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Microbial genomic analysis reveals the
essential role of inflammation in bacteria-induced
colorectal cancer
Janelle C. Arthur1,*, Raad Z. Gharaibeh2,3,*, Marcus Mühlbauer1, Ernesto Perez-Chanona4,5,

Joshua M. Uronis1,w, Jonathan McCafferty2, Anthony A. Fodor2 & Christian Jobin5,6

Enterobacteria, especially Escherichia coli, are abundant in patients with inflammatory bowel

disease or colorectal cancer (CRC). However, it is unclear whether cancer is promoted

by inflammation-induced expansion of E. coli and/or changes in expression of specific

microbial genes. Here we use longitudinal (2, 12 and 20 weeks) 16S rRNA sequencing of

luminal microbiota from ex-germ-free mice to show that inflamed Il10� /� mice maintain a

higher abundance of Enterobacteriaceae than healthy wild-type mice. Experiments

with mono-colonized Il10� /� mice reveal that host inflammation is necessary for E. coli

cancer-promoting activity. RNA-sequence analysis indicates significant changes in E. coli gene

catalogue in Il10� /� mice, with changes mostly driven by adaptation to the intestinal

environment. Expression of specific genes present in the tumour-promoting E. coli pks island

are modulated by inflammation/CRC development. Thus, progression of inflammation in

Il10� /� mice supports Enterobacteriaceae and alters a small subset of microbial genes

important for tumour development.
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T
he microbiota has an essential role in regulating intestinal
homeostasis through its capacity to modulate various
biological activities ranging from barrier, immunity and

metabolic function1. Not surprisingly, microbial dysbiosis is
associated with numerous intestinal disorders including
inflammatory bowel diseases (IBD) and colorectal cancer
(CRC)2. Whether microbial dysbiosis observed in CRC patients
is a consequence of the pathology or is a causal, active modifier of
disease outcome remains to be defined. Recent evidence
generated from experimental models indicates that microbial
dysbiosis can influence intestinal disease, as implantation of
cancer-associated biota increased cancer development in the
azoxymethane (AOM)/dextran sodium sulphate model of colitis-
associated CRC3,4. At the taxonomic level, analysis of the human
CRC microbiome has identified potential microbial candidates
implicated in the pathology, including Enterobacteriaceae/E. coli
and Fusobacterium5. Subsequent experiments using preclinical
models of CRC have confirmed the carcinogenetic potential of
both Fusobacterium and Enterobacteriaceae/E. coli6–8. While the
biological events implicated in the development of microbial
dysbiosis and emergence of carcinogenic microorganisms are yet
to be defined, host genetics and environmental factors such as
diet and lifestyle are likely contributing elements in microbial
community assembly and maintenance9.

Chronic inflammation has been recognized as an important
risk factor for numerous forms of cancer, including CRC10.
Importantly, inflammation experienced by IBD patients is
associated with a higher abundance of Enterobacteriaceae/E. coli
in their intestinal microbiota11. In addition, patients with IBD
and CRC displayed an increased prevalence of mucosal-
associated E. coli compared with non-IBD and non-CRC
control subjects12–15. Similarly, in a model of colitis-associated
CRC, we have previously observed a higher abundance of
Enterobacteriaceae/E. coli in Il10� /� mice compared with
wild-type (WT) controls6. While high abundance of
Enterobacteriaceae/E. coli appears to be a trademark of IBD,
CRC and mouse models of these diseases, it is still unclear if the
presence of E. coli at high abundance is sufficient to promote
carcinogenesis or whether changes in microbial activities are a
necessary step in the pathology. For example, we and others have
observed a high abundance of E. coli encoding the genotoxic
island pks in the intestine of IBD and CRC patients6,16,17, and
found that pks induces double-strand DNA damage in
mammalian cells and CRC development in preclinical
models6,18,19. Although the presence of pks enhances the
cancer-promoting activity of E. coli NC101 (ref. 6), the same
pks island is necessary for the probiotic (anti-inflammatory)
activity of E. coli Nissle 1917 (ref. 20). Therefore, it is likely that
microbial abundance and gene activities are subjected to complex
environmental regulation, which ultimately dictates whether the
outcome for the host is beneficial or deleterious.

Inflammation has been mostly studied as an environmental
factor affecting host physiology and pathology such as cancer
development. While recent studies have shown that inflammation
fosters the bloom of Enterobacteriaceae21,22, these studies mostly
focused on the behaviour of invading microorganisms in the
context of an acute inflammation. In contrast, the interplay
between an endogenous microbial community, inflammation and
host pathology remains largely undefined.

To address this important question, here we longitudinally
evaluate microbial community composition in a model of colitis-
associated CRC using conventionalized Il10� /� mice (that is,
ex-germ-free mice moved to specific pathogen free housing). In
addition, we examine the impact of inflammation on E. coli’s
carcinogenic potential using microbial RNA-sequencing
(RNA-seq). Our study indicates that inflammation reduces the

strong selection pressure responsible for Enterobacteriaceae/E.
coli decline over time. We find that inflammation is essential for
E. coli-induced CRC in interleukin 10 (Il10)-deficient mice, as the
pathology is not observed in inflammation-resistant Il10� /� ;
Rag2� /� mice. Evaluating the E. coli transcriptome reveals,
surprisingly, that E. coli gene expression is most strongly
influenced by colonization of the mammalian intestine over
time, with only a minimal repertoire of genes influenced by
inflammation/cancer, among them the genotoxic island pks. This
study demonstrates the dynamic and complex response of
commensal microbes to host environmental factors, and
illustrates the key role of inflammation in promoting E. coli-
associated cancer activity.

Results
Microbial assembly changes over time in Il10� /� versus WT
mice. We had previously observed alterations to the microbiota of
Il10� /� mice at 20 weeks post conventionalization, a time
corresponding to development of colitis-associated CRC6. To
examine the timeline of microbial changes during development of
colitis-associated CRC, we longitudinally collected stools from
Il10� /� and WT mice at 2, 12 and 20 weeks after
conventionalization, and performed phylogenic studies. In these
experiments, mice were allowed to acquire the microbial
community from their cage microenvironment6,23. To assess
the effects of genotype and time on microbial community
assembly, we performed principal coordinate analysis (PCoA)
using Bray–Curtis dissimilarity at the operational taxonomic unit
(OTU) level. We used analysis of similarity, nested on cage to
correct for observed cage effects6,23, to compare overall
microbial community composition. At all time points, the micro-
bial community of Il10� /� colitis-susceptible mice differed
significantly from that of healthy WT mice (Fig. 1a and
Supplementary Fig. 1). We observed a marked shift in both
WT and Il10� /� microbial communities from 2 to 12 weeks and
from 2 to 20 weeks (Fig. 1a). The WT community structure
appears to stabilize earlier than the Il10� /� community, as a
significant difference is observed in Il10� /� but not WT animals
from 12 to 20 weeks (Fig. 1a–c). As inflammation in specific
pathogen free (SPF) Il10� /� mice progresses from an average
score of 1 at 2 weeks to a score of 2.25 at 12 weeks and over 3 at
20 weeks6, we attribute this differential community structure to
the presence of inflammation in Il10� /� mice. Our mixed linear
model (see Methods section and McCafferty et al.23) revealed that
time and time� genotype interactions are strongly associated
with the structure of the microbial community in our experiment,
while genotype displays a smaller but still significant association
(Fig. 1d). Similarly, differences in microbial richness between the
Il10� /� and WT microbiota became more pronounced over
time, with inflammation driving statistically significant
differences in the communities at the three time points
(Fig. 1e,f and Supplementary Fig. 1). Thus, host genotype
(inflammation) and time both appear to influence the assembly
of the microbial community.

Early abundance of Proteobacteria in Il10� /� mice. We and
others have observed an increased abundance of Proteobacteria,
in particular Enterobacteriaceae and E. coli, associated with IBD
and CRC in mice and humans6,12,13,15. Therefore, we hypo-
thesized that host-initiated inflammation promotes abundance of
Proteobacteria/Enterobacteriaceae/E. coli, which then supports
further inflammation/tumorigenesis. We assessed the phylum
level abundance of the luminal microbiota at 2, 12 and 20 weeks
post conventionalization. Surprisingly, the abundance of
Proteobacteria declined over time as inflammation increases in
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Figure 1 | Change in microbial community composition over time. (a–c) Bray–Curtis principal coordinate analysis (PCoA) at the operational taxonomic

unit (OTU) level, with analysis of similarity (ANOSIM) R and P values nested on cage. Each symbol represents an individual mouse at the indicated

time point. (d) Mixed linear model FDR-corrected P values for the first 10 coordinates of PCoA (explaining 58.4% of the variance), evaluating the null

hypothesis that the fixed factor indicated above each plot does not impact the coordinate. Grey line represents P¼0.05 significance level.

(e,f) Comparisons by the mixed linear model, with all comparisons and FDR-corrected P values shown in f. Il10� /� week 2 n¼ 17, week 12 n¼ 16 and

week 20 n¼ 15; WT week 2 n¼ 24, week 12 n¼ 22 and week 20 n¼ 24. *Po0.05, ***Po0.001.
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Il10� /� mice, although levels are consistently and significantly
higher at all time points than in WT mice (Supplementary Figs 2
and 3). A similar phenomenon is observed in WT mice where
Proteobacteria declined over time, indicating a natural selection
against this phylum over time. In addition, WT mice also
exhibited a greater abundance of Bacteroidetes at 2 weeks and a
lower abundance of Verrucomicrobia at 12 and 20 weeks, relative
to Il10� /� mice (Supplementary Fig. 3 and Supplementary
Data 1). We next assessed the family-level distribution of the
microbiota and found that the family Enterobacteriaceae declined
over time in both groups, but was significantly more abundant in
Il10� /� relative to WT mice at all time points (Fig. 2a and
Supplementary Data 2). At the OTU level, consensus 27, which
represents the genera Escherichia/Shigella (99% certainty by
Ribosomal Database Project (RDP) classifier), not only displayed
a similar pattern of higher abundance in Il10� /� mice compared
with WT but also declined over time (Fig. 2b). These data

demonstrate similarities in the effect of time on the assembly of
the microbiota in both WT and Il10� /� mice, where there is a
shift in community structure over time from an early Firmicutes-
dominated community with more Proteobacteria to a community
more dominated by Firmicutes and Bacteroidetes with fewer
Proteobacteria (Supplementary Fig. 3). Thus, Proteobacteria/
Enterobactericeae/E. coli abundance changes with succession and
does not correlate with the progression of inflammation over
time. Nonetheless, the abundance of Proteobacteria/
Enterobacteriaceae/E. coli is consistently higher in colitis/
cancer-susceptible Il10� /� mice, relative to WT mice, at all
time points (Fig. 2).

The intestinal E. coli NC101 transcriptome changes over time.
Having observed that progression of inflammation does not
necessarily induce an increase in Enterobacteriaceae abundance,
we sought to identify a mechanism by which inflammation is
essential for the cancer-promoting activity of E. coli NC101 in
AOM/Il10� /� mice. We hypothesized that host-initiated
intestinal inflammation alters the transcriptional repertoire of E.
coli genes that may impact carcinogenesis. We tested this
hypothesis by mono-associating germ-free mice with E. coli
NC101. In this experimental model, absence of competing
microorganisms allows E. coli to maintain a stable niche over
time6. We then used microbial RNA-seq to evaluate the E. coli
transcriptome in stool samples collected over the course of
inflammation and tumorigenesis in AOM/Il10� /� mice (2 days,
and 12 and 18 weeks post mono-association). A principal
component analysis (PCA) plot from the normalized counts of
all samples and time points revealed a remarkable clustering of
the E. coli transcriptome during the progression of inflammation
over time (Fig. 3a). Numerous genes were differentially expressed
(DE) over time (207 from 2 days versus 12 weeks and 1,420 from
2 days versus 18 weeks, false discovery rate (FDR)-corrected
Po0.10) and mapping these genes to Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways using Pathview24

revealed that the majority belong to general metabolic pathways
(Fig. 3b). From these experimental results, we concluded that
these transcriptomic changes over time may be because of the
progression of inflammation from 2 days to 18 weeks, or simply
represent normal adaptation to the intestinal niche.

E. coli requires inflammation to promote AOM-initiated CRC.
RNA-seq analysis revealed substantial changes to the E. coli
transcriptome over the time of intestinal colonization in Il10� /�

mice (Fig. 3), but it was unclear whether these changes were due
to inflammation/cancer or adaptation to the mammalian intestine
(that is, colonization time). Moreover, the functional implication
for these E. coli transcriptional responses in mediating this
carcinogenic effect was unclear. To determine what changes in
the E. coli transcriptome are induced by inflammation and may
impact the development of CRC, we used Il10� /� ;Rag2� /�

mice that lack functional T and B cells, which are essential cellular
components for development of chronic colitis25. One cohort of
Il10� /� mice was not injected with AOM in order to evaluate
the pro-carcinogenic effect of E. coli NC101 in the absence of
initiation by a carcinogen. Histological analysis revealed high
levels of inflammation that did not differ between AOM/Il10� /�

and Il10� /� mice, but a complete absence of inflammation in
AOM/Il10� /� ;Rag2� /� mice at 20 weeks post colonization
(Fig. 4a). The number of macroscopic tumours was higher in
AOM/Il10� /� versus Il10� /� mice, and invasive tumours
(neoplasia score of 4 or 5) were only detected in AOM-treated
animals (Fig. 4b,c), supporting our earlier observations6 that
E. coli NC101 rarely induces invasive tumours in Il10� /� mice
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Figure 2 | Abundance of Enterobacteriaceae and Escherichia/Shigella.

Increased abundance of (a) Enterobacteriaceae and (b) OTU consensus 27

(Escherichia/Shigella) in Il10� /� mice. Box and whisker plots show the
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in the time frame tested. Both AOM/Il10� /� and Il10� /�

mice exhibited a significantly higher tumour burden than
AOM/Il10� /� ;Rag2� /� mice (Fig. 4b). In these nine non-
inflamed AOM/Il10� /� ;Rag2� /� mice, four exhibited no
macroscopic tumours and five exhibited one non-invasive
macroscopic tumour each. In agreement with histological
inflammation, expression of inflammatory cytokines was lower
in AOM/Il10� /� ;Rag2� /� versus AOM/Il10� /� or Il10� /�

mice (Supplementary Fig. 4). Faecal E. coli load did not differ
between AOM/Il10� /� ;Rag2� /� , AOM/Il10� /� and Il10� /�

mice, as measured by 16S PCR analysis, suggesting that low
inflammation and tumour loads in AOM/Il10� /� ;Rag2� /�

mice are not due to fluctuation in E. coli NC101 abundance
(Fig. 4d). These data demonstrate that the sole presence of E. coli
is not sufficient to induce CRC in Il10� /� mice, and that
inflammation is essential to the tumorigenic process.

Colonization over time shapes the gut E. coli transcriptome.
Although we observed substantial changes in the E. coli tran-
scriptome over time in mono-associated AOM/Il10� /� mice
(Fig. 3), this transcriptional response could be due to either
microbial adaptation or inflammation. To control for the effects of
time (adaptation), independent of inflammation, we performed
microbial RNA-seq analysis on longitudinally collected stool
samples from germ-free mice mono-associated with E. coli
NC101 with inflammation (Il10� /� ), inflammation/CRC
(AOM/Il10� /� ) and no inflammation/CRC (AOM/Il10� /� ;
Rag2� /� ) at 2, 12 and 20 weeks post colonization (Fig. 5a). These
time points were selected based upon previous observations
regarding the development of inflammation (minimal at 2 weeks)
and cancer (pre-cancer at 12 weeks and cancer at 20 weeks) in
these mice as described above (Fig. 1). To assess the effects of
inflammation/genotype and time of colonization on the E. coli
transcriptome, we first generated a PCA plot from the normalized
gene counts of all the samples and time points. Surprisingly, the E.
coli transcriptome clustered predominantly by time of coloniza-
tion, rather than inflammation/genotype (Fig. 5b). This revealed
time to be the most significant factor affecting the E. coli

transcriptome. We next compared differential gene expression
over time between and within each disease group to evaluate E.
coli transcriptome changes during adaptation to colonize the
mammalian intestine. We found that there were 568–1,000 DE
genes within each disease group between 2 and 12 weeks post
colonization and 995–1,233 DE genes between 2 and 20 weeks. To
determine which changes in gene expression occurred in response
to colonization regardless of host genotype/disease, we identified
the DE genes common among all three disease groups and found
272 DE genes between 2 and 12 weeks, and 465 DE genes between
2 and 20 weeks (Supplementary Data 3). Mapping these genes to
KEGG pathways revealed that the majority belong to general
metabolic pathways (Supplementary Fig. 5). These data suggest
that E. coli adaptation to the mammalian intestine induces sig-
nificant changes to the microbial transcriptome.

The pks genes are DE by cancer status. Mono-association
experiments indicated that inflammation is necessary for E. coli
NC101-enhanced tumorigenesis in AOM-initiated Il10� /� mice
(Fig. 4), which led us to evaluate the effect of inflammation on the
E. coli NC101 transcriptome. In this evaluation, we compared
gene expression between AOM/Il10� /� ;Rag2� /� (no colitis/
baseline reference) versus Il10� /� (colitis) and versus AOM/
Il10� /� (colitis/CRC) mice. Surprisingly, few genes were DE in
either of these comparisons at any time point (Fig. 5c and
Supplementary Data 4). We next evaluated the effect of cancer on
the E. coli transcriptome by comparing gene expression between
Il10� /� mice (colitis) versus AOM/Il10� /� mice (colitis/CRC).
We found that the differential expression of 66 E. coli genes is
driven by cancer status at 12 weeks (dysplasia/pre-cancer6) and
20 weeks post colonization (cancer), with 11 of these genes shared
among both time points (Fig. 5d and Supplementary Data 5).
These differences were unlikely to be caused by AOM treatment
alone, as these genes were not DE between Il10� /� and AOM/
Il10� /� ;Rag2� /� mice at 12 or 20 weeks. This suggests that the
cancer microenvironment may impact the functional potential of
E. coli to promote cancer progression.
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We have previously shown that disruption of a single
gene island, the pks pathogenicity island, can influence the
development of cancer in AOM/Il10� /� mice6. Five pks island
genes (ClbG, ClbH, ClbL, ClbM and ClbN; Supplementary Data 5)
were among 66 genes that were significantly impacted by cancer
(that is, they were DE between Il10� /� and AOM/Il10� /� ) at
12 weeks (Po10� 5 Fisher’s exact test for the null hypothesis that
five pks island genes could have been chosen by chance among
the 66 DE genes). We used operon-based differential expression
analysis (see Methods section) between Il10� /� and AOM/
Il10� /� to identify E. coli operons that respond to cancer
(Supplementary Data 6). This approach identified the pks island
as among the top five operons significantly upregulated (out of
448) in AOM/Il10� /� compared with Il10� /� at 12 weeks time
point (FDR-corrected Po0.05). The other four operons identified
among the top five DE are ribosomal proteins implicated in
housekeeping functions (Supplementary Data 6). Supplementary
Figure 6a depicts operons DE on the E. coli NC101 genome and
showed the pks island to be one of the most significant
responding operons at 12 weeks. At 20 weeks, when cancer has
developed, AOM/Il10� /� mice show less differential expression
of genes in the pks operon (19th most DE, FDR-corrected

P¼ 0.73; Supplementary Fig. 6, right panel). This suggests that
changes to the intestinal microenvironment during cancer
development may maintain or enhance pks transcription and
carcinogenesis/tumorigenesis in carriers of pksþ E. coli. Overall,
our findings highlight the complex interaction between host
inflammation and microbial composition/activity in the
development of colitis-associated CRC.

Discussion
We previously reported that intestinal inflammation was not
sufficient to promote CRC in Il10� /� mice, and that specific
microbial activities such as those generated by E. coli pks are
essential for tumorigenesis6. Interestingly, genetic deletion of pks
attenuated development of invasive tumours without impacting
the colitogenic potential of E. coli, suggesting an uncoupling
process between inflammation and carcinogenesis. In this study,
we investigated in more detail the relationship between intestinal
inflammation and microbial-induced carcinogenic ability. Our
work suggests a nuanced relationship between E. coli and
inflammation. First, we observed that developing inflammation
in Il10� /� mice is not promoting an expansion of the
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(c) Representative haematoxylin and eosin (H&E) histology at 40� magnification; scale bars, 1.0mm; and neoplastic lesion indicated with

arrowhead. (d) Luminal E. coli load by qPCR of faecal genomic DNA. (a,b,d) Each symbol represents an individual mouse, line at mean, P values by

Kruskal–Wallis with Dunn’s test for multiple comparisons. NS, not significant; c.f.u., colony-forming unit.
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Enterobacteriaceae/E. coli niche over time, but rather antagonizes
the natural negative selection of this bacterial group23,26–28. This
observation is not related to the use of conventionally derived
mice, since conventionally raised Tlr5� /� mice inoculated with
E. coli LF82 also exhibited reduced E. coli abundance over time,
but still maintained higher levels than non-inflamed mice29.
Natural negative selection of Proteobacteria is also less efficient in
the intestine of human babies with late onset sepsis than in
healthy controls30. The mechanisms by which E. coli resists
negative selection in the inflamed intestinal environment are
unclear. A recent report22 suggested that nitrate production
derived from host-inducible nitric oxide synthase (iNOS) fosters
the bloom of Enterobacteriaceae. Our observation that there is no
correlation between iNOS gene expression and E. coli load,
coupled with the protective effect of iNOS in colitis-associated
CRC31, suggest a more complex interaction between host
inflammation, bacteria and tumour development.

To determine whether the cancer risk introduced by E. coli is
dependent on inflammation, we mono-associated inflammation
susceptible AOM/Il10� /� and inflammation-resistant AOM/
Il10� /� ;Rag2� /� mice with E. coli NC101 and found that a
high abundance of E. coli was not sufficient for tumorigenesis in
the absence of inflammation. This minimal and non-invasive
tumorigenesis is not simply inherent to the Rag2� /� genotype,
as Rag2� /� mice develop intestinal cancer in response to other
stimuli, including the Epsilon-Proteobacteria Helicobacter

hepaticus and carcinogen methylcholanthrene32,33. As E. coli
loads were equivalent in inflamed AOM/Il10� /� and non-
inflamed AOM/Il10� /� ;Rag2� /�mice, the lack of CRC cannot
be attributed to a failure to colonize Il10� /� ;Rag2� /�mice.
Rather, we interpret these findings as meaning that specific
environmental conditions (for example, inflammation), in
addition to presence of E. coli, are necessary for development of
CRC in Il10� /� mice.

We hypothesized that inflammation may alter the gene
expression of E. coli during intestinal colonization. However,
RNA-seq analysis on longitudinally collected stool samples from
inflamed (Il10� /� and AOM/Il10� /� ) and non-inflamed
(AOM/Il10� /� ;Rag2� /� ) mice revealed numerous DE genes
and a remarkable clustering of the E. coli transcriptome by time.
Thus, microbial adaptation to the mammalian intestine over
time—and not mouse genotype and disease phenotype—is a
dominant force shaping the intestinal E. coli transcriptome. These
results highlight the importance of controlling for the effects of
time as well as health and disease phenotypes in order to reach
sound conclusions in microbiome studies.

Inflammation alters a surprisingly small number of genes at
12 weeks that account for o0.5% of total E. coli genes and
virtually no genes (o0.01%) at 20 weeks. It is notable that
virtually no gene expression changes are apparent at 20 weeks
post colonization, which may indicate that the E. coli
transcriptome has adapted to the inflamed intestine after this
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Figure 5 | Microbial adaptation to the mammalian intestine drives E. coli transcriptional changes over time. (a) Timeline of sample collection.

(b) Principal component analysis plot constructed from the normalized E. coli gene counts from all samples and time points. Each symbol indicates an

individual mouse at each time point (white¼week (wk) 2, grey¼week 12 and black¼week 20). Shape indicates genotype/disease: circle¼AOM/Il10� /�
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extended period of colonization. The small number of microbial
genes (17–21) regulated by inflammation at 12 weeks sharply
contrasts with the 568–1,233 DE genes within each genotype/
disease compared across time points. We conclude that at the
time points examined in this current study, inflammation
minimally impacts E. coli gene expression. Previously, Patwa
et al.34 concluded that inflammation impacts expression of
numerous E. coli genes that contrasts with our current findings.
This could be owing to profound differences in experimental
approach, such as technology (microarray versus RNA-seq), non-
inflamed genotype control (WT versus Il10� /� ;Rag2� /� ),
sampling location (caecal versus faecal) and observation time
(single end point versus multiple time points). These mono-
association studies may not fully reflect E. coli behaviour in a
human host harbouring a naturally acquired complex microbial
community. Future studies will determine E. coli transcriptomic
response in presence of a complex microbiota.

We detected 66 DE genes at both 12 and 20 weeks post
colonization in Il10� /� versus AOM/Il10� /� mice, with 11 DE
genes represented at both time points throughout the progression
of cancer. While it is currently unclear whether these changes are
a cause or consequence of cancer development, future functional
studies using microbial gene knockouts and gnotobiotic
approaches will address the importance of these 11 genes. Indeed
our previous work demonstrated that deletion of a single
microbial gene cluster, the pks pathogenicity island, can impact
the incidence and severity of CRC in E. coli NC101 mono-
associated AOM/Il10� /� mice6. The critical role of pks in
promoting CRC was recently confirmed in another experimental
model30. However, there is no data about the transcriptional
regulation of the pks island in vivo during the course of
inflammation/cancer. Our data show for the first time that the
pks island is significantly responsive to the inflammatory/
carcinogenic environment in Il10� /� mice. Whether other
strains harbouring the pks island respond similarly to the
inflammatory and carcinogenic environment will require
further experiments. At this time, no methods exist to detect
the bioactive product of the pks island, colibactin, as its precise
structure is unknown, so it is unclear how expression of pks genes
relates to the production and cancer-promoting activity of this
genotoxin. Nonetheless, maintained expression of genes with
cancer-promoting activities could reasonably impact the
progression of CRC.

In addition to transcriptional response, additional mechanisms
could contribute to or modify E. coli carcinogenic potential. For
example, many E. coli functions involved in virulence and
colonization are a consequence of post-transcriptional regulation
(that is, two-component systems35,36, nucleotide- and small
molecule-based second messengers37,38 and so on). Proteomics
analysis of E. coli NC101 suggest minimal changes during
inflammation39. Therefore, it will be important to evaluate the
E. coli metabolome in response to inflammation and cancer
as metabolomics technologies become better developed and
more affordable. Another possible mechanism to be investigated
is inflammation-induced loss of protective mucins and
increased epithelial access40,41 that can enhance the ability of
E. coli to interact with the host epithelium. Defective Muc2
expression in Il10� /� mice has been shown to facilitate bacterial
access to the epithelium40,42. In this scenario, inflammation would
not significantly alter the functional capabilities of E. coli, but
would poise it at a unique location with unfettered access to
deliver bacterial products to host epithelial cells and impact
inflammation and carcinogenesis. This mechanism would be con-
sistent with our observation that non-inflamed AOM/Il10� /� ;
Rag2� /� mice fail to develop CRC, despite a high abundance of
luminal E. coli.

In conclusion, we have found that inflammation does not
promote an observable increase in E. coli abundance in the
luminal compartment, but may enhance E. coli resilience in the
intestine. Although inflammation did not drive substantial
changes in the E. coli transcriptome, inflammation was critical
for tumour development, perhaps by maintaining expression of
selected pks-associated genes. These findings highlight the
complex interplay between inflammation, microbial activity and
cancer development. Future studies will further elucidate the
specific mechanisms by which host and microbial factors produce
CRC phenotypes over time.

Methods
Ethics statement. All animal protocols were approved by the Institutional Animal
Care and Use Committee of the University of North Carolina at Chapel Hill.

AOM/Il10� /� model. Il10-deficient, Il10 and recombination activating gene 2
(Rag2) double-deficient and WT 129/SvEv mice were born and raised in germ-free
isolators until either the day they were transferred to SPF facility (SPF model) or
mono-associated with E. coli NC101 (mono-association model) for the immediate
initiation of CRC experiments. In SPF experiments, mice were colonized by
naturally acquiring the microbiota from their cage/room microenvironment upon
transfer from germ free (GF) to SPF conditions. This approach negates con-
founding factors of familial and maternal transmission of the microbiota that can
be experienced in mice born and raised in SPF conditions23,43. Because AOM
treatment had no effect on the microbiota assessed at 20 weeks in the previous
study6 (P¼ 1 using both analysis of similarity and permutational multivariate
analysis of variance (PERMANOVA) to evaluate the null hypothesis that AOM
does not contribute to microbial community composition in this data set), we did
not distinguish between AOM treatment groups in testing hypotheses on the state
of the microbial community. For the mono-association model, GF mice were
transferred to a gnotobiotic isolator and colonized with E. coli NC101 by gavage
and rectal swabbing44. They remained in this isolator throughout the study. In all
experiments, male and female mice were aged 7–12 weeks at initiation of these
experiments and housed 2–4 mice per cage. Four weeks after colonization, mice
received 6 weekly intraperitoneal injections of AOM (10mg kg� 1). Stool was
collected throughout the experiments at 2, 12 and 20 weeks. Mice were killed at 20
weeks, stool and tissue were collected, and colons were examined macroscopically
for tumours and then swiss-rolled and fixed in formalin for paraffin embedding
and histology44. Histology was scored for inflammation45 and dysplasia/tumours6

by two blinded experienced investigators. Dysplasia was scored as follows, taking
into account the entire colon section and not simply the most severe lesion: 0¼ no
dysplasia, 1¼mild dysplasia characterized as aberrant crypt foci, þ 0.5 for
multiples, 2¼moderate dysplasia characterized as gastrointestinal neoplasia, þ 0.5
for multiples, 3¼ severe or high grade dysplasia characterized as adenoma,
restricted to the mucosa, 4¼ invasive adenocarcinoma, invading into or through
the muscularis mucosa, and 5¼ fully invasive adenocarcinoma, full invasion
through the submucosa and into or through the muscularis propria6.

Animal cohorts. Three animal cohorts were used in this manuscript. The first
cohort was used for longitudinal sequencing of the faecal microbiota and is
described above as the SPF model. 16S data from the 20 weeks time point were
previously published6. The longitudinal assessment including 2 and 12 weeks time
points of this cohort are published for the first time here (Figs 1 and 2). Two
additional cohorts, mono-associated with E. coli NC101, were used for RNA-seq
and are described for the first time here. One cohort included only AOM/Il10� /�

mice, with stools from 2 days and 12 and 18 weeks post mono-association used for
RNA-seq (Fig. 3). An additional cohort included Il10� /� , AOM/Il10� /� and
AOM/Il10� /� ;Rag2� /� mice, with stool samples collected at 2, 12 and 20 weeks
post mono-association. In this cohort, cancer and inflammation were assessed
(Fig. 4) and RNA-seq was used to evaluate the E. coli transcriptome (Fig. 5).

DNA extraction. Stool samples were collected from SPF mice to assess luminal
microbiota. Colon biopsies (2� 10mm) were collected after flushing the colon
with phosphate-buffered saline. Samples were immediately stored at � 80 �C. DNA
was extracted from between 50 and 200mg of stool or 100mg colon tissue as
described in refs 6,44.

Bacterial quantitative quantitative PCR. Bacterial quantitative PCR (qPCR) was
performed on total DNA extracted from stool at the 20 weeks time point of each
experiment as described previously6. In brief, amplification was performed in
triplicate with SYBR green qPCR chemistry according to the manufacturer’s
protocol (Applied Biosystems) using the following primers: E. coli 16S rRNA F
50-CATGCCGCGTGTATGAAGAA-30, E. coli 16S rRNA R 50-CGGGTAACGTC
AATGAGCAAA-30 , universal 16S rRNA F 50-GTGSTGCAYGGYTGTCGTCA-30 ,
universal 16S rRNA R 50-ACGTCRTCCMCACCTTCC C-30 (ref. 6). Ct values from
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E. coli were normalized to 16S to generate DCt values. E. coli load was calculated
by comparing Ct values to a standard curve from known concentrations of cultured
E. coli NC101.

qPCR for host cytokine expression. To assess host cytokine expression, RNA was
extracted from distal colon biopsies using TRIzol (Invitrogen) and cDNA was
reverse transcribed using Moloney murine leukaemia virus (Invitrogen) according
to the manufacturer’s instructions. qPCR amplification was performed in triplicate
with SYBR green qPCR chemistry (Applied Biosystems) using primers for Nos2 (F-
50-GTGGTGACAAGCACATTTGG-30 , R-50-GGCTGGACTTTTCACTCTGC-30),
Il1b (F-50-GCCCATCCTCTGTGACTCAT-30 , R-50-AGGCCACAGGTATTTTG
TCG-30), Ifng(F-50-CTTCCTCATGGCTGTTTCTGG-30 , R-50-ACGCTTATGT
TGTTGCTGATGG-30), Il12b (50-GGAAGCACGGCAGCAGCAGAATA-30 and
50-AACTTGAGGGAGAAGTAGGAATGG-30), and Gapdh (F-50-GGTGAAGGT
CGGAGTCAACGGA-30, R-50-GAGGGATCTCGCTCCTGGAAGA-30) on an ABI
7900HT Fast Real-Time PCR System. Ct values were normalized to Gapdh to
generate DCt values, and fold changes were calculated by DDCt to the mean DCt

of the AOM/Il10� /� ;Rag2� /� group.

Illumina V6 16S library construction and sequencing. The V6 hypervariable
region of the 16S rRNA gene was amplified using a two-step PCR strategy6. The
first step uses primers to the V6 region of the 16S rRNA gene that contain a 4–6
nucleotide barcode for multiplexing6. The subsequent PCR adds Illumina paired-
end sequencing adapters and a flow-cell adapter on the 50 and 30 ends of the
amplicon. Amplicons were visualized on 1.5% agarose gel and purified using the
QIAquick PCR purification kit (Qiagen). A quantity of 50 ng of DNA from each
sample was pooled to a final concentration of 29 ng ml and subjected to paired-end
Illumina HiSeq2000 sequencing at the University of North Carolina High
Throughput Sequencing Facility.

A total of 230,348,938 paired-end reads were generated using two lanes of
Illumina HISeq2000 for a total of 244 samples. Requiring a minimum of 70
continuous matching nucleotides between the forward and the reverse reads, we
generated 40,400,733 consensus sequences for the current study representing 118
samples. Those sequences were processed as described previously6,23. Abundant
OTUþ v.0.93b (http://omics.informatics.indiana.edu/AbundantOTU/otuþ .php)
with the ‘-abundantonly’ option was used to cluster those sequences into 2,273
OTUs incorporating 99.68% of the total input sequences. UCHIME (http://www.
drive5.com/uchime/46) and the Gold reference database were used to screen for the
presence of chimeras in our OTU sequences, and a total of 20 OTUs were removed.
The remaining 2,253 OTUs (representing 99.63% of the input sequences) were
used for downstream analysis. Taxonomic assignments were done using BLASTn
(v. 2.2.28þ ; ref. 47) with an expectation value threshold of e-5 to map the OTU
sequences to the Silva database (release 108, http://www.arb-silva.de/). After that,
we used the standalone version of the RDP classifier (v.2.5; ref. 48) to classify the
full-length Silva sequences with the best BLASTn match to the OTU sequence
requiring an RDP confidence score of Z80%. Microbial richness was calculated as
the number of distinct OTUs present in each sample or each cage (median of all
samples from a particular cage) after rarefying to 15,859 sequences/sample or
56,202 sequences/cage.

Pivot tables for the OTU, Phylum, Class, Order, Family and Genus were
generated as described previously23. We used a mixed linear model using SAS
software to analyse the data and accounting for possible contributions that may
arise from co-housing the mice in the same cage23. In Figs 1e and 2, the median
value of each cage is shown for visualization purposes. In Figs 1f and 2, however, P
values are reported from our mixed linear model using F-test, which accounts for
the contribution of cage. A parallel analysis using QIIME v.1.7.0 (ref. 49) was also
conducted, using both de novo (at 97% similarity level) and close-reference OTU
picking approaches (at 97% similarity level using the Greengenes 97% reference
data set, release of May 2013). This analysis yielded broadly similar results
(Supplementary Fig. 1).

Bacteria RNA isolation. Stool samples were longitudinally collected from
Il10� /� mice at 2 days and 12 and 18 weeks (Fig. 3) or from Il10� /� ,
AOM/Il10� /� and AOM/Il10� /� ;Rag2� /� mice at 2, 12 and 20 weeks post
mono-colonization (Fig. 5 and Supplementary Fig. 6) to isolate bacterial mRNA.
Stool samples were snap frozen and stored at � 80 �C. RNA was extracted from
between 50 and 200mg of stool as follows. Total bacterial RNA was isolated from
stool using RiboPure Bacteria Kit (Ambion, Austin, TX) and depleted of ribosomal
and transfer RNA using MicrobeExpress (Ambion). Before preparation of double-
stranded cDNA (see below), bacterial DNA contamination was assessed by per-
forming a 50-cycle PCR using 100 ng of RNA as a template with the following
primers to detect pks island genes6,50: clbB forward 50-GCGCATCCTCAAGAGT
AAATA-30 and reverse 50-GCGCTCTATGCTCATCAAC-30 (PCR-product
size¼ 283 bp) and clbN forward 50-GCAGCGCAAAATACCATAAAT-30 and
reverse 50-TGGGCTGTTGGATTTAGTCAC-30 (PCR-product size¼ 331 bp).
Absence of both bands was required to proceed with the preparation of the double-
stranded cDNA. A cDNA library was constructed using TruSeq RNA Sample Prep
Kit v2 (Illumina, Hayward, CA). A PCR for clbB and clbN expression was
performed (30 cycles) to confirm the presence of these genes on our samples. For

the first RNA-seq experiment (Fig. 3), 10 samples were multiplexed into one lane
and for the second RNA-seq experiment (Fig. 5), 35 samples were spread into three
lanes for paired-end sequencing. One sample from the second RNA-seq
experiment could not be assigned to any mouse and therefore was excluded from
the analysis.

Illumina RNA-seq. Our first RNA-seq experiment (AOM/Il10� /� ; Fig. 3) gen-
erated 151,331,485 paired-end reads of 100 bases long for a total of 10 samples. The
second RNA-seq experiment (Fig. 5 and Supplementary Fig. 6) generated a total
542,090,141 paired-end reads of 100 bases long for a total of 35 samples. Principal
component analysis (PCA) plots revealed no batch effect by lane (Supplementary
Fig. 7). A quality control/quality assurance (QC/QA) approach similar to that
described by Castellarin et al.51 was adopted from human to mouse-associated
samples to clean and filter the reads. In brief, all reads were mapped to the UCSC
mouse genome (mm19) sequences using Novoalign v.2.08.03 (NovoCraft
Technologies, Selangor, Malaysia). Reads that mapped to the mouse genome were
excluded from further analysis. A re-analysis of the data based on Bowtie2 (ref. 52)
v. 2.2.1 alignments led to nearly identical results. We screened RNA-seq data for
the presence of bacteria other than Escherichia using MetaPhlAn (ref. 53) v. 1.7.3,
and found that 100% of the reads were assigned to Escherichia except for 3 of 35
samples showing 84%, 93% and 97% of reads assigned to Escherichia. These
minority reads were assigned to species that are common contaminants on
sequencing equipment: 16% (Staphylococcus), 7% (Staphylococcus) and 3%
(Pseudomonas). These data confirm that Il10� /� mice were only colonized
with E. coli.

To enhance the available draft genome of E. coli NC101 (NCBI GenBank
accession AEFA00000000.1), we used reads from the first RNA-seq experiment
along with the original Roche 454 sequences that were used to produce the
AEFA00000000.1 assembly. The concept of enhancing genome assembly using
RNA-seq data has been successfully applied to Caenorhabditis54. The RNA-seq
reads, from the first RNA-seq experiment, that were used in the genome assembly
process were first cleansed (see above) and filtered at Q20, followed by merging
overlapping reads using FLASH55. Both the merged and unmerged reads were
subjected to digital normalization56 and then fed into Newbler genome assembler
(v.2.6 20110517_1502 (ref. 57)) along with the Roche 454 shotgun sequences. The
hybrid assembly reduced the total number of scaffolds from 27 to 10 and increased
the N50 value from 511,891 to 848,093 bases. The hybrid assembly was then
annotated using Prokka (ref. 58) v.1.2. Filtered and cleansed RNA-seq reads were
then aligned to this updated draft genome using Novoalign (reference indexed at k-
mer length of 10 and step size of 1 using novoindex), resulting in average genome
coverage of 16X. Rapaport et al.59 and Liu et al.60 have recently shown that the
accuracy of gene expression analysis algorithms is enhanced by the number of
replicates used (two or three replicates) rather than the coverage depth. Our RNA-
seq experiment uses 3–4 replicates; therefore, the accuracy of our differential gene
expressions calls should be unaffected by the moderate (16X) coverage depth.
Furthermore, MA plots (log2 fold change versus log2 mean normalized counts for
each transcripts) show that there is no bias in our differential gene expression calls
towards the high abundance transcripts (Supplementary Fig. 8). All alignments
were sorted by name, indexed and stored in BAM format files. Gene count matrices
were generated using htseq-count v.0.5.4p1 (http://www-huber.embl.de/users/
anders/HTSeq/doc/overview.html) along with the gene transfer format (GTF) file
generated from the annotation step above. Differential gene expression was
evaluated using edgeR (v.3.2.4; ref. 61) according to procedures described in the
package’s user guide section 3.3 (http://www.bioconductor.org/packages/2.12/bioc/
html/edgeR.html). In brief, a contrast matrix incorporating either the time points
(for the first RNA-seq experiment) or the genotype/disease groups and the time
points (for the second RNA-seq experiment) was generated for each of the
comparisons: AOM/Il10� /� week 12 versus day 2, AOM/Il10� /� week 20 versus
day 2 and AOM/Il10� /� week 12 versus week 20 (first RNA-seq experiment) or
AOM/Il10� /� versus Il10� /� , AOM/Il10� /� versus AOM Il10� /� ;Rag2� /�

and Il10� /� versus AOM Il10� /� ;Rag2� /� (second RNA-seq experiment).
Then this contrast matrix was used in gene-wise negative binomial generalized
linear model to test the null hypothesis that the contrast (as defined in the contrast
matrix) of the coefficients is equal to zero. A gene was considered DE if its FDR-
corrected P value was o0.1. Genes were mapped to KEGG pathways using
Pathview v. 1.1.7 (ref. 24).

We performed operon prediction on the filtered and cleansed RNA-seq reads
from the second RNA-seq experiment using Rockhopper v.1.2.1 (ref. 62);
Rockhopper was used for the purpose of operon detection only. We used predicted
operons with three or more genes and discarded the rest. Those predicted operons
were then used for testing operon differential expression using GAGE v.2.12.0 (ref.
63) along with the fitted counts from the binomial generalized linear model of
edgeR. All our differential expression analysis was done using edgeR (gene level) or
GAGE (operon level). To ensure that the operon prediction algorithm did not
unduly influence our results, we repeated our generation of operon P values using a
different assembly (E. coli 536, NCBI GenBank accession NC_008253) and its
predicted operons from the DOOR2 (ref. 64) database. We saw broadly similar
results with little pks differential expression at week 2, pks being one of the most
upregulated operons at week 12, and a decline in differential expression of pks at
week 20 (Supplementary Fig. 6). In determining P values for Supplementary Fig. 6,
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only the three animals for which we had RNA-seq data for all three time points
were used. We conclude that our results involving pks are not dependent on a
particular assembly or operon prediction pipeline.

Analysis of the pks pathogenicity island. The pks island is composed of B20
open reading frames spanning B54 kb (refs 18,65). It has been shown that the pks
island of E. coli strain Nissle 1917 is organized into four polycistronic units: clbC to
clbG, clbI to clbN, clbO to clbP and clbR to clbA based on reverse transcription PCR
analysis50. In our de novo operon prediction, the pks island was organized into two
polycistronic units: clbC to clbQ plus two open reading frames predicted as
hypothetical proteins and clbR to clbA. When testing for operon differential
expression (see above), we ran three analyses; the first using the four polycistronic
units from Homburg et al.50, the second using the two polycistronic units from
Rockhopper predictions and the third using the pks of E. coli 536 as predicted by
the DOOR2 database.

Statistics. Statistical tests are described in figure legends and were computed using
PRIMER v. 6, Microsoft Excel, GraphPad Prism, R v.3.0.1 and v.3.0.2 (http://
www.R-project.org), and/or SAS v. 9.2 and v.9.3 (SAS Institute Inc., Cary, NC).
Inflammation, tumorigenesis scoring and qPCR results (Fig. 4) were compared
between groups using Kruskal–Wallis with Dunn’s test for multiple comparisons.
These tests are two-tailed, a¼ 0.05. We controlled for FDR by correcting the P
values using Benjamini and Hochberg66 approach where applicable.

Our mixed linear model, in which genotype and time are fixed effects and cage
is a random effect23, takes the form of:

Yijkl¼mþGi þTj þ GTð Þij þCkðiÞ þ eijkl

where Yijkl represents either PCoA axis value, phylum count, family count, genus
count, OTU count or richness value for genotype i, time j, cage k and replicate l. Gi

is the effect of the ith genotype, were genotype is set to either WT or Il10� /� . Tj is
effect from the jth time point. (GT)ij is the interaction effect between genotype i and
time j. Ck(i) is the effect from the kth cage that is nested within the ith genotype and
eijkl denotes the error associated with measuring Yijkl.
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