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SUMMARY 11 

Microbial fuel cells are emerging as a versatile renewable energy technology. This is 12 

particularly because of the multidimensional applications of this eco-friendly technology. The 13 

technology depends on the electroactive bacteria, popularly known as exoelectrogens to 14 

simultaneously produce electric power and treat wastewater. The electrode modifications 15 

with nanomaterials such as gold nanoparticles, iron oxide nanoparticles or pre-treatment 16 

methods such as sonication and autoclave sterilization have shown promising results to 17 

enhance the MFC performance for electricity generation and wastewater treatment. The MFC 18 

technology has been also investigated for the removal of various heavy metals and toxic 19 

elements, and to detect the presence of toxic elements in wastewater. In addition, the MFCs 20 

can be modified into microbial electrolysis cells to generate hydrogen energy from various 21 

organic matter. This article provides a comprehensive and state-of-the-art review of possible 22 
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applications of the MFC technology. This also points out the various challenges that limit the 1 

MFC performance. Finally, this article identifies the strategies to improve MFC performance 2 

for different applications. 3 

KEYWORDS: microbial fuel cell; electricity generation; wastewater treatment; 4 

bioremediation; biosensor; hydrogen production 5 

1. INTRODUCTION 6 

Depletion of non-renewable energy resources and environmental pollution are critical threats 7 

facing us. Extracting energy from organic or inorganic wastes can provide an efficient means 8 

to solve the energy and environmental problems simultaneously. Many anaerobic 9 

fermentation technologies have been combined with other purification techniques to generate 10 

alternative energy fuels such as hydrogen and methane [1-3]. However, a sustainable energy 11 

collection must include a diversity of carbon-neutral and renewable energy technologies. 12 

Microbial fuel cell (MFC) technology has attracted an increased number of researchers in the 13 

recent years due to its potential particularly for bioenergy production and wastewater 14 

treatment. This is reflected by the number of articles published in last five years that has 15 

increased successively from year to year, as shown in Fig. 1. MFC technology has become an 16 

attractive technology today because of its capability to convert the chemical energy present in 17 

organic/inorganic wastes into electrical energy. It links microbial metabolism with 18 

electrochemical reactions [3-5]. Consequently, the technology can be used for electricity 19 

generation, wastewater treatment, bioremediation of heavy metals/toxic compounds and other 20 

niche applications. The general principle of an MFC is given in Fig. 2.  MFCs are the 21 

bioelectrochemical devices that typically consist of two chambers i.e. the anode chamber 22 

(anaerobic; contains an electrode, microorganisms and anolyte) and the cathode chamber 23 

(aerobic/anaerobic; an electrode, electron acceptor and a catalyst), separated by a proton 24 
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exchange membrane (PEM) e.g., nafion [6-8]. The microorganisms are used as the 1 

biocatalysts to oxidize the substrate in the anode chamber, and have been denoted as the 2 

power house of MFCs. The electrons are transferred to the anodic (an electrode) surface, 3 

which are then directed to the cathode through an electrical connection [9, 10]. In the 4 

cathode, the electrons combine with protons and oxygen to form water. A catalyst e.g., 5 

platinum is generally used to catalyse the reduction reaction in the cathode; alternatively, a 6 

microorganism can also be used to replace such costly catalyst [11, 12].  7 

The advantage of MFCs mainly lies in the use of microorganisms as the biocatalysts 8 

at the anode and the cathode chambers of MFCs. The exceptional characteristic of the 9 

microorganisms used in MFCs is their self-potential to mediate the electrons (generated from 10 

the oxidation of the substrates) from their outer cell membrane to the surface of an electrode 11 

(in anode) and to accept the electrons from the electrode surface (in cathode) to catalyse the 12 

reduction of electron acceptors e.g., oxygen reduction [5, 9, 12]. The microorganisms that 13 

contain a molecular machinery to transfer the electrons to an electron acceptor without any 14 

external assistance or to accept the electrons from the electrode surfaces are usually called as 15 

exoelectrogens. Due to this unique characteristic of exoelectrogens the MFC technology has 16 

been experimented for a number of applications. The most widely studied application of 17 

MFC technology is electricity generation. In the anode chamber of an MFC, the oxidation of 18 

organic matter by exoelectrogens results into a low redox potential while in the cathode 19 

chamber, reduction of an electron acceptor e.g., oxygen results into a higher redox potential. 20 

This difference in the redox potentials drives the electrons to flow from the anode to the 21 

cathode, which consequently results in bioelectricity generation. Many different designs have 22 

been utilized to produce electric current in various optimized parameters [10-12].  A pure 23 

culture (e.g., G. sulfurreducens and Shewanella oneidensis) or a mixed culture (from 24 
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anaerobic sludge or primary wastewater) can be used to generate electric current [13-18]. 1 

Many attempts have been made to increase the electric output in MFCs. Out of these, anode 2 

surface modifications with nanomaterials and bacterial gene modification are the most 3 

prevalent approaches that have been employed to improve the MFC performances [19-21, 4 

22]. For example, nitrogen doped carbon nanoparticles were coated on carbon cloth 5 

electrodes, which increased the power density more than three times as compared to untreated 6 

electrodes [21]. Alternatively, a synthetic flavin biosynthesis pathway from Bacillus subtilis 7 

was expressed in S. oneidensis MR-1, which secreted a very high amount of flavins than the 8 

wild type, consequently, increasing the power output ~13 folds as compared to wild S. 9 

oneidensis [22]. Because bacteria can degrade the organic matter present in the wastewater, 10 

the technology can be used to remove the pollutants and generate electricity from wastewater. 11 

Several wastewaters ranging from low-strength to high-strength have been utilized in MFCs 12 

for their treatment and electricity generation simultaneously [23-28, 29-34].  In addition, 13 

MFC can be modified into microbial electrolysis cell (MEC) to produce hydrogen gas, but 14 

unlike MFC, electricity is provided in the MEC to produce hydrogen [35]. Generally, a 15 

voltage of 0.2 to 0.8 V is required to reduce the protons to form hydrogen [10]. Such low 16 

voltage is easily achievable in the MFC. Therefore, an MFC can be used to supply the voltage 17 

to the MEC for hydrogen production. 18 

 The aim of this review article is to critically analyse the routes of MFC applications 19 

and the strategies to improve their performances. Many review articles have been published 20 

describing specific aspects of the MFCs such as the substrates used in MFCs [3], assessment 21 

of MFC configurations [1], and specific application of MFCs like wastewater treatment [4], 22 

and bioremediation [6]. However, that the current review provides a comprehensive 23 

understanding of the MFC applications, their basic principles, challenges and the strategies to 24 
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improve their performances. The primary applications of MFCs i.e., electricity generation, 1 

wastewater treatment, bioremediation, biosensors, and hydrogen production have been 2 

covered. A special focus has been given to the strategies to improve the MFC performance, 3 

making the technology scalable in the real world to compete with commercialized green 4 

energy technologies. 5 

2. THE ‘MOLECULAR MACHINERY’ OF EXOELECTROGENS 6 

It is important to get an idea about the unique characteristic of MFC technology because of 7 

which this technology has become the centre of attraction among the renewable technologies. 8 

All the applications of MFC technology are particularly interesting because of the molecular 9 

machinery of the bacteria that helps in transferring the electrons to an electrode surface and 10 

vice-versa. The molecular machinery means the biomolecules, proteins or the genes that help 11 

to donate or accept the electrons between bacterial and electrode interface, which chiefly lies 12 

between the inner and the outer membrane of the bacteria. So far, only two bacteria namely, 13 

Geobacter spp. and Shewanella spp. have been extensively investigated to explore the 14 

extracellular electron transfer (EET) mechanisms. Two types of EET mechanisms have been 15 

confirmed in both the bacteria [5]. The first is direct electron transfer (DET) mechanism and 16 

the second is mediated electron transfer (MET) mechanism. The molecular machinery 17 

comprising the known pathways and hypothetical pathways is presented in Fig. 3. 18 

G. sulfurreducens is the most studied and explored exoelectrogen in MFCs. It forms 19 

highly thick biofilms on the electrode surfaces and can utilize the various carbon sources as a 20 

substrate for bioenergy production. It has been found that G. sulfurreducens in its initial 21 

stages of biofilm formation relies on MET for electron transport. The exoelectrogen secretes 22 

flavin molecules such as riboflavin in the single layer biofilms. The riboflavin combines with 23 

outer membrane c-type cytochromes (OM c-Cyts) to make a complex that furthers the 24 
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electron transfer to the electrode surface [5,22]. As the biofilm grows 1 

G. sulfurreducens adapts to DET for extracellular electron transport. In a multi-layered 2 

biofilm, G. sulfurreducens active adjacent to electrode surface utilizes OM c-Cyts (essentially 3 

OmcZ) for extracellular electron transfer while the bacteria respiring distant from the 4 

electrode produce conductive nanowires (type IV pili) that assist in transporting the electrons 5 

inside the biofilm and finally onto the electrode surface [5]. 6 

The other exoelectrogen studied extensively for MFC applications is 7 

Shewanella oneidensis.  The bacterium is the most versatile exoelectrogen in the MFCs 8 

because it exhibits the potential to reduce a variety of electron acceptors [36, 37]. Earlier 9 

S. oneidensis MR-1 was thought to produce conductive nanowires like type IV pili of 10 

G. sulfurreducens. But it is now confirmed that S. oneidensis does not contain nanowires and 11 

these nanowires like structures are the extensions of periplasmic and outer membrane 12 

multiheme cytochromes associated with outer membrane vesicles [38]. This exoelectrogen 13 

secretes mainly two types of flavin molecules. The first is riboflavin (RF) and the second is 14 

flavin mononucleotide (FMN). These flavin molecules act as cofactors for the cytochromes 15 

such as OmcA and MtrC. It has been found that RF acts as a cofactor for OmcA while FMN 16 

contains the binding sites for MtrC. [39]. These complexes, RF-OmcA and FMN-MtrC 17 

further promote the electron transfer to the electrode surfaces [39]. The various known 18 

proteins or genes from different exoelectrogens involved in EET mechanisms are depicted in 19 

Fig. 3. To date, some proteins or genes are well known to participate in EET mechanisms that 20 

function in a specific pathway. However, the functional role of other proteins/genes in EET 21 

mechanisms is still under debate and demands a deep investigation to validate their role and 22 

ability to mediate the electrons transfer. 23 

 24 
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3. MFCs FOR ELECTRICITY GENERATION 1 

The MFCs are chiefly used for the application of electric current generation and many efforts 2 

have been made to ameliorate the current density such as electrode modifications, MFCs 3 

designs, use of metal catalysts at the anode as well as at the cathode etc. [1, 6, 8, 9, 12]. 4 

Recent studies reporting high current densities even from reactors as small as 14 ml are 5 

encouraging [2]. Evidently, Bruce E. Logan and his colleagues at The Pennsylvania State 6 

University, United States America (USA) successfully ran a small fan using an MFC with a 7 

working volume of two litres, (http://www.engr.psu.edu/mfccam/).  If a two litre - MFC can 8 

run a small fan, then we can conceptually expect higher current output from an MFC of 9 

higher volume capacity e.g., of 2000 litres or even more. But it is unlikely to be materialized 10 

in the near future because of obstacles including very high cost of the materials used in MFCs 11 

(electrodes, PEM), high internal resistance, costly catalysts (e.g., platinum) used in cathode 12 

for oxygen reduction, and limited availability of exoelectrogens in the environment. 13 

However, researchers from all around the world continue to contribute to the technology to 14 

make it a viable alternative for renewable energy generation.  15 

The first step in MFCs towards current generation is the acclimatization of the 16 

exoelectrogens in the anode chamber and subsequent biofilm formation on the electrode 17 

surface (anode). Consequently, the exoelectrogens form a conductive biofilm on the anode 18 

surface. The biofilm thickness may be a few tens of micrometre, for example, ~30 µm or ~50 19 

µm [36, 37]. Biofilm formation by exoelectrogens is a unique characteristic and differs from 20 

other bacteria or microorganisms. The development of biofilm on the electrode surface from 21 

the single bacterial cell is stimulated by the assembly of adhesins and extracellular matrix 22 

components [38, 39]. Later, some pivotal proteins specifically pili and outer membrane c-23 

type cytochromes (OMC c-Cyts) e.g., OmcZ, OmcS etc. also promote the biofilm formation 24 
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[40, 41].  Geobacter sulfurreducens is unable to form biofilm in the absence of pili and OMC 1 

c-Cyts [40]. The formation of thick biofilm is taken as an important parameter in MFCs for 2 

efficient performance. Usually, optimal biofilm thickness is preferred in MFCs for higher 3 

current densities, as highly thick biofilms also confine the electron passage [41]. In addition, 4 

the selection of suitable bacterial inoculum (pure culture of mixed culture) with preferred 5 

substrate can be highly beneficial to extract more energy for the current generation. For 6 

example, Geobacter sulfurreducens can reduce acetate with ~100% electron recovery to 7 

generate electricity [42]. 8 

After the establishment of a suitable biofilm, the exoelectrogens transfer the 9 

metabolically generated electrons from their outer cell membrane to the anode surface. There 10 

are two known electron transfer mechanisms i.e. direct electron transfer (DET) and mediated 11 

electron transfer (MET), which have been observed in case of Geobacter species and 12 

Shewanella species [43-45]. In Geobacter sulfurreducens, DET involves OMC c-Cyts (e.g., 13 

OmcZ, OmcB) for the short-range electron transfer during the initial development of biofilms 14 

and pili (type IV) for long-range electron transfer in multilayer biofilms [17, 19]. In MET 15 

process flavin molecules such as riboflavin (RF) plays a key role in electron transfers [46]. In 16 

Shewanella oneidensis, the complex of cytochromes-flavins mediates the exocellular electron 17 

transfer mechanism. For example, flavin mononucleotide (FMN) acts as a cofactor for 18 

cytochrome MtrC and RF for cytochrome OmcA [47].  19 

The transferred electrons on the anode surface are transported to the cathode surface 20 

via an electrical connection. The electrons at the cathode surface react with protons and an 21 

electron acceptor. If the electron acceptor is oxygen the end product will be water, resulting 22 

maximum open circuit voltage (OCV) at the cathode of ca. 0.805 V. Generally, the cathode 23 

surface is bound with a catalyst to increase the oxygen reduction rate.  The most commonly 24 
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used catalyst is platinum [1]. The carbon/platinum electrodes are commercially available with 1 

different concentrations of platinum e.g., carbon cloth with 0.2 mg/cm2, 0.5 mg/cm2. 2 

Alternatively, a microorganism can also be used for the oxygen reduction to make the fuel 3 

cell more cost-effective. Electron acceptors other than oxygen, such as ferricyanide, 4 

potassium permanganate are also useful alternatives [10]. 5 

The selection of exoelectrogens, substrate (electron donor), and the final electron 6 

acceptor are the pivotal factors in MFC technology. Different MFCs have used pure cultures 7 

as wells as mixed cultures for bioelectricity generation. Some examples of the MFC studies 8 

with pure cultures and mixed cultures are given in Table 1 and Table 2, respectively. The 9 

performance of similar MFCs with different inoculum can be compared to find which 10 

inoculum is more favourable to generate high power density. Some studies report that mixed 11 

cultures produce high power density than pure cultures [5]. However, a few other studies 12 

showed that pure cultures can also generate high current [40]. For example, in a continuous 13 

flow ministack MFC using carbon cloth for both the electrodes, fed with acetate, G. 14 

sulfurreducens produced higher power density than the mixed cultures using a similar reactor 15 

and operational conditions [40]. The study achieved a maximum power density of 1900 16 

mW/m2, which was approximately 21% more than the mixed cultures (sewage sludge 17 

inoculum) [40]. The selection of the inoculum in a particular growth phase (exponential 18 

phase) is also useful to attain high current in MFCs. It has been found that the bacteria in lag 19 

phase form thin biofilms and contain fewer amounts of c-type cytochromes while the bacteria 20 

in exponential phase form thicker biofilms and contain the higher number of c-type 21 

cytochromes, consequently generating higher electrical current [48]. Moreover, a selective 22 

inoculum of mixed culture referred as controlled inoculum (of known bacteria e.g. 23 

Pseudomonas aeruginosa, Azospira oryzae, Acetobacter peroxydans and Solimonas 24 
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variicoloris) has shown to produce a higher power density than unknown inoculum [49]. A 1 

study from our group revealed that such controlled inoculum can produce 100% more power 2 

than anaerobic sludge (inoculum) in a double chamber MFC [49]. Further, some pre-3 

treatment methods of inoculum can also be employed to enhance the power output in the 4 

MFCs [5].  5 

 The microbial community structure in an MFC is affected by the type of substrates 6 

used in the anode chamber, which could be simple substrates that are easily fermentable or 7 

complex substrates that are non-fermentable [3]. For example, acetate is commonly used in 8 

MFCs, and the exoelectrogens such as Geobacter and Shewanella spp. readily use acetate for 9 

electricity production [5]. Therefore, the abundant availability of acetate in the anode can 10 

exclude the effect of other fermentable bacteria. But wastewaters may contain simple as well 11 

as complex organic contents. Hence, pre-acclimation strategies can be employed to hydrolyse 12 

and ferment the wastewaters. For example, three pre-acclimation strategies were employed to 13 

evaluate the response of microbial community for electricity generation in an air-cathode 14 

MFC inoculated with anaerobic sludge from domestic wastewater [50]. In the first strategy, 15 

the MFC was pre-acclimated with glucose and acetate; in the second, with glucose before 16 

adding domestic wastewater and in the third strategy, the wastewater was directly used 17 

without any pre-acclimation [50]. The results revealed a great variation in the microbial 18 

community due to the pre-acclimation strategies. The MFC with first strategy was abundant 19 

with bacteria belonging to phylum Chloroflexi and genus Gemmobacter while the MFC pre-20 

acclimated with second strategy contained predominantly Enterobacter and Escherichia. On the 21 

other hand, the MFC with third strategy was dominant with Dechloromonas and Anaerolinaceae. 22 

Moreover, the MFC with first strategy generated maximum current density and achieved 23 

maximum COD removal as compared to the other MFCs [50]. 24 
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The researchers engaged in the MFC studies around the globe have endeavoured 1 

many innovative efforts to increase the power output of the fuel cells. Many of them are 2 

developing new MFC designs using different effective materials for the electrodes and 3 

membrane, operating MFCs at specific conditions (e.g., setting electrode potentials, 4 

maintaining pH of the electrolytes, pre-treatment of membranes and electrodes), treatment of 5 

the inoculum, and nanomodification of the electrodes. Some methods used to increase the 6 

electricity generation in the MFCs are discussed in the following section.  7 

Electrode modification with metal catalyst or nanoparticles or chemical treatment has 8 

become a new trend to improve the performance of MFCs. The main purpose to modify the 9 

electrodes in MFCs is to increase the power outputs, in the anode by providing high surface 10 

area for the biofilm formation and to increase the exocellular electron transfer (EET) 11 

mechanisms. The cathode modifications are the centre of attraction to replace the highly 12 

costly platinum catalyst by cheaper catalysts of nearly or same catalytic properties [12]. Most 13 

of the studies regarding electrode modifications also claimed to decrease the internal 14 

resistance of the system as well as start-up time of the reactor. In the anode, different 15 

approaches have been employed to modify the electrodes to increase the power outputs either 16 

by simple modification methods such as heat-treated electrodes and nitrogen-doped 17 

electrodes or by some sophisticated tools such as by coating some highly effective catalysts 18 

(e.g., gold nanoparticles, graphene, carbon nanotubes (CNT) etc.) on the electrodes [51-55]. 19 

Interestingly, almost every kind of metal nanoparticles or other carbon nanoparticles have 20 

been used in the MFCs. Therefore, the researchers are now using electrode with different 21 

composite materials (e.g., CNT–gold–titania nanocomposites) to improve the performance 22 

[53]. Another effective method includes the use of nitrogen doped carbon nanoparticles to 23 

modify the electrode to enhance the EET mechanism. For example, nitrogen doped carbon 24 
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nanoparticles were coated on carbon cloth electrodes in a two-chamber MFC inoculated with 1 

Shewanella oneidensis MR-1. The study revealed that the treated electrodes absorbed more 2 

electron mediators (flavins) secreted by the organism that subsequently increased the electron 3 

transfer rate. Consequently, the power density also increased more than three times as 4 

compared to untreated electrodes [55]. The anode can also be modified with metal or non-5 

metal nanoparticles (with different morphologies as well) to influence the EET and thus the 6 

performance of the MFCs. In a study, CNT powder was directly added to the anode chamber 7 

to increase the biofilm growth of G. sulfurreducens in a two-chamber MFC using plain 8 

carbon paper as the electrode material in both the chambers [52]. The addition of CNT 9 

powder in the anode chamber reduced the internal resistance of the system as well as the 10 

start-up time of the MFC. The shortened start-up time could be attributed to the promotion of 11 

the bacterial adhesion to the electrode material with the addition of CNT powder in the anode 12 

chamber [52]. The performance of the anode can be further improved by using different 13 

morphologies of the material that can provide more active sites and enhance biocompatibility 14 

with the electrode material. In a double chamber MFC, the anode (carbon cloth) was 15 

modified with bamboo-like carbon nanotubes that produced ca. four times higher power 16 

density than the MFC using plain carbon cloth as the anode [52]. 17 

 It is evident that Fe (III) oxide exhibits high affinity for c-type cytochromes such as 18 

OmcA and MtrC present on the outer surface of Shewanella species [38, 39]. Therefore, it is 19 

more favourable for the bacteria to mediate the electrons from its outer surface to Fe (III) 20 

oxide. Moreover, it has been also revealed that Shewanella species are more attractive to iron 21 

oxide surfaces [5]. In other words, iron oxide surfaces enhance the microbial growth and 22 

increase the extracellular electron transfer, increasing the biofilm metabolic activity which 23 

can be advantageous for improving the performance of MFC-centred applications. For 24 
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example, Song et al., utilized graphene/ Fe3O4 nanocomposites coated carbon paper as the 1 

anode electrode to improve the bacterial activity in a two-chamber MFC inoculated with 2 

Shewanella oneidensis MR-1 [56]. The results showed that the start-up time of the MFC was 3 

significantly decreased with increase in Fe3O4 concentration, indicating a faster attachment of 4 

bacteria onto the anode surface, which can be attributed to the high affinity of outer 5 

membrane c-type cytochromes to iron oxide [56]. In addition, the MFC with modified anode 6 

achieved a maximum current density of 1800 mA/cm2, which was ~6 times higher than the 7 

bare anode (carbon paper) [56]. In another study, Fe3O4-carbon cloth was used as an anode to 8 

examine the beverage wastewater treatment and electricity generation [57]. The MFC 9 

produced a maximum current density that was 100% higher than the bare cathode and a COD 10 

reduction of ~52% was achieved [57]. The iron oxide layers can be prepared on the electrode 11 

surfaces to make them more biocompatible for enhanced microbial growth and functions. For 12 

example, stainless steel electrodes can be heat-treated to generate a layer of iron oxide on its 13 

surface. Evidently, Guo et al., prepared heat-treated stainless steel electrodes which generated 14 

a layer of iron oxide as confirmed by X-ray photoelectron spectroscopy [58]. This 15 

modification further improved the biofilm formation and enhanced the extracellular electron 16 

transfer as expected. Consequently, the current density was significantly increased. The MFC 17 

generated a maximum current density of 1.5 mA/cm2, which was seven times higher than the 18 

bare electrode [58]. Previously, stainless steel mesh was modified with flame synthesis of 19 

carbon nanostructures on its surface, which increased its BET surface by 300 times as 20 

compared to the bare stainless steel mesh electrode. The microscopy results revealed that the 21 

addition of carbon nanostructures onto stainless steel mesh enhanced the biofilm formation. 22 

As a result, the MFC with modified anode produced a power density of 187 mW/m2, which 23 

was 60 times higher than the bare anode [59].  24 
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The cathode modification is chiefly focused on to replace the platinum by some other 1 

cost-effective catalysts [12, 60-62]. Cobalt oxide and manganese oxide have shown the 2 

potential to substitute the platinum in MFCs. Specifically, cobalt oxide (with other materials 3 

e.g., iron phthalocyanine or nickel) has been repetitively experimented as a cathode catalyst 4 

for oxygen reduction reaction (ORR) [12]. Such MFCs with modified cathode electrode 5 

produced effective results but slightly lower than the MFCs with platinum (as cathode 6 

catalyst). An MFC using cobalt oxide-iron phthalocyanine as a cathode catalyst for oxygen 7 

reduction produced a maximum power density of ca. 655 mW/m2, which was 37% higher 8 

than the MFC with iron phthalocyanine, indicating the effective potential of oxygen reduction 9 

activity of cobalt oxide for ORR [61]. In contrast, the MFC with a carnation-like manganese 10 

dioxide coated cathode produced 1.5 times higher power density than the plain electrode [62]. 11 

Alternatively, some bacteria (pure cultures or even mixed cultures) have also been used as 12 

cathode catalyst for oxygen reduction but could not produce satisfactory electric outputs [24]. 13 

Moreover, the overpotential obtained for ORR was also higher in the study due to the poor 14 

bacterial activity at the cathode, neglecting the choice of biocathode in real large scale MFC 15 

applications. 16 

 The electricity generated from MFCs can be further used to power electric 17 

instruments or machines. MFCs have been successfully applied to operate robots. Such robots 18 

are usually termed as "Gastrobots", which means robots with a stomach. These kinds of 19 

robots can metabolize the natural food or can be sustained by water or air. These robots 20 

digest the substrate fuel and convert it into electricity, which is usually stored in the batteries 21 

fitted in the robots, making them an autonomous power system.  Evidently, MFCs were 22 

utilized to power a robot named as "Gastronome". Gastronome is thought to be the first robot 23 

that utilized biomass driven energy conversion technology [63].  Gastronome was built by 24 
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joining train-like three wheeled wagons, as shown in Fig. 4. A stack of six MFCs was used in 1 

the robot and Ni-Cd batteries were utilized, which were charged by the electric output of the 2 

MFCs [63]. Ecobot-II is another example of a robot that was completely driven by MFCs for 3 

environmental monitoring [64]. A picture of Ecobot-II is shown in Fig. 5. The robot was 4 

connected to a wireless transmitter that was further connected to a sensor (which can be for 5 

temperature, toxicity, humidity etc.) [64]. In addition, the robot was packed with eight MFCs 6 

and utilized raw foodstuffs such as rotten fruits as substrate fuel. The authors also claimed 7 

that Ecobot-II was the first robot in the world powered by MFCs that was utilized for 8 

environmental monitoring [64]. In an alternative study, the MFCs were successfully used to 9 

power wireless sensors to detect the changes in temperature. The diagram of the sensor and 10 

telemetry system powered by the MFC is given in Fig. 6. In this study, the MFC was 11 

connected with a highly efficient electronic circuitry to provide a stable power for wireless 12 

sensor [65]. The electricity produced by the MFC was further stored in a capacitor and was 13 

used to power the telemetry system. However, the voltage generated by the system was lower 14 

(2.1 V) than needed for a commercial electronic circuit (3.3 V). Therefore, a DC-DC 15 

converter was utilized to increase the potential and to power the transmitter that received the 16 

data from the sensor and transmitted to the receiver [65]. Further, Tender et al. demonstrated 17 

the application of MFC for the first time in the world to power a meteorological buoy [66]. 18 

They used benthic type of MFCs and the meteorological buoy to measure air temperature, 19 

pressure, relative humidity, and water temperature. The results from this study are shown in 20 

Fig. 7.  21 

4. MFCs FOR WASTEWATER TREATMENT  22 

The process of wastewater treatment involves safe disposal or recycling of water which is 23 

highly polluted or contains toxic substances. Wastewater discharged from different industries 24 
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can be particularly hazardous. According to an astounding report by Lux Research, 1 

governments and water utilities across the world spent approximate $28 billion in year 2012 2 

to develop their existing wastewater treatment infrastructure that provided a surplus global 3 

wastewater treatment capacity of 16.3 million cubic metres (m3) per day. MFC technology 4 

has the potential to provide an effective platform for the treatment of highly polluted 5 

industrial wastewater or urban wastewater and can curb the financial expenditure, which can 6 

be further used for other development programs of a country.  7 

 In the late nineteenth century, Habermann and Pommer (1991) used MFCs for 8 

continuous treatment of wastewaters for nearly 5 years [67]. They used sodium sulphate 9 

solution (different concentrations (%, 0.5-5) as the electrolyte in the anode, sulphate reducing 10 

microorganisms such as Proteus vulgaris, Escherichia coli, Pseudo-monas aeruoinosa and P. 11 

fluorescens, and two types of wastewaters (sewage works effluent and landfill effluent). The 12 

results showed that the MFC achieved a COD reduction of 35% with sewage works effluent 13 

and 75% with landfill leachate [67]. In addition, a maximum anodic current density of 150 14 

mA/cm2 at a potential of -50 mV was also obtained in the demonstration [67]. 15 

 In the later years, different types of wastewaters were used in MFCs for its treatment 16 

and bioenergy production [54-60, 68, 69, 70-75]. On one side of the picture, MFC technology 17 

can be used to treat the wastewater while on the other side, the wastewater can be used to 18 

provide substrate as the carbon source for the bacterial growth and hence for the end products 19 

of the oxidation process i.e. electrons and protons for sustainable bioelectricity generation 20 

[3]. Primary wastewater from an industry such as chocolate industry wastewater [29] or palm 21 

oil mill effluent (POME) [34] can be used to provide the inoculum or the biocatalysts for the 22 

substrate oxidation. Moreover, defined bacterial culture (pure or mixed) can be isolated from 23 

the wastewater that can be further used as inoculum for the MFCs [5]. The wastewater can be 24 
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used as catholyte as well though it may contain some minerals that can act as electron 1 

acceptors [29]. Though our review is focused on the performance of MFCs for wastewater 2 

treatment, the next section of the article reviews some studies that demonstrated the 3 

efficiency of MFCs for wastewater treatment and some approaches employed to improve the 4 

wastewater treatment efficiency of the MFCs. 5 

 The effect of different parameters on MFC performance has been studied. These 6 

primarily include chemical oxygen demand (COD), biochemical oxygen demand (BOD), 7 

total solids, total dissolved solids, acidity etc. Usually, standard methods are adopted to 8 

evaluate the wastewater treatment efficiency of the MFCs. Typically, COD test is performed 9 

(or is sufficient) to examine the performance of MFC toward wastewater treatment. Some 10 

examples of MFC studies demonstrated for wastewater treatment are given in Table 3. The 11 

MFCs have achieved up-to 98% COD removal from wastewater [55, 56]. Almost all the 12 

studies demonstrated for wastewater treatment are coupled with the foremost application of 13 

MFCs i.e. electricity production.  14 

 Animal wastewaters contain high organic content and high concentrations of 15 

phosphate and nitrate in wastewater, the latter causing eutrophication of surface water. A few 16 

studies have demonstrated the use of animal wastewater in different MFCs for its treatment 17 

and bioenergy production. A study using swine wastewater in different MFCs (two 18 

chambered MFC and single chamber MFC) achieved maximum 92% COD removal and 19 

approximately 83% ammonia reduction after operation of the MFC for around 100 hours 20 

[26]. Another study treated animal carcass wastewater (ACW) with high organic content in 21 

an up-flow tubular MFC [68]. The disposed animal carcasses can be further hydrolysed with 22 

alkaline treatment (sodium hydroxide or potassium hydroxide) into smaller constituents like 23 

amino acids, sugars and minerals forming a sterile solution referred as ACW (of BOD-70 g/l, 24 
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COD-105 g/l and ammonia-1 g/l). The maximum COD reduction obtained in the 1 

demonstration was more than 50% and the nitrate removal efficiency of MFC was nearly 2 

80% [68].  3 

Food wastewater or food industry wastewater is non-toxic but exhibits high BOD and 4 

is rich in sugars and starch as compared to other industrial wastewaters. A study using cereal 5 

wastewater in a double-chambered MFC achieved more than 95% COD removal. The initial 6 

COD of the feed wastewater was 595 mg/l [69]. The production of starch foodstuffs (for 7 

example, potato chips) in food industries requires great usage of water, consequently releases 8 

large quantities of wastewater to the environment. Such starch processing wastewater (SPW) 9 

comprises high contents of proteins, carbohydrates, cellulose, vitamins and other nutrients. 10 

An MFC demonstration used SPW to evaluate the treatment efficiency of a double 11 

chambered MFC. The MFC achieved 98% COD reduction after an operation of 140 days. 12 

This was accompanied by an ammonia-nitrogen removal efficiency of 91% [27]. In another  13 

study involving potato processing wastewater (PPW), 91% of COD reduction was achieved 
14 

[33]. Similarly, another organic-rich, nontoxic wastewater i.e. chocolate wastewater was used 15 

in a double chambered MFC by Patil et al. [29]. The results showed that maximum 75% COD 16 

was removed after the MFC operation in batch-mode. The BOD removal and total solid 17 

removal was ca. 65% and 68%, respectively [29]. 18 

Conventional wastewater treatment techniques cannot effectively treat the 19 

wastewaters containing lignocellulosic biomass (e.g. cellulose, hemicellulose and lignin) 20 

However, Huang and Logan used paper recycling wastewater in a single chamber MFC 21 

(sMFC) for its treatment and electricity generation. The results suggested that the MFC, after 22 

nearly three weeks of operation, achieved more than 76% COD removal while ca. 96% of 23 

cellulose was removed by the bacteria [11].  This indicates that the microbial community in 24 
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the MFC not only degraded the lignocellulose biomass and converted it to simpler sugars but 1 

also extracted energy from such wastewaters to generate electricity. 2 

The brewery wastewater has been widely investigated in different MFCs for its 3 

treatment and bioenergy production. The brewery wastewater exhibits high COD, up to 5000 4 

mg/l. Moreover, it contains high levels of carbohydrates or sugars that can be used as electron 5 

donors in the MFCs. Here we present two examples of the studies that used brewery 6 

wastewater in MFCs. In the first example, air cathode sMFC was used with different 7 

concentrations of the wastewater and was operated in fed-batch mode [32]. When the 8 

wastewater with less COD value was used in the MFC, low COD removal was obtained and 9 

vice-versa. When COD concentration was 84 mg/l and 1600 mg/l, the COD removal was 10 

~58% and 98%, respectively [32]. In the second study, sMFC was operated in continuous 11 

mode with a hydraulic resistance time (HRT) of 2.13 hours. The wastewater was diluted with 12 

deionized water and the COD ranged between 600 mg/l and 660 mg/l. The sMFC achieved 13 

43% and 46% COD removal, respectively [31]. 14 

The effect of temperature on treatment efficiency of MFCs was investigated by Ahn 15 

and Logan using air-cathode sMFC [69]. They operated the fuel cell (batch mode and 16 

continuous mode) at two different temperatures i.e. ambient temperature (23 ± 3° C) and 17 

mesophilic temperature (30 ± 1° C). The results showed that the % COD removal, as well as 18 

the COD removal rate was higher in the MFCs operated at mesophilic temperature than the 19 

ambient temperature. Moreover, ca. 10% more nitrogen removal was achieved from the 20 

MFCs operated at higher temperature. Overall, the MFCs in the fed-batch mode removed 21 

more than 2.5 times COD as compared to MFCs operated in continuous mode [70].  22 

 23 
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Treatment of wastewaters from different other mills (agro-industries and oil 1 

industries) have been also investigated in MFCs. Such wastewaters show high COD and are 2 

toxic. For example, cassava mill effluent can have a COD over 16000 mg/l and a cyanide 3 

concentration of ca. 86 mg/l [71]. A 30 L double chambered MFC achieved nearly 90% COD 4 

removal after 120 hours of operation [71]. Palm oil industries release large amount of highly 5 

toxic wastewater, referred to as palm oil mill effluent (POME). POME exhibits COD and 6 

BOD as high as 50000 and 25000 mg/l, respectively [34]. Cheng et al. treated POME in an 7 

upflow membrane less MFC (UML-MFC) coupling MFC and up-flow anaerobic sludge 8 

blanket (UASB) reactors. This integrated system achieved 96% COD and 94% nitrogen 9 

removal [34].    10 

 11 

Usually, the MFCs produce more power density with wastewater of high COD values. 12 

However, the highly concentrated substrate can cause fouling of the PEM, resulting in the 13 

restriction of protons, which consequently leads to the accumulation of protons in the anode 14 

chamber (low pH) and less availability of protons in the cathode (high pH). Therefore, 15 

concentrated wastewaters are sometimes diluted to maintain proper functioning of the MFCs. 16 

Furthermore, some pre-treatment methods can be employed to change the physiochemical or 17 

biological properties of the wastewater for enhanced performance of the MFCs. For example, 18 

the wastewater can be autoclaved to kill the methanogens (the anaerobic bacteria that 19 

yield methane as a metabolic by-product) that otherwise use the organic matter to produce 20 

methane instead of protons and electrons. A study showed that MFC with the autoclaved 21 

wastewater produced ca. 5% more power density than with raw wastewater [26]. Another 22 

pre-treatment method i.e. sonication was shown to be useful to increase the performance of 23 

the MFCs considerably. This approach was employed using raw wastewater that produced ca. 24 

16% more power density and increased the COD removal efficiency by nearly 5%.  The 25 
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sonication process may improve the performance of the MFC by altering the biodegradability 1 

of the organic matter present in the wastewater or changing the molecular weight or particle 2 

size spectra of the organic matter. Moreover, wastewater stirring has also shown marginal 3 

improvement in the COD removal in the MFC [26]. However, some of these pre-treatment 4 

options are energy-intensive and may not be ideal for scale up. 5 

 Compared to industrial wastewaters, domestic wastewater is more biodegradable. 6 

Domestic wastewater can be a promising substrate for bioenergy production by MFCs. This 7 

approach can be utilized to make eco-friendly public toilets, which can generate electricity 8 

and can help to keep the surrounding environment neat and clean. For example, a single 9 

chamber air-cathode MFC (3-stage MFC/struvite extraction process system) was utilized to 10 

treat human urine with simultaneous extraction of struvite (NH4MgPO4·6H2O), which is an 11 

eco-friendly fertilizer. Struvite crystals are generally present in human urine; thus, these can 12 

be extracted from urine using MFCs [77]. The anode was inoculated with anaerobic sludge. 13 

Human urine, supplemented with 0.5% yeast extract and 1% tryptone, was used as the 14 

substrate. The MFC achieved a power of 14.32 W/m3 after first stage, which reduced to 11.76 15 

W/m3 after the third stage [77].  Also, the MFC enhanced urea hydrolysis during the 16 

operation, which was advantageous for struvite precipitation process. In their successive 17 

study, they added sea salts in the human urine (substrate) that increased the electricity 18 

generation as well as the struvite extraction [78]. After the addition of sea salts the power 19 

output increased by 10%, while the struvite extraction enhanced from 21 to 94%. Besides, the 20 

COD removal also improved from 16% to 18% [78]. In addition, the research group of 21 

Ioannis Ieropoulos at University of the West of England, Bristol (UK) had a successful field-22 

trial on the MFC-based public toilets in Glastonbury Music Festival. A special urinal was 23 

fabricated and the collective urine was fed in the stack of MFCs connected in parallel, as 24 
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shown in Fig. 8 [79]. The MFCs were directly connected to LED lights to monitor the 1 

electricity generation. The trial was run for approximately 3 months and 2.5 – 5 L of urine 2 

was converted daily to power.  For a period of 5 weeks, an average power of 75 mW was 3 

achieved each day and a maximum of 98% COD reduction was observed during the trial [79]. 4 

In addition to human urine, human feces have been also used in MFCs to generate electricity. 5 

For example, a two chamber MFC was fed with human feces wastewater for electricity 6 

generation and its treatment. The wastewater was firstly fermented prior to use in MFCs to 7 

enhance the power generation. The results showed that the MFC achieved a maximum power 8 

density of 70.8 mW/m2 and the total COD reduction was 78% after an operation of 190 h 9 

[79].  10 

In MFCs, the wastewater treatment efficiency can be further improved by operating 11 

the fuel cells for longer periods. For example, an MFC (air-cathode) was operated for four 12 

cycles; each cycle lasted for approximately 35 days. The results suggested that the COD 13 

removal after the first cycle was ca. 95% which increased to more than 98% after the end of 14 

four cycles (after 140 days of MFC operation) [27]. This can be attributed to the longer 15 

duration available for the microorganisms to degrade the complex substrates completely into 16 

simpler substances. However, the coulombic efficiency achieved in the demonstration was ca. 17 

7%, indicating that most of the substrates did not convert to electricity, which could be due to 18 

the following reasons: (i) oxygen diffusion, (ii) production of fermented products, (iii) 19 

oxidization of other electron acceptors, and (iv) biomass production [27]. The integration of 20 

MFCs with other wastewater treatment technologies can extract more energy, thereby further 21 

improving the pollutant removal efficiency. Generally, the bacteria in MFCs effectively 22 

degrade the simpler or low-strength wastewaters whereas bioreactors such as anaerobic 23 

digester (AD) or UASB treat high-strength wastewaters [2]. Therefore, the wastewaters with 24 
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complex composition (e.g. POME) can be subjected to the fermentation in UASB that can 1 

provide more suitable or simpler substrates for electricity generation in MFCs. Moreover, the 2 

residual organics present in the effluent of UASB can be further removed in the MFCs. 3 

 Generally, the MFCs with smaller volumes (10-100 ml) are used in the laboratory 4 

with synthetic wastewaters. However, a significant number of efforts have been made to 5 

scale-up the MFC technology. For example, Zhu et al., constructed a 2-L MFC with 6 

staggered and inline electrode system using graphite rods [80], demonstrating faster start-up 7 

and higher power output as compared to the MFC with inline electrode array. Evidently, the 8 

former MFC produced a maximum power density of 23.8 W/m3 and the latter MFC generated 9 

a maximum power density of 19.1 W/m3 [80]. This higher power density can be accredited to 10 

the improved mass transfer in staggered electrode array. Besides, the MFC also achieved a 11 

84% COD reduction [80]. In another study, the MFC was further scaled-up to 20-L to treat 12 

brewery wastewater [81]. No catalyst and ion exchange membrane was used in this study. 13 

This MFC was operated for one year and a stable 75% COD removal performance was 14 

observed during the first five months [81]. Moreover, a maximum of ~94% of COD reduction 15 

was achieved at a flow rate of 1 ml/ min (hydraulic retention time=313) when the MFC was 16 

connected to an external resistor of 10 � [81]. In a subsequent demonstration, a MFC with 17 

90-L capacity (stacked with five modules) was fabricated by Dong et al. [82]. This was 18 

operated in an energy self-sufficient mode for approximately 180 days to treat brewery 19 

wastewater (diluted and real wastewater) [82]. A schematic diagram of the 90-L MFC is 20 

shown in Fig. 9. The results suggested that the MFC obtained a maximum COD reduction of 21 

~87% and 85% with diluted and real wastewater, respectively. Besides, the MFC with real 22 

wastewater obtained higher energy production (0.097 kWh/m3) as compared with diluted 23 

wastewater (0.056 kWh/m3) [82]. Therefore, it can be concluded that the scale-up of MFC 24 
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technology has shown substantial improvements for wastewater treatment as well as for 1 

bioenergy production, which may pave the way for commercialization of MFCs in the near 2 

future. 3 

5. MFCs FOR BIOREMEDIATION OF SPECIFIC CONTAMINANTS 4 

The exoelectrogens produce electrons from their metabolism in the anode chamber of an 5 

MFC, which need to be reduced at the cathode chamber. Therefore, an electron acceptor is 6 

provided at the cathode to overcome the potential losses. In addition, a catalyst can also be 7 

used to increase the reduction reaction rate. Usually, the electron acceptors that exhibit a high 8 

redox potential, faster kinetics, a low cost and easy availability are significant and of great 9 

interest in MFC applications. For example, oxygen is one of the promising and widely used 10 

electron acceptors in the MFCs. In MFC system, various organic and inorganic toxic 11 

elements or compounds can be utilized as the electron acceptor in the cathode chamber for its 12 

removal or reduction to less toxic form and simultaneously for the electric current generation. 13 

For examples, metal ions, perchlorate, nitrobenzene, azo dyes, nitrate (NO3
-) etc. have been 14 

used as electron acceptors in different MFCs to explore the bioremediation potential of this 15 

technology. Some examples of MFC performance for bioremediation application are given in 16 

Table 4. 17 

The high concentration of toxic heavy metals (e.g. cadmium, mercury, lead, arsenic, 18 

chromium etc.) in industrial effluents is harmful to the cellular metabolism of the flora and 19 

the fauna living on our planet. Therefore, the wastewaters that contain high concentration of 20 

toxic heavy metals need  to be reduced into nontoxic form before they are discharged into the 21 

environment. MFCs have shown a great potential for the reduction of heavy metals both 22 

when used in the anode as well as the electron acceptor in the cathode chamber [72-75]. 23 

Generally, the heavy metals with a high redox potential are of great interest to act as the 24 
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electron acceptor, to achieve higher power output from the cell. Before discussing the MFC 1 

potential for the removal of heavy metals let us get an idea about the processes that are 2 

responsible for heavy metal removal/reduction in MFCs. 3 

Various heavy metals have been investigated in the anode chamber as well as in the 4 

cathode chamber of MFCs for their eco-friendly removal. For anodic removal, generally, a 5 

specific concentration of a heavy metal or toxic element is added in the anolyte 6 

(supplemented with carbon source and bacterial inoculum). On the other hand, a heavy metal 7 

with a high redox potential can be used as the electron acceptor in the cathode chamber. A 8 

few mechanisms have been demonstrated that are responsible for the removal of heavy 9 

metals or other toxic elements during MFC operation. The first mechanism is biosorption that 10 

has been widely recognized for the removal of toxic elements in the MFCs [73]. Biosorption 11 

is a combined term for the processes such as microprecipitation, complexation, chelation, 12 

coordination, and ion exchange. The biomolecules like polysaccharides, proteins and lipids 13 

contain the functional groups such as amine, sulfate, carboxylate, hydroxyl, and phosphate 14 

that help in the biosorption process to remove the heavy metals or toxic pollutants. These 15 

biomolecules may be present in the anolyte or on the bacterial cell walls, which play a major 16 

role in the removal of toxic pollutants. Moreover, some processes like biological oxidation, 17 

chemical oxidation, volatilization, anode electrode adsorption have been found responsible 18 

for the sulfide removal during the MFC operation. 19 

A single chamber air-cathode MFC demonstrated for the removal of cadmium (Cd) 20 

and zinc (Zn) showed high removal efficiencies i.e. 90% and 97%, respectively [72]. 21 

Moreover, in a dual chamber MFC, vanadium containing wastewater was employed as the 22 

cathodic electron acceptor for its simultaneous removal. The fuel cell after 10 days’ operation 23 

achieved ca. 70 % removal of V (V) with a maximum power density of ca. 970 mW/m2 [73]. 24 
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In another study, a two-chamber MFC obtained a maximum power of ca. 431 mW/m2 with 1 

more than 99.5% removal of Hg2+, which was used as an electron acceptor in the fuel cell 2 

[74]. Also ammonia–copper (II) complexes have been substantially recovered from 3 

wastewater using MFC technology. Cu (NH3)4
2+ complexes can be reduced to Cu or Cu2O. In 4 

a study, 96% copper was successfully removed after 12 hours of operation of an MFC at a 5 

pH-of 9.0 [75]. 6 

Different types of dyes are used for the colouring purpose in the textile industry that 7 

results in the generation of a colossal volume of dye wastewater per year around the world. 8 

Dye wastewater contains many toxic and recalcitrant organic molecules and carcinogenic 9 

chemicals [6]. The discharge of such wastewater is threatening to the environment, animals 10 

as well as to the plants. Therefore, treatment of such hazardous wastewater is essential before 11 

its discharge to the environment. MFC technology provides an eco-friendly alternative for the 12 

treatment of dye wastewater and simultaneous bioelectricity generation. MFCs use 13 

microorganisms, therefore, the dyes can be reduced by different decolorization mechanisms 14 

involving enzymes, low molecular weight redox mediators, and chemical reduction by 15 

biogenic reductants. In the MFCs, the dye decolorization occurs in the anode chamber 16 

biologically under anaerobic conditions. For example, the azo bond of congo red dye was 17 

broken into the intermediates such as aromatic amines that can be completely degraded 18 

abiotically in cathode chamber [76].  19 

  An sMFC with bioanode and biocathode was demonstrated to decolorize an azo dye 20 

congo red, after the operation of the fuel cell for approximately one day.  More than 98% 21 

congo red decolourization was achieved in that study [76]. Transfer of electrons from anode 22 

microorganisms and protons through PEM leads to the degradation of azo bond (–N=N–) in 23 

the cathode. Reduction of azo bond results in the formation of colourless and biodegradable 24 
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aromatic amines [76]. Dechlorinating microorganisms can be used in MFCs for the 1 

bioremediation of pentachloroethene (PCE) and trichloroethene (TCE) to reduce them into 2 

non-toxic end product ethene. Strycharz et al. successfully used Geobacter lovleyi and 3 

graphite electrodes (as the electron donor) for reductive dechlorination of PCE [83]. A 4 

consortium of anaerobic and aerobic bacteria in the cathodic chamber of dual chamber MFC 5 

demonstrated efficient degradation of pentachlorophenol (PCP). In the study, degradation rate 6 

for PCP was investigated at different pH values and variant temperatures. The most effective 7 

degradation rates achieved at a constant temperature of 50° C and pH 6 were 0.52 mg/L-h and 8 

0.36 mg/L-h, respectively [83].  In addition, Geobacter species have shown the tendency to 9 

reduce aqueous, soluble U (VI) into an insoluble form as U (IV). Multiple lines of evidence 10 

suggest that G. sulfurreducens entails the outer-surface c-type cytochromes for U (VI) 11 

reduction but do not require pili for the same purpose [84]. Further investigation revealed that 12 

G. sulfurreducens strain lacking the pilA gene reduced U (VI) to the parallel extent to wild 13 

type strain. Similarly, c-type cytochromes are also indispensable for S. oneidensis to reduce U 14 

(VI). Gene deletion studies demonstrated the importance of outer membrane, decaheme 15 

cytochrome MtrC in the electron transport to U (VI), as the strains deficient in mtrC and/or 16 

omcA were unable to reduce U (VI) [85]. Moreover, MFCs utilizing anaerobic biocathodes 17 

have shown the ability to reduce highly toxic Cr (VI) to much less toxic Cr (III) and 18 

subsequent precipitation to Cr (OH)3 with simultaneous electricity generation [86]. The MFC 19 

with set biocathode potentials reduced Cr (VI) with increased reduction rate of 19.7 mg/L-d. 20 

Further, use of Shewanella oneidensis MR-1 (produced riboflavin, an electron shuttle 21 

mediator to transfer electrons) as a biocatalyst in the cathode under aerated conditions in the 22 

presence of lactate showed increased reduction rate for Cr (VI) [87]. An MFC fed with 23 

sulfide and glucose and predominated by Firmicutes obtained sulfide removal efficiencies of 24 

up-to 85% and a power output of 572.4 mW/m2  at acurrent density of 1094.0 mA/m2 [88]. 25 
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Recently, analysis of 16S rRNA revealed that a strain showing similarity to Klebsiella sp. is 1 

capable of bioremediation of cyanide-containing wastewater in MFC. That study achieved 2 

more than 99.5% removal of cyanide and ca. 88% COD removal rate [89]. The investigations 3 

described in this section reflect that the MFC technology is a promising alternative for the 4 

bioremediation of hazardous contaminants. 5 

6. MFCs AS BIOSENSORS 6 

The online water-monitoring system is indispensable to maintain the proper usage of 7 

wastewaters from industries or municipal to conserve the aquatic environment as well as the 8 

public health. The MFC has been proven a successful biosensor to detect the organic 9 

compounds and contaminants in the wastewaters [90-92]. The conventional biosensors 10 

usually require a transducer whereas MFC in itself acts as a transducer, therefore MFC can 11 

prove to be a cost-effective biosensor. In the MFC-based biosensor, the exoelectrogens in the 12 

anode chamber serve as a signal generator or biological recognition element whereas 13 

electrodes and PEM (if used) acts as the transducer. The main advantage of the MFC-14 

biosensor is its long-term stability. This is because the exoelectrogenic biofilms extend the 15 

lifespan of sensing element and curtail the replacement of sensing elements.  16 

The basic principle of MFC-based biosensor is presented in Fig. 10. Generally, a toxin 17 

(or a sample to be detected) is provided at the anode chamber and its effect on the voltage 18 

output is measured. A sudden change in the voltage i.e. either fall or rise in the voltage is 19 

taken as the signal for toxin detection. For example, if a toxic element (i.e. chromium) is 20 

injected in the anode chamber, a sudden or slow fall in the voltage can be expected because it 21 

inhibits growth and activity of the exoelectrogens and, consequently, decreases the voltage 22 

[93].  On the other hand, if a carbon source (i.e. acetate) is injected in the anode chamber, a 23 

rise in the voltage is anticipated because it accelerates the growth and activity of the 24 
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exoelectrogens and, therefore, increases the voltage [93]. The results from this study are 1 

depicted in Fig. 11, which demonstrates different MFCs as the biosensors using low and high 2 

concentrations of different types of contaminants. Typically, the demonstration used three 3 

samples i.e. chromium (acute toxin), iron (non-toxic metal) and acetate (organic substrate) at 4 

different concentrations (chromium-1 mg/L and 8 mg/L, iron-1 mg/L and 48 mg/L, acetate-5 

200 mg/L) in separate MFCs. The injection of acute toxic and non-toxic metal suddenly 6 

decreased the voltage marginally at low concentrations and severely at high concentrations. 7 

On the other hand, the addition of carbon substrate increased the voltage [93]. 8 

The MFC sensors can be operated in two modes. The first is flow-through and the 9 

second is flow-by electrodes. In the first mode, the water sample moves through the porous 10 

electrode, while in the second mode, the water sample flows parallel to the electrode surface 11 

[94]. The operation of MFC sensor in a flow-through mode can improve the diffusion of ions 12 

and the electrolytes, thereby increasing the sensitivity of the MFC-based toxicity sensors. 13 

Moreover, a study reported that flow-through anode in an MFC sensor also enhanced the 14 

diffusion of protons through anodic biofilm, improving the biocatalysis of the substrates by 15 

the exoelectrogens [95]. Evidently, the sensitivity of an MFC-based toxicity sensor was 16 

increased approximately 40 times by using a flow-through anode as compared to the flow-by 17 

anode [96]. 18 

 According to the Michaelis-Menten equation, the biocatalytic activity of 19 

exoelectrogens in the anode chamber depends on the concentration of dissolved organic 20 

matter and it keeps increasing until the concentration of the organic matter reaches a 21 

saturation point [97]. MFC sensors are usually operated in turn-off mode for toxicity 22 

monitoring, and the metabolic activity of exoelectrogens can be supressed by adding a certain 23 

concentration of a toxic pollutant in the anolyte, resulting a certain change in the electric 24 

output [94, 96]. The biological toxicity of the target toxic pollutants is generally measured by 25 
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correlating the concentration of the toxin to the electric signal output. Therefore, current 1 

change (�I) and inhibition ratio (IR) can be evaluated. Further, �I can be utilized to obtain 2 

the sensitivity of the MFC-based toxic sensor by normalizing the �I to the concentration of 3 

the toxic agent. On the other hand, IR represents the amplitude of the electric signal output 4 

and can be used to evaluate the toxicity of pollutants [98]. However, it is still unclear what 5 

maximum concentration of the toxic agent is required to obtain a signal output for toxicity-6 

monitoring. 7 

 In the conventional MFC-based sensors, the sensitivity of toxic agents depends on the 8 

bioanode in the system or we can say bioanode acts as a sensing element in the MFC sensor 9 

to monitor the water toxicity. But recently, Yong et al. designed an MFC sensor with 10 

biocathode as the sensing element. The results revealed that the MFC sensor with biocathode 11 

showed better sensitivity than the MFC sensor with bioanode [99]. Such MFC sensors could 12 

be advantageous in comparison to bioanode because they do not need organic matter 13 

supplementation for baseline signal output and can reduce the negative effects of combined 14 

shock of toxicity and organic matter. Moreover, the signal output of an MFC sensor is greatly 15 

dependent and influenced by the performance of the anode and the cathode. Therefore, the 16 

modifications can be done in both the chambers to reduce the response time and increase the 17 

detection capacity. For example, the anode potential of the MFC sensor significantly affects 18 

the biosensor sensitivity and, therefore, can be optimized using a potentiostat. The anode 19 

potential usually determines the energy level of the electrons that get transferred from the 20 

surface of exoelectrogens to the anode surface and, hence, affects the electron transfer rate 21 

and the electric output signal [94]. A study revealed that the MFC sensor operated at a 22 

constant anode potential (-1.5 V) showed the highest sensitivity and an unbiased 23 

measurement of toxicity as compared to the MFC sensor without applying anode potential 24 
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[96]. Similarly, the cathode of MFC sensor can be altered to improve its water-monitoring. 1 

The performance of cathode (stability and catalysis) can affect the amplitude and the 2 

accuracy of output signal under non-toxic conditions as well as toxic conditions. In a study, a 3 

cathode-based MFC sensor array was designed like a bioanode MFC sensor array to detect 4 

Cu2+ and acidic toxicity. An immediate voltage drop was observed when the MFC was 5 

injected with Cu2+ (2-6mg/L) and the pH was decreased from 6 to 4 [100]. Results are given 6 

in Fig. 12. 7 

 The application of an MFC-based BOD sensor with municipal or industrial 8 

wastewater could be more challenging in real-world applications because the wastewaters 9 

contain easily degradable organic matters as well as toxic pollutants. During the operation of 10 

an MFC-based BOD sensor, sudden changes in BOD and toxicity could simultaneously occur 11 

[101]. In a MFC-based sensor, the current density decreases with respect to the toxicity of the 12 

toxic agents, while the current density increases with rise in BOD [101]. Therefore, the 13 

sudden variation in BOD might wane the responses of MFC sensor for toxicity. Evidently, a 14 

study demonstrated that a combined shock of BOD and toxicity affected the signal output 15 

when using the MFC sensor for the detection of Cr (IV) [102]. In other words, it can be stated 16 

that signal interference is caused by the combined shock of BOD and toxicity when MFC 17 

sensor is used for water-monitoring. Recently, Yong et al. studied the effect of organic matter 18 

concentration (in anode) on toxicity monitoring to avoid the signal interference by the 19 

combined shock of BOD and toxicity [103]. The study revealed that the background organic 20 

matter concentration should be fixed at a high level of oversaturation for maximizing the 21 

signal output when the ‘�I’ is selected relative to the concentration of a toxic agent. On the 22 

other hand, IR should be fixed to a lower value near to the detection limit to maximize the 23 

signal output [103]. The results of this study are shown in Fig. 13. 24 
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 The passage of oxygen into the anode chamber affects the metabolic activity of 1 

anaerobic microorganisms in MFC-based biosensors, thereby, affecting the biosensor 2 

sensitivity. Therefore, it is important to solve this limitation to improve the performance of 3 

these kinds of biosensors. The oxygen diffusion can be diminished by placing an ion 4 

exchange membrane between the cathode and the anode that is less permeable to oxygen. 5 

Generally, nafion is used as the proton exchange membrane in MFCs, but it shows high 6 

oxygen permeability [94]. Recently, a sulfonated ketone ether membrane was applied in a 7 

MFC-based biosensor replacing nafion. The MFC with the new membrane showed better 8 

sensitivity results as compared to nafion [104]. The better performance was attributed to the 9 

lower oxygen permeability of the membrane [104]. The other challenges include its long 10 

response time and detection reliability to replace the commercialized real water-monitoring 11 

systems. However, the longer response time for detection of contaminants can be minimized 12 

by modifying the MFC sensor structure. For example, in a study, the response time was 13 

significantly reduced from 36 min to 5 min by decreasing the volume of anode from 25 ml to 14 

5 ml in the MFC [104]. On the other hand, the detection reliability can be further ameliorated 15 

by connecting various MFCs in parallel. Such MFC array has been reported for effective 16 

water quality monitoring [94].  17 

  A few MFC-based biosensors have been commercialized. One such product is named 18 

Biomonitoring system (HATOX-2000), which has been invented by a Korean company and 19 

can be utilized for online monitoring of water toxicity. More detailed information of this 20 

product can be accessed from elsewhere (www.ecotrade.org). 21 

 22 

 23 
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7. MICROBIAL ELECTROLYSIS CELLS FOR HYDROGEN PRODUCTION 1 

An MFC produces electricity from organic waste while a microbial electrolysis cell (MEC) 2 

produces hydrogen gas. The working principle of an MEC is similar to an MFC as the 3 

electrons generated by the exoelectrogens in the anode combines with protons at the cathode 4 

to produce hydrogen gas as the final product. But unlike MFC, electricity is provided in the 5 

MEC to produce hydrogen. Theoretically a voltage of 0.2 to 0.8 V is required to reduce the 6 

protons to form hydrogen. Such low voltage is easily achievable in the MFC. Therefore, an 7 

MFC can be used to supply the voltage to the MEC for hydrogen production. The electrode 8 

material used in the MFCs can be employed in the MECs as well. Moreover, the 9 

exoelectrogens are also required to produce hydrogen gas in MECs. In MECs, similar to 10 

MFCs, a cathode catalyst such as platinum is used to overcome the overpotentials to drive 11 

hydrogen production. Unlike MFCs, the MECs require strictly anaerobic conditions for 12 

hydrogen production. However, the higher concentration of hydrogen gas promotes the 13 

growth of methane-producing microorganisms. Subsequently, the hydrogen gas is 14 

contaminated by methane and the resultant hydrogen output is decreased. Different types of 15 

organic sources and wastewater can be applied in MEC for hydrogen production. Notably, 16 

MEC has shown higher hydrogen yields than that obtained with fermentation. For example, 17 

the maximum theoretical yield of 7 mol-H2/mol-glycerol by oxidation is achievable. The 18 

hydrogen yields reported in some studies using fermentation vary from 0.05-1.05 mol-19 

H2/mol-glycerol [106, 107], but a hydrogen yield of 3.9 mol-H2 /mol-glycerol has been 20 

achieved using MEC [108]. In addition, a hydrogen yield of 7.2 mol-H2 /mol-glucose was 21 

also obtained in the study against the maximum theoretical yield of 12 mol-H2/mol- glucose 22 

[108]. 23 
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There are some obstacles that limit the application of MECs at the large scale. For 1 

example, a single MFC generally produces an OCV of approximately 0.8 V and a resultant 2 

working voltage of ∼0.5 V can be achieved in an MFC [109]. This decrease in voltage could 3 

be due to higher internal resistance in the MFC system, energy utilization by bacteria, and 4 

electrode overpotentials [109]. Therefore, three or five MFCs can be connected in series to 5 

increase the resultant voltage output. But the voltage reversal can reduce the voltage output 6 

over the long-term [109]. This problem was resolved by Hatzell et al. by using a capacitor in 7 

the circuit to prevent the voltage reversal. In this study, the MFCs were connected in a 8 

parallel configuration to charge the capacitors. Then the capacitors were connected in series 9 

to discharge the voltage to the MECs. Such a system increased the hydrogen production rate 10 

approximately 2.3 times as compared to coupled systems without capacitors [110]. Another 11 

major limitation in MECs is the consumption of hydrogen by methanogens to produce 12 

methane, which consequently reduces the hydrogen generation. Many approaches have been 13 

used to inhibit the methanogens in MECs. For example, the cathode can be exposed to 14 

oxygen or ultraviolet radiation to inhibit the methanogens. In a demonstration, the exposure 15 

of cathode to air decreased the methane concentration from 3.4% to less than 1% [111].  On 16 

the other hand, the exposure of ultraviolet (UV) radiation in the MEC maintained high 17 

concentrations of hydrogen (91%), while without UV irradiation, methane concentrations 18 

increased significantly [112]. Recently, the use of antibiotics has shown the potential to 19 

inhibit the methanogens [113]. In a study, Catal et al. used different concentrations of four 20 

antibiotics (neomycin sulfate, 2-bromoethane sulfonate, 2-chloroethane sulfonate, and 8-aza-21 

hypoxanthine) to measure the inhibition of methanogenesis on a mixed culture community to 22 

improve the hydrogen production. The results showed that the increasing concentrations of 23 

the antibiotics decreased the concentration of methane effectively that resulted in a 24 

comparatively higher hydrogen production [114]. The third major problem that hinders the 25 
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use of MEC at pilot scale is the necessity of a catalyst at the cathode. Usually, platinum is 1 

used as the cathode catalyst in MECs that is very expensive. Moreover, it can be easily 2 

poisoned by sulfide present in the water. Therefore, its replacement with a catalyst which is 3 

cost-effective and has similar catalytic properties is required to launch the technology at a 4 

large scale. Some catalysts have been already experimented in MECs to replace platinum. For 5 

example, Yang et al. recently used polyaniline/multi-walled carbon nanotube as the cathode 6 

catalyst in a single chamber MEC. The results suggested that a maximum hydrogen 7 

production rate of 1.04 m3/m3/day was achieved with the catalyst, which was comparable to 8 

the performance with platinum [114]. The same catalyst was further used in a different study 9 

with biocathodes that achieved a maximum hydrogen production rate of 0.67 m3/m3/day 10 

[115]. Moreover, nano-Mg (OH)2/graphene composites at different concentrations were 11 

demonstrated as the cathodic catalyst in MEC to improve hydrogen production. The cathodic 12 

hydrogen recovery and hydrogen production rate obtained with the catalyst were ca. 84% and 13 

0.63 m3/m3/day, which were higher as compared to the Pt/C cathode [116]. 14 

8. CONCLUSIONS AND CHALLENGES 15 

The MFCs provide a suitable, eco-friendly alternative to produce energy and to treat 16 

wastewater simultaneously. Several wastewaters ranging from low-strength to high-strength 17 

have been utilized in MFCs for their treatment and electricity generation simultaneously. 18 

However, the power outputs achieved in the MFCs are low and can be enhanced by the 19 

following approaches; 1) a suitable design that results in low internal resistance; 2) using 20 

nanoparticles that increase the electron transfer mechanisms; 3) use of genetically engineered 21 

microorganisms; 4) addition of pre-treated inoculum or control inoculum; 5) decreasing the 22 

start-up time of the MFC. For example, graphene/ Fe3O4 nanocomposites coated carbon paper 23 

as the anode electrode decreased the start-up time and achieved a maximum current density 24 
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of 1800 mA/cm2, which was ~6 times higher than the bare anode [56]. The electricity 1 

generated from MFCs can be further used to power electric instruments or machines. As 2 

noted earlier, MFCs have been successfully applied to operate the "Gastrobots'' for bioenergy 3 

production and environmental monitoring. 4 

 Further efficient treatment of wastewater can be achieved by operating the fuel cells 5 

at mesophilic temperatures. Moreover, the MFCs integrated with other anaerobic 6 

fermentation technologies such as with UASB, have shown enhanced COD removal 7 

efficiency. Significant efforts have been made to scale-up the MFC technology. For example, 8 

a MFC with 90-L capacity obtained a maximum COD reduction of ~87% with brewery 9 

wastewater [82].  10 

 MFCs have shown a great potential for the reduction of heavy metals or toxic 11 

pollutants when used in the anode as well as in the cathode chamber as the electron acceptor. 12 

The heavy metals with a high redox potential are of great interest to act as the electron 13 

acceptor, to achieve higher power output from the cell. The biomolecules that may be present 14 

in the anolyte or on the bacterial cell walls contain the functional groups, which play a major 15 

role in the removal of toxic pollutants. MFCs have achieved heavy metal removal of even 16 

upto 99.5% (Hg2+) and 97% (Zn). The MFCs can also be applied as a BOD or COD sensor to 17 

detect the availability of a toxic pollutant in the wastewater. The voltage drop/rise is taken as 18 

the signal for the detection of the toxin or the sample. The change in voltage is usually 19 

proportional to the concentration of the toxin. The low sensitivity and detection reliability are 20 

the main challenges in MFC-based biosensors. The sensitivity of an MFC-based toxicity 21 

sensor can be improved by operating them in a flow-through mode. A study showed that the 22 

sensitivity of the biosensor increased approximately 40 times by using a flow-through anode 23 

as compared to the flow-by anode [96]. In addition, an MFC can be amended to an MEC to 24 
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produce another biofuel i.e., hydrogen energy, while the MFC may be a substantial 1 

alternative to supply the required voltage. One of the major limitations in MECs is the 2 

consumption of hydrogen by methanogens to produce methane, which consequently reduces 3 

the hydrogen generation. However, the use of antibiotics and exposure of ultraviolet 4 

radiations have shown the potential to inhibit the methanogens [113]. The results showed that 5 

the increasing concentrations of the antibiotics decreased the concentration of methane 6 

effectively, resulting a higher hydrogen production [114]. 7 

The MFC technology has been used for various applications, however, there are some 8 

challenges that need to be addressed to make the technology economically viable. The first 9 

prime hurdle is a feasible design for upscaling the MFC. The previous designs exhibit some 10 

drawbacks such as high internal resistance, electrode spacing, exchange of anolyte and 11 

catholyte across the PEM etc. when we think to scale up them for long-term operations. 12 

However, some designs have already been introduced but have not been explored at the 13 

industrial scale. The second challenge is to provide cost-effective electrode materials and 14 

PEM (if used) for MFCs. For scale up, the available electrode materials such as carbon paper 15 

and carbon cloth would be very expensive. Another obstacle is the choice of an electron 16 

acceptor at the cathode. Oxygen is abundantly available and is the preeminent choice for the 17 

electron acceptor. But continuous sparging of oxygen at the cathode can also affect the 18 

activity of anaerobic microbial community at the anode during long-term operations since 19 

oxygen can diffuse through the PEM to the anode. Platinum is most commonly used for 20 

oxygen reduction reaction, but it is very expensive, and a cheaper alternative is required. For 21 

example, at the small scale (MFC of 250 ml capacity), commercially available 0.5 mg/cm2 22 

20% platinum on carbon paper of 20 cm2 costs ~250 US$ (Fuel Cell Earth, USA). If we want 23 

to scale up the MFC reactor, we need larger electrode and obviously, a large amount of 24 
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platinum. This makes the use of platinum uneconomical at the large scale. Moreover, 1 

platinum turns poisonous when it reacts with certain elements/chemicals in the water such as 2 

sulphide, making the use of platinum impractical for wastewater treatment application. 3 

Therefore, the replacement of platinum is the must in scaling-up the MFCs.  4 
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Highlights 

� The state-of-the-art information on major applications of MFCs and strategies to improve 

them is provided in this article.  

� The basic principles of all the applications are thoroughly discussed.  

� The obstacles that limit the technology to use in real world applications are reported. 

� Many approaches such as electrode modification, genetic engineering etc. can be utilized 

to improve the MFC performances. 
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Table 1. Performance of microbial fuel cells for bioelectricity generation using pure cultures 

 

Inoculum           Type of MFC          Substrate                    Electrode materials                  Current density/Power density       References

 

Klebsiella pneumonia  Single-chamber MFC        Glucose                                Carbon cloth                                           199 mA/m
2
        25 

Desulfovibrio desulfuricans   Double-chamber MFC       Wastewater                    Graphite felt                            233 mA/m
2
              26 

Escherichia coli                     Double-chamber MFC        Glucose                           
1
PAN/ TiO2 composite-anode             3390 mA/m

2
                             27  

                     Carbon cloth–cathode   

Saccharomyces     Single-chamber MFC         Synthetic wastewater           Graphite plates                                       282 mA/m
2
              28 

cerevisiae 

Thermincola ferriatica           Double-chamber MFC        Acetate                                Graphite carbon fibres                   12000 mA/m
2
                      14      

  Lysinbacillus                           Double-chamber MFC       Glucose                                Graphite felt                                             85 mW/m
2  

                             30 

sphaericus                                                  

Citrobacter sp.     Single-chamber MFC         Acetate                                Carbon cloth                                    205 mA/m
2  

                              31  

Ochrobactrum sp.    Double-chamber MFC        Xylose         Carbon fibres brush                                 2625 mW/m
3
               32 

Shewanella  putrefaciens       Single-chamber MFC         Lactate                    Carbon cloth              4920 mW/m
3
             33    

Scenedesmum              Double-chamber MFC        Acetate                      Carbon fiber brush-anode             1926 mW/m
2  

                        34 

                                                                                                                                        Carbon cloth-cathode                     

Shewanella oneidensis           Mini-MFC                           Lactate                                Graphite-felt                                             3000 mW/m
2
                            35    



Cyanobacteria                       Single-chamber MFC          Domestic wastewater          Graphite felt-anode,                                114 mW/m
2  

                             36   

                                                                                                                                        Carbon cloth-cathode                                        

Chlorella vulgaris                 Double-chamber MFC        Wastewater                          Carbon felt-anode                                    2485 mW/m
3
                            37 

                                                                                                                                        Carbon cloth-cathode               

Rhodopseudomonas              Single-chamber MFC          Wastewater                          Carbon paper-anode                                2720 mW/m
2
                            38 

 palustris                                                                                                                         Carbon cloth-cathode                                                                                                          

Coriolus versicolor                Double-chamber MFC        
2
ABTS                                 Carbon fibres                                          320 mW/m

3
                              39                       

Geobacter metallireducens  Double-chamber MFC        Domestic wastewater          Carbon paper                         40 mW/m
2
                               40 

Geobacter sulfurreducens     Double-chamber MFC        Acetate                                Carbon fibres                                           1.9 mW/m
2
                               17 

 

Note-:   
1
PAN= Polyaniline 

            
2 
ABTS = 2, 2

’
-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) 

            
 
 Units of surface power density are given in milliwatts per square meter; volume power density in watts per cubic meter; and current density in milliampere per square meter. 

 

 

 

 

 



Table 2. Performance of microbial fuel cells for bioelectricity generation using mixed cultures  

Source of inoculum      Type of MFC        Substrate               Electrode material  Current density/Power density Reference 

                  / Voltage     

 

Dairy manure wastewater  Single-chamber MFC  Dairy manure wastewater Graphite fiber brush   190 mW/m
2
                                42 

Potato wastewater   Single-chamber MFC  Potato wastewater  Graphite fiber brush   217 mW/m
2
                                42  

Activated sludge   Double-chamber MFC Acetate, glucose  Carbon paper    410 mV    43 

Primary wastewater  Double-chamber MFC Acetate   Graphite rods    152 mA/m
2
    44 

Activated sludge  Single-chamber MFC   Acetate, glucose   Carbon cloth    1084 mW/m
2
                                45 

Activated sludge   Double-chamber MFC  
1
POME   Polyacrylonitrile carbon felt  107 mW/m

2
                                46 

Activated sludge  Single-chamber MFC   Glucose    Carbon cloth     68 mW/m
2
         47 

Activated sludge                     Single-chamber MFC  Acetate   Graphite coated with graphene 670  mW/m
2
        48 

            -anode, carbon cloth-cathode         

Primary wastewater  Single-chamber MFC   Acetic acid   Graphite fiber brushes-anode  835 mW/m
2
       49 

            Carbon cloth-cathode 

Primary wastewater  Single-chamber MFC  Ethanol   Graphite fiber brushes-anode  820 mW/m
2
       49 

            Carbon cloth-cathode    

Primary wastewater  Single-chamber MFC  Lactic acid   Graphite fiber brushes-anode  739 mW/m
2
       49 

            Carbon cloth-cathode   

Primary wastewater  Single-chamber MFC  Succinic acid   Graphite fiber brushes-anode  444 mW/m
2
       49 

            Carbon cloth-cathode  



Anaerobic sludge  Double-chamber MFC Slaughterhouse wastewater  Carbon cloth-anode   578 mW/m
2
       51  

            Titanium mesh-cathode 

Anaerobic reactor effluent Double-chamber MFC Acetate   Carbon cloth-anode    1200 mW/m
3
      52  

            Granular active carbon-cathode 

Soil    Double-chamber MFC  Cellulose   Carbon paper    188 mW/m
2
       53  

Note:    
1
POME =Palm Oil Mill Effluent 

 Units of surface power density are given in milliwatts per square meter, volume power density in watts per cubic meter, and units of voltage in millivolts. 

  



 Table 3. Performance of microbial fuel cells for wastewater treatment 

 

Wastewater    Type of MFC   Electrode material    % COD reduction  Reference

 

Swine wastewater  Single-chamber MFC  Toray carbon paper as anode   92    54  

        carbon cloth as cathode 

Starch processing  Single-chamber MFC  Carbon paper     98    55  

 wastewater         

Real urban wastewater Double-chamber MFC Graphite electrodes    70    60  

Olive mill wastewaters Single-chamber MFC  Carbon cloth as electrodes                              65    61 

Protein-rich wastewater Double-chamber MFC Graphite rods as electrodes   80    4  

Paper recycling   Single-chamber MFC  Graphite fibers-brush    76    11  

 wastewater                    

Cassava mill   Double-chamber MFC Graphite plates electrode   86    62 

 wastewater                   

Food processing   Double-chamber MFC Carbon paper electrodes   95    68  

 wastewater  

Domestic wastewater  Double-chamber MFC Plain graphite electrodes   88    69 

Chocolate industry  Double-chamber MFC Graphite rods as electrodes   75    70  

 wastewater 

Biodiesel wastes   Single-chamber MFC  Carbon brush electrodes   90    71  

Beer brewery wastewater Single-chamber MFC  Carbon fibers       43    72   

Brewery wastewater  Single-chamber MFC  Carbon cloth as electrodes   98    73   

Potato Processing   Tubular MFC   Graphite particles as anode                             91     74  

 wastewater          Graphite felt as cathode 

 

                                                                            



Palm oil mill effluent  
1
UML-MFCs   Graphite granules, Carbon fiber felt  90     75 

Animal carcass wastewater Up-flow tubular MFC  Graphite felt as anode    51     76  

         Carbon cloth as cathode   

Food waste leachate  Double-chamber MFC Carbon felt     85     83 

Chemical wastewater  Double-chamber MFC Graphite plates    63     84 

 

          Note: 
1
UML-MFCs = Up-flow membrane-less microbial fuel cell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Performance of microbial fuel cells for bioremediation  

Heavy metals/ Wastewater          Type of MFC                      Electrode material                       % Removal                Power density             Reference

                             

 

Chromium (VI)  Double-chamber MFC Graphite granules-cathode          94            6.4 W/m
3                            

85 

            Graphite brush-anode 

Chromium (VI)   Double-chamber MFC  Carbon fiber felt             76          970 mW/m
2
             86 

Sulfide         Double-chamber MFC  Carbon fiber felt             85          572.4 mW/m
2
             87 

Cadmium   Single-chamber MFC  Carbon cloth            90          3600 mW/m
2
       88 

Zinc    Single-chamber MFC  Carbon cloth            97          3600 mW/m
2
       88 

Vanadium   Double-chamber MFC  Carbon fiber felt           68          970 mW/m
2
             89 

Ammonia–copper (II)  Double-chamber MFC Graphite felt-anode           96          140 mW/m
2
             90  

        Graphite plate-cathode    

Mercury (Hg
2+

)  Double-chamber MFC Graphite felt-anode          99.5           433 mW/m
2
             91 

        Carbon felt- cathode              

Azo dye Congo red   Single-chamber MFC   Carbon brush           98.3                 -         92 

Cyanide   Double-chamber MFC Carbon cloth           88.3              -        93 

Copper (Cu
2+

)   Double-chamber MFC  Graphite felt electrodes         99.5            319 mW/m
2
             106 

Chromium (VI)  Single-chamber MFC   Carbon brush-anode          99           419 mW/m
2
             107 

        Carbon cloth-cathode 

Nitrate    Single-chamber MFC  Graphite rods           30           3900 mW/m
3
       108 

Nitrite    Single-chamber MFC  Graphite rods           37           3600 mW/m
3
                       108

 Note:  Units of surface power density are given in milliwatts per square meter; volume power density in watts per cubic meter. 
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After 134 minutes of the first fall (shock), the voltage decreased from the steady point (89 

mV) to 81 mV. (c) After 74 minutes of operation, there was a steep fall in the voltage from 

109 mV to 91 mV. (d) In another MFC, iron of concentration 1 mg/L was injected in the 

anode chamber after 30 minutes of operation. This low concentration decreased the voltage 

slightly from 121 mV to 118 mV, though higher concentration sharply decreased the voltage 

as mentioned earlier in (a). (e) The effect of carbon substrate was also sensed in the MFC, 

addition of 200 mg/L sodium acetate showed instant rise in the voltage from 102 mV to 114 

mV after 2 minutes, which further increased to 122 mV after 4 minutes. 

12. (a) The MFC array used for Cu
2+

 toxicity monitoring, (b) acidic toxicity monitoring 

[100]. 

13. The signal interference of an MFC sensor by the combined shock of biochemical oxygen 

demand (BOD) and toxicity in a continuous flow-through mode: (a) the MFC sensor operated 

with background acetate of 0.3 mM; (b) the MFC sensor operated with background acetate of 

5 mM [103]. 
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