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 24 

Abstract 25 

Gut bacterial communities influence, and are influenced by, the behaviour and ecology of their hosts. 26 

Those interactions have been studied primarily in humans and model organisms, but we need field 27 

research to understand the relationship between an organism’s gut bacteria and its ecological 28 

challenges, such as those imposed by rapid range expansion (as in invasive species) and the presence 29 

of host-manipulating parasites. Cane toads (Rhinella marina) provide an excellent model system in 30 

this respect, because the species’ ongoing colonization of Australia has enforced major changes in 31 

phenotypic traits (including behaviour), and lungworm parasites (Rhabdias pseudosphaerocephala) 32 

modify host gut function in ways that enhance the viability of lungworm larvae. We collected female 33 

toads from across the species’ invasive range and studied their morphology, behaviour, parasite 34 

infection status and gut bacterial community. Range-core versus range-edge toads differed in 35 

morphology, behaviour, gut bacterial composition and predicted gut bacterial function but did not 36 

differ in the occurrence of parasite infection nor in the intensity of infection. Toads infected with 37 

lungworms differed from uninfected conspecifics in gut bacterial composition and diversity. Our 38 

study demonstrates strong associations between gut bacterial community and host ecology and 39 

behaviour.  40 

 41 

Introduction 42 

The bacterial community within an organism’s intestines can be strongly influenced by host 43 

behaviour and ecology, such as habitat selection and diet [1–5]. But that interaction runs both ways 44 

because gut bacteria can influence behaviour and ecology of the host. For example, transferring gut 45 

contents can modify the recipient host’s behaviour (exploratory behaviour, Mus musculus [6]; 46 

emotional reactivity, Coturnix japonica [7]). Similarly, altering gut microbial communities by 47 

administering antibiotics or altering dietary composition triggered aggressive behaviour in leaf-48 

cutting ants (Acromyrmex echinatior [8]). Remarkably, changes in only a single bacterial species 49 

within the gut can affect behaviour of the host (e.g., Drosophila melanogaster [9]; Danio rerio [10]; 50 

M. musculus  [11]). Gut microbiota can also affect mating choices [12] and foraging [13–15].  51 
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To date, most evidence for effects of intestinal bacteria on host behaviour comes from studies on 52 

humans and “model organisms”. To elucidate the functional significance of this phenomenon, we 53 

need to extend such studies to free-ranging animals, incorporating a wider range of taxa [16]. 54 

Invasive species offer good models for such research, because novel challenges in the invaded range 55 

create an opportunity to compare closely-related organisms exposed to profoundly different 56 

environments [17,18]. Host-parasite relationships also may be disrupted during biological invasions, 57 

due to processes such as “enemy release” (loss of co-evolved native pathogens from the native range 58 

[19]). Parasites can manipulate host behaviour and physiology in ways that enhance parasite fitness 59 

but reduce host fitness [20]. Thus, if the gut bacterial community provides a mechanism for such 60 

effects, parasite-infected individuals should exhibit different gut bacteria than uninfected 61 

conspecifics. 62 

These ideas suggest two predictions: (i) that the gut bacterial community should differ between 63 

populations of an invasive species (e.g., between the range-core and the invasion-front); and (ii) that 64 

the gut bacterial community should differ between parasitized hosts and non-parasitized conspecifics. 65 

The colonization of Australia by cane toads (Rhinella marina) provides a robust opportunity to test 66 

these predictions. Since their release in north-eastern Australia in 1935, toads have dispersed into 67 

areas that are much hotter and more seasonally arid than in the native range or the initial release sites 68 

[21]; and toads have brought with them a native-range nematode lungworm (Rhabdias 69 

pseudosphaerocephala) that can have devastating impacts on host viability, and induces behavioural 70 

and physiological changes in the host [22]. Notably, infected toads produce copious watery faeces 71 

[22]; hence, we expect lungworm-infected toads to exhibit different gut bacterial communities than 72 

uninfected individuals.  73 

 74 

Methodology 75 

Study species, sample collection and behavioural assays 76 

Cane toads are native to South America, and were introduced into Australia in 1935 as a biocontrol 77 

for pests of sugar cane crops [23]. As the toads spread through tropical Australia, they fatally 78 

poisoned many native predators [23]. Toads from range-core populations (eastern Australia) differ 79 

from invasion-front conspecifics (in north-western Australia) in phenotypic traits that confer 80 

increased dispersal ability, such as endurance [24], limb morphology [25], boldness and exploratory 81 

behaviour [17,26]. Toads from the invasion-front also have lower rates of infection of the co-82 
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introduced parasitic lungworm [27]. Drivers of variation in invasion-related behaviours in this 83 

species include genetics, morphology, habitat, diet, prior experience and parasites [17,28–31]. 84 

However, the possible role of gut bacteria as a potential driver of behavioural shifts across the 85 

invasive range has not been studied.  86 

We hand-captured 60 adult females from three sites on the invasion-front and three sites in the range-87 

core (Table S1). We conducted brief behavioural assays upon collection including: (i) struggle score 88 

(number of kicks after being captured until toad remains still for 5 seconds) and struggle likelihood; 89 

and (ii) righting effort (time to right itself, number of kicks within two minutes after toad is placed on 90 

its dorsal side, and righting effort likelihood [17]. These measures are predictive of traits including 91 

speed and stamina (K. Stuart, pers. comm.), suggesting that these simple assays may reveal a toad’s 92 

dispersal potential. We then placed animals into individual, moist, calico bags and weighed, 93 

measured (snout urostyle length; SUL) and euthanised them by injecting tricaine methanesulfonate 94 

(MS222) buffered with bicarbonate of soda.  95 

We dissected the toads and scored the presence of two types of toad parasite: the gut-encysted 96 

physalopterine larvae [32] and adult lungworms [22,33]. Lungworm larvae pass through the gut, but 97 

are less easily detected and reliably counted than are adult lungworms. From each toad, we removed 98 

0.3cm of colon near the cloaca (including gut contents) and preserved it in 95% ethanol (see 99 

Supplementary Material for justification of sampling protocols).  100 

 101 

Analyses  102 

We compared host morphology and behaviour between regions (range-core versus invasion-front), 103 

and as a function of infection status (lungworm infected versus non-infected). Because body length 104 

(SUL) and mass were correlated, we only included SUL as our measure of host morphology in 105 

further analyses. We used a t-test to compare mean SUL between regions and infected/non-infected 106 

toads. For associations between region or infection status with host characteristics or behavioural 107 

traits, we used SUL as a covariate in generalized linear models (GLM). See Supplementary Material 108 

for details of statistical analyses.  109 

 110 
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Laboratory methods and data pre-processing for characterizing gut bacterial community composition 111 

and predicted functions are described in Supplementary Material. Briefly, we calculated within-112 

individual (alpha) bacterial diversity and between-site (beta) bacterial diversity. For the latter 113 

variable, we subset our data to include the Core50 gut community (Amplified Sequence Variants 114 

(ASVs) present in a minimum of 50% of toads from each site [2]). We predicted bacterial functions 115 

and generated pathway abundance based on Core50 ASVs. We compared bacterial composition and 116 

predicted function between regions, and between lungworm-infected and non-infected toads. We 117 

identified differences in individual ASVs and predicted bacterial functions between range-core and 118 

invasion-front toads and identified associations between host characteristics (including infection with 119 

parasites) with bacterial communities and predicted bacterial functions. Analyses were conducted in 120 

QIIME2 [34], PICRUST2 [35], and R packages in R version 4.0.2 [36].  121 

Results  122 

Ecological traits  123 

Wild-caught invasion-front toads were larger than range-core toads (Tables S2, S3; mean SUL t = 124 

2.54, df = 53.90, p = 0.014). Neither counts nor presence of parasites (lungworm and gut) differed 125 

significantly across the range (Table S2). Range-core toads were more likely to struggle (Tables S2, 126 

S3; p = 0.008, 95% CI: core [-0.174, 0.005], edge [-0.023, 0.199]) and, in those that did struggle, the 127 

number of struggle movements was higher for range-core toads (Tables S2, S3; p = 0.002, 95% CI: 128 

core [-0.057, 0.026], edge [0.046, 0.2]). Range-core toads also were more likely to attempt to right 129 

themselves (p = 0.036, 95% CI: core [-0.092, 0.04], edge [-0.006, 0.19]), but righting effort and 130 

righting time did not differ significantly between geographic regions (Tables S2, S3).  131 

 132 

Because there were no significant differences in prevalence or intensity of lungworm between the 133 

range-core and invasion-front toads (Table S2), we combined samples to analyse correlates of 134 

lungworm infection. Infected toads were similar in SUL to non-infected toads (Tables S3, 4; t = 0.86, 135 

df = 57.19, p = 0.393), with no significant behavioural differences between the two groups (Table S3, 136 

4). 137 

 138 

Gut bacterial community composition and predicted bacterial function  139 

Alpha diversity did not differ significantly between regions (Supplementary Material), but beta 140 

diversity of bacterial taxonomic communities differed between regions (Figures 1A, S1; R2  = 0.050, 141 
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F = 3.050, p < 0.001) and sampling sites (Table S5; all p-values < 0.001). Among 230 ASVs that 142 

were assigned to family level, the abundance of 124 ASVs differed between the colons of range-core 143 

versus invasion-front toads (Table S6). The number of significantly different ASVs in each phylum 144 

were: Bacteroidetes (60 ASVs), Firmicutes (55 ASVs), Proteobacteria (7 ASVs), Actinobacteria (1 145 

ASVs), Verrucomicrobia (1 ASV) (Table S6, Figure 2A).  146 

 147 

Among the identified 474 predicted bacterial functions, we found significant differences between 148 

invasion-front and range-core toads (Figure 1B; R2 = 0.064, F = 4.110, p-value= 0.002). Pairwise 149 

tests between sampling sites indicated that Kununurra toads had different bacterial functions to 150 

Rossville (p-value= 0.009) and Lucinda toads (p-value = 0.046), but no other sites differed 151 

functionally from each other (Table S7; all other p-values > 0.05). In total, 84 predicted bacterial 152 

functions differed between invasion-front and range-core toads (Table S8, Figure 2B). Range-core 153 

toads had more abundant bacterial function in the superpathway of pyrimidine ribonucleosides 154 

degradation (log2FoldChange = 5.98) and less abundant bacterial function in phosphopantothenate 155 

biosynthesis III (log2FoldChange = -4.98), superpathway of sialic acids and CMP-sialic acids 156 

biosynthesis (log2FoldChange = -4.89) and factor 420 biosynthesis (log2FoldChange = -4.72) than 157 

did invasion-front toads (Table S8, Figure 2B). Among the 30 most abundant functions, range-core 158 

toads had lower bacterial function in urate biosynthesis/inosine 5’-phosphate degradation 159 

(log2FoldChange = -0.10) than did invasion-front toads (Figure 3, Table S8). 160 

 161 

Associations between ecological traits and intestinal bacteria 162 

To assess correlates of gut bacterial composition and function, we compared characteristics of 163 

individual hosts to bacterial variation. Only the occurrence of lungworms was significantly 164 

associated with the bacterial composition (R2 = 0.128, p = 0.02) (Table 1; Figure S2A, B).  165 

 166 

In a redundancy analysis combining ecological traits measured here, the model that explained the 167 

most variation in the bacterial community assemblage included only the occurrence of lungworms 168 

(AIC = 178.58). The best model to explain variation in predicted bacterial functions included the 169 

likelihood of righting (AIC = 53.613), the occurrence of lungworms (AIC = 54.297) and righting 170 

time (AIC = 56.912). The combination of these three factors explained 17.8% of total variation in 171 

predicted bacterial functions (Figure 4).  172 

 173 
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In explicit tests of whether bacterial community assemblages differed in infected versus non-infected 174 

toads, we found a significant association with lungworm occurrence (Table 2, p=0.005). Intensity of 175 

lungworm infection was not significantly associated with gut bacterial community but did have a 176 

significant interaction with region in this analysis (Table 2, p=0.04).  177 

Discussion 178 

Bacteria influence animal behaviour in diverse ways [16,37], but the ecological drivers of variation in 179 

gut bacterial composition remain largely unstudied. Our analyses of cane toads from two regions 180 

within their invasive range documents substantial variation in community assemblage and function of 181 

gut bacteria. Importantly, that variation was associated with two traits that we predicted to influence 182 

gut bacterial assemblages: invasion history and parasite infection. Interestingly, toad behaviour 183 

differed across the invasive range, and toad righting behaviour was associated with bacterial function 184 

but not with parasite infection. 185 

 186 

Geographic divergence in gut bacteria 187 

First, we consider the differences in gut bacteria between toads from the invasion-front and the 188 

range-core. Although these populations have been separated by less than a century, the toads have 189 

diverged remarkably in morphology, physiology and behaviour and much of that divergence is 190 

heritable [38,39]. Some of those shifts likely reflect evolutionary pressures for increased rates of 191 

dispersal, due to adaptive (natural selection) and non-adaptive (spatial sorting) mechanisms [40,41]. 192 

Other geographically variable aspects of toad phenotypes likely are responses to different climatic 193 

conditions in the newly-invaded regions (hot, seasonally arid) compared to the range-core (cooler, 194 

more equable climate) [42]. Similar geographic divergence has been reported for the microbiome on 195 

the toad’s skin [43]. Our data illustrate that the invasion of Australia by cane toads has been 196 

accompanied by substantial divergence in gut bacterial communities. Alpha diversity in gut bacteria 197 

was similar in invasion-front and range-core individuals, but there were differences in both the gut 198 

bacteria composition and predicted bacterial function between toad populations across the species’ 199 

Australian invasive range. Predicted bacterial functions better explained cane toad righting behaviour 200 

than did gut bacterial community composition. Intriguingly, similarity between gut bacterial 201 

communities between individuals within regions in Australia is related to the similarity of their host’s 202 

epigenome, and this relationship is strengthened in populations where genetic diversity is lowest, 203 

such as on the invasion front [44]. Relationships between gut bacterial communities and their hosts 204 
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are complex, and that a clear understanding of these relationships requires careful consideration of 205 

numerous environmental, host and gut bacterial factors.  206 

 207 

The diversity and composition of bacterial communities differed between range-core and invasion-208 

front toads, despite an overall similarity in their dominant phyla and alpha diversity. ASVs in the 209 

family Veillonellaceae were higher at the invasion-front (Figure 2A). The abundance of this bacterial 210 

family may influence host metabolic regulation. For example, in Brandt’s voles (Lasiopodomys 211 

brandtii) exposed to colder temperatures, voles which huddled had more Veillonellaceae and more 212 

short-chain fatty acids (SCFAs) in their intestines than did non-huddling voles [45]. This family 213 

produces SCFAs such as propionic acid [46,47], which can increase locomotor activity [48]. The link 214 

to host metabolic regulation suggests that invasion-front toads might fuel their invasion in this way 215 

[24]. ASVs from another family of SCFA-producing bacteria, Clostridiaceae [49], were also higher 216 

in invasion-front toads than those from the range-core. Furthermore, the family Veillonellaceae may 217 

be associated with host sociality. A reduction of Veillonellaceae has been observed in children with 218 

Autism Spectrum Disorder, often known for desiring social isolation [50]. Higher abundance of 219 

Veillonellaceae in invasion-front toads could foster their “bolder” personality, retaining a higher 220 

propensity for exploration and risk-taking [26,51]. 221 

Several other ASVs that differed across the toad’s range also may affect behaviour. ASVs from the 222 

family Peptococcaceae, more common in invasion-front toads (Figure 2A), are related to host 223 

neurotransmitter levels (noradrenaline linking visual awareness to external world events [52]). For 224 

example, Peptococcaceae levels in the caecum are positively correlated with noradrenaline levels in 225 

mice [53]. ASVs from family Bacillaceae, lower in invasion-front toads (Figure 2A), might be 226 

related to host anxiety (e.g., abundant in methamphetamine-treated rats [54], and in exercised versus 227 

sedentary mice [55]). Abundant Bacillaceae might induce anxiety-like behaviours, thus intensifying 228 

the stress response [54] and decreasing exploratory behaviour in new environments [56]. In 229 

summary, invasion-front toads possessed gut bacterial communities that in other studies have been 230 

associated with SCFAs production and neurotransmitters. That pattern supports the idea that gut 231 

microbes in invasion-front toads may increase locomotor ability, alertness and propensity for 232 

exploration and risk-taking. In comparison, range-core toads possessed bacterial taxa that have been 233 

associated with anxiety, and a decreased propensity to explore.  234 
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Geographic variation was less obvious in the predicted bacterial functional groups than in community 235 

composition (Figure 1), consistent with the hypothesis that bacterial function is more conservative 236 

than taxonomic composition (e.g. in fire salamanders [2]). Different gut microbiota can have similar 237 

bacterial functions, increasing resilience and functional stability [2,3,57]. Despite this broad 238 

similarity, bacterial functions differed between range-core and invasion-front toads. These 239 

differences included those involved in functional pathways related to food sources and metabolism. 240 

Invasion-front toads had less bacterial function in the superpathway of pyrimidine ribonucleosides 241 

degradation, which provides a nitrogen source for microbes [58] and plays an important role in 242 

perturbations in the uridine monophosphate (UMP) biosynthetic pathways. This pathway allows the 243 

bacterial cell to sense signals such as starvation, nucleic acid degradation, and availability of 244 

exogenous pyrimidines, and to adapt the production of the extracellular matrix to changing 245 

environmental conditions [59]. This function might help to explain the disappearance of 246 

Verrucomicrobia as a dominant taxon. As for microbe metabolism, invasion-front toads have higher 247 

abundance of bacterial functions in factor 420 biosynthesis, critical to bacterial metabolism and 248 

mediating important redox transformations involved in bacterial persistence, antibiotic biosynthesis, 249 

pro-drug activation, and methanogenesis [60].  250 

We also detected geographic variation in bacterial functional pathways that contribute to host health. 251 

Invasion-front toads exhibited bacterial functions beneficial to host health and immunity: (i) 252 

phosphopantothenate biosynthesis (involved in bacterial production of coenzyme A [61]); and (ii) 253 

superpathway of sialic acids biosynthesis (involved in immunity including acting as host receptors 254 

and pathogen decoys for viruses and bacteria [62] and especially critical for preventing neural tissue 255 

damage [63]). Despite this abundance of health-promoting bacterial functions, these toads may also 256 

face health challenges. Invasion-front toad bacteria had a higher abundance of urate biosynthesis 257 

function (urate biosynthesis/inosine 5’-phosphate degradation, the only significantly different one out 258 

of the top 30 abundant functions), which affects serum urate levels [64]. High levels of urate can 259 

result in the formation of needle-like crystals of urate in the joints (gout), perhaps related to severe 260 

spinal arthritis in invasion-front cane toads [65].  261 

 262 

Associations between lungworms and host gut bacteria 263 

Pathogens and parasites impact the composition of the host microbiota and can modify host 264 

behaviour in a manner that improves parasite transmission and survival [66–68]. Lungworms can 265 

affect cane toad locomotor performance and reduce host endurance, curtailing oxygen supply from 266 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2020.11.16.385690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.385690
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                       Running Title: Gut bacterial community in an invasive anuran 

 
10 

infected lungs [69]. Lungworms also can alter a cane toad’s thermal preference and manipulate the 267 

timing and location of defecation, thereby enhancing lungworm egg production and larval survival 268 

[22]. Lungworms are reported to lag behind their host on the invasion-front by 2-3 years [27] and to 269 

affect righting behaviour (prolongs righting time [70]). In the current study, although we collected 270 

invasion-front toads in recently invaded areas, we found no difference in lungworm presence or 271 

intensity between the invasion-front versus range-core toads, nor did we find behavioural differences 272 

in lungworm-infected versus uninfected toads. 273 

 274 

Infection by parasitic lungworms was associated with differences in gut bacteria. Here, the direction 275 

of causation is less ambiguous than is the case for geographic variation in the gut bacteria. It seems 276 

unlikely that a toad’s bacteria affect its probability of carrying adult lungworms, although bacterial-277 

driven differences in habitat selection might create such a link. Instead, we suggest that the presence 278 

of lungworms induces a shift in gut bacteria. Consistent with that hypothesis, experimental trials have 279 

shown that lungworms modify gastric function in their hosts, changing the volume and consistency 280 

of faeces produced in ways that enhance survival of larval lungworms [22]. Shifts in the microbiome 281 

inside the gut might be either causes or consequences of that shift in gastric function. Moreover, C. 282 

elegans are known to prefer specific bacterial foods [71], suggesting that lungworm larvae may also 283 

feed selectively on bacteria in the gut, generating differences in bacterial communities between 284 

lungworm-infected toads versus non-infected conspecifics. Additionally, gut bacteria may affect 285 

lungworms via microbiome-induced shifts in host immunity [72]. 286 

 287 

Associations between host behaviours and gut bacteria 288 

Interestingly, behaviours including righting effort likelihood and righting time were associated more 289 

closely with predicted gut bacterial functions than with bacterial taxonomic composition. Multiple 290 

identified taxa may share the same bacterial function, or one taxon may contribute to multiple 291 

bacterial functions, obscuring the relationship between host behaviour and bacterial taxonomic 292 

composition. Nonetheless, these relationships we found between gut bacterial function and righting 293 

behaviours may be related to toad health and/or rearing conditions. A dampened stress response 294 

(lower corticosterone levels) in invasion-front toads [73] could result from higher abundance of 295 

bacterial functions beneficial to host health and immunity, especially the superpathway of sialic acids 296 

biosynthesis [63]. Further, invasion-front toads are more reluctant to flee in simulated predation trials 297 

[74]. Dampened stress responses can be related to more exploratory behaviour [56], and to greater 298 

dispersal ability [26]. Rearing conditions also affect righting behaviour [17]. Although manipulative 299 
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studies are needed to clarify causal relationships between stress responses, proactive behaviours, and 300 

gut bacterial functions, our results indicate that host behaviour and gut bacterial functions are related, 301 

suggesting that gut bacteria may be an important driver of invasion.  302 

 303 

Our study has identified patterns rather than testing alternative hypotheses about underlying causal 304 

processes. To clarify causal mechanisms underlying the geographic divergence in gut bacteria across 305 

the toads’ Australian range, future studies could use reciprocal transplantation to examine if (and 306 

how) their gut bacteria respond to novel environmental conditions. Breeding these animals, and 307 

raising their offspring under common-garden conditions, could reveal the degree to which a toad’s 308 

gut bacteria is driven by host genetics versus their rearing conditions [75,76]. To clarify the 309 

hypothesis that changes in gut bacteria mediate the ability of lungworm parasites to modify host gut 310 

function, we could implant colon contents from infected into uninfected toads. In short, our discovery 311 

of strong associations between gut bacteria and important facets of toad ecology provides the 312 

opportunity to move to hypothesis-testing experimental studies. 313 

 314 

Our research illustrates that during invasion, as a species expands across a novel and variable 315 

landscape, a complex relationship between host behaviour, its parasite community, and its 316 

microbiome may unfold. A clearer understanding of these relationships and how they influence the 317 

rate of expansion are key to understanding the role of the holobiont during invasion [77]. Such 318 

studies also will advance our understanding of co-evolution and may facilitate innovative approaches 319 

to invasive species management. 320 
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Tables and Figures 562 

Table 1a-d. The association between a) single host factors and microbial community, b) single host 563 
factors and predicted microbial function, c) single behavioural trait and microbial community and d) 564 
single behavioural trait and predicted microbial function. Significant p-values denoted by an asterisk. 565 

 566 

 MDS1 MDS2 r2 Pr(>r) 

a. Host factor/microbial community    

SUL 0.170 0.985 0.071 0.119 

BodyWeight -0.009 1.000 0.051 0.231 

Lungworms  0.254 -0.967 0.020 0.585 

Occurrence of lungworms 0.453 -0.892 0.128 0.023* 

b. Host factor/microbial function     

SUL 0.680 0.733 0.021 0.556 

BodyWeight 0.610 0.793 0.041 0.311 

Lungworms  -0.791 0.612 0.007 0.839 

Occurrence of lungworms -0.827 -0.562 0.059 0.187 

c. Behavioural trait/microbial community    

Struggle score -0.814 0.580 0.044 0.268 

Struggle likelihood -0.880 -0.474 0.021 0.555 

Righting effort -0.124 0.992 0.075 0.121 

Righting effort likelihood 0.499 0.867 0.0255 0.474 

Righting time 0.933 0.360 0.0615 0.174 

d. Behavioural trait/microbial function    
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Struggle score 0.376 0.927 0.051 0.221 

Struggle likelihood 0.183 0.983 0.017 0.606 

Righting effort 0.571 0.821 0.070 0.141 

Righting effort likelihood 0.399 0.917 0.035 0.362 

Righting time -0.956 -0.294 0.004 0.894 

 567 

 568 

Table 2. Association between gut microbiota variation and lungworm occurrence and intensity, based 569 
on Bray Curtis dissimilarity values for microbial community assemblages. 570 

 571 

 572 

 573 

 Df SumOfSqs R2  F Pr(>F) 

Location 1 1.314 0.091 6.026 <0.001*** 

Lungworm_occurrence   1 0.482 0.033 2.213 0.005** 

Lungworms_intensity 1 0.150 0.010 0.688 0.861**      

Location:Lungworm_occurrence   1 0.331 0.023 1.520 0.075** 

Location:Lungworm_intensity   1 0.357 0.025 1.638 0.043** 

Residual 54 11.774 0.817   

Total 59 14.409 1.000   

Significance codes:  0 ‘***’ ≤0.001 ‘**’ ≤0.01 ‘*’ ≤0.05. 
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 574 

 575 

 576 

 577 

Figure 1. Beta diversity by location. Principle coordinate analysis plot of Bray Curtis distance of 578 
microbial community (A) and Bray Curtis distance of predicted functional groups (B) from 60 cane 579 
toad individuals of the invasion-front (Kununurra, Old Theda, and Mary Pool) and the range-core 580 
(Rossville, Croydon, and Lucinda).   581 
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 585 

 586 

 587 

Figure 2. Significantly different bacterial taxa and predicted functions between range-core 588 
(QLD) and invasion-front (WA) toads’ colon. Significant differences were identified between 589 
locations via differential abundance testing based on a negative binomial distribution. The dots 590 
represent the average log-2 fold change (x axis) abundance and positive log2 fold changes signify 591 
increased abundance in range-core, and negative log2 fold changes display increased abundance in 592 
invasion-front.  Bacterial taxa (A) were classified to the taxonomic level of family (y axis) and 593 
coloured by taxonomic level of phylum. Family name in bracket is proposed taxonomy by 594 
Greengenes. Only ASVs that could be matched to a known bacterial family and with a 595 
log2FoldChange value higher than 20 or lower than -20 are presented. Predicted functions (B) with a 596 
log2FoldChange value higher than 3 or lower than -3 are presented.  597 
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 598 

 599 

 600 

Figure 3. Heatmap for top 30 functional group abundance. 601 

Heatmap indicates the top 30 functional groups in the intestinal samples from range-core and 602 
invasion-front toads. Abundance indicates the raw count of functional groups inferred from 603 
taxonomic 16S sequences using PICRUSt where light blue is high abundance and dark blue is lower 604 
abundance. Functional pathways that differ significantly between range-core and invasion-front toads 605 
are highlighted in bold. Range-core includes Rossville, Croyden, and Lucinda; invasion-front 606 
includes Kununurra, Old Theda, and Mary Pool. 607 
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 614 

 615 

Figure 4. Main variables that affect predicted function differentiation among individuals. CAP 616 
(capscale) plot displays the combination of variables that explained the greatest variation in the 617 
predicted functions through model selection, using 60 cane toad individuals from the invasion-front 618 
(Kununurra, Old Theda, and Mary Pool) and the range-core (Rossville, Croydon, and Lucinda). The 619 
final model explained 17.8% of variation in the microbial predicted functions, which includes 620 
righting effort likelihood (AIC = 53.613), occurrence of lung worms (AIC = 54.297) and righting 621 
time (AIC = 56.912) explained the greatest variation.   622 
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