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Microbial diversity drives multifunctionality in
terrestrial ecosystems
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Daniel Encinar2, Miguel Berdugo2, Colin D. Campbell5 & Brajesh K. Singh1,6

Despite the importance of microbial communities for ecosystem services and human welfare,

the relationship between microbial diversity and multiple ecosystem functions and services

(that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two

independent, large-scale databases with contrasting geographic coverage (from 78 global

drylands and from 179 locations across Scotland, respectively), and report that soil microbial

diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive

effects of microbial diversity were maintained even when accounting simultaneously for

multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our

findings provide empirical evidence that any loss in microbial diversity will likely reduce

multifunctionality, negatively impacting the provision of services such as climate regulation,

soil fertility and food and fibre production by terrestrial ecosystems.
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A
large body of research conducted during the past two
decades indicates that ecosystem functioning is posi-
tively related to plant diversity1–4. Unlike plants, we

have limited knowledge of the relationship between microbial
diversity and ecosystem functioning, particularly in terrestrial
environments5,6. Microbial communities play key roles in
maintaining multiple ecosystem functions and services
simultaneously (‘multifunctionality’ hereafter), including
nutrient cycling, primary production, litter decomposition and
climate regulation7–10. Experiments carried out under
controlled conditions8,11–13 suggest that the diversity of soil
organisms can promote multifunctionality. However, none of
these studies have explicitly addressed the relationship between
soil microbial diversity and multifunctionality on the global
scale.

Of the various ecosystem processes on Earth, plant productiv-
ity and nutrient cycling are among those most important for
supporting human welfare9,14. Because of the continuous global
population growth15, substantial increases in plant production
and land use intensification will be required to support future
demand for food and fibre14. Understanding the factors
controlling the multiple functions linked to plant production
and nutrient cycling under a changing environment is, thus,
critical to preserve and manage natural and human-dominated
ecosystems. We posit that soil microbial diversity plays a key role
in maintaining ecosystem multifunctionality by supporting
processes such as litter decomposition and organic matter
mineralization3,7,16,17, which allow transfer of matter and energy
between above- and belowground communities12,16–19. There is a
growing body of experimental and observational studies providing
evidence that the relationship between biodiversity (that is,
microbes and plants) and ecosystem functioning is more linear
than saturating6,20,21. Thus, any loss in microbial diversity as a
consequence of global environmental changes such as land use,
nitrogen enrichment and climate change3,9,10,14,22,23 would likely
alter the capacity of microbes to sustain multiple above- and
belowground ecosystem functions. However, we lack empirical
evidence on the relationships between microbial diversity and
multifunctionality in terrestrial ecosystems, and few studies have
addressed the relative importance of this diversity versus other
drivers of ecosystem functioning, such as soil abiotic properties,
climate and plant species richness8,18. This hampers our ability to
predict changes in multifunctionality under ongoing global
environmental change, and to formulate sustainable management
and conservation policies10.

Here, we hypothesize that microbial diversity: (i) promotes
multifunctionality in terrestrial ecosystems; and (ii) is as
important as variables such as soil pH, climate and spatial
predictors, latitude and altitude as drivers of variation in
multifunctionality. We tested these hypotheses using data from
two large-scale surveys, a global study including 78 drylands from
all continents except Antarctica (‘Drylands’ hereafter)24,25 and a
national soil survey including 179 locations in Scotland
(‘Scotland’ hereafter)26. The Drylands data set include diverse
ecosystem types (grasslands, mixed grassland/woodland and
woodlands), and provides a wide range of environmental
conditions typically found in drylands worldwide. Similarly, the
Scotland data set includes six ecosystem types (bog, moorland,
semi-natural grassland, forest, arable and improved grassland)
covering the whole of Scotland, and is representative of many soil
types and land uses found in northern temperate regions. Our
intention is not to merge both data sets, which indeed have some
differences in sampling design and experimental methods, but to
test our hypotheses using two independent and large-scale data
sets from ecosystems widely differing in their vegetation, climatic
and soil attributes24–26.

We found that soil microbial diversity is positively related to
multifunctionality in both the Drylands and the Scotland data
sets. The positive effects of microbial diversity on multifunction-
ality were maintained even when accounting simultaneously for
multiple climatic, abiotic and spatial predictors of multifunction-
ality. Our study provides empirical evidence that microbial
diversity positively relates to multifunctionality in terrestrial
ecosystems on the global scale; and further suggests that any loss
in microbial diversity will likely reduce the rates at which multiple
ecosystem functions and services are being maintained in
terrestrial ecosystems.

Results and Discussion
Microbial diversity and ecosystem multifunctionality. A total of
166,244/24,249 (bacteria/fungi) and 49,102 (bacteria) operational
taxonomic units (OTUs) were found in the Drylands and
Scotland data sets, respectively (see Supplementary Fig. 1 for
rarefaction curves and Supplementary Figs 2 and 3 for the
dominant taxa found). We first explored the relationship between
microbial diversity, estimated with the Shannon index (ref. 27),
and multifunctionality, evaluated using the standardized average
of six variables that were available for the two data sets: potential
net nitrogen (N) mineralization, nitrate, ammonium, DNA
concentration, available phosphorus (P) and plant productivity
(see Methods). Soil microbial diversity positively relates to
multifunctionality in both data sets (Fig. 1). These results were
maintained when controlling for the spatial structure of the data
by using spatial autoregressive analyses25,28 (Fig. 1). We also
found positive relationships between soil microbial diversity and
most of the individual functions measured, as well as between this
diversity and most of the possible combinations among functions
(Supplementary Table 1). Our multifunctionality index was also
strongly related, for each data set, to an extended version of this
index including 8 and 17 soil functions that were unique to the
Scotland and Drylands data sets, respectively (Supplementary
Figs 4 and 5). Further analyses provided evidence that Shannon
diversity was positively and strongly related to biodiversity
components such as phylogenetic diversity and species richness
(Supplementary Figs 6–9). Phylogenetical diversity and
species richness were also highly and positively related to
multifunctionality (Supplementary Figs 6–9). Finally, our
results were robust to the approach used to quantify
multifunctionality: single functions (Supplementary Table 1),
averaging multifunctionality (Fig. 1) and multiple-threshold
multifunctionality (Supplementary Figs 10 and 11). The
multiple-threshold approach provided additional evidence that
the effect of microbial diversity in the number of functions
surpassing different thresholds of functionality is mainly positive
and significant (Supplementary Figs 10 and 11). Also, the
maximum number of functions maximized is the same than the
number of functions measured (six, see Supplementary Fig. 10),
which indicates that there are no trades-offs between the
functions evaluated in our study. Moreover, the multiple-
threshold approach indicated that the effect of diversity over
multifunctionality is moderate-high in the Drylands data set and
high in the Scotland data set (see Supplementary Figs 10 and 11).
In particular, these results indicate that microbial diversity in
Drylands has a significant effect on the ability of the system to
provide more functions working at moderate to high performance
levels (peaks B40 and 60% in Supplementary Fig. 11a,b
respectively), whereas in Scotland this is expanded to functions
working at really high performance levels (peak B75%
in Supplementary Fig. 11c). Albeit our results are correlative
in nature, and hence cannot be taken as a definitive proof
of causation, they agree with those from theoretical and

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10541

2 NATURE COMMUNICATIONS | 7:10541 | DOI: 10.1038/ncomms10541 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


experimental studies showing a positive relationships between
overall soil diversity and multiple soil functions, such as those
used here8,12,13,16,29,30. Moreover, a recent field observational
study has also found positive relationships between bacterial
diversity and multifunctionality in the Chinese Tibetan Plateau18.
Our results provide, to our knowledge, the first empirical
evidence showing that microbial diversity positively relates to
multifunctionality in terrestrial ecosystems on the global scale.
Consequently, our results support the hypothesis that microbial
diversity can be critical to maintain multifunctionality8,18,
suggesting that losses of microbial diversity will likely reduce
the ability of terrestrial ecosystems to provide critical ecosystem
services.

Accounting for multiple multifunctionality drivers. We used
Random Forest modelling31 to identify the most important
predictors (distance from equator, altitude, mean annual
temperature (MAT), mean annual precipitation (MAP), soil pH
and microbial diversity) of multifunctionality; and structural
equation modelling (SEM) (ref. 32) to test whether the
relationship between microbial diversity and multifunctionality
is maintained when accounting for multiple multifunctionality
drivers simultaneously (see a priori model in Supplementary
Fig. 12). Our Random Forest models indicate that microbial
diversity was as important as or more important than other
multifunctionality predictors (Fig. 2). Indeed, microbial diversity
was more important than MAT and altitude in the two data sets,
and than MAP in the Scotland data set (Fig. 2b). Similar results
were found after including ecosystem type as a predictor in these
analyses (Supplementary Fig. 13; see Supplementary Figs 14 and
15 for values of the functions measured across ecosystem types).
The role of distance from equator, altitude, climate and soil pH as
predictors of multifunctionality is well known17,25. Most relevant

to the topic of this study, we found that microbial diversity was a
major predictor of multifunctionality in the two data sets used,
even after accounting for the simultaneous direct and indirect
effects of these variables (Fig. 2a,b). Our SEMs explained 53 and
38% of the variance found in the ecosystem multifunctionality of
the Drylands and Scotland data sets, respectively (Fig. 3a,b). In
both cases we found a direct positive effect of microbial diversity
on multifunctionality (Fig. 3).

In the Drylands data set, fungal diversity showed a slightly
higher total positive effect than bacterial diversity on multi-
functionality. Fungi are known to be more tolerant of desiccation
than bacteria33, and thus fungal diversity may have a
predominant effect on multifunctionality in drylands, where
soils remain under dry conditions during most of the year34.
Not surprisingly, the effects of climate and soil pH on
multifunctionality followed opposite trends in the Drylands and
Scotland data sets, as indicated by the standardized total effects
from SEM (Fig. 3c,d). The biological activity and productivity of
drylands are well known to be limited by rainfall, rather than by
temperature (except in cold deserts)34; consistent with this, MAP
and multifunctionality were positively related in our data set.
Contrarily, temperature, but not MAP, is known to limit
ecosystem functioning in mesic cold temperate ecosystems such
as those from Scotland35. Similarly, soil pH is often basic in
drylands (for example, because of carbonate accumulation) and
acid in cold temperate ecosystems (for example, due to organic
matter accumulation)35. Therefore, assuming microbes are
adapted to the typical pH of their habitats, soil pH influences
multifunctionality in a distinct manner in the two data sets
studied. Despite these contrasting effects, the positive direct and
total effects of microbial diversity on multifunctionality were
always maintained, and were robust to the analytical methods
used here (linear regression, random forest and SEM).
Collectively, these results demonstrate that microbial diversity
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Figure 1 | Relationships between microbial diversity and ecosystem multifunctionality. Results are shown for the Drylands (bacteria (a) and fungi (b))

and Scotland (bacteria (c)) data sets. The solid and dashed lines represent the fitted ordinary least squares (OLS) and simultaneous autoregression (SAR)

models, respectively. Results of regressions are as follows: (a) OLS, R2¼0.118, P¼0.012, AICc¼ 133.463; SAR, R2¼0.101, P¼0.005, AICc¼ 135.013;

(b) OLS, R2¼0.235, P¼0.002, AICc¼ 122.399; SAR, R2¼0.215, Po0.001, AICc¼ 124.433 (c) OLS, R2¼0.226, Po0.001, AICc¼ 265.539; SAR,

R2¼0.222, Po0.001, AICc¼ 266.574.
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plays critical roles supporting ecosystem functioning in terrestrial
ecosystems.

Microbial diversity can support multifunctionality in a wide
variety of ways. For example, microbial communities carry out
critical ecological processes such as decomposition and
nutrient cycling3,7,16,17, and, thus, can support the fundamental
mechanisms linking aboveground and belowground communities
in terrestrial ecosystems3,7,16,17. Supporting this idea, we found
that the previously reported positive effects of plant richness on
multifunctionality in the Drylands data set25 may be indirect, and
result from positive effects of plant richness on microbial
diversity (Fig. 4). This result is consistent with studies showing
that microbial driven enhancement of soil nitrogen cycling
typically associated to high plant diversity levels stimulates
productivity21. Highly diverse plant communities may promote
the diversity of soil microbes by supporting a wide variety of litter
qualities16. A greater microbial diversity can enhance the rapid
break down of litter derived from aboveground communities,
increasing soil organic matter content and fostering the activity of
soil microbial communities12,17. Similarly, organic matter needs
to be degraded from complex and recalcitrant polymers
into simpler and more labile monomers, a process requiring
the cooperation of a large and diverse group of micro-
organisms3,7,16,17. During this process, soil nutrients are released
by microbes and are again available for aboveground communities,
supporting important ecosystem services such as food and fibre
production17. Thus, though largely overlooked, microbial diversity
supports multifunctionality by altering nutrient supply and the
distribution of resources3,7,16,17, enabling high rates of material
processing in terrestrial ecosystems.

Conclusions
Altogether, our findings provide strong empirical evidence that,
similarly to what has been found with plants and animals3,4,
microbial diversity is critical for maintaining the
multifunctionality of terrestrial ecosystems. The message for
scientists, policy makers, educators and organizations involved in
understanding biodiversity patterns, microorganisms and
ecosystem functioning is clear: losses in microbial diversity
derived from human activities and climate change will reduce the
rates at which multiple ecosystem functions and services are
being maintained. By providing evidence for the relationship
between microbial diversity and multifunctionality, our findings

advance key ecological topics such as biodiversity–ecosystem
functioning relationships in microbial communities. These
findings emphasize the need to develop approaches and policies
to protect soil microbial diversity from global environmental
drivers such as land use, nitrogen enrichment and climate change,
so that the multifunctionality of terrestrial ecosystems is to be
preserved for future generations.

Methods
Study sites and data collection
Drylands. We used a subset of 224 sites from the global dryland network presented
in Maestre et al.25 This network targets dryland ecosystems, defined as regions with
an aridity index (AI¼ precipitation/potential evapotranspiration) between 0.05 and
0.65 (ref. 36). Field data were collected between 2006 and 2012 from 78 sites
located in 12 countries from all continents except Antarctica according to a
standardized sampling protocol (ref. 25). The choice to analyse a subset of sites was
largely logistical, as we were only able to obtain frozen soils from a subset (see ref.
24) of the 224 original sites surveyed in Maestre et al. (25). At each site, a
30m� 30m plot was established under the most representative vegetation. A
composite sample (that is, from five soil samples; 0–7.5 cm depth) was randomly
taken under the canopy of the dominant perennial plant species and in open areas
devoid of perennial vegetation. After field collection, moist soil samples were taken
to the laboratory and sieved (o2mm). Each sample was separated into two
portions. The first portion was air dried for chemical and functionality analysis.
The second portion was stored at � 20 �C until DNA extractions could be
performed. To avoid problems associated with the use of multiple laboratories
when analysing the soils from different sites, and to facilitate the comparison of
results between them, dried and frozen soil samples from all the countries were
shipped to Spain (laboratories of Pablo de Olavide University and Rey Juan Carlos
University) for analyses.

Scotland. We used data from the soil sampling conducted during 2006–2009 as
part of the Second National Soils Inventory of Scotland26. Field data were collected
from 179 sites across Scotland, using a 20� 20 km sampling grid. Each site
included a central pit where a soil sample was collected from the uppermost
horizon of soil under the most representative plant community26. Field moist soils
were sieved to o4mm and visible pieces of plant material, and soil animals were
removed before use. The details and protocols for soil sampling and profile
description are given in Yao et al.26 Each sample was separated into three portions.
The first portion was air dried for chemical analysis (that is, pH). The second
portion was stored at 4 �C for the assessment of soil functions. The third portion
was stored at � 20 �C until DNA extractions could be performed. To avoid
problems associated with the use of multiple laboratories when analysing the soils
from different sites, all chemical and soil functionality analyses were conducted in
Scotland (James Hutton Institute; chemical and soil functionality analysis).

Abiotic variables. Soil pH was measured in all the soil samples with a pH meter,
in a soil and water suspension. In addition, for each plot, we collected data on MAP
and MAT and altitude from http://www.worldclim.org/37.

Assessing microbial diversity
Drylands (fungi and bacteria). DNA was extracted from 0.5 g of defrosted soil
samples using the Powersoil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad,
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CA, USA) according to the instructions provided by the manufacturer. The
extracted DNA was frozen and shipped to the Next-Generation Sequencing Facility
of the Western Sydney University, where they were defrosted and analysed using
the Illumina MiSeq platform and 341F/805R (bacteria) and FITS7/ITS4 (fungi)
primer sets38,39. Initial sequence processing and diversity analyses for both
bacterial 16S rDNA and fungal ITS genes were conducted using the QIIME
package40. Initially, low-quality regions (Qo20) were trimmed from the 50 end of
sequences and paired ends were joined with FLASH for 16S rDNA sequences and
Fastq-join41 for ITS reads. Sequences were de-multiplexed and a further round of
quality control conducted to remove sequences containing ambiguous bases (N),
and reads containing bases with a quality score below 25. Chimeric 16S rDNA
sequences were detected using the UCHIME algorithm from the USEARCH
package42 implemented within VSEARCH (https://github.com/torognes/vsearch).
The RDP training data set V9 (ref. 43) was used as a reference for chimaera
detection as recommended by the UCHIIME documentation. De novo (abundance
based) chimaera detection was used for ITS data using USEARCH (ref. 42). The
remaining high-quality chimaera-free sequences were used for downstream
analysis. A total of 15489774 and 19290226 sequences were obtained for bacteria
and fungi, respectively. OTUs were defined as clusters of 97% sequence similarity
using UCLUST (ref. 42). Taxonomy was assigned using UCLUST (ref. 42) against
the Greengenes database version 13_8 (refs 44,45) for 16S rDNA OTUs. For fungal
ITS sequences, taxonomy was assigned using BLAST (refs 46,47) against the
UNITE database V6.9.7. (Eo10� 5). The resultant OTU abundance tables for both
primer sets were filtered to remove singletons and rarefied to an even number of
sequences per samples to ensure equal sampling depth (25113 and 23588 for 16S
rDNA and ITS, respectively). Our Drylands data set included a total of 166,244 and
24,249 OTUs for the 16S and ITS genes. The Shannon diversity index was
calculated on these rarefied OTU tables using QIIME (ref. 42); we selected this
metric for our study because it provides a robust and informative estimation of
taxonomic diversity for microbial communities27.

Scotland (bacteria). DNA was extracted from 0.5 g defrosted soil samples of a
unique soil sample per site (sample collected under the central pit) using the
FastDNA SPIN kit for soil (Bio101, Vista, CA), according to the manufacturer’s
protocol. The extracted DNA was frozen and shipped to the Next-Generation
Sequencing Facility of the Western Sydney University, where they were defrosted
and analysed using amplicon 454 pyrosequencing and 341F/806R (bacteria) primer
set38. Pyrosequencing of 16S rRNA gene was performed on a Roche GS FLX
System and Titanium kit. Barcode, linker primer and reverse primer sequences
were removed from the raw sequence reads using the ‘split_libraries.py’ script while
setting minimum sequence length of 200 and minimum quality score of 20.
‘Acacia’ tool was used with default options to remove pyrosequencing noise48.
Potential chimaeras were removed using the UCHIME chimaera detection (de novo
mode) utility of the USEARCH v6.0.307 tool (ref. 42). Similar sequences were
binned into OTUs using ‘UCLUST’ method (minimum pairwise identity of 97%).
Our Scotland data set included a total of 49,102 OTUs for the 16S gene. We
calculated the Shannon diversity index using the ‘Quantitative Insights Into
Microbial Ecology’ (QIIME v 1.6.0) software package42 rarefacted at 1,128
sequences per sample.

Phylogenetic diversity (Both drylands and Scotland data sets). Biodiversity
involves multiple components including, but not limited to, species richness,
evenness, composition, phylogenetic diversity and functional diversity6,49. While
the Shannon index encompasses both species richness and evenness, and has been
widely used to characterize the diversity of microbial communities18,29,50 recent
studies have emphasized the importance of phylogenetic diversity as an important
driver of ecosystem functioning51. Thus, we calculated the bacterial phylogenetic
diversity for both the Dryland and Scotland data sets. Representative sequences
from each OTU were aligned using PyNAST (ref. 40) and filtered to remove
uninformative regions. A phylogenetic tree was then constructed using FastTree52

and the phylogenetic diversity was calculated from this tree using Faith’s metric53,
which is based on the total branch length of the tree. We did not calculate fungal
phylogenetic diversity as unifrac analyses are not recommended for the ITS gene.
This is because it is not possible to generate an accurate alignment for ITS because
of the high variability of fragment size for this particular gene.

Assessing ecosystem multifunctionality

Both Drylands and Scotland. For this study, we used six variables that were
available for the two data sets: potential net nitrogen (N) mineralization, nitrate,
ammonium, DNA concentration, available phosphorus (P) and plant productivity.
Overall, these variables constitute good proxies of processes driving nutrient
cycling, biological productivity, and the build-up of nutrient pools25,54. In
particular, N and P are the nutrients that most frequently limit the primary
production in terrestrial ecosystems35. For example, ammonium and nitrate are
important N sources for both microorganisms and plants35. In addition, potential
net N mineralization is a key processes within the N cycle transforming organic
into inorganic N. Inorganic P is the main P source for plants and
microorganisms35, and its availability is linked to the desorption and dissolution
(for example, through oxalate exudates) of P from soil minerals, and to a lesser
extent, to the decomposition of organic matter35. In addition, DNA concentration
has been recently used as a proxy of surface soil biomass55,56. In the Scotland data
set, this variable is strongly related to the glucose substrate-induced respiration

(Spearman’s r¼ 0.70; Po0.001), a common proxy of soil microbial biomass57. In
addition, as a molecule rich in N and P, DNA could be an important source of
microbial nutrition58. Finally, plant productivity is a key ecosystem process that
sustains human welfare, support belowground ecosystem functionality17,59, and
plays major roles in the global carbon cycle17,59.

Extractable ammonium and nitrate were obtained from K2SO4 and KCl extracts
in the Drylands and Scotland data sets, respectively. The potential net N
mineralization rate was estimated as the difference between initial and final
inorganic N (sum of ammonium and nitrate) before and after incubation under
potential conditions60 in both data sets. Soil phosphorus was estimated from
sodium bicarbonate61 and acid ammonium oxalate62 extracts in the Drylands and
Scotland data sets, respectively. In both cases, the concentration of DNA was
estimated with a Nanodrop 2000 UV–vis spectrophotometer (Wilmington, USA)
after DNA extraction as described above. Finally, we used the Normalized
Difference Vegetation Index (NDVI) as our proxy of plant productivity59. These
data were obtained from the Moderate Resolution Imaging Spectroradiometer
(MODIS) aboard NASA’s Terra satellites (http://daac.ornl.gov/index.shtml). NDVI
provides a global measure of the ‘greenness’ of vegetation across Earth’s landscapes
for a given composite period, and thus acts as a proxy of photosynthetic activity
and large-scale vegetation distribution59. Here, we used averaged values obtained
from NDVI values for the months before, during and after sampling at each of the
surveyed plots. This index was calculated in the same way for both the Drylands
and Scotland data sets.

Because of the huge differences in bulk density among soil samples in the
Scotland data set (0.06–1.35 g cm� 3), all the soil functions were corrected to
account for the different bulk density values observed in each of the surveyed plots.
Bulk density information was not available for the Drylands data set, but we do not
expect vast differences in bulk density among dryland ecosystems due to the
mineral nature of their soils. In fact, in a subset of our data set where bulk density
was available, multifunctionality estimates corrected by bulk density were highly
correlated with those non-corrected (r¼ 0.763; Po0.001; n¼ 25). In the Drylands
data set, samples were collected in open areas and under the main vegetation; thus,
all the soil variables in this data set were averaged to obtain site-level estimates by
using the mean values observed in bare ground and vegetated areas, weighted by
their respective cover at each site25.

Assessing multifunctionality. Multifunctionality is a human construct rather
than a single measurable process, and involves quantifying the provision of
multiple ecosystem processes and services simultaneously63,64. These include,
among other, nutrient cycling (for example, nutrient availability, mineralization),
primary production (for example, net primary productivity) and organic matter
decomposition (for example, lignin degradation). To obtain a quantitative
multifunctionality index for each site, we first normalized (log-transform when
needed) and standardized each of the six functions measured (ammonium, nitrate,
potential net N mineralization, soil phosphorus, DNA content and plant
productivity) using the Z-score transformation. These standardized ecosystem
functions were then averaged to obtain a multifunctionality index25. This index is
widely used in the multifunctionality literature4,8,25,63,64, and provides a
straightforward and easy-to-interpret measure of the ability of different
communities to sustain multiple functions simultaneously4,8,25. The
multifunctionality index was independently obtained for the Drylands and
Scotland data sets. While we calculated our multifunctionality index based on the
six functions that were available for both Drylands and Scotland data sets to
facilitate the comparison and generalization of our results, another 11 and nine
functions were available for each of these data sets, respectively. To further test
whether the functions used to estimate multifunctionality could be biasing our
results, we recalculated our averaging multifunctionality index including all the
available functions available per data set (eight and 17 for the Scotland and
Drylands data sets, respectively). These extra functions included glucose substrate-
induced respiration57 and basal respiration57 (corrected by bulk density) in
Scotland, and activity of phosphatase and b-glucosidase, dissolved organic N,
proteins, aminoacids, phenols, aromatic compounds, hexoses, pentoses, HCl-P and
potential N transformation rate in the Drylands data set25.

Multifunctionality averaging approaches such as the index used in this
manuscript do not take into account the number of functions with high
performance. This entails some problems because unevenly strong functions may
bias this index to high multifunctionality performance when actually only few
functions maximize (it might be necessary that different functions maximize at the
same time to avoid potential limiting factors in the system). Also it does not allow
to see potential trade-offs between functions, which might maximize when others
minimize. To solve this problem, a threshold approach was used63. In this
technique, every function is standardized using the maximum of its value within
the data set. We transformed every observation of every function into a percentage
of the maximum performance of each function. To control for potential artefacts
derived from the fact that the maximum value is necessarily one only measure, we
used as maximum value the average of the top 5% of all plots value. We aimed to
evaluate the relationship between diversity and the number of functions which
perform higher than a given threshold. Since the choice of a threshold for multiple
functions is arbitrary, Byrnes et al.63 developed a method that basically performs
regressions between the number of functions surpassing a threshold and the

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10541

6 NATURE COMMUNICATIONS | 7:10541 | DOI: 10.1038/ncomms10541 | www.nature.com/naturecommunications

https://github.com/torognes/vsearch
http://daac.ornl.gov/index.shtml
http://www.nature.com/naturecommunications


diversity throughout thresholds from 0 to 99%. Each threshold represents a level of
functional performance and the regressions indicate whether diversity is able to
increment the number of functions working beyond that level of performance.

We plotted the resulting regressions in Supplementary Fig. 10 (one colour per
threshold). To evaluate the significance of these regressions we plotted the effect
(slope of regression) of diversity versus number of functions along different
thresholds with their confidence interval at 95% in Supplementary Fig. 11. These
analyses were conducted using Matlab v.7.0 (The MathWorks, Inc., Natick,
Massachusetts, United States).

Statistical analyses. We conducted a classification Random Forest analysis31 to
identify which were the main predictors of multifunctionality among the following
variables: distance from equator (absolute latitude), altitude, MAT, MAP, soil pH
and microbial diversity (bacteria and fungi for drylands and bacteria for Scotland).
Although distance from equator and altitude cannot be considered true causal
drivers of ecosystem attributes, they are often considered as surrogates of multiple,
and unmeasured, drivers of ecosystem functioning and biodiversity65. In addition,
we repeat these analyses including ecosystem type (bog, moorland, semi-natural
grassland, forest, arable and improved grassland for Scotland data set; and
grassland, mixed and woodland for the Dryland data set) as a predictor in our
analyses. Random Forest is a novel machine-learning algorithm that extends
standard classification and regression tree (CART) methods by creating a collection
of classification trees with binary divisions66. Unlike traditional CART analyses, the
fit of each tree is assessed using randomly selected cases (1/3 of the data), which are
withheld during its construction (out-of-bag or OOB cases). The importance of
each predictor variable is determined by evaluating the decrease in prediction
accuracy (that is, increase in the mean square error (MSE) between observations
and OOB predictions) when the data for that predictor is randomly permuted. This
decrease is averaged over all trees to produce the final measure of importance29.
This accuracy importance measure was computed for each tree and averaged over
the forest (5,000 trees). These analyses were conducted using the randomForest
package67 of the R statistical software, version 3.0.2 (http://cran.r-project.org/). The
significance of the model and the cross-validated R2 were assessed with 5,000
permutations of the response variable (ecosystem multifunctionality) using the A3 R
package for R (ref. 68). Similarly, the significance of the importance of each predictor
on multifunctionality was assessed by using the rfPermute package for R69. These
analyses were independently done for the Drylands and Scotland data sets.

We used SEM (ref. 32) to evaluate the direct and indirect relationships between
distance from equator (absolute latitude), altitude, MAT, MAP, soil pH, microbial
diversity (bacteria and fungi for Drylands and bacteria for Scotland) and
multifunctionality. The first step in SEM requires establishing an a priori model
based on the known effects and relationships among the drivers of macro and
microorganisms diversity (Supplementary Fig. 12). Some data manipulation was
required before modelling. We examined the distributions of all of our endogenous
variables, and tested their normality. Altitude (Drylands) was log-transformed to
improve normality. Similarly, soil pH (Drylands), distance from equator
(Drylands) and MAT (both data sets) were square-transformed. In addition, the
diversity of fungi and bacteria were included as a composite variable (microbial
diversity) in the Drylands data set. The use of composite variables does not alter the
underlying SEM model, but collapses the effects of multiple conceptually-related
variables into a single-composite effect, aiding interpretation of model results32.
With a good model fit (see below), we were free to interpret the path coefficients of
the model and their associated P values. A path coefficient is analogous to the
partial correlation coefficient, and describes the strength and sign of the
relationship between two variables32. Since some of the variables introduced were
not normally distributed, the probability that a path coefficient differs from zero
was tested using bootstrap34. Bootstrapping is preferred to the classical maximum-
likelihood estimation in these cases because in bootstrapping probability
assessments are not based on the assumption that the data match a particular
theoretical distribution. Thus, data are randomly sampled with replacement in
order to arrive at estimates of s.e.m. that are empirically associated with the
distribution of the data found in the samples32. When these data manipulations
were completed, we parameterized our model using our data set and tested its
overall goodness of fit. There is no single universally accepted test of overall
goodness of fit for SEM, applicable in all situations regardless of sample size or data
distribution. Here we used the w2-test (w2; the model has a good fit when w2 is low
(Br2) and P is high (traditionally 40.05)) (ref. 70) and the root MSE of
approximation (RMSEA; the model has a good fit when RMSEA is low (Br0.05)
and P is high (traditionally40.05)) (ref. 70). In addition, and because some
variables were not normal, we confirmed the fit of the model using the Bollen-Stine
bootstrap test (the model has a good fit when the P value is high
(traditionally40.10)) (ref. 70). Furthermore, we calculated the standardized total
effects of distance from equator (absolute latitude), altitude, MAT, MAP, soil pH
and microbial diversity (bacteria and fungi for Drylands and bacteria for Scotland)
on multifunctionality. The net influence that one variable has upon another is
calculated by summing all direct and indirect pathways between the two variables.
If the model fits the data well, the total effect should approximately be the bivariate
correlation coefficient for that pair of variables32. All the SEM analyses were
conducted using AMOS 20.0 (AMOS IBM, USA). All these analyses were done
independently for the Drylands and Scotland data sets.

It is important to notice that we used Random Forest modelling to identify the
most important predictors of multifunctionality; and SEM (ref. 32) to test whether
the relationship between microbial diversity and multifunctionality is maintained
when accounting for multiple multifunctionality predictors simultaneously.
Both approaches provide complementary insights on the patterns that drive
multifunctionality at a large scale. For instance, Random Forest does not rely on
a priori hypotheses, which need to be established before SEM analyses, hence its
results are not biased by our previous knowledge. However, the use of SEM is
particularly useful in large scale correlative studies32, as it allows us to partition
causal influences among multiple variables, and to separate the direct and indirect
effects of the predictors included in the model. Finally, while Random Forest
accepts categorical predictors (for example, ecosystem types), this is not the case for
SEM, that require certain linearity and directionality in the predictors.
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