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Abstract 

 The microbial communities associated with marine sediments are critical for ecosystem 

function yet remain poorly characterized. While culture-independent (CI) approaches capture the 

broadest perspective on community composition, culture-dependent (CD) methods can capture 

low abundance taxa that are missed using CI approaches. The aim of this study was to assess 

microbial diversity in tropical marine sediments collected from five shallow water sites in Belize 

using both CD and CI approaches. CD methods captured approximately 3% of the >800 genera 

detected across the five sites. Additionally, 39 genera were only detected using CD approaches 

revealing rare taxa that were missed with the CI approach. Significantly different communities 

were detected across sites, with rare taxa playing an important role in the delineation of sediment 

communities. This study provides important baseline data describing shallow water sediment 

microbial communities and evidence that standard cultivation techniques may be more effective 

than previously recognized. 

 

Originality-Significance Statement  

Marine sediments host some of the most diverse microbial communities on the planet. 

While these communities are critical for global nutrient cycling, the oceanic food web, and the 

maintenance of ecosystem dynamics, they remain poorly studied. Studies that have assessed 

sediment communities typically use culture-independent approaches, which have known biases 

and can miss ecologically important taxa. Here we describe microbial diversity in marine 

sediments using both culture-dependent and culture-independent approaches. Our culturing 

approach, sequencing communities as opposed to individual colonies, revealed an additional 39 

genera that were not detected with culture-independent methods. Additionally, we cultured 
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numerous, as-yet undescribed species, suggesting that traditional culturing practices can be more 

efficient than commonly thought. Moreover, our results indicate rare taxa play an important role 

in distinguishing microbial communities at different sites, thus highlighting the importance of deep 

sequencing and incorporating culture-dependent approaches for diversity assessments. 

 

 

Introduction 

Advances in sequencing technologies and bioinformatics have led to major improvements 

in our ability to assess the diversity and distributions of environmental microbes (bacteria and 

archaea) (Lynch and Neufeld, 2015; Hug et al., 2016; Thompson et al., 2017). The application of 

culture-independent (CI) methods has transformed our understanding of microbial diversity while 

metagenome assembled genomes and single cell genomics have provided insight relevant to 

functional traits in yet to be cultured organisms (Kalisky and Quake, 2011; Evans et al., 2015; 

Parks et al., 2017). Despite these advances, the microbial diversity associated with marine 

sediments remains poorly characterized relative to other major biomes such as soil and seawater 

(Lloyd et al., 2018; Martiny, 2019; Baker et al., 2021). Sediment microbial communities are 

diverse (Thompson et al., 2017), densely populated, (Dale, 1974; Musat et al., 2006), play integral 

roles in fundamental ecosystem processes (Snelgrove et al., 1997; Baker et al., 2021), and can 

exhibit extraordinary levels of fine-scale spatial structure (Probandt et al., 2018). While the 

inaccessibility of deep-sea sediments (>200 m depth) may contribute to the lack of data, the 

communities associated with shallow euphotic (£200 m depth) water sediments also remain poorly 

described (Baker et al., 2021). Given that marine sediments cover ~70% of the earth’s surface 

(Parks and Sass, 2009), baseline information describing sediment microbial diversity provides an 
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important mechanism to understand community structure over time and across environmental 

gradients.  

 The gains afforded by CI diversity estimates can overshadow the intrinsic value of 

microbial cultivation. Culture-dependent (CD) methods provide opportunities to assess microbial 

metabolism and contributions to ecosystem function in ways that cannot be achieved using CI 

approaches. For instance, cultivation of Nitrospira provided critical insight into the first bacterium 

known to perform complete nitrification (Daims et al., 2015) while culture-dependent research 

with Thermosulfidibacter takaii ABI70S6T resulted in the discovery of a reversible TCA cycle that 

was not detected with metagenomics (Nunoura et al., 2018). Additionally, testing for inhibition 

among marine Vibrio strains revealed that competition is greater between than within ecologically 

cohesive populations (Cordero et al., 2012) while CD work on two closely related species of 

Salinispora demonstrated ecological trade-offs in competitive strategies (Patin et al., 2015). 

Culturing techniques have been developed based on metabolic requirements inferred using CI 

techniques (Tripp et al., 2008). Thus, these approaches can offer complementary insights into 

microbial ecology, with the general observation that CI techniques provide more comprehensive 

taxonomic coverage while CD methods can provide clearer taxonomic resolution (Orphan et al., 

2000; Chen et al., 2008; Shivaji et al., 2011; Vaz-Moreira et al., 2011; Dickson et al., 2014). While 

both techniques have been used in tandem, surprisingly few studies have focused on major 

environmental biomes such as marine sediments. Of note, the importance of media specificity and 

rare taxa when comparing CI and CD approaches was recently reported (Pédron et al., 2020).  

Recent bioinformatic comparisons of CD versus CI bacterial diversity have revived 

discussion of the “great plate count anomaly” and the canonical theory that fewer than one percent 

of bacterial taxa have been cultured (Martiny, 2019; Steen et al., 2019). These studies provide 
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contrasting views on the improvements that have been made in culturing relative to the proportions 

of bacteria that remain uncultured (Martiny, 2019; Steen et al., 2019). Advances such as these 

highlight the need to reassess frequently cited paradigms describing bacterial culturability, 

including the great plate count anomaly. While the majority of bacterial taxa have yet to be cultured 

(Lloyd et al., 2018), the development of innovative techniques in combination with persistent use 

of traditional methods has led to the successful cultivation of notable microbes including 

bacterioplankton in the SAR11 clade (Rappé et al., 2002; Henson et al., 2018), the first Asgard 

archaea representative ‘Candidatus Prometheoarchaeum syntrophicum’ (Imachi et al., 2020) and 

three Saccharibacteria (TM7) species with their Actinobacteria host (Cross et al., 2019), 

suggesting that many if not most microbes can ultimately be brought into the laboratory (Lewis et 

al., 2020). 

The aim of this study was to assess microbial diversity in marine sediments using both CD 

and CI techniques. CD sample communities were determined by sequencing environmental plates 

inoculated from sediments while CI sample communities were determined by direct sequencing of 

sediments. Through the use of next-generation sequencing, we determined that culturing efficiency 

was 1-2% based on the number of 16S rRNA amplicon sequence variants (ASVs) detected and 3-

4% in terms of the number of genera detected. Additionally, the CD method detected 39 genera 

that were not detected using the CI approach, highlighting the importance of culturing for capturing 

rare members of the community. These results emphasize the importance of both CD and CI 

methods for assessments of microbial diversity in marine sediments. 

 

Results 

Culture-Dependent (CD) Sediment Microbial Diversity 
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 Across all five sites, CD alpha diversity analyses revealed on average 54 ± 3 16S rRNA 

amplicon sequence variants (ASVs) for sediments plated on seawater agar (SWA) and 39 ± 2 

ASVs for the same sediment samples plated on marine agar (MA) (Figure S1a). SWA yielded 

significantly higher phylogenetic richness (Figure S2a; Faith’s PD Kruskal-Wallis H=8.870, 

p=0.003) and greater evenness (Figure S2b; Pielou’s Kruskal-Wallis H=7.645, p=0.006) when 

compared to the ASVs detected on MA.  

The microorganisms detected on the SWA and MA plates were classified into five bacterial 

phyla (Figure 1a, Figure S3a). The three most abundant phyla were similar for both media, with 

Proteobacteria being the most abundant, averaging 80% and 96% of the communities on SWA and 

MA plates, respectively. Bacteroidetes represented 20% of the SWA communities compared to ca. 

1.6% for MA, indicating that the low nutrient medium was more selective for this phylum. On 

MA, Firmicutes was the second most abundant phylum at ca. 2.6%. In comparison, Firmicutes 

averaged ca. 0.13% on SWA, suggesting that the nutrient rich MA media better selects for this 

phylum. The other two phyla detected in culture were Epsilonbacteraeota (formerly 

Epsilonproteobacteria) and Actinobacteria, both of which averaged <1% of the community in 

SWA and MA (Figure 1, Figure S3a).  

At the genus level, the ASVs detected on SWA were assigned to 102 genera while those 

detected on MA were assigned to 76 genera (Table S1). CD methods identified 128 different 

genera, of which 50 were detected using both SWA and MA while 52 were unique to SWA and 

26 were unique to MA (Figure 2). Vibrio represented the most abundant genus observed on both 

media, accounting for 27% and 44% of the sequences detected on SWA and MA, respectively. 

Other relatively abundant genera cultured included Ruegeria (SWA 25.4% & MA 35.1%), 

Persicobacter (SWA 18.8% & MA 0.7%), Microbulbifer (SWA 6.0% & MA 3.5%), and 
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Alteromonas (SWA 3.9% & MA 1.7%) (Figure S3b).  Most taxa detected with CD methods 

averaged <1% of the community, including 92 SWA assigned genera and 62 MA assigned genera 

(Table S1). 

 

Culture-Independent (CI) Microbial Diversity 

CI diversity for the same five sites was considerably greater than what was detected using 

the CD techniques, averaging 2,942 ± 133 ASVs (Figure S1b). CI communities included 68 phyla 

(57 Bacteria, 9 Archaea and 2 Eukarya) (Figure 1b, Figure S3a), with about half of the sequences 

assigned to Proteobacteria. After Proteobacteria, the relatively most abundant phyla were 

Bacteroidetes, Planctomycetes and Cyanobacteria. On average across all samples, 55 of the 68 

phyla detected (81%) represented less than 1% of the relative community, and thus can be 

considered rare. When combined, these rare taxa averaged ~7% of the total community, indicating 

their importance to community composition. More than 15 phyla represent either candidate phyla 

or unannotated taxa, indicating that microbial diversity at the phylum level remains poorly 

characterized in marine sediments (Figure 1b).  

In total, 1,844 genera (1,728 Bacteria, 113 Archaea and 3 Eukarya) were observed using 

the CI technique (Figure 2), with the communities across all five sites displaying fairly rich (Figure 

S4a; Faith’s PD range 79.15-222.88) and even distributions (Figure S4b; Pielou’s evenness index 

range 0.81-0.93). The most commonly observed genus was Woeseia, which averaged 4.96% of the 

relative community across all five sites (Figure S3b). Of the 1,844 genera identified, only 16 

averaged ³1% of the community. Many CI ASVs were not annotated at the genus level or were 

annotated as “uncultured,” suggesting they belong to poorly described taxa. Those that averaged 

³1% of the community and could be identified at the genus level included Woeseia (4.96%), 
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Xenococcus (2.49%), Zeaxanthinibacter (2.18%), Candidatus Nitrosopumilus (1.65%), 

Pleurocapsa (1.46%), Chroococcidiopsis (1.10%), and Rhodopirellula (1.07%) (Table S1). Minor 

(£0.001 average relative percent), non-target amplification of eukaryotic sequences was observed. 

These were annotated as unassigned eukaryotic or ciliate associated (Table S1). 

 

 Method Comparisons 

 In total, ASVs were annotated to 1,883 genera across all methods used in this study (Figure 

2). As expected, the CI communities were significantly richer (Figure S2a; Faith’s PD Kruskal-

Wallis H=52.076 p<0.001) and included 1,755 genera that were only detected using this approach 

(Figure 2). An additional 89 genera were detected using both the CI and CD approaches. Of those 

89 genera, 45 were detected on both media types, 28 only on SWA and 16 only on MA (Figure 2). 

Surprisingly, 39 genera detected in culture were not detected using the CI technique (Figure 2; 

Table 1).  

 Of the 39 genera that were only detected with CD methods, 24 of these genera were specific 

to SWA, ten were specific to MA, and five were detected on both SWA and MA (Figure 2). All 

of the genera uniquely detected using the CD technique were relatively rare, with 37 averaging 

<1% of the community (Table 1). The two most relatively abundant genera detected in culture but 

not using the CI technique were Celeribacter, which averaged 1.92% and 0.05% of the SWA and 

MA communities, respectively, and Halomonas, which averaged 0.71% and 1.14% of the SWA 

and MA communities, respectively. Taxa specific to the SWA method included Proteobacteria, 

Bacteroidetes and Actinobacteria such as Marinomonas, Mesonia and Streptomyces. Taxa only 

detected via MA cultures included members of the Firmicutes, Bacteroidetes and Proteobacteria 

such as Fictibacillus, Taeseokella and Fangia (Table 1). While the vast majority of taxa detected 
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using CD methods have previously been isolated from marine sources, both the SWA and MA 

yielded genera that do not have named marine species. Interestingly, for all but one of these genera, 

closely related strains have been detected in marine samples (Table 1).  

Not surprisingly, the CI approach identified numerous taxa with few or no cultured 

representatives. For example, the phylum Latescibacteria (aka WS3), which is commonly detected 

in CI studies (Youssef et al., 2015; Farag et al., 2017; Lloyd et al., 2018), and to the best of our 

knowledge does not have a cultured representative, was also identified as ca. 1.07% of the CI 

communities. Additionally, bacteria from the widely distributed and diverse phyla Acidobacteria, 

Patescibacteria and Gemmatimonadetes averaged 2.7%, 0.95, and 0.6% of the relative CI 

community respectively, but few strains from these phyla have been cultured (Hugenholtz et al., 

2001; Ward et al., 2009; DeBruyn et al., 2011; Soro et al., 2014; Lemos et al., 2019).  

Both CD and CI ASVs were also assessed in relation to their nearest cultured relative in 

the SILVA database (Figure 3, Figure S5). Not surprisingly, many of the ASVs shared greater 

similarity with sequences from other CI studies than with known type or cultured strains (Figure 

3). ASVs from CD samples had a median similarity of 99.6% with cultured representatives, but 

there were a few distinct outliers (Figure 3, Figure S5). One ASV from CD samples was identified 

with SILVA as an uncultured Chitinophagales and shared only ~79% similarity with a cultured 

representative. When that ASV was assessed with the NCBI BLAST database, the most similar 

sequence was a Muribaculaceae bacterium with ~85% sequence similarity originally isolated from 

a pig gut. The other ASV from CD samples that was <90% similar to any culture in the SILVA 

database, matched with a recently cultured sponge microbe called Xanthovirga aplysinae (99.6% 

similar) (Goldberg et al., 2020). There were also a handful of sequences between 90-95% similar 

to cultured sequences. Subsequent searching with BLAST confirmed the lower similarity for some, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2021. ; https://doi.org/10.1101/2021.02.27.433211doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.27.433211


 10 

while others had >99% similarity to recent isolates from marine sources such as holothurians and 

corals.  In contrast to the CD samples, the median sequence similarity for CI samples was 85.4% 

(Figure 3, Figure S5). Many of the ASVs <60% similar were identified as archaea with SILVA. 

Of those, some shared greater similarity (~80%) with members of the Microgenomates group of 

bacteria in the NCBI database.  

When assessing beta diversity and the presence/absence of ASVs in each community, the 

CD communities were found to be significantly different than CI communities (Figure 4a; 

Unweighted UniFrac PERMANOVA pseudo-F=39.826, p=0.001). There was one CI replicate that 

was distinct from the rest of the CI samples (Figure 4), likely due to the large (>20%) fraction of 

an unknown genus of Flavobacteriales present within that sample. When considering sample site, 

cultured communities showed no pattern while CI communities seemed to cluster by site (Figure 

4b). Weighted beta diversity analysis also showed significant separation between CD and CI 

communities (Figure 4c; Weighted UniFrac PERMANOVA pseudo-F=125.15, p=0.001) and 

between the nutrient rich (MA) and nutrient poor (SWA) media types (Figure 4c). Since there 

appeared to be clustering based on sites within the CI communities (Figure 4b & d), only CI 

samples were considered for subsequent CI community visualizations and comparisons. 

 

Culture-Independent (CI) Site Comparisons 

The five sites sampled were within 5 km of each other (Figure S6, Table S2), but 

represented different habitats: an 8 m deep spur and groove reef (site 1), a 20 m deep reef slope 

(site 2), a 1 m deep sand patch in a seagrass bed at the mouth of a mangrove island (site 3), a 6 m 

deep seamount in a lagoon (site 4), and a 1 m deep sand and rubble patch at the marine station’s 

dock (site 5). Both weighted and unweighted UniFrac analyses on the CI communities indicate a 
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significant difference among site communities (Figure 5; Unweighted UniFrac PERMANOVA 

pseudo-F=2.982, p=0.001; Weighted UniFrac PERMANOVA pseudo-F=7.987, p=0.001).  

Site 3 appeared the most distinct from the other communities in the unweighted UniFrac 

(Figure 5a) and showed higher richness than the four other sites (Figure S4a). Some of the 

taxonomic differences between sites included relatively more Proteobacteria at site 2, relatively 

fewer Cyanobacteria at sites 3 and 4, and about twice the relative amount of Chloroflexi at site 3 

when compared to the other sites (Figure S3a). Additionally, an analysis of composition of 

microbiomes (ANCOM) done at the genus level identified seven taxa that were significantly 

different by site, six of which were related to site 3. These were identified as Marixanthomonas, 

an unidentified genus of the BD2-7 (Family Cellvibrionales), an uncultured 

gammaproteobacterium that was relatively more abundant at site 3, and two taxa that were absent 

from site 3 (Stanieria, an unknown genus of Xenococcaceae, and un uncultured MBAE14 

gammaproteobacterium). 

 

Culturing Efficiency 

We assessed culturing efficiency in two ways. First, we quantified percent efficiency by 

determining the total number of ASVs cultured vs. the number identified using CI techniques. The 

alpha diversity rarefaction curves based on observed ASVs revealed that saturation was achieved 

using both techniques (Figure S1), thus ensuring that effective comparisons could be made. The 

number of cultured ASVs represented 1.82% and 1.33% (for SWA and MA, respectively) of the 

ASVs detected using the CI approach.  Second, we calculated the overlap in taxonomic assignment 

from domain down to ASV using the two approaches (Table 2, Figure S7). Based on taxonomic 

assignment, 3.95% of the genera detected using the CI approach were also detected in culture on 
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SWA medium while 3.31% were detected on MA. Thus, while the amount of diversity cultured 

will vary with the method used, our results generally exceeded the <1% value typically reported 

in association with the great plate count anomaly (Staley and Konopka, 1985; Martiny, 2019; Steen 

et al., 2019). 

 

Discussion 

It is widely recognized that CD approaches are inadequate for measuring microbial 

diversity. Early comparisons of colony counts to cell counts indicated that <1% of environmental 

bacteria were cultured, a phenomenon referred to as the “great plate count anomaly” (Razumov, 

1932; Staley and Konopka, 1985). The great plate count anomaly was the first indication that a 

majority of environmental bacteria were not readily cultured using standard techniques, which has 

subsequently driven numerous studies seeking to improve culturability (Kaeberlein et al., 2002; 

Tamaki et al., 2009; Tanaka et al., 2014; Rygaard et al., 2017).  The advent of sequence-based CI 

methods brought the extent of uncultured microbial diversity into better perspective (Lynch and 

Neufeld, 2015; Hug et al., 2016; Lloyd et al., 2018). But while high-throughput amplicon 

sequencing methods, such as 16S rRNA gene surveys, are valuable tools for assessing microbial 

communities, there are biases and limitations with these methods. For instance, DNA extraction 

(Brooks et al., 2015), primer selection (Fischer et al., 2016; Laursen et al., 2017; Wear et al., 2018; 

Willis et al., 2019), PCR amplification (Brooks et al., 2015) and template concentration (Kennedy 

et al., 2014) have all been shown to impact microbial community profiles and the use of the 16S 

rRNA gene as a taxonomic marker can miss up to 10% of environmental sequences (Eloe-Fadrosh 

et al., 2016). Additionally, variables used for sequence analysis, such as operational taxonomic 

unit clustering vs. denoising affect diversity estimates (Patin et al., 2013; Callahan et al., 2017; 
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Edgar, 2017, 2018; Nearing et al., 2018; Straub et al., 2019) and resulting data interpretations are 

further complicated by the compositional nature of amplicon data (Gloor et al., 2017). 

Given advances in both CD and CI techniques, it is surprising though that few studies have 

sought to reassess bacterial diversity estimates using both approaches (but see some example 

comparisons in river sediment: (Pédron et al., 2020), lake sediment: (Elfeki et al., 2018), seawater: 

(Rygaard et al., 2017), cheese: (Perin et al., 2017), and lungs: (Dickson et al., 2014)). Here, we 

used CD and CI techniques to explore the microbial communities in marine sediments and estimate 

culturing efficiency by sequencing bacteria directly from agar plates as opposed to the more 

traditional approach of isolating or counting colonies. The 16S rRNA gene sequences amplified 

from sediment eDNA required ~50,000 reads, post quality control and denoising, to approach 

saturation in the alpha rarefaction curves. This indicates that relatively deep sequencing is needed 

to capture the microbial diversity present in these complex communities. A recent study comparing 

global diversity of marine sediments detected over 34,000 ASVs associated with bacteria and 

archaea across 299 sites (Hoshino et al., 2020). In total, our study found over 27,000 ASVs from 

CD and CI samples around Carrie Bow Cay, Belize. One major difference between the global 

study (Hoshino et al., 2020) and ours is sequencing depth. While Hoshino et al. (2020) were able 

to do an impressive global analysis on a large number of samples, none of their rarefaction curves 

reached saturation, suggesting that much of the rare biosphere was missed. Given the richness 

levels detected at fine scales in sediment (Probandt et al., 2018) and that the majority of taxa 

identified in our sediments were in low relative abundance (<1%), deep sequencing is needed to 

detect ecologically relevant members of the rare biosphere and to fully profile sediment 

communities (Lynch and Neufeld, 2015; Jousset et al., 2017). 
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As expected, CD richness estimates were considerably lower, averaging 54 and 39 ASVs 

per sample for seawater agar (SWA) and marine agar (MA) respectively, compared to >2,000 

ASVs per CI sample. While we did not perform colony counts, the number of ASVs detected 

appeared higher than the number of colonies readily visualized by eye on the plates after eight 

days of incubation, suggesting that much of the diversity detected may have arisen from micro-

colonies that could not be easily counted or isolated using standard practices. This result likely 

helps account for the observation that culturing efficiency, as defined by the number of detected 

ASVs, on SWA and MA relative to the CI results was 1.82 and 1.33%, respectively, or 3.15% in 

total. Given that only two cultivation media were used, these results support a re-evaluation of the 

1% culturability paradigm. It would also be beneficial to perform colony counts in parallel to 

sequencing plates to help delineate methodological differences in assessing the great plate count 

anomaly and to confirm the presence of micro-colonies in culture. Pairwise approaches have been 

successfully used in some studies (e.g. Perin et al., 2017; Rygaard et al., 2017; Elfeki et al., 2018; 

Pédron et al., 2020), but not yet in marine sediments to our knowledge. Culturability varies 

depending on the ecosystem and complexity of the community, so additional studies across 

systems and with varying methodologies will be beneficial for proper re-assessment of the great 

plate count anomaly. 

We were also interested in assessing culturing efficiency based on the taxa detected in 

culture compared to CI samples. While, we determine the taxonomic overlap between CD and CI 

methods from domain to ASV, we focused on the genus level given limitations with species 

assignment when using short regions of the 16S rRNA gene (Liu et al., 2008; Větrovský and 

Baldrian, 2013; Yang et al., 2016; Johnson et al., 2019). When assessing culturing efficiency based 

on the genera detected with both CD and CI methods, culturability increased to 3.95 and 3.31% 
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on SWA and MA respectively (and increased to 5.42 and 4.04% if including genera only identified 

with CD methods). While this highlights that cultivation may in fact be more effective than the 

original experiments of the great plate count anomaly, the lack of marine sediment representatives 

in culture was apparent given the high frequency at which our taxonomy was denoted as 

“uncultured” or unassigned. While we would expect culturability to increase with taxonomic level, 

surprisingly we found that the culturing percentage remained fairly consistent (~3%) until the 

phylum (~7%) and domain level (~33% since no Archaeal or Eukaryotic sequences were detected 

in culture). This finding supports previous research documenting the limited knowledge on marine 

sediment microbial diversity (Baker et al., 2021).  

While we further explored differences in communities at the genus level, it is important to 

note that there is considerable intra-genus diversity in microbes (Cordero et al., 2012; Patin et al., 

2015), thus limiting the conclusions we can draw from studies such as ours based on a short 

fragment of the 16S rRNA gene. Additionally, given functional variation within microbial 

lineages, assessing communities at different taxonomic levels would provide differing insight. For 

instance, Hoshino et al. (2020) evaluated ASV differences in relation to the phylum level which 

can provide some insight into broad functional patterns (e.g. aerobic vs anaerobic metabolism) but 

lacks the resolution and/or associated metagenomic data to concretely answer functional questions. 

Additionally, taxonomic assignment might vary based on the reference database. For instance, 

SILVA may only identify an ASV to the order level while a closer NCBI match would provide 

taxonomy to the genus level. Moreover, if taxonomy is annotated to the same level, reference 

databased can disagree (Pollock et al., 2018). Thus, it can be difficult to extract ecological meaning 

from taxonomic community profiles, especially in understudied environments like sediments that 

lack cultured representatives and genomic data for many lineages (Baker et al., 2021). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2021. ; https://doi.org/10.1101/2021.02.27.433211doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.27.433211


 16 

Here, we defined cultured taxa as those that were identified after applying a background 

threshold to remove any ASVs that had fewer than 70 reads in their corresponding samples. The 

three cultured phyla that occurred in >1% relative abundance were Proteobacteria, Bacteroidetes 

and Firmicutes. Among these, Proteobacteria also represented the largest fraction of the CI 

community, indicating that members of the most abundant phylum detected can be readily 

cultured. While both Bacteroidetes and Firmicutes were detected on SWA and MA, SWA had a 

considerably larger fraction of Bacteroidetes (~20% compared to ~2%) while MA had more 

Firmicutes than SWA (~3% compared to ~0.1%), demonstrating how these different media enrich 

for different taxa. Additionally, the cultivation of significantly greater microbial richness on the 

relatively nutrient poor medium SWA supports previous results (Watve et al., 2020) and suggests 

that, even for sediment communities, high nutrient concentrations can be inhibitory. Interestingly, 

the candidate phylum PAUC34f was detected in every replicate of our CI analyses, yet this phylum 

remains uncultured to date (Chen et al., 2020). While PAUC34f was not detected in our post-

filtering CD data, it was detected in one SWA replicate prior to correcting for the inoculum control. 

Given that dilution to extinction in a nutrient poor medium led to the cultivation of the ubiquitous 

SAR11 clade of marine bacterioplankton (Rappé et al., 2002), our decision to pool eDNA obtained 

from the dilutions prior to sequencing may have masked evidence for the cultivation of this 

phylum. 

Approximately 20% of the ASVs detected using the CD method could only be assigned to 

broad groups, such as the Roseobacter clade CHAB-I-5, or remained unclassified at the genus 

level. Given the accuracy of removing erroneous sequences while obtaining greater taxonomic 

resolution with denoising pipelines (Callahan et al., 2016, 2017; Amir et al., 2017; Nearing et al., 

2018; Prodan et al., 2020), our ASVs without taxonomic assignment likely represent undescribed 
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taxa obtained in culture. Our subtraction of inoculum controls further supports this suggestion. In 

addition to culturing taxa that could not be assigned to a known genus, we also cultured genera 

that contained few named species. For instance, the genus Ascidiaceihabitans only contains one 

species, isolated from the tunicate Halocynthia aurantium (Kim et al., 2014), yet was detected on 

six SWA replicates (max ~27% relative percent) and three MA replicates (max ~2% relative 

percent). We also observed the genus Endozoicomonas in two replicates of MA (max ~2% relative 

percent). Endozoicomonas bacteria have been found in association with a wide variety of marine 

organisms including corals (Bayer et al., 2013), tunicates (Schreiber et al., 2016) and sea slugs 

(Kurahashi and Yokota, 2007). A recent CI study revealed the potential for diverse functional roles 

for Endozoicomonas as a symbiont while also postulating that this bacterium has a free-living stage 

based on its large genome size (Neave et al., 2017). Our detection of Endozoicomonas in multiple 

replicates potentially represents a previously uncultured, free-living stage of this taxon.  

In addition to separation of the CD vs CI communities observed in beta diversity analyses, 

we also saw clustering by site in the CI samples, with site 3, a sand patch near a seagrass bed and 

a mangrove island, seemingly the most distinct. Gribben et al. 2017 found that seagrass sediment 

communities can reduce the success of an invasive macrophyte, indicating their importance for the 

overall health of these ecosystems (Gribben et al., 2017). ANCOM results identified seven taxa at 

the genus level that significantly differed between sites, with three taxa found to have the highest 

relative abundance at site 3 and three taxa completely absent from site 3. Further studies are needed 

to determine what, if any, role these taxa may play in seagrass communities and what physical and 

chemical characteristics may play a role in structuring these communities. Changes in clustering 

patterns of CI communities were also observed when using unweighted vs weighted UniFrac. The 

unweighted UniFrac showed clearer separation across sites in the CI communities. Given that 
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weighted UniFrac accounts for the relative abundances of taxa, this finding suggests that there are 

commonalities in the dominant community members across the five sites. Additionally, all 

significant genera identified through ANCOM were rare members of the community, with the 

maximum relative percent abundance of ~0.2%. Therefore, it appears that rare members of the 

community are likely driving site differentiation in beta diversity. While we cannot determine 

functional differences in our sites with this study, previous research has demonstrated the 

disproportionate role rare microbes may play in communities (Jousset et al., 2017; Bech et al., 

2020). Given that the vast majority of taxa identified in our study represented <1% of the relative 

communities at each site, it would be valuable to explore how rare microbes may functionally 

impact sediment communities in future work. 

One surprising result was the detection of cultured taxa that were not detected using CI 

methods. Similar results were reported from Mediterranean water samples (Crespo et al., 2016) 

and recent work in a freshwater system (Pédron et al., 2020). Almost all genera only detected with 

CD methods would likely be considered members of the rare biosphere. Eight of the genera 

detected only in CD samples have been previously identified as laboratory contaminants including 

Corynebacterium, Kocuria, Paenibacillus, Brevundimonas, Hoeflea, Paracoccus, Sphingomonas, 

Acinetobacter, and Psychrobacter (Salter et al., 2014), however they all also have named species 

from the marine environment (Table 1). Given the identification of marine representatives and our 

filtering methods, we believe these taxa to be members of our communities rather than 

contaminants. To the best of our knowledge, Aureimonas is the only genus detected exclusively 

from CD methods that has not been previously reported from marine samples. It was detected on 

one MA replicate from Site 1 and represented 1.62% of that community. Aureimonas is a sister 

genus to Aurantimonas, which does include marine representatives (Rathsack et al., 2011), 
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suggesting that the ASV might have been misannotated due to high sequence similarity. 

Alternatively, this may be the first report of the genus Aureimonas from the marine environment. 

Importantly, the CD methods revealed ASVs that could not be identified to the genus level, or 

were simply annotated as “uncultured”, suggesting that new taxa had been cultured using these 

relatively simple approaches (Table 2, Table S1).  

One of the potential limitations in using environmental enrichment methods is the difficulty 

in isolating pure cultures. Bacteria may fail traditional isolation attempts for a variety of reasons 

including obligate associations with co-occurring microbes or metabolic needs that are not met 

when the strain is isolated from the community. Thus the use of new techniques such as reverse 

genomics (Cross et al., 2019) and metagenomics in conjunction with traditional methods can aid 

in culturing efforts (Lewis et al., 2020). Additionally, innovative culturing techniques that utilize 

environmental conditions such as diffusion chambers (Bollmann et al., 2007) and the ichip (Berdy 

et al., 2017) also provide a means to increase culturing success. It would be interesting to further 

interrogate the unique taxa we detected in our culturing approach to determine if they could be 

isolated using traditional methods such as dilution to extinction, traditional methods with altered 

medium (e.g. Rygaard et al., 2017) or if new techniques might prove more fruitful. One of the 

divergent strains detected in CD samples was subsequently identified as Xanthovirga aplysinae. 

Given the recent description of this genus, isolated with traditional methods on MA (Goldberg et 

al., 2020), it is likely that continued culturing efforts in underexplored environments will yield 

novel diversity. It is also possible that our threshold for defining culturability was not stringent 

enough due to differences between sample and control sediments, in which case further efforts 

should focus on taxa that were detected in relatively higher abundances across multiple cultures.  
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In conclusion, the sediment microbial communities analyzed here were highly diverse, with 

the majority of genera representing rare (<1%) members of the community. The unique detection 

of taxa using CD methods supports the value of these techniques in conjunction with CI methods 

to assess community composition. Additionally, it may be valuable to further explore variation in 

microbial communities across spatial scales to ensure adequate sampling and diversity 

assessments. 

 

Experimental Procedures 

Sample Collection and Processing 

In September 2015, divers collected marine sediment samples from five locations around 

the Smithsonian Field Station at Carrie Bow Cay, Belize (Figure S6; Table S2). At each site, five 

replicate Whirl-PakÒ (Nasco) bags were filled with sediment from a 3 m2 area. Upon return to the 

field station, 20 ml of wet sediment from each Whirl-PakÒ was transferred into 50 ml falcon tubes 

with 20 ml of RNAlaterÒ and stored at 4 °C before transport on dry ice to Scripps Institution of 

Oceanography (SIO) where they were stored at -40 °C prior to DNA extraction. Two types of 

media prepared at SIO were used for on-site, culture-dependent sample processing: seawater agar 

(SWA) comprised of 16 g agar and 1 liter natural seawater, and 50% marine agar (MA) comprised 

of 0.5 g yeast extract, 2.5 g peptone, 16 g agar, and 1 liter natural seawater. Both media contained 

the antifungal agent cyclohexamide at a final concentration of 200 µg/ml. Freshly collected 

sediment samples were diluted 1:2 with autoclaved seawater in 4 ml vials, vigorously shaken, and 

further diluted 1:10 and 1:100 after which 50 μl of each dilution (1:2 1:10, 1:100) was inoculated 

onto each medium, spread with a sterile glass rod, and the plates allowed to dry in a laminar flow 

hood then sealed with parafilm. This resulted in a total of 150 plates (3 dilutions x 5 replicate 
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sediments x 2 media x 5 locations), which were transported back to SIO. In an effort to facilitate 

colony growth but prevent one or two bacteria from swamping the plates, we kept the plates at 

room temperature for eight days post inoculation and then stored them at -40 °C prior to DNA 

extraction. 

Two sets of control samples for the CD method were generated in January 2020. To control 

for DNA contamination present in the media or reagents, plates made with both of the experimental 

medium types were inoculated with a known amount (~3x107 cells) of Vibrio coralliilyticus, then 

immediately parafilmed and stored at -40 °C. To assess the approximate read counts that might be 

expected from the initial inoculation without subsequent colony growth, dilution series of local 

sediment (San Diego, CA) were plated following the experimental plate methods. Three replicate 

dilution series were plated for each medium, each was spiked with a known amount (~3x107 cells) 

of Vibrio coralliilyticus to ensure adequate DNA concentrations for sequencing, parafilmed 

immediately to prevent colony growth, and stored at -40 °C. 

 

DNA Extraction 

Environmental DNA (eDNA) was extracted from approximately 1 g of freshly thawed 

sediment per sample following physical (bead beating) and chemical (phenol-chloroform) DNA 

extraction methods (Patin et al., 2013). One replicate from site 5 was lost resulting in a total of 24 

sediment samples processed for CI analysis. DNA extractions were performed in duplicate for 

each sediment sample (2 g of sediment in total extracted per sample) and the extracts combined 

prior to purification. For the CD analyses, agar plates were left to thaw at room temperature for 30 

min and 3 ml molecular grade water was added to the surface. A heat sterilized metal loop was 

used to scrape the surface of each plate and the resulting suspension pipetted into a 15 ml falcon 
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tube. The three dilutions plated for each sediment were combined into a single falcon tube and 

centrifuged at 8,000 RPM (9,803 RCF) and 4 °C for 5 minutes generating 50 samples (5 replicate 

sediments x 2 media x 5 locations). The supernatant was removed and the bottom 2 ml including 

the cell pellet were distributed into two ceramic bead-beating tubes prior to DNA extraction 

following the protocol applied to the sediments (Patin et al., 2013). All control samples were 

extracted using the same protocol described above, however due to samples being lost in transit to 

the sequencing facility, minimal DNA remained for subsequent sequencing. As a result, replicates 

for each control type were pooled, thus producing four control samples: a SWA blank control 

spiked with V. coralliilyticus, a SWA inoculum control spiked with V. coralliilyticus, a MA blank 

control spiked with V. coralliilyticus, and a MA inoculum control spiked with V. coralliilyticus. 

 

PCR and Sequencing 

The v4 region of the 16S rRNA gene was PCR amplified using the primers 515F 

(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG GTGYCAGCMGCCGCGGTAA) and 

806Rb (GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACNVGGGTWTC 

TAAT) (Caporaso et al., 2012). PCR was performed following the Phusion Hot Start Flex 2x 

Master Mix protocol with an annealing temperature of 60 °C and 1 μl of 5 ng/μl DNA. Products 

were cleaned using ExoSap-ITÒ before adding Nextera XT (Illumina) indices and sequencing 

adapters with the following PCR program: 98 °C for 1 min followed by five cycles of 98 °C for 

10 sec, 65 °C for 20 sec and 72 °C for 30 sec with a final extension at 72 °C for 2 min. Gel 

electrophoresis was used to confirm the presence of a PCR product of the predicted size. Sequences 

were normalized based on DNA concentration, pooled and cleaned with AMPure XP beads. The 

purified library was then sent to the Institute for Genomic Medicine (IGM), University of 
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California, San Diego (UCSD) for sequencing on an Illumina MiSeq v2 500 cycle at a depth of 

130k reads per sample. For controls, DNA was sent to Novogene (South Plainfield, NJ) for library 

preparation following their proprietary methods and sequencing with the above described primers 

(515F & 806Rb) on an Illumina NovasSeq. 

 

Analysis 

Raw sequences were imported into QIIME2-2020.2 (Bolyen et al., 2018) and denoised 

using the DADA2 (Callahan et al., 2016) denoise-paired pipeline with an input of p-trim-left-f of 

19 and p-trim-left-r of 20 to remove primers. Based on the raw files, p-trunc-len-f and p-trunc-len-

r were set to 250 and 155 base pairs respectively and chimeras were removed with the default 

consensus method. In an effort to control for background inoculum that remained present but was 

not actively growing, all amplicon sequence variants (ASVs) associated with the controls were 

quantified to their relative read abundances (Table S3). After accounting for ASVs associated with 

Vibrio, the most abundant ASV present was identified as an unknown bacterium with 67 reads in 

one of the control inoculum samples (Table S3). Since all other ASVs associated with the inoculum 

controls, outside of Vibrio which was used as a spike-in, contained less than 67 reads, we opted to 

set a minimum read threshold of 70 reads per feature for each CD sample before proceeding with 

subsequent analyses. This threshold removed approximately 50% of ASVs associated with CD 

samples (Table S4). Additionally, we checked each ASV associated with the four control samples 

and determined that none of the ASVs remained in the experimental samples after applying the 

filtration step. Taxonomy was then assigned using the SILVA v132 database (Quast et al., 2013) 

and samples were subsequently filtered to remove chloroplast and mitochondria sequences (Table 

S4) in QIIME2-2020.2.  
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In order to assess how similar ASV sequences were to cultured representatives, an 

approach based on Steen et al. (2019) was employed. Using the align.seqs command in Mothur 

(Schloss and Westcott, 2011), both CD ASVs and CI ASVs were aligned with sequences from the 

SILVA database. To compare to cultured strains, type strains [T] and cultured s[C] strains were 

searched for in SILVA and downloaded as an aligned fasta file including gaps. Since SILVA 

v138.1 was the database used for sequence extraction, the corresponding non-redundant full library 

was also downloaded (SILVA_138.1_SSURef_NR99_tax_silva_full_align_trunc.fasta). The 

align.report files were then filtered to remove any sequences with inadequate alignments (pairwise 

alignment lengths <250). Histograms based on similarity to the nearest cultured representative and 

scatterplots with the nearest cultured relative compared to the most similar sequence in the full 

library were generated using ggplots2 (Wickham, 2016) in R. Some of the ASVs were then further 

interrogated by using the NCBI BLAST tool by selecting to exclude uncultured sequences.  

QIIME2-2020.2 was used to perform alpha and beta diversity analyses at the ASV level 

after rarefying samples to a depth of 62,830 reads. Associated statistical analyses were also 

performed with QIIME2-2020.2 at the ASV level using the non-parametric Kruskal-Wallis test 

(Kruskal and Wallis, 1952) for method and site comparisons in relation to alpha diversity indices 

(Faith’s Phylogenetic Diversity and Pielou’s Evenness) and multivariate PERMANOVA tests with 

999 permutations  (Anderson, 2001) for beta diversity (both weighted and unweighted UniFrac 

(Lozupone and Knight, 2005)) comparisons across methods and sites. ANCOM analysis (Mandal 

et al., 2015), which was specifically designed to address compositional microbial data, was 

performed at the genus level using QIIME2-2020.2 to determine genera that significantly differed 

across sites in culture-independent samples. Figures were generated using QIIME2-2020.2, 
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RStudio version 3.6.2 (R Core Team, 2019), ggplot2 (Wickham, 2016), nVennR (Quesada, 2020), 

and Excel version 16.36. 

 

Data Availability 

All raw sequences files are available through NCBI’s Sequence Read Archive (SRA). Accession 

numbers for CI files are SAMN08824420 – SAMN0882443, CD files are SAMN15932210 – 

SAMN15932259 and controls are SAMN15932260 – SAMN15932263. 
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Tables & Figures 

 

Table 1. Amplicon sequence variants (ASVs) annotated to the genus level detected only with 

culture-dependent methods (n= number of detected replicates). Taxonomic assignments made with 

the SILVA v132 database through QIIME2-2020.2. If the genus was not annotated (UA), the 

lowest taxonomic rank is indicated. NA = not applicable. If the genus has named species from the 

marine environment, at least one example is cited. 

Genus Site(s)  Medium 

(n) 

Mean relative 

percent MA ± 

standard error 

Mean relative 

percent SWA ± 

standard error 

Named species 

reported from 

marine 

environments 

Corynebacterium 1 2 MA (1) 

1.14E-02 ± 1.14E-02 NA 

Yes (Ben-Dov et al., 

2009)  

Microbacteriaceae 

UA 

1 SWA 

(1) NA 6.14E-03 ± 6.14E-03 

Yes (Lee, 2008)  

Agrococcus 1 SWA 

(1) NA 5.45E-03 ± 5.45E-03 

Yes (Lee, 2008) 

Kocuria 1 SWA 

(1) NA 5.91E-02 ± 5.91E-02 

Yes (Kim et al., 

2004) 

Streptomyces 5 SWA 

(3) NA 1.20E-02 ± 7.85E-03 

Yes (Gallagher and 

Jensen, 2015) 
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Luteivirga 5 SWA 

(1) NA 2.37E-03 ± 2.37E-03 

Yes (Haber et al., 

2013) 

Pontibacter 5 SWA 

(1) 

NA 4.53E-03 ± 4.53E-03 

Yes 

(Nedashkovskaya et 

al., 2005) 

Taeseokella 5 MA (1) 3.04E-02 ± 3.04E-02 NA Yes (Li et al., 2019) 

Mesoflavibacter 3 SWA 

(1) NA 3.42E-03 ± 3.42E-03 

Yes (Asker et al., 

2007) 

Mesonia 3 SWA 

(1) NA 1.43E-02 ± 1.43E-02 

Yes (Choi et al., 

2015) 

Pseudofulvibacter 1 MA (1) 

6.12E-03 ± 6.12E-03 NA 

Yes (S. H. Yang et 

al., 2016) 

Robertkochia 4 SWA 

(1) NA 2.17E-03 ± 2.17E-03 

Yes (Hameed et al., 

2014) 

Salegentibacter 5 SWA 

(1) 

NA 1.84E-03 ± 1.84E-03 

Yes 

(Nedashkovskaya et 

al., 2006) 

Zunongwangia 5 MA (1) 

4.50E-03 ± 4.50E-03 NA 

Yes (Shao et al., 

2014) 

Fictibacillus 5 MA (1) 

4.58E-02 ± 4.58E-02 NA 

Yes (Dastager et al., 

2014) 

Halobacillus 5 MA (1) 

3.64E-03 ± 3.64E-03 NA 

Yes (Teasdale et al., 

2009) 
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Paenibacillus 5 MA (1) 7.88E-03 ± 7.88E-03 NA Yes (Lee et al., 2013) 

Staphylococcus 2 MA (1) 5.33E-03 ± 5.33E-03 NA Yes (Arora, 2013) 

Skermanella 1 SWA 

(1) 

NA 1.50E-02 ± 1.50E-02 

No marine isolates, 

but see *Maldonado 

et al 2009 

(Maldonado et al., 

2009) 

Brevundimonas 1 SWA 

(1) NA 7.22E-03 ± 7.22E-03 

Yes (Fritz et al., 

2005) 

Aureimonas 1 SWA 

(1) NA 6.46E-02 ± 6.46E-02 

**No 

Hoeflea 1 SWA 

(1) NA 8.32E-03 ± 8.32E-03 

Yes (Biebl et al., 

2006) 

Nesiotobacter 3 MA (1) 

& SWA 

(1) 2.48E-02 ± 2.48E-02 1.62E-02 ± 1.62E-02 

Yes (A et al., 2019) 

Amaricoccus 5 SWA 

(1) 

NA 2.61E-03 ± 2.61E-03 

No marine isolates, 

but see ***Pohlner et 

al 2019 (Pohlner et 

al., 2019) 

Celeribacter 1 & 5 MA (2) 

& SWA 

(3) 4.90E-02 ± 3.57E-02 1.92E+00 ± 1.91E+00 

Yes (Lee et al., 2012) 
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Paracoccus 1 SWA 

(1) NA 5.24E-03 ± 5.24E-03 

Yes (Z. P. Liu et al., 

2008) 

Sulfitobacter 3 SWA 

(1) NA 3.53E-03 ± 3.53E-03 

Yes (Park et al., 

2007) 

Thalassobius 2 & 4 MA (1) 

& SWA 

(1) 2.74E-03 ± 2.74E-03 2.75E-03 ± 2.75E-03 

Yes (Yi and Chun, 

2006) 

Blastomonas 3 SWA 

(1) NA 2.73E-02 ± 2.73E-02 

Yes (Meng et al., 

2017) 

Sphingomonas 1 SWA 

(1) NA 5.43E-03 ± 5.43E-03 

Yes (Schut et al., 

1997) 

Neiella 1, 2 & 4 SWA 

(3) NA 1.28E-02 ± 7.43E-03 

Yes (Du et al., 2013) 

Colwelliaceae 

uncultured 

1, 2, 3, 4 

& 5 

MA (11) 

& SWA 

(16) 8.48E-02 ± 2.88E-02 1.74E-01 ± 8.17E-02 

Yes (Jean et al., 

2006) 

Psychromonadaceae 

UA 

1 & 5 SWA 

(3) NA 1.20E-02 ± 8.22E-03 

Yes (Li et al., 2013) 

Fangia 3 MA (1) 2.90E-03 ± 2.90E-03 NA Yes (Lau et al., 2007) 

Halomonas 1, 2, 3, 4 

& 5 

MA (15) 

& SWA 

(15) 

1.14E+00 ± 3.93E-

01 7.07E-01 ± 2.57E-01 

Yes (L. A. 

Romanenko et al., 

2002) 
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Marinomonas 1 SWA 

(1) NA 3.53E-02 ± 3.53E-02 

Yes (Romanenko et 

al., 2009) 

Nitrincolaceae UA 2 SWA 

(1) NA 2.77E-03 ± 2.77E-03 

Yes (Arahal et al., 

2007) 

Oleibacter 5 SWA 

(1) NA 1.46E-03 ± 1.46E-03 

Yes (Teramoto et al., 

2011) 

Psychrobacter 2, 3 & 4 MA (3) 

9.14E-03 ± 5.96E-03 NA 

Yes (L. a Romanenko 

et al., 2002) 

 

*Maldonado et al. 2009 isolated a strain from the marine environment where the closest 16S hit 

was Skermenella (Maldonado et al., 2009). 

**Aureimonas is the sister genus of Aurantimonas (Rathsack et al., 2011). Aurantimonas that has 

been isolated from marine sources, however it has also been identified as a common contaminant 

(Rathsack et al., 2011; Salter et al., 2014). 

***All Amaricoccus species have been isolated from sludge, but Pohlner et al. (2019) also found 

OTUs that hit to Amaricoccus from marine sediment (Pohlner et al., 2019). 
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Table 2. Percent cultured across taxonomic levels. Percent cultured calculations were based on 

taxonomic overlap in culture-dependent (CD) and culture-independent (CI) samples. Percent taxa 

unique to CD samples represents the number of taxa only identified with CD methods as a 

proportion of the total taxa identified at the corresponding level. 

 

 

Percent Cultured 

Percent Taxa Unique to 

Culture-Dependent Samples 

Taxonomic Level SWA MA SWA MA 

Domain 33.33 33.33 0 0 

Phylum 7.35 7.35 0 0 

Class 2.39 3.19 0 0 

Order 2.91 2.75 0.46 0.15 

Family 3.36 2.76 0.51 0.34 

Genus 3.95 3.31 1.54 0.80 

Species 3.16 2.64 1.77 1.22 

ASV 0.39 0.33 0.86 0.68 
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Figure 1. Rank abundance of phyla detected using a) culture-dependent methods and b) culture-independent 

methods. Light gray bars represent taxa associated with marine agar (MA) while white bare represent 

seawater agar (SWA) samples. Archaea are denoted as [A] and error bars indicate standard error.
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Figure 2. Proportionally scaled Venn diagram of microbial genera detected using culture-dependent (SWA 

and MA) and culture-independent methods.
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Figure 3. Scatterplot denoting the amplicon sequence variant (ASV) similarity from culture-dependent and 

culture-independent samples to the nearest cultured or type strain extracted from the SILVA v138.1 database 

(y-axis) versus the nearest sequence identified with the full non-redundant SILVA v138.1 database (x-axis). 
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Figure 4. UniFrac analysis of culture-independent and culture-dependent sediment microbial communities 

visualized via principle coordinates analysis (PCoA). Unweighted results colored by a) sample type and b) 

site. Weighted results colored by c) sample type and d) site.
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Figure 5. Unifrac analysis of culture-independent sediment microbial communities across five sites. a) 

Unweighted UniFrac and b) weighted UniFrac. Communities visualized via principle coordinates analysis 

(PCoA). PERMANOVA results indicate sites are significantly different from each other in both unweighted 

(pseudo-F=2.982, p=0.001) and weighted (pseudo-F=7.987, p=0.001) analyses.
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Supplemental Tables & Figures 

Table S1. All genera assignments from QIIME2-2020.2 analysis with the SILVA v132 

Database and the average relative percent of the community identified to each genus across 

CD and CI methods.  

 

Table S2.  Site information for samples collected around Carrie Bow Cay, Belize. 

 

Table S3. Amplicon sequence variants (ASVs) detected in control samples sorted by 

decreasing frequency. Blank controls were marine agar (MA) or seawater agar (SWA) 

plates spiked only with Vibrio. Inoculum controls were MA or SWA plates spiked with 

Vibrio and fresh sediment inoculum. All controls were done in triplicate, but DNA was 

pooled prior to 16S sequencing resulting in one replicate per control sample type. ASVs 

were assigned after denoising with DADA2. Taxonomy was determined with SILVA v132. 

ASVs associated with the Vibrio spike-in were omitted from the table. See methods section 

for further details. 

 

 

Table S4. Number of amplicon sequence variants (ASVs) remaining after filtration steps 

were applied. Sample types include the control blanks which were culture-dependent (CD) 

plates spiked with Vibrio, control with inoculum were CD plates spiked with Vibrio and 

fresh sediment inoculum, CD marine agar (MA) cultures, CD seawater agar (SWA) 

cultures and culture-independent samples. ASVs were generated from denoising with 
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DADA2 and taxonomy was assigned with SILVA v132. All steps were performed in 

QIIME2-2020.2. 

Figure S1. Mean alpha rarefaction curves across sediment samples from five sites in 

Belize. a) Culture-dependent results obtained using seawater agar (SWA) and marine 

agar (MA) media and b) Culture- independent results. Error bars represent standard error 

among replicates.   

Figure S2. Alpha diversity boxplots of marine sediment microbial communities from 

Carrie Bow Cay, Belize in culture-dependent and culture-independent samples 

determined using a) Faith’s Phylogenetic Diversity Index and b) Pielou’s Evenness. 

Culture-dependent methods include the use of marine agar medium (MA) and seawater 

agar medium (SWA. Data points are overlayed on the boxplot to show variation. 

Figure S3. Relative abundance of microbial communities in marine sediments. a) 

Phylum level culture-dependent diversity on two growth media (MA and SWA, left) and 

culture-independent diversity (right). b) Genus level culture-dependent diversity on two 

growth media (MA and SWA, left) and culture-independent diversity (right). Legends 

lists a) all phyla and b) the top 50 genera in order from most to least abundant and six 

rare genera that had a notable percentage in at least one replicate. Note that bar colors 

repeat for some rare taxa. 

Figure S4. Culture-independent alpha diversity boxplot of marine sediment microbial 

communities from across five sites around Carrie Bow Cay, Belize determined using a) 

Faith’s Phylogenetic Diversity Index and b) Pielou’s Evenness. 
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Figure S5. Histograms of amplicon sequence variant (ASV) from culture-dependent and 

culture-independent samples and their similarity to previously cultured strains. Cultured 

representatives included both type and cultured strains extracted from SILVA v138.1. 

Figure S6. Sediment sample collection site information. 

Figure S7. Proportional Venn Diagrams denoting the number of taxa detected with 

culture-dependent and culture-independent methods (marine agar and seawater agar) 

across taxonomic levels. 
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