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Abstract 

The large-scale application of organic pollutants (OPs) has contaminated the air, soil, and water. Persistent OPs enter 

the food supply chain and create several hazardous effects on living systems. Thus, there is a need to manage the 

environmental levels of these toxicants. Microbial glycoconjugates pave the way for the enhanced degradation of 

these toxic pollutants from the environment. Microbial glycoconjugates increase the bioavailability of these OPs by 

reducing surface tension and creating a solvent interface. To date, very little emphasis has been given to the scope 

of glycoconjugates in the biodegradation of OPs. Glycoconjugates create a bridge between microbes and OPs, 

which helps to accelerate degradation through microbial metabolism. This review provides an in-depth overview of 

glycoconjugates, their role in biofilm formation, and their applications in the bioremediation of OP-contaminated 

environments.
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Introduction
Organic pollutants (OPs) are used in large quantities 

in the industrial and agricultural sectors [1]. �e rapid 

industrialization and anthropogenic activities of the pre-

sent era have increased environmental contamination 

with various OPs, including compounds like chloroform, 

benzene, carbon tetrachloride, paints, gasoline, adhe-

sives, plastic compounds, chlorohydrocarbons (CHCs), 

and pesticides [2]. OPs are presently found in the air, soil, 

and water and have various adverse effects on living sys-

tems, including the flora and fauna present in the ecosys-

tem [3]. �ese OPs are also reported to be responsible 

for various toxic effects in humans, including adverse 

carcinogenic, mutagenic, and teratogenic effects. �us, 

remediation strategies for these OPs are essential in the 

present scenario (Fig. 1). �e remediation of OPs usually 

uses physical and chemical techniques such as soil wash-

ing, pumping, aeration, oxidation, incineration, etc. [4]. 

However, these methods have many disadvantages and 

usually result in secondary environmental contamina-

tion; they are also uneconomical to use. �e secondary 

contaminants are not emitted directly from the source 

they formed due to degradation reactions of the main 

pollutants. �erefore, bioremediation strategies utiliz-

ing living systems are the only hope for the eco-friendly 

management of these OPs.

Microbial bioremediation (MB) is usually considered 

one of the best methods for the treatment of environ-

mental contamination. �e rich diversity of metabolizing 

enzymes participated in the bioremediation processes 

[3]. �e MB of contaminants is possible through enzy-

matic reactions, which produce different intermedi-

ate metabolites through metabolic pathways. Although 

single microbial cultures have been used as potent con-

taminant degraders in recent decades, but mixed cultures 
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perform better in environments [5]. Environmental con-

tamination with OPs can be managed by utilizing micro-

bial metabolic processes that degrade these OPs into 

non-toxic metabolites in an economical, eco-friendly, and 

efficient manner [6]. �us, researchers are involved in the 

study of microbial biodegradation mechanisms related 

to OPs to develop low cost and simple techniques for the 

management of these pollutants. OPs are metabolized by 

microbial cells using both aerobic and anaerobic metabo-

lism. Anaerobic metabolism is one of the most preferred 

methods in bioremediation, especially for chlorinated 

OPs. However, sometimes OPs involve the production of 

much more toxic compounds, such as trichloroethylene 

(TCE). Microbial degradation via anaerobic mechanisms 

results in the production of dichloroethylene (DCE) and 

vinyl chlorides (VCs), which have higher environmen-

tal toxicity than their parent compound, TCE [2]. �us, 

at times, aerobes are the best choice for OP bioreme-

diation due to presence of various catabolite enzymes 

with broad specificity to degrade different types of OPs. 

�ese aerobes consist of various oxygenases that play a 

significant role in the degradation of pollutants from 

contaminated sites. For example, Pseudomonas sp. has 

oxygenases that can metabolize TCE along with the asso-

ciated DCE and VCs into  CO2 and  Cl-, where both the 

final products are non-toxic [4]. However, the efficient 

degradation of OPs rests in understanding its transporta-

tion inside the microbial cell and its assimilation. Studies 

indicate that microbial glycolipids and other glycocon-

jugates play a very important role in the mechanism of 

transport of these OPs across microbial membranes [7]. 

�ese microbial glycol compounds act as emulsifiers and 

are called “biosurfactants”, which are located either inside 

the cell or secreted outside and help in the bioremedia-

tion mechanism [8]. �is gave rise to the term “microbial 

glycobiotechnology” (MG), which involves a wide array 

of methods, with the main goal of decontaminating dif-

ferent types of pollutants.

MG utilizes natural microbial resources for the trans-

formation of the contaminated environment to a safe 

native natural form. MG involves the microbial pro-

duction of carbohydrate polymeric compounds with 

novel applications in the field of bioremediation and 

waste management. Studies proved that biosurfactant 

production has a direct correlation to OP degradation. 

�us, MG is gaining importance for the management 

of OPs in the environment [9]. MG interacts with pro-

teins and metabolites and facilitates the degradation of 

OPs [10]. �is review presents an overview of recent 

advances in MG and its specific applications in the 

bioremediation of different types of OPs.

Fig. 1 Microbial remediation of organic pollutants (OPs): sources, adverse effects and micro-remediation mechanisms
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Microbial glycoconjugates: types and application 

in bioremediation

Glycobiotechnology, involves the transfer of the basic 

knowledge structure and functional relationship of gly-

coconjugates to practice-related synthetic and applied 

producers [11]. �e term “glycoconjugate” indicates 

the combination of glycoproteins and glycolipids. 

Microbial strains are able to produce glycoconjugates 

and facilitate their metabolism in various ways, such 

as via the producers of these molecules, uptake of the 

desirable pollutants, and other substrates (Table  1). 

Glycoconjugates are an integral part of the bacterial cell 

membrane, which consists of special types, viz., surface 

molecules (lipopolysaccharides, capsular polysaccha-

rides, lipo-oligosaccharides, and glycoproteins), cell-

wall polymers, and secreted exopolysaccharides [12] 

(Fig.  2). In addition to this, microbial strains produce 

extracellular glycoconjugates such as rhamnolipids, 

sophorolipids and exopolysaccharides, glycoproteins, 

and glycol-lipopeptides. �ese glycoconjugates play a 

crucial role in the bioremediation of the OPs [13].

Table 1 Glycoconjugates in the bioremediation of organic pollutants (OPs)

Microbial strains Glycoconjugates Organic pollutants Mode of action References

Acinetobacter sp. Y1 Methyl hexadcanoate, methyl 
octadecanoate

Petroleum hydrocarbon Reduce surface tension of water, 
showed strong tolerance with 
pH, temperature, salinity

[14]

Pseudomonas, Rhodococcus Biosurfactants Cypermethrin Emulsion reaction [15]

Achromobacter sp. A-8 Biosurfactants Crude oil Reduce surface tension [16]

Acinetobacter baumannii BJ5 Glycolipid biosurfactant Pyrene Growth linked production [17]

Burkholderia cenocepacia BSP3 Glucolipid Methyl parathion, ethyl para-
thion, trifluralin

Critical micelle formation (CMC) 
and reducing surface tension

[18]

Pseudomonas aeruginosa WH-1 Biosurfactants Hexachlorocyclohexane (HCH) Lower the emulsification with 
HCH

[19]

Pseudomonas sp. Rhamnolipids Chlorpyrifos Increase the aqueous partition 
and chlorpyrifos degradation

[20]

Bacillus subtilis MTCC 1427 Biosurfactants Endosulfan Increase bioavailability of 
endosulfan

[21]

Pseudomonas aeruginosa B1, P. 
fluorescens B5, P. stutzeri B11 
and P. putida B15

Exopolysaccharides (EPS) 2,4-D, benzene, toluene, xylene 
and gasoline

Organic pollutants affect EPS 
production

[22]

Penicillium simplicissimum Tea saponin, rhamnolipid Phenol CMC, reduce surface tension 
and increase laccase produc-
tion

[23]

Pseudomonas aeruginosa CH7 Rhamnolipid β-Cypermethrin Rhamnolipid promote the disso-
lution, absorption, adsorption

[24]

Candia, Pseudomonas, Deinococ-
cus, Nocardiopsis, Serratia

Rhamnolipids, trehalolipids, 
mannosylerythritol lipids, cel-
lobiose lipids

Organic pollutants Bioremediation of the organic 
pollutants

[25]

Pseudomonas, Bacillus, Candida Rhamnolipid Oil spill Reduce interfacial tension, 
disperse oil particles

[26]

Pseudomonas aeruginosa, Rhodo-
coccus sp., Bacillus licheniformis, 
Serratia marcescens, P. floures-
cens, B. subtilis

Rhamnolipid, trehalolipid, 
sophorolipid, peptide lipid, 
serrawetin, visconsin, surfactin, 
emulsan, liposan

Oil pollution Enhanced degradation [27]

Serratia marcescens UCP 1549 Lipoprotein, carbohydrate Organic pollutants Agricultural and marine biore-
mediation

[28]

Bacillus subtilis B20 Biosurfactants Oil rock Reduced surface and interfacial 
tension

[29]

Paenibacillus sp. D9 Lipopeptide biosurfactant Hydrocarbons Enhanced biodegradation of 
hydrophobic pollutants

[30]

Bacillus, Rhodococcus, Actinomy-
cetes, Pseudomonas

Lipopeptide, glycolipid, 
sophorolipds

Organic pollutants Reduce surface tension with 
higher degradation

[31]

Bacillus algicola, Rhodococcus soli, 
Isoptericola chiayiensis, Pseu-
doalteromonas agarivorans

Rhamnolipids Crude oil Low surface tension [32]
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Microorganisms produce glycoconjugates with bio-

surfactant properties during the stationary phase of the 

microbial growth cycle [33, 34]. Glycoconjugates are 

amphiphilic compounds synthesized onto the cell sur-

face of the microorganism [35]. �ese molecules contain 

hydrophilic and hydrophobic moieties that reduce the 

surface and interfacial tension. Glycoconjugates can have 

diverse structures, such as glycoproteins, glycopeptides, 

peptidoglycans, glycolipids, lipopolysaccharides, and gly-

cosides. �e production of the glycoconjugates depends 

on the producer microorganism, nutritional sources such 

as carbon and nitrogen, trace elements, and the physico-

chemical conditions for production. Recently, glycocon-

jugate rhamnolipids have been the most commonly used 

in industrial and environmental applications [35, 36]. 

�e glycolipid rhamnolipid is well studied in the Pseu-

domonas and Burkholderia species [36]. Pseudomonas 

aeruginosa is considered as the top rhamnolipid pro-

ducer at over 100 g·L− 1. In a liquid culture, Pseudomonas 

aeruginosa produces two types of rhamnolipids referred 

to as mono and dirhamnolipid [35]. �ese molecules are 

synthesized by two enzyme-specific rhamnosyl transfer 

Fig. 2 Microbial glycoconjugates in the bioremediation of organic pollutants (OPs)
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reactions. �e enzyme that catalyzes these reactions is 

called rhamnosyltransferase [37, 38]. �e hydrophobic 

and hydrophilic parts of the rhamnolipid are synthe-

sized by different biosynthetic reactions in the microbial 

strains. After their synthesis, both of the portions are 

linked to each other, forming monorhamnolipids and 

dirhamnolipids. Yeasts are also reported to produce gly-

coconjugates such as sophorolipids, mannosylerythritol, 

cellobiose, and trehalose lipids. �ese have been explored 

for their greater potential in the bioremediation of pol-

luted sites [39]. �e enhanced bioremediation of pyrene 

and tetracycline in soil was investigated with the addition 

of sophorolipid [40].

Hydrophobic pollutants require desorption from the 

soil and water environment before microbial metabolism. 

Mineralization of OPs is governed by desorption from the 

soil. �e application of glycoconjugates as biosurfactants 

for the bioremediation of environmental OPs is also well 

established; they play a direct role in the desorption of 

pollutants [41]. In the first step, these glycoconjugates 

interact with less soluble OPs and improve their transfer 

into the soil matrix and their subsequent removal [42]. In 

the second step, glycoconjugates act as a bridge between 

the microbial strains and soil, due to which the bioavail-

ability of the pollutants increases [43, 44]. �e increased 

concentrations of these surface-active glycoconjugate 

compounds help in the attachment of microbial cells to 

pollutants [45]. Biosurfactants increase the surface areas 

of hydrophobic pollutants through which their solubility 

increases in the soil and water environment. �e use of 

biosurfactants for the biodegradation of pesticides has 

gained attention in recent years. Previous reports sup-

ported the role of biosurfactants in the bioremediation 

of hydrocarbon and pesticide-contaminated soil. �ese 

reports favor pesticide degradation using glycoconju-

gated biosurfactant usually synthesized from bacterial 

species viz., B. pumilus, B. mojavensis, B. licheniformis 

and B. amyloliquifaciens [46]. Biosurfactants of Lactoba-

cillus pentosus degrade octane efficiently [47]. In a study, 

Burkholderia species isolated from an oil-contaminated 

area was able to produce biosurfactant, that plays a criti-

cal role in pesticide degradation [18, 48]. Biosurfactants 

that degrade naturally are ideally suitable for the removal 

of organic pollutants from the environment and consid-

ered ecofriendly to nature [49]. Previous studies indi-

cated that the efficiency of OP degradation was improved 

in the presence of microbial glycoconjugates. Stimulation 

in the degradation of OPs was mainly due to the action 

of the biosurfactants. Enhancement in the degradation 

of octane was due to the biosurfactants production using 

Lactobacillus pentosus [47]. In addition to mobilization, 

glycoconjugated biosurfactants increase the degrada-

tion rate via other mechanisms [50]. An axenic culture of 

Pseudomonas putida DOT-T1E produced a rhamnolipid 

that facilitated the bioremediation of chlorinated phe-

nols. �e logic behind this mechanism involves entrap-

ment of the chlorophenol in the biosurfactant micelles 

and the hydrophobic relationship between these two 

types of compounds [51, 52]. Similarly, Actinobacteria 

produced biosurfactants that enhanced the rate of xeno-

biotics bioremediation [53]. Rhamnolipids were found to 

be adequate in the bioremediation of carbendazim with 

Rhodococcus sp. D-1 [54]. �e rhamnolipid affected car-

bendazim degradation in a concentration-dependent 

manner with maximum bioremediation efficiency. It 

facilitated carbendazim emulsification and favorable 

changes on the cell surface, allowing it to enter Rhodococ-

cus sp. D1 cells, and degradation subsequently occurred 

[54]. �e glycolipid produced from the Rhodococcus sp. 

strain IITRO3 also makes the greater impact on degra-

dation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane 

[55]. �e distribution of glycoconjugate-producing bacte-

ria was reported in contaminated arid southwestern soil 

[56]. Rhizospheric microbes play an important role in the 

degradation of soil contamination, enhancing the degra-

dation found with production of the glycoconjugates [57].

Another important concern is the effect of glycocon-

jugate biosurfactants on the candidate microbial strains 

that degrade OPs. �e contrasting strains of P. aeruginosa 

produce glycoconjugate biosurfactants that enhance sol-

ubility and metabolism [58]. �e purified biosurfactants 

cause an increase in the solubility of pyrene and higher 

solubilization of fluorene. �e concentration of the bio-

surfactants is also very important for microbial growth. 

A higher concentration of these glycoconjugates inhibits 

the growth of microbial cells and reduces biodegrada-

tion potential [59]. �ese reports are not same for all the 

microbial strains, however, sometimes, a low concentra-

tion of glycoconjugate biosurfactants might also be toxic 

and show an antimicrobial effect [60, 61]. Most biodegra-

dation of OPs has been reported previously with axenic 

microbial strains, whereas for the consortium, more bio-

degradation was achieved. �e glycoconjugates increased 

the rate of OP degradation with a microbial consortium 

due to cumulative effect of microbial communities [62]. 

In a study a seawater B. methylotrophicus produced gly-

coconjugate biosurfactants that reduce surface tension, 

can be used for bioremediation purposes [63]. Microbial 

rhamnolipids and surfactin are used by researchers for 

the bioremediation of organic pollutants in last decades 

[64, 65]. �e advantage of biosurfactants over synthetic 

surfactants is that the former induces low toxicity and 

stability in the presence of high temperature, high pH, 

and saline environment [66]. Natural glycoconjugate sur-

factants play a role in sustainable development and biore-

mediation [67].
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Substrates containing the rich carbohydrates and lipids 

have been recommended for large-scale microbial gly-

coconjugate production [65]. �e most commonly used 

substrates viz., corn liquor, glycerol, soybean oil, ani-

mal fat, vegetable fat, and molasses [68–72]. �e previ-

ous study concluded that agro-industrial waste can also 

be used for microbial glycoconjugate production [73]. 

�ese carbohydrate- and lipid-containing compounds 

are metabolized by microbial metabolic pathways and 

converted into glycoconjugates such as rhamnolipid. 

�e choice of substrate for microbial growth determines 

the amount of glycoconjugate production. Microbes are 

able to produce glycoconjugates from all types of car-

bon sources, but to achieve higher production, soybeans, 

corn, canola, and olives can be used (Table 2). Glycocon-

jugates are considered secondary metabolites due to their 

production in the stationary phase of microbial growth 

[37].

Glycoconjugates in action: overview of bio�lm formation

In recent years, researchers have taken great interest in 

the biofilm-based degradation of environmental contam-

inants. Microbial glycoconjugates also play an important 

role in biofilm formation and accelerate the bioremedia-

tion of the organic pollutants. Generally, under labora-

tory conditions, a single microbial strain is isolated to 

test its biodegradation potential for environmental con-

taminants. However, the basic facts of the environmental 

interactions between the chosen microbial cell and other 

microbial communities, or the nature of their habitats, 

are ignored [100, 101]. �erefore, to harness the poten-

tial of microbial cells for glycoconjugate production and 

impact on biodegradation, it is necessary to consider the 

behavior of microbial communities and their habitats, 

even though the experiment was performed under labo-

ratory conditions [5]. In nature, microbes interact with 

abiotic and biotic factors and produced the glycoconju-

gates. To maintain their populations via different types of 

interactions such as synergistic and antagonistic effects 

that allow microbes to adapt to different environmental 

conditions at polluted sites. Microbial communities con-

sist of various microbial species that produced the glyco-

conjugate surfactants which have greater potential than 

a single culture glycoconjugates because the number of 

reporting genes and the diversity of metabolic activities 

work together and provide the maximum output within 

the shortest period [102]. So, the glycoconjugates pro-

duced by various microbial communities showed the 

cumulative effect on the degradation of the OPs. Impor-

tantly, the many microorganisms and microbial species 

present in microbial “biofilm” can degrade the wide range 

of contaminants present in the natural environment and 

engineered systems. Biofilm refers to a group of diverse 

microbial species attached to any living or nonliving 

surface and covered by a surrounding self-synthesized 

glycoconjugates, matrix comprising extracellular DNA, 

proteins, and water [103, 104]. Biofilm aids in the con-

sumption of nutrients and oxygen, with tolerance against 

harsh environmental conditions during the bioremedia-

tion process. Biofilm based remediation technology is 

more cost-effective, ecofriendly, and easy for removing 

pollutants from the natural environment. Due to the 

production of glycoconjugates microbial biofilm absorbs 

and immobilizes environmental pollution, and the labor 

of gene expression divided among the existing microbial 

communities ultimately works very efficiently as a sin-

gle unit. �e various microbial communities within the 

biofilm are also responsible for differential gene expres-

sion of the substrate, showing a broad range of metabolic 

pathways for biodegradation. �e most important char-

acteristics of biofilm are their chemotaxis and flagellar-

based movement. Biofilm can sense the presence of 

xenobiotics in their proximity and move towards them by 

swimming, swarming, and twitching, as well as by quo-

rum sensing, which improves biodegradation in presence 

of glycoconjugates [105, 106]. �e composition of micro-

bial biofilm depends on the environmental conditions in 

which the microbes reside [107–109]. Biofilm provides 

better environmental conditions and protection from 

environmental stress, acid stress, antimicrobial stress, 

UV stress, desiccation, predation, biocides, solvent, toxic 

chemicals, and other pollutants [110, 111]. Microbial bio-

films are increasingly used as indicator systems for moni-

toring heavy metal contamination in water resources. 

Changes in the morphology of biofilms and their physi-

ology indicate the occurrence of contaminants in their 

proximity. Biofilm is frequently found in different geo-

graphical locations, such as streambeds, tidal flats, cor-

roded pipes, and sites of infection [112–114].

Microbes are able to communicate with each other in 

the form of communities and biofilms. �e main mech-

anism behind biofilm formation is quorum sensing. In 

addition to playing various other roles, glycoconjugates 

help microbial cells to attach to one another in a biofilm 

[27]. Glycoconjugates create a favorable environment 

for the biodegradation of the OPs at the contaminated 

sites. Microbial cells produce an extracellular matrix 

that helps the cells attach to each other in communi-

ties. Glycoconjugates also help the microbes survive 

under extreme conditions and protect the microbial 

cells from the outer environment, especially under 

water stress conditions. �e adhesion of the bacterial 

cells occurs in both the mobile and stagnant phases. 

�ese glycoconjugates are useful for floating the bac-

terial cells in water bodies as a biofilm, which can be 

efficiently utilized for bioremediation in water systems. 
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Table 2 Glycoconjugates producing microorganisms and the associated techniques

Microorganisms Nature of glycoconjugates Types of glycoconjugates Techniques used for identification References

Pseudomonas aeruginosa MA01 Glycolipid Monorhamnolipid, dirhamnolipid Fourier transform infrared 
spectroscopy (FTIR), thin layer 
chromatography (TLC)

[74]

Acinetobacter baumannii Glycolipid Palmitic and phthalic acid FTIR, gas chromatography and 
masss pectrometry (GC-MS), 
nuclear magnetic resonance 
(NMR)

[17]

Pseudomonas aeruginosa PG1 Glycolipid Mono and di rhamnolipid con-
geners

FTIR, liquid chromatography-mass 
spectrometry (LC-MS), and 
scanning electron microscope-
energy dispersive spectrometer 
(SEM-EDS)

[9]

Pseudomonas sp. Glycolipid Rhamnolipid FTIR spectra analysis [75]

Pseudoxanthomonas sp. G3 Glycolipid Rhamnolipid type FTIR spectra analysis [76]

Lactobacillus casei Glycoprotein Glycoprotein FTIR and NuPAGE method [77]

Vibrio sp. 3B-2 Glycoprotein Glycoprotein Chemical method, spectrometric 
characterization

[78]

Candida bombicola ATCC 22,214 Glycolipid Sophorolipid NMR, high performance thin layer 
chromatography (HPTLC) and 
MALDI ToF MS

[79]

Starmerella bombicola Glycolipid Sophorolipid FTIR [80]

Rhodococcus sp. PML026 Glycolipid Trehalolipids LC-MS [81]

Rhodococcus sp. PML026 Glycolipid Trehalolipids Chemical analysis [82]

Cryptococcus Humicola JCM 1461 Glycolipid Cellobiose lipid Chemical analysis [83]

Streptomyces sp. DPUA 1559 Glycoprotein Low mol. wt. glycoprotein Electrophoretic analysis [84]

Ochrobactrum anthropi HM-1 Glycolipid Rhamnolipid type TLC and FTIR spectra analysis [85]

Citrobacter freundii HM-2 Glycolipid Rhamnolipid type TLC and FTIR spectra analysis [85]

Lactobacillus Glycoprotein -- TLC and FTIR [86]

Pseudomonas isolate DYNA270 Glycolipid Rhamnolipids Mass spectrometry [87]

Streptomyces nocardiopsis A17, 
Bacillus subtilis ICA56

Glycerol Biosurfactant TLC and LC-MS [88]

Bacillus psudomycoides BS6 Lipopeptide Fatty acid 3-OH and peptide of 
five amino acid

TLC and FTIR [89]

Bacillus subtilis B20, B. subtilis B30 Glycolipopeptide Surfactin Pedant drop method, Lyophiliza-
tion

[29]

Pseudomonas aeruginosa Glycolipid Rhamnolipid [90]

P. aeruginosa MA01 Glycolipid Monorhamnolipid FTIR, electrospray ionization mass 
spectrometry (ESI-MS)

[74]

Klebsiella pneumonae WME02 Phospholipid biosurfactant Biochemical characterization [91]

Pseudomonas aeruginosa DS10-
129

Glycolipid Rhamnolipid Mass spectrometry [92]

Candia lipolytica IA 1055 Glycolipid Sophorolipid Emulsification, spectrophotom-
eter

[93]

Pseudomonas aeruginosa Glycolipid Rhamnolipid Spectrophotometer [94]

Serratia marcescens UCP 1549 Glycolipid Biosurfactant Emulsification [95]

Bacillus subtilis Glycolipopeptide Cyclic lipopeptide biosurfactant High performance liquid chroma-
tography (HPLC), emulsification

[96, 97]

Candia lipolytica UCP0988 Glycolipid Sophorolipids TLC, HPLC-ESI-MS [90]

Marinobacter hydrocarbonoclasti-
cus SdK644

Glycolipid Biosurfactant GC-MS, FTIR [98]

Paenibacillus sp. D9 Glycolipopeptide Biosurfactant Emulsification [31, 97]

Pseudozyma aphidis ZJUDM34 Glycolipid Mannosylerythritol lipids TLC, GC-MS [99]

Bacillus subtilis, Paenibacillus sp. D9 Glycolipopeptide Surface active biosurfactant Gene cloning and expression, 
affinity chromatography

[30, 97]
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�e critical factor of biofilm formation is the produc-

tion of the glycoconjugate biosurfactant, smoothness 

at the cell surface, the velocity of flow, and bacterial 

growth [115]. Biofilm formation is governed by several 

signaling molecules and glycoconjugates. Naturally, 

biofilm formation is a complex process that involves 

many steps. Preliminary bacterial cells produce extra-

cellular polymeric substances (EPSs). �ese substances 

act as cementing material on the outer cell membrane 

and help in the entrapment of nutrients. In addition, 

EPS also has surfactant properties that help in the min-

eralization of xenobiotic compounds that are otherwise 

inaccessible. �e production of EPS and water form a 

slimy layer in biofilms. Microbes also engage in symbi-

otic relationships with each other at the polluted sites 

(Fig. 3). �e intermediate metabolites produced by pri-

mary bacterial colonizers can be used by the secondary 

colonizers that ultimately form the biofilm. �e quo-

rum sensing (QS) mechanisms are well-established for 

these biofilms and help in regulating EPS production 

[116]. �e QS system can help microbes survive in the 

presence of stress, such as antimicrobial compounds, 

nutrient limiting conditions, and OPs. Microbial strains 

degrade toxic chemicals through the establishment of 

cellular communications with each other [117].

Glycoconjugates also play an important role in aggre-

gation of the microbial cells in communities. �e aggre-

gation of microbial cells is an essential factor in biofilm 

formation [118, 119]. Bacterial cells from two types of 

aggregation: auto and coaggregation. In auto-aggrega-

tion, genetically identical bacterial cells remain together, 

whereas coaggregation refers to genetically different 

cells [120]. �e surface factors, extracellular polymeric 

substances, and diffusible signal molecules are critical 

factors involved in the auto-aggregation and microbial 

biofilm at polluted sites [121]. Aggregation also depends 

on microbial interactions such as antagonism, synergism, 

mutualism, competition, and commensalism [122].

Fig. 3 Role of glycoconjugate in biofilm formation included different steps. Carbohydrate, lipids and protein unite together and form 

glycoconjugate; a adsorption: attachment of carbohydrates and proteins to the surface of substrate; b immobilization of microbial cells on the 

surface of glycoconjugate. c consolidation: secretion of extracellular polymeric substance (EPS) by immobilized microbial cells on the cell surface; d 

colonization: microbial cells replicate and secreted large amount of glycoconjugates and forms biofilm which play role in bioremediation of OPs
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Several in-vitro and in-situ studies based on biofilm 

have been conducted in recent decades in the field of 

bioremediation with glycoconjugates. In-situ biofilm 

mediated bioremediation can be performed in several 

ways. In nature, certain contaminants are degraded, 

transferred, and immobilized under specific environmen-

tal conditions without any interference of human activity 

[123]. Naturally, the biodegradation process requires the 

availability of the microorganism in the form of biofilm at 

polluted site and requires a long period of time. �e addi-

tion of extra nutrients such as carbon, hydrogen, nitro-

gen, phosphorous, and oxygen to increase the growth 

rate of the microbial population enhances the degrada-

tion rate of pollutants [123, 124].

Biofilm can be used for the treatment of nitrates in 

wastewater [125] and biodegradation of the organic mat-

ter present in nature [126]. �is biodegradation effort can 

be accelerated by designing a barrier material according 

to the concentration of the contaminant and the com-

position of the contaminant (mixed contaminant). �e 

biodegradation process can be stimulated by providing 

added nutrients, electron acceptors and donors, or by 

providing a biocatalyst [51], which results in the devel-

opment of biofilm on the surface of the contaminant via 

the natively present microbial species. If the existence of 

a required microorganism is lacking at the site of a con-

taminant, then the contaminant can be placed at a site 

where biofilm already exists. Alternatively, biofilm can 

be useful for the remediation of the toxic chemicals. Ulti-

mately, a less harmful product can be formed by micro-

bial biotransformation in nature due to the production of 

glycoconjugates without engineering the microorganism 

[113, 127].

Generally, the ex-situ bioremediation process is per-

formed in a bioreactor due to the unavailability of suit-

able microorganisms and the unfavorable conditions at a 

contaminated site. In bioreactors, biofilms are added as 

inert support and used for the biochemical conversion of 

pollutants by sorption, particularly heavy metals, hydro-

carbons, industrial waste, and wastewater treatment 

[128–130]. Biofilm-based bioreactors have many advan-

tages over conventional treatment methods. For example, 

a high concentration of pollutants can be treated for a 

longer period of time, the volumetric capacity of biodeg-

radation is enhanced, and the tolerance for highly toxic 

xenobiotics is increased, thereby supporting anaerobic 

and aerobic metabolism together and reducing environ-

mental interference. Industrial biofilm reactors are gener-

ally set up under special conditions, such as when freely 

floating microorganisms are unable to produce adequate 

biomass or the microbial biomass cannot be retained 

for a long enough time to convert the toxic pollutants to 

environmentally acceptable forms [130] (Fig. 4).

Bacterial and fungal biofilm is a special type of biofilm 

where the bacterial cell is attached to fungal hyphae. Fun-

gal hyphae provide nutrients, increase the bioavailability 

to the bacterial cell, and enhance the rate of consump-

tion of nutrients via competition. �is enables the bacte-

ria to search for nutrient by travelling through the fungal 

hyphae. Phenanthrene, a polyaromatic hydrocarbon of 

fused benzene rings, is associated with soil contamina-

tion. �is compound is degraded by Pseudomonas putida 

Fig. 4 Mechanism of oil spill hydrocarbon degradation using microbial glycoconjugates



Page 10 of 18Bhatt et al. Microb Cell Fact           (2021) 20:72 

PpG7 in the presence of Pythium ultimum fungal mycelia 

[131]. �e previous researcher confirmed the importance 

of microbial glycoconjugates in biofilm formation and 

degradation of the OPs.

Glycoconjugates in pesticide degradation
Pesticides are organic compounds used in an enor-

mous quantity in agriculture and homes to control a 

broad spectrum of pests [132, 133]. Most pesticides are 

hydrophobic with complex structures. Due to the large 

amounts of pesticides entering into soil and water sys-

tems, these molecules become attached to soil particles 

and are not available for microbial activities [134–139]. 

�e attachment of pesticides to soil particles is depend-

ent on the physical and chemical properties of the soil 

and pesticides [140]. Presently, various categories of 

pesticides are being sold in the market, such as organo-

phosphates, organochlorines, and pyrethroids. �e bio-

degradation of these pesticides is an intricate process 

due to their low water solubility and poor bioavailabil-

ity. Microbial glycoconjugates play an important role in 

the desorption of pesticide molecules from soil particles. 

�ese glycoconjugate biosurfactant molecules decrease 

surface tension and enhance the degradation via micro-

bial metabolism [33, 141]. Such types of microbial gly-

coconjugates are surface-active amphipathic emulsifying 

molecules that have the capacity to enhance the parti-

tioning of hydrophobic pesticides to the aqueous phase 

by producing emulsions at and above their critical micel-

lar concentration (CMC) (Fig. 5). �is enhances the bio-

availability of pesticides to their potential degraders and 

can thus play a crucial role in overcoming the above 

problems [142].

Microorganisms in the soil produce several types of 

glycoconjugates that induce emulsification of the con-

taminant and increase water solubility. �e water solubil-

ity of pesticides is linked to their bioavailable fractions. 

�e bioavailable fraction is used by microbial cells dur-

ing metabolic activity [143, 144]. �e glycoconjugate 

enhances pesticide degradation by reducing surface 

tension, modifying hydrophobicity, and enhancing bio-

availability [145]. �e glycoconjugates are reported to 

increase the solubility of the pesticides in soil and pro-

mote their degradation [146]. Due to the beneficial prop-

erties of the glycoconjugate, they are acceptable for use in 

contaminated sites [147]. Rhamnolipids, fructose lipids, 

sophorolipids, and glycolipopeptides are commonly 

investigated for pesticide bioremediation. In the last 

decade glycoconjugates, have emerged as a facilitator of 

pesticide degradation under various conditions [46, 148, 

149]. We outline the major findings of glycoconjugates in 

the bioremediation of pesticides in Table 3.

  �e addition of a glycoconjugate, an increased (30 %) 

biodegradation of endosulfan isomers by B. subtilis 

MTCC 1427 in both soil and liquids was reported in 

a previous study [23]. �e enhanced mobilization and 

bioavailability of endosulfan isomers in the presence of 

the glycoconjugate was also reported and may be attrib-

uted to the enhanced solubilization of pesticides or the 

increased affinity towards microbial cells. �e soil spiked 

with endosulfan showed enhanced degradation after 

7 days of the experiment due to the production of rham-

nolipids by P. aeruginosa [49]. A crude extract of a gly-

coconjugate (an anionic glycolipid) was produced by the 

Pseudomonas sp. B0406 strain and aided in the solubili-

zation of endosulfan [154]. �e Lysinibacillus sphaeri-

cus strain IITR51 was investigated as a way to produce a 

thermostable rhamnolipid glycoconjugate with the abil-

ity to enhance the solubility of the highly hydrophobic 

pesticide hexachlorocyclohexane (HCH) and endosulfan 

[155]. Bioaugmentation with the glycoconjugate-produc-

ing bacteria also proved to be an efficient technique for 

the remediation of pesticides. �e α and β isomers of the 

endosulfan degraded by up to 82 % in the presence of gly-

cocnjugates having biosurfactant properties [151, 152].

�e bioavailable fractions of the lindane are poor in 

the environment, which hinders degradation via micro-

bial actions. Lindane contains six chlorine atoms, which 

make it more persistent. �e Pseudomonas  Ptm+ strain 

was found to be a potent culture for the degradation of 

lindane in the environment along with the production 

of glycoconjugate. �e production of the glycoconjugate 

was monitored in a minimal salt medium during lindane 

degradation. �e produced glycoconjugate emulsified 

the organochlorine lindane to a greater extent than the 

other OPs [160]. A 95 % biodegradation rate was reported 

for lindane isomers by Sphingomonas sp. NM05 after the 

addition of rhamnolipids produced by Pseudomonas aer-

uginosa [156]. �e impact of biosurfactants such as rham-

nolipid, sophorolipid, and trehalose-containing lipid on 

the solubilization and biodegradation of HCH, and their 

isomers in soil were also studied [156]. It was observed 

that sophorolipids promote a higher degradation of HCH. 

�e increased biodegradation of lindane (700 mg/L) by 

Pseudozyma VITJzN01 was demonstrated by a 3–9-fold 

increase in the solubilization of lindane isomers and 

was investigated with the addition of mannosylerythri-

tol lipid bio-microemulsion [158]. Increased solubiliza-

tion of lindane from 5 to 28 mg  L− 1 was reported under 

an increasing concentration of rhamnolipids from 0 to 

1000 mg  L− 1 [144]. �e trehalolipid produced by the Rho-

dococcus sp. strain IITR03 was isolated and characterized 

from the pesticide-contaminated sites [55]. Similarly, 

the effect of the rhamnolipid produced by Arthrobacter 

globiformis was investigated in the bioremediation of 
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dichlorodiphenyl trichloroethane (DDT) [150]. Rham-

nolipid enhanced the DDT degradation rate from 52 to 

64 %. Pseudomonas sp. SB was able to produce a biosur-

factant that promotes DDT degradation in combination 

with plant-microbe interactions [152]. �e synergistic 

effects of mixed cultures of the white-rot fungus, Pleuro-

tus ostreatus, and the biosurfactant-producing bacteria 

Pseudomonas aeruginosa and Bacillus subtilis on DDT 

biodegradation were investigated and found to enhance 

DDT degradation [151]. �ere are many ways to reme-

diate contaminated soil with microbial treatments and 

other methods. Some of the most commonly applied 

methods include soil washing, vapor extraction, des-

orption, microbial consortium, and phytoremediation. 

Production of

glycolipid

Sophorolipid

Emulsification

Organic pollutants attached

with soil particles

Desorption of the

organic pollutants
Sophorolipid

releasing the
organic

pollutants

Formation of micelles

Cell membrane

Bacterial cell

Cytosol

Uptake of the

organic polltant

Bioremediation of the toxic pollutants using

bacterial metabolism

Fig. 5 Microbial glycoconjugates facilitate organic pollutant degradation via micelle formation



Page 12 of 18Bhatt et al. Microb Cell Fact           (2021) 20:72 

Sodium dodecyl sulfate (SDS) and ethylene diamine tetra 

acetic acid (EDTA) were used to wash the soil with con-

ventional methods. �e combination of microbially pro-

duced citric acid and rhamnolipids is effective for the 

remediation of organochlorine pesticides from the soil 

[144]. Such microbial combinations are environmentally 

friendly and cost-effective and can help achieve environ-

mental sustainability [160, 161].

�e formation of stable emulsions was investigated 

using glycoconjugate produced by Bacillus strains 

and fenthion [26]. An anionic glycolipid produced by 

the Pseudomonas sp. B0406 strain was reported to aid 

in the solubilization of methyl parathion [154]. �e 

complete degradation of chlorpyrifos (10 mg/L) was 

reported within 2 days of using Pseudomonas sp. sup-

plemented with a glycoconjugate [21]. A > 10 times 

increase in the aqueous-phase solubility of chlorpyri-

fos was reported with the addition of a biosurfactant 

produced by Pseudomonas sp. [143]. �e glycolipid 

from Burkholderia cenocepacia BSP3 isolated from oil-

contaminated soil was proposed to possess the ability 

to bioremediate the pesticides methyl parathion and 

ethyl parathion [18]. It was observed that Pseudomonas 

aeruginosa produces a glycoconjugate that enhances 

the solubilization of quinalphos [159].

�e glycoconjugate from Pseudomonas cepacia aided 

in degrading the hydrophobic herbicide 2,4,5-trichlo-

rophenoxyaceticacid [162]. Similarly, a higher bio-

degradation of carbendazim was reported by adding 

rhamnolipid to Rhodococcus sp. D-1 [54]. Approxi-

mately 24–35 % biodegradation of trifluralin in the soil 

was reported after the addition of rhamnolipid [163]. 

�e surfactin lipopeptide was produced by marine 

Bacillus velezensis MHNK1 under atrazine biodeg-

radation. �e complete degradation of atrazine was 

observed within 4 days after employing a combination 

Table 3 Biosurfactant mediated bioremediation of soils contaminated with pesticides

Pesticides Concentration of pesticide Biosurfactant/biosurfactant producing 
microbes

Degradation (%) References

Organochlorines

Dichlorodiphenyl trichloroethane (DDT) 282 µM Trehalolipid from Rhodococcus sp. IITR03 50–60 [55]

DDT 1.417 mg/L Pseudomonas sp. SB + Grass sp. 65.6 [150]

DDT 0.0474 mg/L Rhamnolipids from Arthrobacter globi-
formis

64.3 [150]

DDT 0.25 µM White rot fungi + biosurfactant from 
Pseudomonas aeruginosa and Bacillus 
subtilis

≈ 86 [151]

α-Endosulfan 200 mg/L Bacillus subtilis MTCC 1427 100 [21]

Endosulfan soil 320 mg/L Pseudomonas aeruginosa + rhamnolipid > 90 [149]

α- and β-endosulfan 50 mg/L Arthrobacter sp. ES-47 76.3–81.8 [152]

α- and β-endosulfan 50 mg/L Bordetella petrii I GV 34 & GV36 82–89 [153]

α-Endosulfan 1420–3400 mg/L Consortium of Bordetella petrii
I GV 34 and Bordetella petrii II GV 36

100 [153]

β-Endosulfan 1280–3100 mg/L Achromobacter xylosoxidans GV 47 100 [153]

Endosulfan 0.92 mg/L Glycolipid, from Pseudomonas sp. B0406 Increased solubility [154]

Endosulfan and hexachlorocyclohexane 
(HCH)

50 mg/L (endosulfan),
100 mg/L (HCH)

Rhamnolipid from Lysinibacillus sphaeri-
cus IITR51

Increased solubility [155]

HCH 40 mg/L Rhamnolipid from Pseudomonas aerugi-
nosa + Sphingomonas sp. NM05

95 [156]

HCH 65 mg/L Cytisus striatus plantation + Rhodococcus 
erythropolis ET54b

33 [157]

HCH 700 mg/L Pseudozyma VITJzN01 3-9-fold increase in 
solubilization

[158]

HCH – Rhamnolipids Increase solubility [159]

Organophosphates

Methyl Parathion – Glycolipid from Pseudomonas sp. B0406 Increased solubility [154]

Chlorpyrifos 10 mg/L Pseudomonas sp. ChlD + biosurfactant > 98 [20, 143]

Methyl parathion and ethyl parathion 500 mg/L Glycolipid from Burkholderia cenocepacia 
BSP3

Increased solubility [18]

Quinalphos 10,000 mg/L Biosurfactant from Pseudomonas aerugi-
nosa

94 [159]
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of B. velezensis MHNK1 (2 %) and surfactin (2 CMC) 

[164].

Glycoconjugates in wastewater treatment

Microbial glycoconjugates have emerged as a tool to 

clean wastewater contaminated with organic pollutants. 

Various microbial approaches are used for the bioreme-

diation of wastewater, but glycoconjugates are gaining 

more attention. �e activated sludge process is popular 

for wastewater treatment. �is process is based on the 

aerobic digestion of the microbial strains that produce 

flocs (floc-forming microbes) [165]. �ese flocs are 

formed by the network of extracellular polymeric sub-

stances (EPSs) produced by microbes [166]. Bacterial 

strains have been reported for glycoconjugate produc-

tion which consists of carbohydrates, proteins, humic 

substances, uronic acids, lipid compounds, and nucleic 

acids. Enzymes play an important role in the hydrolysis 

of sludge [167]. �ese enzymes help to release EPSs and 

identify polysaccharides and glycoconjugates together 

with a lectin panel [165, 168].

  Effective glycoconjugates can reduce the surface ten-

sion of water from 72 to 25 mN/m and the interfacial 

tension between polar and non-polar liquids for water 

against n-hexadecane from 40 to 1 mN/m [169, 170]. 

�us, glycoconjugates can also be used for the treatment 

of wastewater [171]. In a previous report, the enhanced 

removal of hydrocarbons was described using rhamnolip-

ids, which was mainly attributed to improved solubility 

and reduced interfacial tension [172]. Microbial rham-

nolipids are also described as efficient candidates for the 

pretreatment of waste activated sludge and contribute to 

the process of wastewater treatment [173]. Rhodococcus 

sp. PML026, a marine bacterial strain, was utilized for the 

production of glycoconjugate characterized as trehalolip-

ids, exerted biosurfactant activity under diverse experi-

mental conditions, and was proven to be an efficient 

candidate for wastewater treatment and other bioreme-

diation purposes [174]. �e various bacterial isolates for 

glycoconjugates were investigated by their biosurfactant 

producing abilities. �ese isolates have the potential to 

reduce the surface tension in the liquid medium from 

71.1 mN/m to 32.1 mN/m. �e isolates were mainly 

belonging to the Aeromonadaceae, Bacillaceae, Entero-

bacteriaceae, Gordoniaceae, and Pseudomonadaceae 

families [175]. �e wastewater bacterial strains showed 

antibiotic resistance and biofilm formation due to the 

production of biosurfactants. Low surface tension values 

of 28 and 36 mN/m were observed in the bacteria, which 

were not able to form a biofilm. �is study showed that 

low surface tension can produce a weak biofilm, which 

can be correlated to the glycoconjugate playing a role in 

effective biofilm formation at polluted sites [122, 176]. 

Hollow membranous fibers also developed. �ese fib-

ers supply the dissolved hydrogen to microbial popula-

tion that stimulate the biodegradation of the chlorinated 

solvent present in groundwater [123]. Sophorolipids are 

another glycoconjugate biosurfactant utilized in oil spill 

management and the oil biodegradation of contaminated 

water [124]. �us, microbial glycoconjugates are utilized 

in diverse forms for the treatment of wastewater, and the 

results obtained justify their candidacy for this purpose 

[97, 177, 178].

Conclusions and future prospects
Microbial glycoconjugates are important for bioremedia-

tion purposes, and several investigations have confirmed 

the degradation-specific role of glycoconjugates. �e gly-

coconjugates can be used for the broad bioremediation of 

pesticides, hydrocarbons, antibiotics, and several xeno-

biotics. Microbial glycoconjugates play a key role in the 

adhesion of cells in biofilms that increase the degrada-

tion efficiency for OPs. �us, recent advances in the field 

of MG have added to the potential of glycoconjugates 

in different applications along with the management of 

OPs, which are an environmental nuisance due to their 

intense utilization in different anthropogenic activities. 

MG bears many unexplored horizons to be revealed and 

utilized in the development of efficient bioremediation 

procedures. Recent high-throughput omics-based tech-

niques could be applied to explore the molecular basis of 

the glycoconjugate-based bioremediation of OPs.
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