUs), ACE index (an

abundance-based coverage estimator) and PD whole

trees (phylogeny-based diversity estimator). Primer set

P3 generated a dataset apparently richer in Bacteriodetes

sequences with lower total diversity. Based on these ob-

servations, we selected primers targeting the V3-V4 re-

gion, in agreement with the findings of others where

primers targeting the V3, V4, V1–V3, V4–V6 hypervari-

able regions were compared [18].

The caecal lumen microbiomes of Indian chicken

breeds evaluated here were dominated by sequences rep-

resentative of the phyla Firmicutes and Bacteroidetes.

Combined, these phyla commonly accounted for more

than 80% of the total microbial populations detected.

Earlier studies have highlighted similar proportions, with

Firmicutes commonly dominant [7, 12, 13, 48].

Geographical location exerted a substantial impact on

the variation between caecal microbiome populations,

including variation in the Firmicutes/Bacteroidetes ratio.

In the context of this study, the geographic separation of

locations 1 and 2 included husbandry, dietary, climatic

and other environmental variables. Such variables have

been widely recognised to impact on microbiome struc-

ture and diversity [28]. Higher Firmicutes/Bacteroidetes

ratios have been associated with human obesity [49, 50],

and the reverse has been linked with weight loss [51].

Both Firmicutes and Bacteriodetes have been associated

with short chain fatty acid metabolism, although more

specifically Firmicutes contribute to butyrate and

propionate synthesis, whereas Bacteroidetes primarily

synthesise propionate. Bacteriodetes but not Firmicutes

produce α-amylase, α-1,2-mannosidase and

endo-1,4-β-mannosidase [52] and are more likely to

break down starch and other polymeric substances. An-

other example of geographic variation was the occur-

rence of Fusobacteria and Campylobacter, which formed

a major component of all chicken breeds raised at loca-

tion 2 and appeared as a biomarker for the Kadaknath

breed at that particular location. Class-level analysis

found Clostridia, Gram-positive rod-shaped bacteria in-

cluding the genera Clostridium, Blautia, Butyrivibrio,

Ruminococcus, Roseburia, to be widely abundant.

Among these, Blautia, Butyrivibrio and Roseburia have

been associated with butyrate production and a positive

contribution to the host [52]. The order Clostridiales

within the class Clostridia is mainly responsible for

short-chain fatty acid metabolism in the chicken caecum

[53]. Bacteroidia were also common, including the gen-

era Bacteroides, Alistipes, Parabacteroides, Porphyromo-

nas and others, all of which contribute to propionate

production in the caeca [52]. At order level, Clostridiales

and Bacteroidales were both abundant (data not shown),

although the proportionate representation of Bacteroi-

dales was higher than reported in many previous studies

[12, 14, 54], possibly as a consequence of high dietary

maize inclusion. Deeper analysis found the genus Bacter-

oides, gram-negative obligatory anaerobic bacteria of the

family Bacteroidaceae, were highly represented in most

datasets in line with earlier studies [48, 55]. Bacteroides

are generally associated with degradation of polysaccha-

rides, especially starch and glucans [56, 57], and the for-

mation of short-chain fatty acids [7]. The proportion of

unclassified bacterial sequences was notably high in

many of the samples, encouraging further studies

focused on identification and determination of their

role(s) or hazards in the enteric microbiota.

While geographic location was a major variable within

principle coordinates analysis, separation by chicken

breed or line also revealed distinct clusters indicating a

host component in microbiome composition, in agree-

ment with previous studies [58, 59]. Similarly, distinct

LEfSe biomarkers also defined different chicken breeds

or lines. The core caecal lumen microbiome was repre-

sented by 48 genera, including Barnesiella, Butyricimo-

nas, Pararevotella, Prevotella, Bacteroides, Clostridium,

Ruminococcus, Alistipes, Eubacterium, Bacillus, Lactoba-

cillus, Blautia and Cellulosilyticum, all of which may

contribute to chicken food conversion in terms of

hydrolysing starch and other macromolecules, and the

subsequent formation of short-chain fatty acids via fer-

mentation which are absorbed by the host. All of these

genera appeared as breed or line-specific LEfSe
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biomarkers at one or both locations, indicating a pos-

sible host genetic contribution. Potential pathogenic

and/or zoonotic organisms within the genera Helicobac-

ter, Campylobacter, Ureaplasma, Eggerthella and Fuso-

bacterium were also detected with abundance > 0.1% in

several chicken lines, although clinical disease was not

reported [60]. LEfSe analysis further identified some of

these genera as breed or line biomarkers, notably associ-

ating Kadaknath chickens raised at location 2 with the

elevated occurrence of Fusobacterium, Campylobacter,

Cronobacter and Enterococcus. The pathogenic bacteria

detected could exert both direct and indirect influence

on the host and its enteric microbiota. In addition to the

risk posed as primary pathogens [61, 62], inflammatory

immune responses induced by these pathogens will in-

fluence the intestinal environment and its bacterial com-

munities. Further work will be required to determine the

relative contributions from the host and these patho-

genic bacteria. In contrast, genera associated with bene-

ficial, sometime probiotic effects such as Lactobacillus

[63] were associated as biomarkers with the commercial

Cobb400 line. Using 0.1 and 1.0% sequence occurrence

cut-off values, a small number of bacterial orders and

genera were restricted at higher level occurrence to one

or more chicken breeds. Such natural variation may also

offer valuable phenotypes amenable to quantitative gen-

etic analysis. Consideration of the indigenous breeds

found 11 and 13 genera to represent frequencies in ex-

cess of 0.1% for Aseel and Kadaknath, respectively, one

and five at a 1.0% cut-off. The occurrence of pathogenic

bacteria is of particular relevance. Bacteria of the genus

Campylobacter were detected above the 1.0% cut-off in

Kadaknath (location 2) and Aseel (locations 1 and 2),

but not in Cobb400 or Ross 308. Without undertaking a

direct controlled Campylobacter challenge study, it is

not possible to comment on the relative resistance or

susceptibility of these breeds and lines, although there is

some evidence for genetic control of Campylobacter

jejuni colonisation in inbred chicken lines [64]. A larger

sample size would permit an odds ratio assessment of

occurrence and genetic analysis. Culture and detailed

genetic characterisation of the Campylobacter species/

strains circulating would also be valuable. A controlled

study utilising a defined C. jejuni strain and sampling

multiple locations within the enteric environment would

be required for a definitive assessment of relative resist-

ance or susceptibility.

The relative proportions of several bacteria were cor-

related in all chickens, regardless of genotype, and repre-

sented the core caecal microbiome. Potential pathogens

such as those within the genus Fusobacteria were nega-

tively correlated with genera associated with enhanced

metabolism such as Butyricicoccus, Pararevotella, Prevo-

tella, Bacteroides, Clostridium, Ruminococcus, Alistipes,

Eubacterium, Bacillus, Lactobacillus, Blautia, Cellulosi-

lyticum and Pseudobutyrivibrio, supporting the recog-

nised role for commensal microbiota in chicken health.

The characterisation of different bacterial genera as bio-

markers associated with specific chicken breeds offers

new phenotypes which may be interrogated by quantita-

tive genetic analysis. For example, Lactobacillus and Ba-

cillus showed positive correlation in the Cobb400, but

were negatively correlated with most other genera in

Kadaknath and presented a mixed response in the Aseel

and Ross 308. Interestingly, the Kadaknath populations

separated by location presented different LEfSe profiles.

While location was clearly a significant variable, it is not

possible to confirm whether the two Kadaknath groups

represented a single homogenous population or two dis-

tinct sub-populations. Future chicken genotyping would

be expected to resolve this question. Overall, the Kada-

knath chickens consistently presented fewer OTUs and

distinct PCoA clusters compared to the Aseel and com-

mercial lines, indicating significant diversity.

Conclusions

The study presented here provides an introduction to

chicken breed-specific variation in enteric bacterial oc-

currence and diversity. The description of variation be-

tween global commercial lines and indigenous Indian

chicken breeds offers a panel of phenotypes which may be

amenable to genetic selection for use in breed improve-

ment. Diversity within breeds may be of greatest interest

where there is an opportunity to determine the genetic

basis of varied bacterial occurrence. Improved understand-

ing of host-microbiome interactions may support enhanced

productivity from low value diets and greater resistance to

colonisation by pathogenic and zoonotic organisms.
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