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Abstract: 
The reduced costs of sequencing have led to the availability of whole genome sequences for a 
large number of microorganisms, enabling the application of microbial genome wide 
association studies (GWAS). Given the successes of human GWAS in understanding disease 
aetiology and identifying potential drug targets, microbial GWAS is likely to further advance 
our understanding of infectious diseases. By building on the success of GWAS, microbial 
GWAS have the potential to rapidly provide important insights into pressing global health 
problems, such as antibiotic resistance and disease transmission. In this review, we outline 
the methodologies of GWAS, the state of the field of microbial GWAS today, and how 
lessons from GWAS can direct the future of the field.  
 
Introduction  
Over the last decade, genome-wide association studies (GWAS) have yielded remarkable 
advances in the understanding of complex traits and identified hundreds of genetic risk 
variants in humans (e.g. 1–3). GWAS normally analyse hundreds of thousands to millions of 
common genetic variants, usually single nucleotide polymorphisms (SNPs), and test for an 
association between each variant and a phenotype of interest (see 4). GWAS have confirmed 
the heritability of many human traits5, clarified their underlying genetic architecture6, and 
identified novel biological mechanisms and drug targets7. Of recent interest to infectious 
disease research are microbial GWAS, which identify risk variants on the genomes of 
microorganisms such as bacteria, viruses and protozoa. With increasingly cheap and high-
throughput sequencing technologies, microorganism whole genome sequences (WGS) are 
now being generated on an unprecedented scale that rivals human data. Microbial GWAS 
provide a new opportunity to develop insights into the biological mechanisms underlying 
clinical outcomes, such as drug resistance and pathogenesis. As in human GWAS, insights 
from microbial GWAS may lead to the identification of molecular targets for drug and 
vaccine development. Furthermore, identifying genetic variants through microbial GWAS 
will allow researchers to track the evolution and spread of pathogenic strains in real time, and 
to synthesise microorganisms in vitro with desired clinical phenotypes.  
 
Human GWAS provide an optimistic outlook for microbial GWAS. However, there are 
significant differences between microbial and human genomic studies that could hinder the 
success of microbial GWAS or require methodological adaptations. In this Review, we first 
outline specific features of GWAS methods and consider their application to microorganisms. 
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Second, we summarize the microbial GWAS that have been carries out to date, outlining their 
key findings, methods and challenges. Although these studies have focused mainly on 
pathogenic viruses, bacteria and protozoa, and thus dominate the focus of this Review, it is 
important to note that the same methods can be applied to non-pathogenic microorganisms. 
Finally, we discuss the lessons that have been learned from human GWAS and anticipate the 
future of microbial GWAS, particularly the opportunities provided by the ability to collect 
GWAS data from both the host and microorganis  
 
Data and methodology of GWAS  
GWAS grew from the common disease common variant (CDCV) hypothesis8, which 
postulates that many high frequency but low effect variants contribute to disease risk. This 
explained how diseases can avoid selection, manifest in complex inheritance patterns, and be 
genetically and phenotypically heterogeneous. GWAS are implemented to identify the 
common variants that underpin the heritability observed for many phenotypes (see Box 1)9. 
These common variants are usually usually in the form of bi-allelic SNPs, where two 
nucleotides (A, C, G or T) exist at a locus with a frequency above 1% in the population. Each 
SNP is analysed, usually through linear or logistic regression, to determine whether one allele 
is significantly associated with the phenotype. Effects are reported as either beta for 
quantitative traits or odds ratio for case-control studies. Typically, only the main effects of 
individual SNPs are calculated, as methods for the detection of epistatic interactions between 
SNPs and SNP-environment interactions are challenging owing to the additional burden of 
multiple testing10,11. The power of the GWAS approach came from genotyping chips that 
enable  the rapid calling of hundreds of thousands of SNPs from across an individual’s 
genome. Due to the co-inheritance of segments of the genome over generations, correlations 
(known as linkage disequilibrium, LD) exist between genetic variants in close proximity. LD 
allows genotyping chips to ‘tag’ local genetic variation by including a single proximal SNP, 
and to impute additional SNPs that were not directly genotyped based on known 
correlations12.  
  
There are a number of conceptual differences  between human and microbial GWAS (see 
Table 1), one of the most important of which is the source of the genomic data. Unlike human 
GWAS, where data comes from SNP genotyping chips, almost all genomic data for 
microorganisms comes from sequencing. This has an impact on several aspects of GWAS, 
particularly SNP calling, as SNPs detected in microbial sequencing data will not only be bi-
allelic, but also tri- and quad-allelic. This complicates variant calling, data storage and 
analysis. Matching loci to a reference genome is also of increased importance in microbial 
GWAS, to ensure that SNPs are called at the same location for each sample and for 
comparison across studies. Sequencing also affects the quality control (QC) steps that must 
be taken to filter SNPs and individual samples. Standard QC in human GWAS removes those 
SNPs with low minor allele frequency (with a typical cut off of <1-5%), high missingness 
(>1-5%), or those that are out of Hardy-Weinberg Equilibrium (p<E-5 or-6). QC on 
individual samples in a human study also removes those samples with high missingness (>1-
5%) or that are outliers in genome-wide homozygosity. Owing to the large number of SNPs 
compared to the number of samples in a study, QC is carried out to preferentially exclude 
SNPs. With the exception of Hardy-Weinberg Equilibrium, these same QC metrics will 
remain important for microbial GWAS. However, QC thresholds need to be established for 
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additional metrics that capture the quality of sequencing, such as sequencing depth and Phred 
scores.  
 
Adapting GWAS to microbial variants  
As mentioned above, human GWAS typically focus on the effects of individual SNPs. 
However, focusing on the additive effects of SNPs alone will not always be possible in 
microbial GWAS. For instance, in bacteria recombination can introduce novel genes. This 
means the causative genetic difference may be the presence or absence of an entire gene or 
set of genes. Microbial GWAS need to test this variation in gene presence alongside SNPs. 
Here, lessons may come from the analysis of copy number variants (CNVs) in human 
GWAS. CNVs are large duplications or deletions of sections of the genome. CNV analyses 
test for associations between a phenotype and both specific CNVs and (as specific CNVs are 
often rare) an individual’s CNV burden. An individual’s CNV burden is the percentage of 
their entire genome, or a region of it, that is covered by CNVs13. Similarly, analyses of 
human sequence data often test for associations with the burden of rare variants14. The 
contribution of variants to that  burden can be weighted by their predicted functional impact. 
Using quantitative burdens that combine the effects of multiple genetic variants into a single 
variable might provide statistical methods for analysing gene presence or absence and rare 
variants in microbial GWAS. 
 
Another approach to handling gene presence in microbial GWAS is defining and analysing k-
mers, a specific sequence of bases15. The benefit of k-mers is that they capture common 
variation and gene presence simultaneously. Analysis of k-mers may also be useful owing to 
the larger proportion of coding sequence found in many microorganisms, compared with 
humans where only a small fraction of DNA is exonic. This is because k-mers can capture 
multiple allele differences that code for  different amino acids, and thus reflect changes closer 
to the biological mechanism that underlies the phenotype of interest.  
 
It is worth noting that the majority of human GWAS have focused on additive effects of 
variants. This is where each additional copy of an allele carried by a diploid organism 
increases the likelihood of a phenotype in a linear manner. However, owing to within host 
evolution and the possibility of superinfections some microorganisms will exhibit within host 
genetic diversity. Within host diversity will lead to non-discrete SNP calling, where the 
frequency of an allele reflects its frequency on microbial sequences within the host, rather 
than an allele’s presence or absence. While testing for a linear association between allele 
frequency and phenotype makes pragmatic sense, the possibility of non-linear effects exists. 
Further, within host diversity results in alleles from different lineages having unique LD 
patterns. This will be relevant to the analysis of epistatic interactions, as alleles within the 
same host may have different genetic backgrounds.  
 
Lastly, microbial GWAS are also likely to observe lineage effects. Here, entire lineages, such 
as viral subtypes, might differ in phenotype. In this instance, the lineage or subtype of the 
microorganism might be the genetic unit of interest, either alone or in addition to individual 
SNPs or k-mers. Disentangling the effects of a single variant from those related to lineage is 
potentially challenging, but has been shown to increase the power of microbial GWAS when 
implemented successfully16. 
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Confounding factors in microbial GWAS   
The main challenge associated with GWAS is the risk of identifying seemingly causal 
variants that are in fact false positives17. This is due to two main causes: population structure 
and multiple testing (see below). Recruitment of samples from within a genetically diverse 
population can lead to subtle confounding from population structure, e.g. because of an 
excess of cases from one ethnic group. In such instances, GWAS would identify predictive 
SNPs informative only of ancestry, not the biology of the disease. To avoid this problem, 
human GWAS often restrict recruitment to ethnically homogenous groups. Even within 
relatively homogenous populations, population structure exists. These subtler influences of 
population stratification are corrected through principal component analysis. This generates 
covariates that capture SNP correlations across the genome, and can be carried out using 
software such as EIGENSTRAT18. Principal components can capture subtle ancestry 
differences with high accuracy and identify samples that represent population outliers19. 
Although principal components will be key to removing confounding due to population 
structure in microbial GWAS, two additional confounders exist that may require additional 
methods than those used in human GWAS.  
 
The first of these is homologous recombination, which occurs in bacteria and viruses through 
the replacement of short sequence blocks, rather than through multiple cross-overs along the 
whole chromosome. This means that long-range LD is broken down differently in microbial 
genomes, leaving variants in long range LD with each other even when short range LD within 
a region is reduced20. This long-range LD will make identification of the causal variant 
problematic21. Methods designed for analysing historically ethnically mixed, or “admixed”, 
human populations may be useful here, because they make use of recombination patterns to 
identify associated loci22.  
 
The second source of confounding is that microbial population structure can represent 
selection on the phenotype of interest, e.g. antibiotic resistance. Given the differences in 
frequency of recombination and selection across microorganisms, the consequent population 
structures are likely to range from purely clonal to nearly panmictic. In addition, the rapid 
spread of successful epidemic lineages may temporally reduce their recombination with the 
rest of the species. In microorganisms where there has been strong selection, it may be 
appropriate to use repeated samples from within a single host over time, such as comparing 
pre- and post-treatment sequences. However, this approach will not work for longitudinal 
phenotypes, such as the time taken to develop disease symptoms, or in microorganisms with 
low rates of evolution. In these studies, methods that use mixed models to account for 
relatedness15 or lineage effects16, or to identify signals of selection across the genome based 
on phylogenetic structure23 may have more traction than typical GWAS regression methods.  
 
Multiple testing and replication  
Aside from confounding, the other major source of false positives is the multiple testing that 
is intrinsic to GWAS. The standard cut-off for an association to be considered statistically 
significant is p=0.05, which represents a 5% probability of random occurrence. However, 
testing hundreds of thousands of SNPs leads to tens of thousands of SNPs being significant at 
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p<0.05 by chance alone. To account for the number of tests, a SNP must pass the genome-
wide significance cut-off in order to be considered significant (see Box 2). This is usually 
p<5E-8 in humans24, which is approximately equal to the Bonferroni correction (a multiple 
testing correction) for the number of SNPs analysed in early GWAS. However, it continues to 
be used in more densely genotyped and imputed studies today. Additional SNPs included in 
GWAS through deeper genotyping or imputation are in high LD with those already known, 
and so the correlations between SNPs reduces the number of independent tests performed. 
Thus, understanding the level of LD between SNPs is important for calculating the correct 
threshold for genome-wide significance. Even with strict cut-offs for genome-wide 
significance, determining if an association represents a false positive remains problematic.  
 
As a result, replication in an independent cohort is the gold standard for reporting an 
association in GWAS25. This is both to avoid false positives and to accurately estimate the 
effect size of the SNP. Normally, GWAS have reduced power to detect variants of small 
effect and consequently there is a bias towards identifying novel SNPs that have an over-
estimated effect size (sometimes called ‘Winner’s Curse’)26. As no bias for discovery exists 
during replication, the effect size in the replication cohort will more accurately reflect the true 
effect. Generally, replication does not require a SNP’s an association to reach genome-wide 
significance in the replication cohort, but to pass a p-value threshold based on for the number 
of SNPs brought forward for replication. Further, meta-analysis of the p-values of a SNP in 
both the discovery and replication cohorts should surpass genome-wide significance in order 
for a SNP to be considered a true positive.  
 
However, microbial GWAS may be less reliant on replication than human GWAS given that 
suspected causal variants can be validated in vitro. This ability to generate carriers of 
identified variants and test their effect in the laboratory reduces many of the concerns of false 
positives that are typically associated with human GWAS. It also provides model organisms 
that can be used to gain a better understanding of the variant’s function. One important area 
of research is to account is the development of methods to identify and correct for epistasis. 
Epistasis can take the form of specific interactions between two SNPs or the effect of a SNP 
being conditional upon a broader genetic background. Disentangling epistatic effects will be 
key to generating viable in vitro models of microbial GWAS findings and establishing 
causality. 
 
Power, polygenicity and heritability  
As well as providing methodological insights, the history of GWAS predicts a clear trajectory 
for how progress in microbial GWAS is likely to unfold. Initial human GWAS identified only 
a small number of SNPs, each explaining only a tiny fraction of variation. The disparity 
between expected heritability from twin studies and the heritability explained by genome-
wide significant associations became known as the “missing heritability”27. Missing 
heritability initially cast doubt on the GWAS approach. Yet, as the first waves of studies were 
pooled into meta-analyses28 and the second waves of GWAS were analysed, more and more 
associations were reported, increasing the amount of heritability explained29. It became clear 
that the stringent cut-off for statistical significance resulted in a requirement for larger sample 
sizes than had been expected in order to achieve sufficient power to identify SNPs. Once 
sufficient power was reached, the relationship between the sample size and number of SNPs 
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identified became relatively linear. However, despite this, there was often an inverse 
relationship between the frequency of identified SNPs and their effect size, meaning that each 
SNP explained only a small fraction of variation29.  
 
The problem of missing heritability persisted, leading to a move away from single SNP 
analyses and towards polygenic methods30 (see Figure 1). One of the first polygenic methods 
was the use of polygenic risk scores (PRSs)31. PRSs are based on the assumption that many 
SNPs with small effect sizes will fail the stringent cut-off used for genome-wide significance, 
yet, together their cumulative effect could explain a large amount of the variance in risk. The 
construction of a PRS requires both a discovery and a replication cohort. In the discovery 
cohort, a GWAS is carried out, defining the ‘risk’ allele and effect size of each SNP 
regardless of whether the p-value is significant. In the replication cohort, the number of ‘risk’ 
alleles that an individual sample carries is summed into a score (the PRS), with each allele 
weighted by its effect size. The variation in case-control status predicted by the PRS is then 
calculated. Several PRSs are often defined using different p-value thresholds for the inclusion 
of SNPs from the discovery GWAS, e.g. four scores using SNPs with p<0.001, p<0.05, 
p<0.2, and p<0.5. As more SNPs are included, there is a greater likelihood that all SNPs of 
true effect will be included. However, including more SNPs also increases the number of  
SNPs with no true effect, and thus adds noise, which causes the amount of variance explained 
to plateau. PRSs ultimately provide a more powerful predictive tool than the results of single 
SNPs. As such, PRSs may be key to rapidly translating the results from microbial GWAS to 
prediction in the clinic, even before the roles of causal risk variants are understood.  
 
An alternate polygenic method is genomic-relatedness-matrix residual maximum likelihood 
analysis (GREML), which was often referred to in the early literature by the software name 
GCTA5. GREML estimates the proportion of variance that is captured by all SNPs and 
calculates the heritability of the phenotype. This is done by calculating how genetically 
similar each possible combination of two samples is (i.e. their genetic relatedness). 
Relatedness refers to how much of the genome is shared between two samples (i.e. have the 
same genotypes). The heritability is then calculated as the proportion of phenotypic similarity 
between samples that can be explained by their relatedness. It is important to note that 
GREML does not estimate the true heritability of a phenotype, only the heritability that is 
captured by the included SNPs. Unlike PRS, GREML does not provide a means of predicting 
risk. However, it does act as a benchmark for the maximum amount of risk detectable in an 
infinitely powered GWAS. For example, in humans, GREML estimated that common SNPs 
account for between a third and a half of the heritability estimated from twin studies30(Figure 
1). While PRS and GREML have not been widely used in microorganisms, they will be key 
to understanding whether current microbial GWAS are underpowered and if novel variants 
will be identified with larger sample sizes.  
 
A crucial aspect of polygenic methods is their ability to identify what drives the heritability 
of a phenotype. First, polygenic methods can be used to test if heritability is 
disproportionately driven by specific genomic regions, by rare or common variants, or by 
variants within particular biological pathways. Second, polygenic methods can measure the 
heritability of specific subtypes of the phenotype. Identifying if a phenotypic subtype has 
higher heritability identifies those individuals for which the microbial genome is most 
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relevant. Furthermore, polygenic methods are able to identify a genetic correlation between 
two phenotypes, even when data is available on only one phenotype in each sample32. Thus 
they can determine if two distinct phenotypes have overlapping aetiology, or if two subtypes 
of a phenotype are genetically distinct. Polygenic analyses have supported the generalist 
genes hypothesis, according to which genetic effects are highly pleiotropic33. Overall, human 
GWAS predict that for traits under moderate selection the genetic architecture will consist of 
many small effect and pleiotropic variants, which are spread fairly evenly across allele 
frequencies and genomic regions. 
 
Progress in microbial GWAS 
Given the clear trajectory of human GWAS from underpowered studies to more advanced 
methods that explain a significant proportion of risk, it makes sense to ask whether microbial 
GWAS will advance in the same manner. Despite the complexities previously mentioned, a 
growing number of microbial GWAS have recently been published (Table 2). With the 
exception of HIV and Plasmodium falciparum, these publications have largely focused on 
bacteria and almost exclusively focused on pathogens within human hosts. The majority of 
genomic data has come from WGS, although genotyping chips for P. falciparum have existed 
for several years34,35. Owing to the much shorter genomes of microorganisms, the number of 
variants analysed in microbial GWAS has been in the tens of thousands, orders of magnitude 
smaller than in human GWAS. Sample sizes have also been significantly smaller. The 
smallest microbial GWAS to date was a study of 75 Staphylococcus aureus strains36 and the 
largest, a study of 3,701 Streptococcus pneumoniae isolates37. The majority of studies had 
sample sizes below 500 (see Table 2). However, this promises to change as large multi-
country consortia, such as MalariaGEN38 and PANGEA_HIV39, generate whole genome 
sequences on a much larger scale. 
 
Despite the current small sample sizes, microbial GWAS have already been successful in 
identifying causal variants. This is in part due to the studies focusing on phenotypes under 
strong selection, the majority of which were studies on drug resistance. For example, 
microbial GWAS of Mycobacterium tuberculosis40, S. aureus36, S. pneumoniae37, P. 
falciparum41, and HIV have all successfully identified novel drug resistance variants that 
often explained almost all of the phenotypic variation. Even with phenotypes under strong 
selection, there has been evidence of high polygenicity within microorganisms. For example, 
the study of drug resistance in 3,701 S. pneumoniae sequences identified 301 significant 
SNPs, with a median odds ratio of 1137. Given the large effect sizes, it is not surprising that 
many of the drug resistance variants identified through microbial GWAS were previously 
known. Though this diminishes the novelty of the findings, it also strengthens confidence in 
the ability of microbial GWAS to correctly identify causal variants. Another phenotype under 
strong selection is host specificity. Microbial GWAS of host specificity have yielded 
significant results, for Campylobacter jejuni42 and HIV43. However, within the same study of 
HIV host-specificity, the authors found no associations between viral variants and 
infectiousness. The most successful study of virulence was of 90 S. aureus samples44. The 
authors identified 121 SNPs at genome-wide significance. Functional follow up of a subset of 
SNPs showed that 4 out of 13 affected toxicity in vivo, suggesting that a proportion of 
associations identified were truly causal. 
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Most microbial GWAS to date have focused on the analysis of traits that are under strong 
selection, yet these studies have shown remarkable diversity in their analytic approaches 
(Figure 2). Two analyses of HIV sequences have been performed 43,45, both using the GWAS 
software PLINK46. Based on fixed effect models these studies suggested that the virus shows 
low levels of population stratification. However, analyses of M. tuberculosis highlighted that 
while PLINK could identify many drug resistance variants, it also led to false positives due to 
confounding from population structure47.To address this limitation, the authors developed the 
software PhyC23, a tool that uses phylogenetic trees to identify SNPs under recent convergent 
evolution. This approach identified many of the same drug resistance variants as PLINK, yet 
reduced the level of confounding from population structure. Other studies have included 
phylogenetic structure as a random effect in mixed models, using software such as 
ROADTRIPS48 and FaST-LMM49. These mixed models have successfully reduced the effect 
of population structure in a number of microorganisms36,41. One of the limitations of these 
software is that they are designed for human genomic data and cannot handle features such as 
within host microbial diversity. A recent study developed a bespoke approach to microbial 
GWAS in the analysis of C. jejuni42. The authors generated multi-allelic k-mers, rather than 
SNPs, and tested these for an association with host preference. This is the only study, so far, 
to combine analysis of SNPs and gene presence/absence, a key genomic feature of bacteria.  
 
Overall, it is clear that while microbial GWAS are yielding important insights into infectious 
disease, the field has yet to settle on a consistent analytic approach and current methods are 
not yet ideally suited to microbial genomes. More refined analytical methods will become 
particularly important as the focus of microbial GWAS expands beyond drug resistance and 
towards phenotypes where variants have subtler polygenic effects. 

 
Remaining lessons 
As microbial GWAS become more widespread, there are still several lessons that can be 
learned from human GWAS. Perhaps the most crucial lesson revolves around the generation 
of sufficient sample sizes to identify variants of small effect. This requires a collaborative 
approach. Samples must often be pooled from across the world in order to create well 
powered discovery and replication cohorts. Of particular note is the mega-analytic approach 
that pools raw genotype data from all sites into a central repository, which is used for 
standardised QC and to increase power50. There is good reason for optimism here, as 
international microbial research consortiums already exist. 
 
One area that has not yet been explored in microbial GWAS is the trade-off between sample 
size and heterogeneity. As more complex phenotypes are analysed, heterogeneity will reduce 
power to detect the causal variants. With finite resources and time,  typically choose between 
focusing on collecting detailed clinical data on a smaller number of more homogenous 
samples, or recruiting large numbers of samples with minimal screening. In human GWAS 
both approaches have been shown to be effective. Firstly, power can be improved by 
restricting to “super controls”51, e.g. using controls on the opposite extreme of the phenotype 
of interest, or focusing on a subset of samples with a phenotype believed to be more 
homogenous or heritable52,53. Secondly, ‘minimal phenotyping’ can be used to maximise 
sample size, such as assuming all those with records of treatment are ill54. Widely collected 
proxy phenotypes, such as education level as a proxy for cognitive ability, have been 
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successfully used to maximise sample sizes for more complex traits55. Aetiologically similar 
phenotypes can also be jointly analysed to maximise sample size2,56. Overall, a sensible first 
step appears to be to increase sample sizes as much as possible. This can then be followed by 
secondary analyses of more homogenous phenotypic subtypes where data is available.  
 
Finally, many advances in human GWAS were made possible by free and open software 
applications (such as GCTA5 and PLINK46) that could handle a variety of data formats and 
perform multiple analyses (Table 3). These software applications were generally very user 
friendly, with detailed documentation. To date, microbial GWAS have been performed using 
a range of software with different analytic approaches (see Table 3). Although GWAS 
software that can handle large genomic datasets already exists, they are not ideally suited to 
the non-diploid multi-allelic nature of some microbial genomes. Nor can they perform 
longitudinal within-individual sequence comparisons that might be desired. In particular, 
GWAS methods will need to be adapted to deal with within-host microbial diversity and 
recombination. Further, the successful polygenic methods for estimating the heritability and 
co-heritability of phenotypes from GWAS data have yet to be evaluated in microbial GWAS. 
As can be seen from GCTA5, a single piece of software with a topical application has driven 
a large number of high profile advances in human genomics. The development of free and 
open software applications that can accurately and conveniently analyse a wide range of 
microbial WGS data to detect single SNP and polygenic effects is, therefore, a top priority of 
the field.  
 

 
Future directions: integrating the host 
Arguably, the most exciting application of microbial GWAS is to integrate it with human 
genomic data. Human GWAS of infectious disease have been performed for over a dozen 
pathogens (reviewed here57). This review will end by highlighting the potential for combining 
these findings with those of microbial GWAS. These genome-to-genome analyses can give 
important insights into whether the effects of microbial variants are universal or dependent on 
a specific host genetic background. Such statistical host-microbial interactions would help 
identify which host proteins the microorganism was interacting with on a molecular level. 
Further, interactions that prevent infection or disease progression would represent potential 
drug or vaccine targets. 
 
To date, we are aware of only one comprehensive genome-to-genome analysis. The microbial 
GWAS of HIV set point viral load, previously mentioned, generated both HIV sequences and 
host GWAS data43. This study was able to identify many associations between viral genetic 
variants and those in the human genome, specifically within the major histocompatibility 
complex region. In a secondary analysis, the authors also highlighted the importance of host-
pathogen correlations and how they might lead to overestimates of the combined host and 
pathogen heritabilities58. In this case, while both host and viral heritability of HIV set point 
viral load was observed, the two were shown to substantially overlap. 
 
With cheaper genome sequencing methods, the ability of groups to generate both host and 
microbial data on the same individuals will only increase. However, just as microbial GWAS 
currently lack universal analytic software, so do genome-to-genome analyses. Such statistical 
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tools will be needed in order for the field to flourish, particularly as the scale of data will 
make these analyses computationally intensive. A simpler method may be to condense 
multiple SNPs into a single variable, as seen in PRS31, and test for interactions on a genome-
wide level. Regardless of method, the availability of host and microorganism GWAS data 
presents an opportunity to increase power to identify causal variants. Ideally, such data will 
be generated within large longitudinal studies, where genomic data can also be combined 
with epidemiological and clinical variables. Understanding the correlations between host 
demography, host heritability and microorganism heritability will give greater insight into the 
extent to which microbial genomes drive risk. 
 
Conclusions: 
As this review has shown, there is great promise in the field of microbial GWAS. However, it 
is clear that a number of analytical advances will be needed to handle the unique features of 
microbial genomics. Perhaps the issue of greatest importance will be the development of 
software applications that can handle the combined analysis of host and microorganism 
genomic data. With these tools, we will be better able to predict individual patient outcomes, 
track the evolution of global epidemics, and identify new drug and vaccine targets. 
 
 
Box 1: Heritability  
The goal of GWAS is to identify the variants that determine heritable phenotypes. 
Heritability is the proportion of variation in the phenotype attributable to inherited genetic 
similarity. Knowing the heritability of a phenotype provides practical advantages to microbial 
GWAS. It provides an upper limit to the extent to which the phenotype can be predicted by 
identified variants. For some phenotypes the heritability may be obvious, such as antibiotic 
resistance being the result of drug resistance mutations59. For other phenotypes, such as HIV 
set point viral load, there has been debate regarding the extent to which viral genetic variants 
play a role60. Microbial heritability can be established in two ways. First, by looking at the 
correlation in phenotype across chains of transmissions. This determines the extent to which 
the same microbial variants lead to the same phenotypes across individuals. Second, by 
estimating the extent to which phylogenetic relatedness predicts similarity in phenotype. This 
determines the extent to which genetically similar microorganisms are phenotypically similar.  
 
However, heritability estimates come with several caveats. First, there is a discrepancy 
between what is “genetic” and what is heritable. For example, a de novo genetic mutation 
would not be captured within heritability estimates nor would two identical changes on an 
amino-acid level that differed on a genetic level. Second, microbial heritability, host 
heritability and the environment explain the total variation in phenotype in a population. As a 
result, microbial heritability is relative to the amount of environmental and host variation. As 
the host and environment becomes more homogenous the microbial heritability increases, and 
vice versa. The heritability of a phenotype can change, or remain the same, independently of 
whether the mean value of the phenotype changes over time. Lastly, studies often estimate 
only additive genetic effects (known as narrow sense heritability), assuming no interaction 
between genes either at a single locus (dominance) or between loci (epistasis). However, 
uncovering epistatic interactions will be key to microbial GWAS in order to disentangle the 
effects of microbial variants from host background. 
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Box 2: Visualising GWAS results 
Two types of plot are used to visualise the results of genome wide association studies 
(GWAS). The first is the Manhattan plot, which plots each variant’s p-value against its 
position (see the figure; panel a). The x-axis represents the genomic location. The y-axis is 
the –log(p-value). The logarithmic scale is used so that the most significant SNPs stand out 
with higher values than the majority of non-significant SNPs. A reference line is used on the 
y-axis to reflect genome-wide significance, occasionally with a second line to represent a 
‘suggestive significance’ threshold. Owing to the expectation of linkage disequilibrium (LD), 
a single highly significant SNP on its own is often interpreted as a genotyping error. Columns 
of significant SNPs in LD with the truly causal variant are seen in human studies, though this 
expectation is dependent on the LD of the organism. 
 
The second is the quantile-quantile (QQ) plot, which compares the distribution of–log(p-
values) observed in the study (y-axis) to the expected distribution under the null hypothesis 
(x-axis; see the figure; panel b). Departure of observed SNP p-values from the y=x reference 
line may reflect systematic inflation in the test statistics owing  to population stratification. 
However, departure from this line is also expected for a truly polygenic trait, as many causal 
SNPs may not yet have reached genome-wide significance owing to lack of power. This will 
lead to an excess of low p-values across all SNPs. As a result, it is the point at which the 
observed –log(p-values) depart the y=x distribution that is important. Inflated –log(p-values) 
for all SNPs reflects population stratification, whereas polygenicity should lead to inflation 
for only those SNPs with high –log(p-values). The QQ plot is, therefore, a qualitative 
judgement rather than a quantitative one. However, a calculation of the lambda value (also 
known as the genomic inflation factor), which is derived by dividing the median value of the 
observed chi-squared statistic by the median expected chi-squared statistic (for p=0.5), gives 
a measure of the inflation in the sample. This should be 1 in the case of the null and is 
generally seen as inflation if above 1.05. The lambda value can be weighted by sample size to 
avoid polygenic inflation, as larger samples have the power to detect inflation due to many 
SNPs of small effect. In this case, a lambda value of 1000 is used to get an inflation estimate 
proportional to a GWAS that contained only 1000 samples.   
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Key points: 
-GWAS have been highly successful in the analyses of human genomic data. The increased 
availability of microorganism whole genomes provides the opportunity for microbial GWAS.  
-Initial microbial GWAS have had success identifying variants for traits under strong 
selection, such as drug resistance, in a range of bacteria, viruses, and protozoa.  
-Several challenges to microbial GWAS exist that could hinder identifying variants under 
moderate selection. The primary challenge is the increased population stratification in 
microorganisms due to selection and complex recombination patterns. 
-Novel software tailored to the needs of microbial GWAS would greatly expedite progress in 
the field. In particular, the application of polygenic methods has yet to be evaluated in 
microorganisms. 
-An exciting future area of research is generation of host and microbial genomics data within 
the same samples. This will allow for genome-to-genome analyses to test for host-microbe 
interactions.  
 
Glossary:  
 
Beta 
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The standardized regression coefficient, derived from linear regressions in GWAS of 
continuous traits. It is reported as an estimate of the effect size of a SNP, and reflects the 
change in phenotype expected from carrying a copy of the reference allele of the SNP. 
 
Clonal 
Where reproduction produces genetically identical organisms, and so does not introduce 
novel variants or recombination.  
 
Effect size 
The proportion of variance in a phenotype predicted by a variant. 
 
Epistatic interaction 
Interactions between variants at different locations in the genome.  
 
False Positive 
A variant, or any predictor, that is identified as significantly associated with a phenotype but 
is not causal. In the case of GWAS this is usually due to confounding from population 
structure or insufficient quality control.  
 
Genome-wide association study 
A hypothesis-free method that tests hundreds of thousands of variants across the genome to 
identify alleles that are associated with a phenotype. 
 
Genome-wide significance 
The p-value cut-off for declaring a variant significantly associated with a phenotype, 
accounting for for the number of variants tested and the correlations between them.  
 
Heritability 
The proportion of phenotypic variance that is due to inherited genetic variation. 
 
k-mers  
A specific sequence of bases that, in microbial GWAS, can be used as the genetic variant 
tested for association with the phenotype. 
 
Linkage disequilibrium (LD) 
Correlations between variants due to co-inheritance. LD is usually higher between variants 
that are closer together, and is broken down by recombination. 
 
Main effect 
The effect of a variant on the phenotype without accounting for any possible interactions with 
other variants or environmental factors. 
 
Odds Ratio 
The odds ratio, often abbreviated to OR, is the typical means of reporting the effect size of a 
SNP in a case-control (or other binary phenotype) GWAS. It is derived from a logistic 
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regression, and represents the the odds of the phenotype when carrying the reference allele, 
compared to the odds of the phenotype in absence of the reference allele. 
 
Panmictic 
A population where all organisms are potential partners with each other. 
 
Phenotype 
A trait or disease that is the outcome of interest in an analysis of genetic variants. 
 
Phred scores 
A measure of the quality of sequencing at a given locus, specifically the confidence in the 
calling of alleles at that locus. 
 
Pleiotropic 
Pleiotropic variants are those that have an effect on multiple distinct phenotypes.  
 
Polygenic methods 
Statistical approaches that focus on the combined effects of many genetic variants rather than 
the effect of any individual variant. 
 
Power 
The probability that an analysis will reject the null hypothesis when the alternative hypothesis 
is true. Is influenced by numerous factors, such as the effect size and sample size. 
 
Single nucleotide polymorphism (SNP) 
A base position where two alleles exist with a frequency of >1% in the population. 
 
Superinfection 
When an individual is infected with multiple strains of the same microorganism. 
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Figures 
Figure 1: Phenotype prediction as GWAS sample sizes increase Variance in a phenotype 
(schizophrenia3) explained in successive waves of GWAS studies by the genome-wide 
significant SNPs (SNP) and polygenic risk scores from all SNPs with p<0.05 (PRS). The 
number of genome wide significant SNPs (G-W Sig SNPs) identified also increases 
exponentially with sample size and at every stage PRSs provide substantially better 
prediction than the use of significant SNPs alone. However, the challenge of ‘missing 
heritability’ continues even within relatively large GWAS, with the variance explained still 
below the heritability estimates derived from GREML and twin studies. 
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Figure 2: Potential models for microbial GWAS. Examples of three microbial GWAS 
approaches to date40,41,43. A) This panel shows the organism analysed in each study: HIV, a 
retrovirus that causes AIDS; Plasmodium falciparum, a parasitic protozoa that is the cause of 
malaria; and Mycobacteria tuberculosis, a bacteria that causes tuberculosis. B) This panel 
highlights the the form of geographic, population or phylogenetic confounding observed in 
each organism, which hinders the ability to differentiate SNPs of true effect from systematic 
false positives. For HIV only minimal population structure was observed, while for P. 
falciparum greater population differences existed. M. tuberculosis showed the highest level 
of confounding, with the different phenotypes (represented by the red/white nodes of the 
phylogenetic tree) clustering largely within the same lineages. C) Given the different 
population and phylogenetic structures of the three organisms, three different approaches 
were used to perform the microbial GWAS. The lack of confounding in HIV allowed for the 
application of typical human GWAS fixed effect models. The more substantial population 
structure in P. falciparum was accounted for by including phylogenetic relatedness as a 
random effect in a mixed model. Lastly, the clear phylogenetic structure of M. tuberculosis 
was used to perform genome-wide analysis of convergent selection. D) This panel highlights 
how the results of each microbial GWAS were taken forward to better understand the 
microorganism. For HIV, the viral genomic data was combined with human GWAS data to 
perform a genome-to-genome analysis of HIV viral load. For P. falciparum, the information 
on drug resistance variants was combined with geographic data to highlight the spread of 
resistance variants through South East Asia. Lastly, for M. tuberculosis, the identified drug 
resistance variants (delta-ald and delta-ald-comp) were functionally validated by showing 
carriers had improved growth comparable to other resistance strains (BCG), outperfoming the 
wild type (WT). 
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Table 1: Summary of the conceptual and analytic steps of human GWAS and microbial 
GWAS. 
 

 Human Microorganism 
Estimation of heritability Twin studies 

Adoption studies 
GREML analyses 

Within transmission pair correlations 
Phylogenetic studies 
 

Main source of GWAS data SNP genotyping chips Whole genome sequencing (WGS) 
Common study designs Case-control  

Quantitative traits 
Binary and quantitative traits 
Longitudinal within individual sampling 

Quality control steps Individual samples missingness 
SNP missingness 
Hardy Weinberg Equilibrium  
Minor allele frequency 

Sequencing depth 
Poor assemblage 
Minor allele frequency 

Reference genomes for imputation 
and linkage disequilibrium 

International HapMap Project 
1000 Genomes Project 

RefSeq genomes 
LD can be determined directly from sample 

Confounding Ethnic ancestry 
Population stratification 
Cryptic relatedness 

Subtypes or Genotypes 
Selection sweeps 
Recombination and horizontal gene transfer 
Clonal expansion 

Significance Threshold p=5E-8 Differs by species 
Currently no field-wide definition 

Replication  Required for publishing novel 
associations 

Not yet universally performed 
Possibility of in vitro validation 

 
SNP, single nucleotide polymorphism; LD, linkage disequilibrium 
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Table 2: Examples of microbial GWAS to date 
Organism Genome 

length 
Recombination 
rate 

Within 
host 
diversity 

Reference Sample 
Size 

Phenotype N SNPs Significant 
SNPs  

Software 

Campylobacter 
jejuni 

1.6 Mb High High 42 192 Host 
preference 

- 7,307 kmers 
in 7 genes 

bespoke 

Mycobacterium 
tuberculosis 
  
  

4 Mb  
  
  

Low 
  
  

Low 
  
  

23 123 Drug 
resistance 

24,711  50  PhyC 

 47 123 Drug 
resistance 

24,711  133  PLINK  

 40 498 Drug 
resistance 

11,704 12 PhyC 

Staphylococcus 
aureus 
  

2.9 Mb  
  

Low Low 
 

36 75 Drug 
resistance 

55,977  1  ROADTRIPS  

 44 90 Virulence 3,060 121  PLINK  

Streptococcus 
pneumoniae 

2.2 Mb  High Low 37 3,701 Drug 
resistance 

392,524 301 PLINK  

Plasmodium 
falciparum  

22.9 Mb  High Low 41 1,063 Drug 
resistance 

18,322 9  FaST-LMM 

HIV 
  

9,000 bp 
  

High 
  

High  45 343 Drug 
resistance 

5,100 8  PLINK  

 
 
 
 
 

43 1071 Viral load 3,125 0  PLINK  
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Table 3: Features of software applications used in microbial GWAS to date 
Software Reference Analysis Population structure adjustment 

PLINK  46 Linear/logistic regression of allele count at SNP 
Ancestry informative principal components and other covariate 
inclusion 

PhyC 23 Identifies SNPs undergoing recent convergent evolution Based on phylogeny, so inherent 

ROADTRIPS 48 
Association analysis of SNP effect, allowing random 
variables to account for sample relatedness Corrects for provided or derived relatedness between samples 

FaST-LMM 49 
Association analysis of SNP effect, allowing random 
variables to account for sample relatedness 

Derives relatedness matrix and corrects as random effect. 
Principal components can be included as covariates. 

SEER 15 
Linear/logistic regression using k-mers, simultaneously 
testing SNPs and gene presence/absence 

Identifies relatedness from data using multidimensional scaling 
and generates covariates for regression 
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Suggested highlighted References: 
4 –This review discusses in detail the methods, nuances and caveats of GWAS 
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15 –This methods paper presents a mixed model approach to microbial GWAS, including the 
analysis of k-mers 

16 –This methods paper presents an approach to disentangling the effects of single SNPs and 
lineage effects within microbial GWAS 

21 – The authors present an important review of the findings of bacteria GWAS to date. 
29 –An important perspective on the lessons learnt from human GWAS and predictions of 

the future of the field. 
30 – A useful review of a range of polygenic methods and their application.  
23 – This microbial GWAS introduces the PhyC method that uses phylogenetic trees to 

perform a genome-wide scan of convergent evolution.  
43 – An example of a genome-to-genome analysis with both host and microbial GWAS data. 
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