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Abstract

Abundance and specificity are two key characteristics of species distribution and biodiversity. The-

ories of species assembly aim to reproduce the empirical joint patterns of specificity and abun-

dance, with the goal to explain patterns of biodiversity across habitats. The specialist-generalist

paradigm predicts that specialists should have a local advantage over generalists and thus be more

abundant. We developed a specificity index to analyse abundance–specificity relationships in

microbial ecosystems. By analysing microbiota spanning 23 habitats from three very different data

sets covering a wide range of sequencing depths and environmental conditions, we find that habi-

tats are consistently dominated by specialist taxa, resulting in a strong, positive correlation

between abundance and specificity. This finding is consistent over several levels of taxonomic

aggregation and robust to errors in abundance measures. The relationship explains why shallow

sequencing captures similar b-diversity as deep sequencing, and can be sufficient to capture the

habitat-specific functions of microbial communities.
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INTRODUCTION

The vast majority of microbial ecosystems, are characterised

by highly skewed abundance-rank distributions: a few taxa

account for the majority of individuals while most taxa are

represented by only a few individuals (Connolly et al. 2014).

In a spatial setting, the specificity, defined here as a measure

for the unevenness with which a taxon occurs in different

habitats, becomes important as abundance-rank distributions

differ among habitats. The extremes of the specificity contin-

uum are (1) taxa found with equal abundances in many habi-

tats (generalists) and (2) taxa always and only found in one

habitat (specialists). Extreme specialists are indicator species,

with strong ecological preferences, that are specific to a given

habitat (Dufrene & Legendre 1997). A long-standing view in

ecology states that the differences between specialists and gen-

eralists arise from disparity in their resource utilisation: spe-

cialists have a narrow resource utilisation range and high

peak performance, whereas generalists have a broader range

but lower peak performance (Peers et al. 2012). If high perfor-

mance is linked to high local competitive ability and migra-

tion does not greatly influence local population dynamics,

specialists should have higher local abundance than general-

ists, which are found in several habitats. This pattern has for

example been observed in the malaria parasite: species with

narrow host range are associated with higher peak para-

sitaemia than species with a broad one (Garamszegi 2006).

Alternatively, specificity may be linked to abundance and the

role of species in ecosystem functioning. In the case of host-as-

sociated microbial communities, hosts can recruit, either pas-

sively or actively (Kremer et al. 2013), their symbionts based

on the functions they provide (Burke et al. 2011a). The

impaired development of axenic animals also shows that

microbiota provide essential functions to their hosts (Brummel

et al. 2004; Rawls et al. 2004; Sison-Mangus et al. 2015).

Recruited microbes are expected to thrive and be locally abun-

dant. If furthermore, the recruited functions are costly to main-

tain outside of the host, they are likely specific, resulting in a

correlation between local abundance and specificity.

A positive abundance–specificity relationship has important

practical implications for our understanding of biodiversity.

The total diversity of a landscape, c-diversity, is traditionally

partitioned between the average within-site diversity (a-diver-

sity) and the among-site diversity (b-diversity). Several quanti-

tative diversity indices accounting for abundance exist for

community data (Graham & Fine 2008). They have in com-

mon that communities that share most or all of their abun-

dant taxa are less b-diverse than communities that share none

or a few. In the context of microbial ecology, where commu-

nities are often dominated by a few abundant taxa, we specu-

late that the b-diversity of distinct habitats is driven by a

positive correlation between abundance and specificity of

microbial taxa. As a consequence of this, the b-diversity of

these communities should be easy to recover with small sam-

pling effort. In case of microbial data, this means shallow

sequencing depth by next generation sequencing approaches.

Previous studies have noted a positive relationship between

abundance and occupancy. Habitat specialist taxa tend to be

rare when habitats are simply defined by locality (Sz�ekely &

Langenheder 2014) but become dominant when habitats are

defined along an abiotic gradient (Fortunato et al. 2013; Log-

ares et al. 2013), especially at extremes of the gradient.

Nemergut et al. (2011) showed that detectable taxa are gener-

ally confined to single assemblage but did not report informa-

tion about their local abundance. Other findings suggest that

this relationship may be widespread. For instance, a relation-

ship between specificity and abundance has recently

been hinted at in butterfly gut microbiota, where communities

at different developmental stages were characterised by differ-

ent stage-specific abundant taxa (Hammer et al. 2014). The
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different stages are characterised by different diets, stressing

that habitats can be influenced by diverse biotic and abiotic

factors. The same relationship was apparent in sponge micro-

bial communities (Moitinho-Silva et al. 2014; Reveillaud et al.

2014), but the trend was not discussed. A combination of bio-

logical (transient, dead or dormant taxa) and technical (con-

tamination, clustering methodology) reasons lead to the

increasing classification of locally abundant species as unspeci-

fic when sampling depth was increased.

Here, we investigate the abundance–specificity relationship

of microbial communities, aiming to test if we can generalise it

in a wide range of environments. We develop a local specificity

index that separates specificity from abundance and test how it

correlates with relative abundance in different microbiota habi-

tats, defined by environment type rather than locality. We

introduce a permutation test to assess the significance of this

relationship. We apply our method to three data sets of micro-

biota data, one from zooplankton (this study), one from

humans (Costello et al. 2009) and the last one from environ-

mental samples (Caporaso et al. 2011). All data sets, chosen to

reflect a wide array of environments, habitats, sampling condi-

tions and sequencing depths, revealed strong, positive relation-

ships between abundance and specificity. We discuss the

implications of this finding for biodiversity surveys and func-

tional metagenomics as well as mechanisms that can lead to

specificity and to high local abundance of specific species.

MATERIAL AND METHODS

Data sets

Sample collection and DNA sequencing for the zooplankton

data set

The Daphnia, sediments and freshwater samples were isolated

from the €Agelsee pond, near Frauenfeld in Switzerland

(47°5580 N, 8°8620 E) in June 2012. Daphnia are aquatic crus-

taceans of 0.5–5 mm body length. In our study pond, three spe-

cies are sympatric: Daphnia magna, D. pulex and D. longispina.

But we focused on D. magna as it outnumbers the others 10 to

1. Daphnia samples were collected using plankton net with

200 lm mesh size and kept in pond water during transport to

the laboratory. Within 5 h, D. magna specimens were separated

from other plankton species, washed in autoclaved medium and

individually frozen at �20 °C in buffer for later DNA extrac-

tion. Samples from the top layer (5 cm) of the pond sediments

were collected with a hand-held dreg, drained of standing water

and stored 24 h at 4 °C in the dark before DNA extraction.

Water samples were collected at the Daphnia sampling site and

microbes successively filtered through 52-, 19- and 7-lm filters.

The additional 3-, 1- and 0.2-lm filters were used for DNA

extraction. Total genomic DNA was extracted using the CTAB

method for the Daphnia and water samples and the PowerSoil

kit (MoBio, Carlsbad, CA, USA), following the manufacturer’s

instructions, for the sediment samples.

The V3–V5 region of the 16S rRNA gene (ca. 640 nucleotides)

was PCR amplified using the following forward and reverse pri-

mers: 50-ACACGGYCCARACTCCTAC-30 (positions 327–345)

and 50-GTGGWTTAATTCGAWGCAA-30 (positions 951–969).

Amplicons from the different samples were pooled at equimolar

ratio for multiplexing. Amplicon libraries were sequenced on a

GS FLX instrument using LibL Titanium chemistry (454 Life

Sciences, Roche) at Microsynth (Balgach, Switzerland).

Bioinformatics pipeline for zooplankton data set

QIIME 1.6 pipeline (Caporaso et al. 2010a) was used for

bioinformatics analyses. Reads were filtered based on their

length (> 500, < 580) and average Phred score (> 30). They

were then chimera filtered using de novo chimera detection

and clustered into operational taxonomic units (OTUs) at

97% sequence identity level using USEARCH (Edgar 2010)

with QIIME default parameters. Taxonomic assignment was

done using the RDP classifier (Wang et al. 2007) with the

Greengenes database, version 12_10 (McDonald et al. 2011).

The most abundant sequence of OTU cluster was chosen as

its representative and sequences were aligned with PyNAST

(Caporaso et al. 2010b). A phylogenetic tree was then built

using FastTree (Price et al. 2010) for computation of UniFrac

distances (Lozupone et al. 2007). OTUs represented by a sin-

gle read were filtered out from the count table.

Human microbiota data set

The human microbiome data set is described in and was col-

lected by Costello et al. (2009): filtered reads were down-

loaded from the European Nucleotide Archive

(www.ebi.ac.uk/ena/data/view/ERA000159) and OTU picking

was performed using the analysis pipeline detailed in Costello

et al. (2009). Singletons were filtered out.

Global patterns data set

The ‘Global Patterns’ data set of environmental samples was

obtained from Caporaso et al. (2011) and is directly available

as OTU count tables from the R phyloseq package (McMur-

die & Holmes 2013). Singletons were filtered out.

Specificity index and permutation test

Here, we consider a quantitative measure for the specificity of

a species (or OTU) in a focal habitat, based on a reinterpreta-

tion of the indicator values of Dufrene & Legendre (1997). A

high value indicates that this species is found predominantly

in this focal habitat. We consider a microbiota count table

M = (aij) where aij is the count, or relative abundance, of spe-

cies i in sample j. We use OTUs as proxy for species. The

microbiota samples originate from H different habitats (e.g.

different locations, different hosts) and there are Sh samples

from habitat h. We note Sh
i the number of samples from habi-

tat h where species i is present. The local specificity index Kh
i

of species i in habitat h is defined as:

Kh
i ¼ Ah

i � Bh
i ð1Þ

where

Ah
i ¼

Sh
i

Sh
; Bh

i ¼
haii

h

PH

h¼1

haii
h

and haii
h ¼

PSh

j¼1

aij

Sh
ð2Þ

Ah
i is the prevalence of species i in habitat h, i.e. the fraction

of samples from habitat h where species i was found. In case
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of limited sampling, it should be understood as discoverabil-

ity, especially for rare species. haii
h
is the average local abun-

dance of species i in habitat h and Bh
i is the fraction of the

share of habitat h in the total population of species i, i.e.

summed across habitats. Kh
i ranges from 0 to 1. A value of 0

means that the species is never found in habitat h, whereas a

value of 1 means that the species is always and only found in

that habitat, i.e. the species is a perfect indicator of that habi-

tat. Unlike strict definitions of specificity, that use only pres-

ence/absence information, our index uses the full abundance

spectrum and is therefore robust to contamination and differ-

ences in sequencing depths. Kh
i is the same as INDVAL but

for one change: INDVAL keeps only the maximum local

specificity across habitats (INDVAL(i) = maxh Kh
i ) to have

one value per species, whereas we keep all values to have one

value per pair (species, habitat).

Since Bh
i requires the computation of the total count of spe-

cies i, the abundances must be on the same scale in different

samples for the index to be meaningful. We use a double nor-

malisation of abundances to avoid the undue effect of individ-

ual rich samples and sample rich habitats. Abundances are

first transformed to relative abundance (sample-level normali-

sation) and then averaged within each habitat (habitat-level

normalisation) to produce haii
h
.

The variability of Kh
i is assessed by stratified bootstrap. A

new data set is created from the original by sampling com-

munities with replacement within each habitat (the strata).

The specificity index is computed on this data set and the

process is repeated 999 times to estimate the variability of

Kh
i . The significance of Kh

i is also assessed by bootstrap

resampling: original communities are resampled with replace-

ment and randomly assigned to habitats (habitat permuta-

tion). The specificity index is computed on each

bootstrapped data set and the process is repeated 999 times.

These values represent the distribution of Kh
i under the null

hypothesis of no association between local abundances and

habitats. The traditional way of assessing the significance of

Kh
i would be to compare it to this distribution. We are how-

ever interested in the significance of high specificities and

therefore compare Kh
i to the null distribution of maxh Kh

i

rather than Kh
i . In other words, the observed specificity is

compared to the maximum randomised specificity across all

habitats. This corrects for the multiplicity of habitats and

means that a species is significantly specific only if more

specific to a habitat than to any other one. Local specifici-

ties, permutation tests and standard error computations were

performed using custom R code and the R phyloseq package

(McMurdie & Holmes 2013).

RESULTS

Zooplankton

This data set includes 32 microbiota samples from one pond

in Switzerland, but corresponding to three different habitats:

microbiota associated with the planktonic crustacean D.

magna (11 samples), microbes in the free water (15 samples)

and microbes from the sediment surface of the pond (6 sam-

ples). These three habitats are interconnected: D. magna filter

water for uptake of food, water and sediments are in close

contact and Daphnia browse over the sediment surface to

enrich their food (Horton et al. 1979; Ebert 2005). Further-

more, Daphnia resting eggs (ephippia) diapause in the sedi-

ments.

We used the zooplankton data set to derive abundance–

specificity curves (Fig. 1) using our local specificity index. We

find that on average the more abundant a taxon is in a habi-

tat, the more specific it is to this habitat. Furthermore, the

positive abundance–specificity relationship observed is signifi-

cantly steeper than also positive random relationship (grey

dots and dark grey curves in the three panels of Fig. 1). The

latter arises because universal species with heterogeneous

abundances across samples have a skewed abundance distribu-

tion with many small values and a few high ones. Chance

grouping of high values in the same habitat during the ran-

domisation scheme shifts the distribution of randomised speci-

ficities upwards compared to species with the same overall

abundance but a more even distribution across samples. The

upward trend of the specificity curve is nevertheless signifi-

cantly steeper in the non-randomised than in the randomised

data sets (Fig. 1): the most locally abundant species are highly

specific to their habitat.

In parallel, we studied the diversity of samples using either

Bray–Curtis distances, which account for differences in terms

of species composition and abundances, or weighted UniFrac

(wUF) distances, which also account for phylogenetic related-

ness between species, combined with multidimensional scaling.

The results (Fig. 2) show that the samples cluster neatly by

habitats for the Bray–Curtis distances (Fig. 2, left) but in a

less pronounced way for wUF distances (Fig. 2, right). The

first axis distinguishes sediments from water and Daphnia.

Daphnia and water samples then form a Daphnia-Water gradi-

ent along the second axis.

We evaluated the robustness of our findings with respect

to copy number variation in SSU-rRNA genes across bacte-

rial taxa (Vetrovsky & Baldrian 2013). Copy numbers of

this gene vary from 1 to 15 in sequenced microbes and thus

may influence the calculation of relative frequencies. Vetro-

vsky & Baldrian (2013) provided a copy number prediction

scheme based on the average copy number at a given taxo-

nomic level and estimated the average error to be 38%

when predictions are made at the phylum level. We cor-

rected observed species counts using either (1) average phy-

lum-level (class in case of the abundant Proteobacteria)

copy number or a (2) random copy number drawn from a

truncated Gaussian, approximating the copy number distri-

bution observed within each phylum (class in case of the

abundant Proteobacteria). Our results did not change

(Fig. S1). A further source of bias of amplicon-based micro-

biota studies is the classification of species as OTUs, which

is built on a similarity threshold (typically 97% similarity).

This threshold impacts specificity and abundance of micro-

bial taxa (Youngblut et al. 2013): all things remain

unchanged, higher thresholds lead to more OTUs, with

lower abundances and higher specificities. However, using

thresholds ranging from 91 to 99% identity does not change

our finding of a positive relationship between abundance

and specificity (Fig. S2).
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Human microbiome data set

The human body is host to diverse bacterial communities

whose collective population largely outnumbers human cells

(Costello et al. 2009). We analyse the publicly available data

set built by Costello et al. (2009), who sampled microbial

communities across 26 body sites on seven subjects at two

time points. Sampling sites were grouped by body habitat as

in the original study (Costello et al. 2009): Skin, External

Auditory Canal (EAC), Gut, Oral Cavity, Hair, Nostril and

Hair. Skin is the most diverse habitat with 18 sites ranging

from sole of foot to forehead, while other environments

included much less sampling sites (minimum 2). This data set

is interesting for our purpose as the habitats are very diverse

but in close proximity and therefore allow for exchange of

bacteria. Furthermore, the human microbiota has been exten-

sively studied and is well characterised. Previous studies show

that body habitats differ in their overall composition, based

on ordination plots of UniFrac distances (Costello et al.

2009).

All body habitats exhibit a positive and significant abun-

dance–specificity relationship, with the exception of the skin

(Fig. 3). Skin is considered here as a single body habitat as in

the original study but really encompasses a variety of habitats

with different environmental variables. For example, parts of

the skin such as armpits, soles of feet, hand palm and index

finger differ in key environmental variables such as humidity,

temperature and light exposure. An alternative grouping of

skin sampling sites that respect body symmetry (see Support-

ing information for details), splits skin into six habitats. Using

this classification, we find a stronger abundance–specificity

relationship (Fig. S3). The finding of the abundance–speci-

ficity relationship is also stable across time: the analysis per-

formed on each time point individually shows the same
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Figure 1 Positive relationship between abundance and specificity in the zooplankton data set. Coloured dots and error bars correspond to observed

specificity values and interquartile variability. Grey dots (resp. error bars) correspond to expected local specificity (interquartile range) under the null

distribution where samples are randomly assigned to body habitats (see Permutation Test for full details). Dark grey curves are loess regressions of the

original and randomised specificity values against abundance in the habitat, with associated confidence bands.

Daphnia

Sediment

Water

–1.0

–0.5

0.0

0.5

1.0

–2 –1 0 1

Axis 1

A
x
is

 2

Bray-Curtis

Daphnia

Sediment

Water

–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

–0.4 –0.2 0.0 0.2

Axis 1 [33.44%]

A
x
is

 2
 [
1

5
.5

6
%

]

Weighted UniFrac

Figure 2 Multidimensional scaling ordination plot of Bray–Curtis (left) and weighted UniFrac (right) distances of freshwater samples. Water and Daphnia

samples are well separated from sediments and also distinct from each other using Bray–Curtis distances.
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positive trend (Fig. S4) and the most abundant taxa are con-

served across time (Fig. S5).

Global patterns

The global patterns (GP) data set consist of 25 environmental

samples gathered by Caporaso et al. (2011) with an average

depth of about a million reads per sample. The samples are

distributed across eight different habitats, with two to four

replicates per habitat: human faeces (n = 3), hand palm skin

(n = 3) and dorsal tongue surface (n = 3), faecal samples from

human twins (n = 2), soil (n = 3), freshwater and freshwater

sediments (n = 5), ocean water (n = 3) and marine sediments

(n = 3). We left out the artificially assembled mock communi-

ties as they are unlikely to capture natural abundance–speci-

ficity relationships.

Like in the previous data sets, all habitats exhibit a

strong abundance–specificity relationship: abundant

species have on average a high local specificity. In this data

set we note that many low frequency (< 1e-4) taxa have

high local specificity (Fig. 4), but many more have low

specificity. A rarefaction analysis of the samples (Fig. S6)

confirms that the relationship is preserved at much shal-

lower sampling depths (5000 reads per samples). It also

shows that species with high local specificity (> 0.9) are

easy to capture: 5000 reads capture on average 40% of the

specific species accounting for 96% per cent of the specific

population.

DISCUSSION

The specificity of species from microbial communities to a

given habitat type is positively correlated with their local

abundance. This relationship is robust to various technical

and biological aspects of microbiota assessment and analysis,

such as differences in 16S rRNA gene copy numbers, OTU

definition threshold and sampling depth. The diverse data sets

used to test this relationship reveal that even when habitats

have frequent opportunities for microbial exchange, microbial

compositions remain distinct. The rich global pattern data set

further shows that abundant taxa are highly specific to their

habitat even though habitat-specific taxa are found every-

where across the abundance scale. Our communities differ

clearly by habitat in terms of specific and abundant species,

even when those habitats interact with each other through

known overlaps and migration from a regional pool of taxa,

like in the zooplankton data set. Local microbiota may share

some taxa, like the planktonic freshwater bacteria from the

genus Limnohabitans that accounts on average for 15% of

both Daphnia and water samples but we found only one

instance of shared abundant taxa. The fraction of shared

abundant taxa varies with the differentiation between the
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Figure 3 Positive relationship between local abundance and specificity in the human microbiome (Costello et al. 2009). Details of the legend are identical to

Figure 1. Note that ‘skin’ encompasses 18 body sites corresponding to very different environmental variables and does not form a coherent habitat.
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habitats being compared. In the absence of differentiation

between habitats, the Neutral Community Model (NCM) pre-

dicts that taxa with high mean abundance should have high

occupancy and variance inversely proportional to the migra-

tion rate (Sloan et al. 2006). This abundance-occupancy trend

has been reported in Nemergut et al. (2011) but was not

observed in another large-scale soil study (Barber�an et al.

2012). However, if habitats are well differentiated, as in Bar-

ber�an et al. (2012) or this study, NCM does not rule out a

mix of (1) habitat specialists with high abundances and occu-

pancies in their habitat but low ones in other habitats and (2)

habitat generalists with low abundances and occupancies in

all habitats. In this case, differentiation leads to habitat-exclu-

sive abundant taxa (Gravel et al. 2006).

The monotonic increase in the abundance–specificity curves

at the habitat level suggests that habitat filtering plays an

important role in shaping local communities and that locally

abundant taxa are likely to be specific to their habitat. Our

finding means that b-diversity is driven by taxa that are both

specific and locally abundant. As a consequence, b-diversity

can be estimated without a large sampling effort. It explains

why wUF and other weighted (semi)metrics (Graham & Fine

2008) or quantitative b-diversity measures are unexpectedly

good at separating different habitats even at relatively low

sampling depth (~ 2000 reads per sample) and why low-depth

sampling captures the same relationship among samples as

does deep sampling, as noted by Caporaso et al. (2011) on

the GP data set. Our analysis also revealed that taxa specific

to a habitat do not need to be strongly phylogenetically differ-

entiated. Figure 2 shows that water and Daphnia specific taxa

are phylogenetically close, but taxonomically different; the dif-

ference may lie in their ecological function, as was previously

suggested in this setting (Qi et al. 2009) and in other studies

(Burke et al. 2011a; Jiang et al. 2012).
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Figure 4 Positive relationship between local abundance–specificity in environmental habitats from the global pattern study (Caporaso et al. 2011). Details

of the legend are identical to Fig. 1 but because of the large number of taxa, error bars were omitted. Unlike the Human microbiome data set, skin

samples are limited to hand palms.
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Previous studies provide examples of abundance–specificity

relationships (although not formally analysed) and suggest

diverse mechanisms through which this relationship may come

about. For example, Barber�an et al. (2012) report that special-

ists, especially in desert and Antarctic soils, are more abun-

dant than predicted based on their persistence across habitats.

Species with active hydrocarbon degradation capabilities are

not detectable in sediments, but become very abundant (6–

18%) after oil spill (Mason et al. 2014). Habitat specialists are

locally abundant at the extremes of salinity gradients (Logares

et al. 2013) and coastal marine environment are reproducibly

dominated by taxa with limited distributions (Fortunato et al.

2013). In these examples, specificity may be achieved by high

growth rates of specialists. Host-associated communities also

provide interesting examples: sponge species share most of

their OTUs but harbour species-specific members that make

up to 30% of the communities (Reveillaud et al. 2014). Moit-

inho-Silva et al. (2014) suggest that ‘dominant OTUs do

account for sponge communities’. Likewise resident communi-

ties of Daphnia (this study) and algal surfaces (Burke et al.

2011b) are substantially made up of bacteria that are rare in

the surrounding waters. In those examples, specificity may

result from species sorting along a nutrient gradient but speci-

ficity can also result from active selection from the host as in

the squid-Vibrio system (Kremer et al. 2013). Finally, che-

mico-physical barriers may limit competition, prevent invasion

and therefore favour resident taxa. Jones & McMahon (2009)

show that immigration of atmospheric taxa into lakes that are

otherwise closed systems is essentially erased by habitat filter-

ing: the studied lakes are dominated by abundant and specific

species. Similarly, bile production is thought to protect the

human gut from foreign microbe species. Alterations caused

by liver cirrhosis can lead to invasion and displacement of up

to 40% of the resident community by a few commensal oral

species that are absent from healthy communities (Qin et al.

2014).

Community assembly

Community assembly involves four distinct kinds of processes:

selection, drift, speciation and migration (Vellend 2010). They

all have been shown to play a role in microbial community

assembly (Costello et al. 2012). Our findings suggest that even

when habitats are in close spatial proximity and species

migration is possible, selection plays a comparatively central

role in determining the composition of local communities, as

suggested by the Baas-Becking hypothesis, and may mitigate

the effects of migration (Gravel et al. 2006; Jones & McMa-

hon 2009). It is also well known that assemblages are typically

dominated by a few abundant taxa while most taxa are rare

and that neutral assembly can lead to such a skew (Sloan

et al. 2006). Our observations may be a consequence of (1)

habitat differentiation, (2) selection for specialist taxa across

habitats (for example in the form of habitat filtering or high

growth rate in the favoured habitat of a taxon), and (3) neu-

tral assembly processes within habitat. Selection implies that

habitat-level relative abundances would be skewed in favour

of specialists that would then be abundant through the neutral

assembly of individual communities. The skew should increase

with increased migration and increased differentiation between

habitats, as observed in this study.

Deterministic components of assembly processes have been

suggested elsewhere (Vellend 2010; Stegen et al. 2012). Con-

nolly et al. (2014) deduced, from studying abundance-rank

curves of over 1000 communities from the marine biosphere,

that lognormal abundances are a better fit than the neutral

Poisson-gamma distribution. They suggest differences between

species (e.g. in terms of growth rates, niche sizes, etc.) as

mechanisms leading to lognormal abundances. Recent work

(Harris et al. 2014) in statistical ecology looking at the fit of

neutral models (Hubbell 2001) to human gut microbiota reach

similar conclusions: neutrality is rejected from abundance data

at all but low taxonomic ranks (genus). Overall, habitat filter-

ing selects specialist taxa, probably based on markedly differ-

ent metabolic and functional roles (Fierer et al. 2007;

Philippot et al. 2010) and among those, some taxa with selec-

tive advantage become dominant in local communities.

Limits and potential confounding factors

Quantitative metagenomics is a powerful approach to study

microbial communities because it enables us to obtain data

sets with very deep sampling in short time periods and high

spatial resolution. However, it is subject to a variety of biases

that may influence the inference obtained from the analysis.

Standard methodology assumes that each microbial taxon has

the same number of 16S rDNA genes, although it is known

that species differ from 1 to 15 copies of this gene (Vetrovsky

& Baldrian 2013). Our analyses suggest that our results do

not suffer from a serious bias caused by copy number varia-

tion. Assumptions about the definition of the OTU as a surro-

gate for a species definition may also influence the

interpretation of microbiota studies because it affects both the

species classification and their abundance. Again, our results

are robust with regard to this assumption.

A further bias arises from the complex interplay between

niche and habitat. Niche is defined by a volume in a space of

mostly unknown biotic and abiotic environmental variables

(Hutchinson 1957). Habitats may be comprised of a single

niche, or may include multiple niches. For example, the

human skin is diverse and covers many environmental vari-

ables. Not surprisingly, the skin habitat does not show a

strong abundance–specificity relationship. After a custom clas-

sification of skin sampling sites based on hierarchical cluster-

ing, body geography and symmetry, we recovered more

narrowly defined habitats and stronger abundance–specificity

relationships. In conducting a custom classification we took

care to avoid circularity and to artificially increase the abun-

dance–specificity trend by clustering the samples using only

presence/absence data, not abundance or prevalence data.

Additionally, the skin habitat in the GP data set consists only

of hand palms and exhibits a strong association from the

start. The same observation applies for the butterfly gut

microbiota study of Hammer et al. (2014). The gut at differ-

ent developmental stages corresponds to different diets. It is

dominated by different taxa, suggesting that host diet is a key

environmental variable for niches of gut microbiota (see also

Delsuc et al. 2014).

© 2015 John Wiley & Sons Ltd/CNRS
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Our local specificity index captures relative specificity

rather than endemism. Our double normalisation, standard

in microbiota studies, assumes (1) that each habitat has a

carrying capacity shared by all species and (2) that all

habitats contribute equally to the regional pool of taxa.

When these assumptions are violated we need to be careful

with the interpretation of the results. For example, in a

continent-island scenario, a species can be locally very speci-

fic to a small habitat (an island) and yet be mostly found in

the much larger habitat (the continent) (see Supporting infor-

mation). Our index therefore works only for relative speci-

ficity rather than endemism. An important consequence is

that the abundance–specificity relationship is influenced by

all habitats included in the study: it is stronger if habitats

are very distinct, like in the GPs, and weaker but still signifi-

cant for more similar habitats, like in the Human Micro-

biome.

Finally, our method counts all zeroes as true absence when

computing prevalence in a given habitat. Replacing zeroes by

probability of absence, estimated from zero-inflated distribu-

tions such as Gaussian or Negative Binomial (McMurdie &

Holmes 2014) should alleviate this problem. This limitation

induces a downward bias of specificity values for rare species

but does not weaken the abundance–specificity relationship,

as confirmed by the rarefaction analysis of the GP data set

(Fig. S6). Furthermore, the high depths of the GP data set al-

most guarantee discovery of taxa with even low frequency

(> 1e-5) and confirm that the relationship is not an artefact of

rare taxa having low specificity simply because of discover-

ability issues.

CONCLUSION

The main finding of our analysis is the on average high speci-

ficity of abundant microbe species in microbiota samples from

well differentiated habitats. It means that (1) shallow sampling

is sufficient to recover compositional differences and (2)

locally abundant species, many of which are habitat specific,

are likely to perform habitat-specific ecological functions. This

finding has implications for other studies. By reducing the

sampling effort per site, it will be possible to increase the

replication effort and the number of habitats studied. For

example, we suggest that in studies of b-diversity surveys, one

should aim for moderate sequencing depth, but for a large

sampling width. On the other hand, the existence of specific

species across the abundance scale means that a-diversity sur-

veys capture most specific species with shallow sampling, but

cannot spare deep sequencing as some species are both rare

and specific.

Furthermore, our study suggests that abundant species are

on average good predictors of environmental conditions and

that the search for microbial indicators should start with

abundant species. An exciting extension in this direction

would be possible if transcriptional activity is positively corre-

lated with abundance or skewed towards abundant taxa

(Moitinho-Silva et al. 2014). In this case, shallow sampling

might be sufficient to identify the genes of key biological pro-

cesses provided by microbial ecosystems (Burke et al. 2011a;

Jiang et al. 2012; Qin et al. 2014).
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