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Abstract

Plant-associated microorganisms have been shown to critically affect host physiology and

performance, suggesting that evolution and ecology of plants and animals can only be

understood in a holobiont (host and its associated organisms) context. Host-associated

microbial community structures are affected by abiotic and host factors, and increased

attention is given to the role of the microbiome in interactions such as pathogen inhibition.

However, little is known about how these factors act on the microbial community, and espe-

cially what role microbe–microbe interaction dynamics play. We have begun to address this

knowledge gap for phyllosphere microbiomes of plants by simultaneously studying three

major groups of Arabidopsis thaliana symbionts (bacteria, fungi and oomycetes) using a

systems biology approach. We evaluated multiple potential factors of microbial community

control: we sampled various wild A. thaliana populations at different times, performed field

plantings with different host genotypes, and implemented successive host colonization

experiments under lab conditions where abiotic factors, host genotype, and pathogen colo-

nization was manipulated. Our results indicate that both abiotic factors and host genotype

interact to affect plant colonization by all three groups of microbes. Considering microbe–

microbe interactions, however, uncovered a network of interkingdom interactions with sig-

nificant contributions to community structure. As in other scale-free networks, a small num-

ber of taxa, which we call microbial “hubs,” are strongly interconnected and have a severe

effect on communities. By documenting these microbe–microbe interactions, we uncover

an important mechanism explaining how abiotic factors and host genotypic signatures con-

trol microbial communities. In short, they act directly on “hub”microbes, which, via microbe–

microbe interactions, transmit the effects to the microbial community. We analyzed two

“hub”microbes (the obligate biotrophic oomycete pathogen Albugo and the basidiomycete

yeast fungus Dioszegia) more closely. Albugo had strong effects on epiphytic and endo-

phytic bacterial colonization. Specifically, alpha diversity decreased and beta diversity stabi-

lized in the presence of Albugo infection, whereas they otherwise varied between plants.

Dioszegia, on the other hand, provided evidence for direct hub interaction with phyllosphere

bacteria. The identification of microbial “hubs” and their importance in phyllosphere micro-

biome structuring has crucial implications for plant–pathogen and microbe–microbe
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research and opens new entry points for ecosystem management and future targeted bio-

control. The revelation that effects can cascade through communities via “hub”microbes is

important to understand community structure perturbations in parallel fields including

human microbiomes and bioprocesses. In particular, parallels to human microbiome “key-

stone” pathogens and microbes open new avenues of interdisciplinary research that prom-

ise to better our understanding of functions of host-associated microbiomes.

Author Summary

Under natural conditions, plant growth and behavior strongly depend on associated

microbial communities called the microbiome. Much research has been performed to

evaluate how the environment and plant genes help to determine the structure of the

microbiome. Here, we show that interactions between microorganisms on plants can be

responsible for large portions of observed microbial community structures on leaves.

Importantly, particular microbes, termed “hub microbes” due to their central position in

a microbial network, are disproportionally important in shaping microbial communities

on plant hosts. We discovered fungal and oomycete hub microbes that act by suppress-

ing the growth and diversity of other microbes—even across kingdoms—and several

candidate bacterial hubs, which largely positively control the abundance of other bacte-

ria. We also showed that factors impacting the microbial community—such as plant

genotype—are strongest if they affect colonization of a hub microbe because the hub in

turn affects colonization by many other microbes. Our results further suggest that hub

microbes interact directly or via the microbial community. Hub microbes are thus prom-

ising targets for better understanding the effects of host genomic engineering and for

future work in controlling disease-associated and beneficial host-associated microbial

communities.

Introduction

Hosts and their associated microbial communities are increasingly seen as inseparable entities

(metaorganisms) whose ecology and evolution are inseparably entwined [1,2]. For example,

the phyllosphere (above-ground portions) and rhizosphere (below-ground portions) of living

plants are niches for myriad microorganisms that can determine the fate of plants by influenc-

ing fitness [3] and growth [4,5], protecting from herbivores [6], or driving the evolution of

multidisease resistances [7]. Understanding the plant holobiont (the plant and the organisms

that live in and on it), therefore, will have immense implications for human food security, bio-

diversity [8], and ecosystem functionality [9].

Given the broad range of microbes that colonize above-ground parts of plants such as bacte-

ria, yeasts, filamentous fungi [10], and protists [11], there is poor understanding of the entire

diversity of those plant-associated microbes as well as factors that shape complex plant micro-

bial communities from host colonization to plant senescence. Current analyses point towards

soil [12] and air [13] as important sources of leaf and root microbial inoculum. How defined

microbial communities get selected by different plant organs from highly variable and complex

inoculum communities [14,15] is under strong debate. Still, since plant phenotypes and fitness

depend on the associated microbiome, such knowledge is critical to enable plant microbiome
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management, that is, reaching the full potential of using microbes and microbial communities

to promote beneficial plant–microbe interactions [2,16].

Generally, three mechanisms contribute to microbial community structures: random colo-

nization; species sorting by local factors (e.g., nutrient availability, host availability, and micro-

bial interactions); and isolating factors such as dispersion and distance [17,18]. Previous work

has identified neutral, abiotic, and host factors that sort and contribute to differences in plant

bacterial or fungal communities [13,19–23]. Such studies are likely to reflect adaptations of

microbes that enable them to colonize specific plant host environments [24,25]. While these

adaptations can link abiotic and biotic host factors to colonization efficiency, they cannot be

understood in isolation, since the host as a holobiont is simultaneously colonized by a multi-

tude of prokaryotes and eukaryotes [26].

Phyllosphere colonization proceeds via mechanisms that fundamentally alter the host,

since some microbes participate in what can be described as niche construction. For example,

many symbionts (including pathogens) deliver effector proteins to suppress, activate, or alter

host defense [27,28], and some are able to completely reshuffle host metabolism [29,30].

These host alterations can cause changes to microbiome structure since some microbes can

take advantage of new conditions while others cannot. In fact, the niche of some microbes spe-

cifically rely on others. For example, primary colonizers can protect secondary from abiotic

selection factors such as desiccation [31] or can increase secondary colonizers’ competitive

advantage by providing secondary metabolites [32]. Further examples of direct microbe–

microbe interactions include hyperparasitism of primary colonizers [33] and opportunists

that exploit a weakening of plant defenses to colonize their hosts [34,35]. Such interactions

explain why certain colonizers can affect establishment of even distantly related microbes on

the host [32,36] and suggest an important role for interactions in determining microbiome

structures.

Most studies implicitly assume that abiotic and host factors differentiate microbial commu-

nities because of variable microbial adaptations. Research in the animal field has shown that

for example, variation in the Major Histocompatibility class II (MHC) genotypes contributes

to microbial variation among hosts [37]. In human populations, the gut microbiome is signifi-

cantly influenced by the host genetics and in turn, the microbiome has a significant impact on

host metabolism [38]. How microbe–microbe interactions fit in colonization models remains,

however, largely unknown, not least because of limitations to the robustness and depth of taxo-

nomic resolution. To begin to move towards a more holistic understanding of forces shaping

microbiomes in general and the phyllosphere microbiome in particular, we have measured

diversity and community composition of three major groups of microbes representing key

branches of life (fungi, bacteria, and oomycetes as a representative of the heterogeneous group

of protists) in both epiphyte (surface microbe) and endophyte (interior microbe) leaf compart-

ments of individual samples. Complementary approaches of wild sampling and a common gar-

den experiment confirmed combinatorial mechanisms of species isolation and sorting due to

abiotic and host factors that manipulate A. thaliana phyllosphere microbiomes. A systems biol-

ogy approach documented highly interactive “hub”microbes, and in controlled laboratory

experiments we confirmed that one, Albugo laibachii, strongly affects phyllosphere communi-

ties and found evidence for direct interactions by a second, Dioszegia sp. The results

demonstrate that hub microbes mediate between sorting factors and microbial colonization,

effectively amplifying sorting effects in the phyllosphere and stabilizing populations of specific

microbes on individual plants. Our findings provide insights into the complexity of multiking-

dom interactions in the phyllosphere and improve the understanding of the dynamics of plant

microbiome colonization.

Microbial Hub Taxa Determine Host Microbiome Variation
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Results

Factors Mediating Phyllosphere Microbiome Assembly
To identify how several factors (Table 1) control phyllosphere microbiome assembly, we

selected five sites near Tübingen in southern Germany with stable A. thaliana populations that

have been studied for several years [39] (WH, JUG, PFN, EY, ERG; S1 Table). We collected

plants in the fall, covering the early growth phase of A. thaliana under short day conditions

before its resting stage in winter, and in spring, just before its reproductive stage during

increasingly longer days (Experiment 1). Microsatellite markers [40] confirmed that there is

more A. thaliana genetic variation between sites than within sites, with no overlap of multilo-

cus haplotypes between sites (S2 Table) [39]. We therefore grouped factors into “sampling

time,” which includes differences between fall and spring, and “sampling location,” covering

differences between sites such as soil, local climate, and plant genotypes (Table 1). Importantly,

a major phenotype observed at all sites except PFN was the presence of white rust caused by

the obligate biotrophic oomycete pathogen Alb. laibachii. From each sample, we recovered epi-

phytic and endophytic microbes, extracted genomic DNA, and generated six amplicon librar-

ies: two from rRNA gene regions of bacteria (16S rRNA V3/V4 and V5/V6/V7 regions) and

two from each of fungi and oomycetes (internal transcribed spacers 1 and 2 [ITS 1 and 2] of

the large subunit rRNA complex). We included multiple amplified regions to address the fact

that differences arise due to primer specificity and bias and due to differential gene region

variability. Therefore, we treated the two amplified regions from a single microbial group com-

plementarily, presenting findings generated by either dataset as well as differences between the

datasets. Generally, amplicon-based microbial abundances reported are relative within each

gene region.

We measured how factors correlated to microbial community structure by performing con-

strained ordination (canonical correspondence analysis) on log-transformed microbial abun-

dances. For epiphytic and endophytic bacteria and fungi, location was correlated to up to 25%–

30% of community variation, and sampling time about 10%–15% (most correlatations are sig-

nificant at p< 0.05 based on random permutations, Fig 1A and S1A Fig). To further clarify

variation, we calculated location- and sampling time-specific enrichment of each microbial

genus based on whether it was more abundant at a specific sampling site compared to any

other site or in spring or fall (Tukey’s honest significant difference test [HSD] p< 0.01, i.e., the

genus contributes to distinguishing between locations or sampling times). A median of one

and four enriched bacterial genera per location (endophytes and epiphytes, respectively) sug-

gests that relatively few species contributed to observed variation between sampling sites (S3

Table 1. Factors tested for their effects onmicrobial community structure in this study. Since each
“tested factor” naturally groups sources of variation together, a list of possible “grouped factors,” which could
contribute to observed community structures, is provided.

Experiment Tested Factor1 Example Grouped Factors2

Wild Tübingen Sampling Time Temperature, host stage

Location Soil, climate, host genotype

Cologne Garden Genotype Genotype, sub-location

Laboratory Genotype x Albugo sp.

1
“Tested factor” indicates the factor which we measured and which was tested in constrained ordination for

effects on the microbial communities.
2
“Grouped factors” indicate some factors that are naturally grouped into the tested factor and which likely

contribute to observed variation between samples.

doi:10.1371/journal.pbio.1002352.t001
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Fig 1. Experiment 1 and 2: Ecological and host factors are important in shaping phyllosphere microbial communities. A. Experiment 1: Sampling
location and sampling time correlated to microbial community structure variation observed between Tübingen wild sites. Circles and triangles are samples
collected in fall and spring, respectively. Colors of points illustrate the location where the samples were collected. Dot plots are unconstrained endophytic
communities, while barcharts show factor correlations to endophytic (endo) and epiphytic (epi) variation. Overlap of bars represents factors correlated to the
same variation. B. Experiment 2: The host A. thaliana accession correlated to microbial community structure variation observed in the Cologne garden
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Table). The location PFN, however, was unique because 25 and 16 bacterial genera (endo-

phytes and epiphytes, respectively) were significantly enriched there (S3 Table). Enrichment of

many taxa at PFN explains why samples there consistently had some of the highest endophytic

and epiphytic bacterial alpha diversities (S2 Fig). Many fungal taxa were enriched in abundance

at PFN and JUG (15 and 12 genera, respectively, S3 Table), compared to an average of 2.7 at

each of ERG, WH, and EY. Only site PFN had significantly enriched endophytic fungal genera.

Generally, bacterial locational variation was more quantitative than fungal: eight abundant fun-

gal genera (each> 500 total observations) were only observed at< 5 sites, while all abundant

bacteria were detectable at five or more sites (S3 Fig). Sampling time was also important, with

many taxa at higher abundance in fall (122 total taxa compared to 25 in spring) (S4 Table). The

large fall/spring difference can mostly be attributed to bacteria: 16 and 14 fungal taxa were

more abundant in fall and spring, respectively, while the rest of the enriched taxa were bacteria.

Interestingly, while 90 taxa were more abundant in at least one sampling location and 146 at

one sampling time, only two taxa were both location- and season-enriched. For both bacteria

and fungi, epiphytic alpha diversity was higher than endophytic (S2 Fig), and abundant genera

differed between epiphytic and endophytic compartments (S4 and S5 Figs).

Oomycete communities presented a very different picture. Here, while sampling time still

was correlated to about 10% of community variation, sampling location was correlated to

35%–80% (depending on leaf compartment and dataset, Fig 1A, S1A Fig). Oomycete alpha

diversity was extremely low (S6 Fig) and the obligate biotrophic pathogen Albugo was domi-

nant, comprising up to 100% of observations in some samples (S6 Fig), agreeing with observa-

tions of extensive white rust symptoms. Overall, we did not observe that sites physically more

close to one another (S1 Table) were more similar in terms of observed microbial communities

(Fig 1 and S1 and S2 Figs).

Endophytic Albugo detected via quantitative polymerase chain reaction (qPCR) in some of

the samples scored as white rust-free was easily detectable (S2 Table and S7 Fig), indicating

some extent of asymptomatic endophytic Albugo growth [11]. Considering the striking symp-

toms on hosts affected by Albugo and its ubiquity, we decided to examine distribution of this

organism at the strain level. Two Albugo species, Alb. candida and Alb. laibachii, have previ-

ously been described causing white rust on A. thaliana [41]. ITS amplicon data suggested

absence of Alb. candida in our samples, and Alb. candida-specific primers confirmed this (S2

Table). For strain determination, we thus focused on Alb. laibachii, using newly developed

microsatellite-based markers. Although the Albugo genus was widespread, we found no strain

overlap between sites but instead that each site was dominated by a stable major strain over

multiple host generations (S2 Table). The second most common oomycete pathogen in plants

was Hyaloperonospora sp. (Hpa). While only four of 19 tissue samples with observed white rust

contained appreciable levels of Hpa, we found high relative levels in five of the ten tissue sam-

ples where white rust was not observed (more present when white rust was not observed at

p = 0.022, one-tailed Fischer’s exact test). Hpa-relative abundance was not necessarily depen-

dent on Albugo, since some of the highest observed levels were in samples with high levels of

measured endophytic Albugo (S7 Fig).

Host genotype was not separable from location as a factor in wild samples. To determine

whether it could uniquely affect microbial communities, we planted three natural A. thaliana

accessions with differential resistance to Albugo sp. strains (Ws-0, Col-0, and Ksk-1: see S8 Fig

experiment. Colors of points represent the host accession. For A and B, figures are based on genus-level data from bacterial 16S V3/V4 region, fungal ITS1
region and oomycete ITS1 region amplicons. For A and B, a star indicates that the measured correlation is statistically significant (p < 0.05) based on random
permutations of sample classes. (S1_Data.xlsx)

doi:10.1371/journal.pbio.1002352.g001
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for qPCR quantification of endophytic Alb. laibachii Nc14 and Alb. candida Nc2 levels in sus-

ceptible versus resistant accessions) in randomized plots in a common garden in Cologne,

Germany (CG) and sampled their microbiomes just before flowering time (Experiment 2).

Constrained analysis suggested that plant genotype affected microbial community variation,

correlating to 25%–30% of bacterial and fungal community variation and 45%–55% of oomy-

cete community variation (Fig 1B and S1B Fig). Because of the low number of samples, only a

few of the correlations were significant, and therefore some of the constrained variance could

be due to chance. Therefore, we tested each genus for genotype-enrichment based on whether

they were enriched on a specific host accession compared to any other accession (Tukey’s HSD

p< 0.05, i.e., the genus contributes to distinguishing the accession from other accessions, S5

Table). Indeed, even with only three samples per accession, multiple bacterial and fungal taxa

were detected as enriched on each. The higher correlation of oomycete variation to host geno-

type was due to the low diversity of oomycete communities in the garden experiment—these

were nearly completely dominated by Alb. laibachii (S6 Fig). We observed significantly more

white rust on A. thaliana accessions Ws-0 and Col-0 than on the partially resistant accession

Ksk-1 (S9 Fig), and this agreed with qPCR measurements of endophytic Albugo (S2 Table:

There was significantly less Albugo, using oomycete levels as an Albugo proxy, in accession

Ksk-1 than in Ws-0 or Col-0 based on one-sided t test of 10/5/13 samples at p< 0.1 or

p< 0.05 using both 5/5/13 and 10/5/13 samples). Additionally, we delineated three different

Alb. laibachii strains in the field: the dominant strain 1 was observed on 5 A. thaliana Col-0

andWs-0 samples, but only one Ksk-1 sample, strain 2 grew on one sample each of A. thaliana

Col-0 and Ws-0, while a third strain was found in a second A. thaliana Ksk-1 sample only (S9

Fig). Taken together, our results based on the phyllosphere of the model host A. thaliana indi-

cate that the factor’s location, sampling time, and host genotype are important determinants

for plant colonization patterns of bacteria, fungi, and oomycetes.

Interkingdom Connectivity of Phyllosphere Microbiomes
Up to ~40% of observed phyllosphere microbial community variation in constrained ordina-

tion models of wild samples could be explained by location and sampling time together (Fig 1

and S1 Fig). We hypothesized that microbe–microbe interactions could contribute to the

remaining variation and reasoned that the most important microbes and microbial relation-

ships could be discovered by looking for “hubs”—highly connected microorganisms in scale-

free correlation networks [22,42]. Therefore, we generated a co-occurrence network by measur-

ing abundance correlations between 90,524 pairs of microbes grouped at the genus level

(Computational Experiment 3, Fig 2A—important terms related to network analysis are

defined in Box 1). Correlations were based on samples from Experiment 1 and Experiment 2.

We did not seek to detect binary interactions (where the presence of one microbe depends on

another regardless of abundance), which would be distorted, because even single leaf samples

pool leaf areas that are very large and diverse in terms of microbial habitats [43]. Using a cutoff

that removed correlations with either a low r-squared value or that were based on microbes

found only in limited samples (see S1 Text for details), the resulting edges represented correla-

tions that are widespread among locations we sampled, since most (86%) were supported in at

least 50 of 100 randomly subsampled datasets (S10 Fig). Within kingdoms, we found that cor-

relations were usually positive (86.5%, n = 630) and were dominated by interactions between

bacteria. Correlations between microbes from different kingdoms were overwhelmingly nega-

tive (76.6%, n = 141), driven by a disproportionate number of correlations to a few microbes

(relatively more interactions with oomycetes than random X2 = 169.4 p< 2.2 x 10−16, S6

Table).

Microbial Hub Taxa Determine Host Microbiome Variation

PLOS Biology | DOI:10.1371/journal.pbio.1002352 January 20, 2016 7 / 31



We found that the cutoff used to identify “good” correlations could strongly affect identifi-

cation of the most-connected microbes (S11 Fig). Therefore, we used several cutoffs to identify

genera with significantly (p< 0.1 based on fitting a log-normal distribution) higher between-

ness centrality, closeness centrality, or degree, all of which are measures of how connected a

node is in the network (defined in Box 1). Taking the intersection of significant taxa from the

three connectivity parameters, genera representing each kingdom (Albugo sp., Udeniomyces

sp., Dioszegia sp., Caulobacter sp., a genus of Comamonadaceae and a genus of Burkholderiales,

the last two of which could not be identified at the genus level) were highly connected (S11

Fig). We performed the same analysis on operational taxonomic units (OTUs) grouped at

order, family, and species levels, and all genera except Udeniomyces sp. were supported at> 1

taxonomic level (S7 Table). Albugo sp. was supported at all tested taxonomic levels.

Hub microbes are not necessarily keystones in the community, or taxa which are responsi-

ble for significant amounts of the observed microbial community network structure [44], but

ecologically relevant hub microbes are likely to be. To check if our analysis identified keystone

hubs, we computationally analyzed three of the “hub”microbes (Dioszegia sp., Albugo sp., and

the Comamonadaceae genus) identified in the genus-level network (Fig 2A). Together, these

Fig 2. Computational Experiment 3: Inter- and intra-kingdommicrobe–microbe interactions affect phyllosphere microbiome structure. A. A
correlation network demonstrates that correlations between microbes within kingdoms tend to be positive (orange solid), while correlations between
kingdoms tend to be negative (black dashed). Boldness of lines is related to the strength of the correlation. Correlations were made using samples from both
Experiment 1 and Experiment 2. Additional care was taken to ensure correlations were robust (see S1 Text). The network structure was typical of a scale-free
network since only a few nodes were highly connected (a power-law fit to the node degree distribution has alpha = −1.072 and r2 = 0.846). B. “Hub”microbes
were identified as those which were significantly more central based on all three measurements of centrality. For the network shown in A (based on one of
several cutoffs for “good” correlations, see S1 Text), three microbes, Albugo sp., Dioszegia sp., and a genus ofComamonadaceaewere identified as “hubs”
(yellow line: p = 0.1 based on a log-normal distribution fit). Other genus-level hub microbes indicated in Fig 2A were identified by combining the results of
several other correlation cutoffs (see S11 Fig and S7 Table). (S1_Data.xlsx)

doi:10.1371/journal.pbio.1002352.g002
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three hub microbes are direct correlates of most other nodes in the network (100 of 191 nodes,

Fig 3B). We first generated a “spring-loaded” network view in which tightly correlated

microbes form clusters (Fig 3A). The main observed cluster was of high-degree epiphytic bacte-

ria and was formed by the large number of positive correlations between them. Interestingly,

most microbes with high degree were first neighbors of the three hubs and were negatively cor-

related to Albugo sp. or Dioszegia sp. (Fig 3A), suggesting these microbes could be responsible

for observed high positive correlations between many epiphytic bacteria. Next, we computa-

tionally “removed” each of the hub microbes to test their influence on network structure by

building networks with partial correlations that account for their abundances. We also tested

positive control keystone genera (with high degree and low betweenness centrality) or negative

control species (with high abundance, low degree, and low centrality) (Fig 3C). Hub microbes

affected less of the network structure than positive controls, but more edges were dependent on

them than on negative controls. We can conclude from this that our three main “hub”

Box 1. Definitions and clarifications of important terms related to
network analyses that are commonly used in this manuscript.
Node—In the network analysis, a node is a taxa representing operational taxonomic

units (OTUs) grouped at a specific level (e.g., genus level).

Edge—In the network analysis, edges are lines connecting nodes and represent correla-

tions between the nodes.

Connectedness/Connectivity—How central a node is in the network, i.e., how well con-

nected it is to the rest of the network, measured by node parameters degree, betweenness

centrality, and closeness centrality.

Degree—The number of direct correlations to a node in the network.

Betweenness centrality—The fraction of cases in which a node lies on the shortest path

between all pairs of other nodes.

Closeness centrality—The reciprocal of the sum of distances to all other nodes.

Hub node—A node which is significantly more connected within the network than

other nodes according to all three node parameters.

Edge node—Poorly connected nodes within the network that likely have little influence

on microbial community structure.

Keystone node—A hub node that fundamentally underlies the observed network struc-

ture. Without this node, the observed network would look significantly different.

Keystone versus Hub nodes—Hub species are logical places to look for ecologically

important microbes in a community. Ecologically important species are responsible for

the microbial community structure and are therefore keystone species—without them

the dynamics of the community changes. Not all hub species are keystones, however,

since a high number of direct interactions (a requirement of hubs) is not a requirement

of keystone species. Keystones are rather defined by the quantity of overall interactions

in the network that are dependent on them [44]. Thus, some hubs that are only impor-

tant in their “neighborhood” of the network would not be keystones overall. In the con-

text of this study, a keystone microbe would be a critical determinant of colonization of

widely occurring microbial taxa, and nonkeystone hub would be important for determin-

ing colonization of some specific taxa but not overall.

Microbial Hub Taxa Determine Host Microbiome Variation
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microbes are likely “keystone” species with an important role in determining network structure

for the leaf microbial community.

Experimental Testing of the Microbial Hub Genera Albugo and Dioszegia

The hub microbes Albugo and Dioszegia were strongly negatively correlated to many of the

bacteria in the microbial community networks but are themselves affected by abiotic and host

factors. For example, Albugo is affected by host resistance encoded by single A. thaliana genes

[45], and Dioszegia, although widespread, was seasonal, being significantly more abundant in

spring samples (S4 Table). In light of the effects of abiotic and host factors on microbial com-

munity structure and the presence of central hubs in the microbial network, we hypothesized

Fig 3. Computational Experiment 3: Hubmicroorganisms are critical determinants of the microbiome interaction network structure. A. Most high-
degree bacteria (including the genus of Comamonadaceae designated as a hub) are first neighbors (i.e., direct and negative correlates) of the hub microbial
genera Albugo sp. and Dioszegia sp., and many group into an intercorrelated cluster. First neighbors of the three “hub”microbes are shown in color and the
rest of the network is shown in greyscale. The depiction is a spring-loaded visualization of the network in Fig 2 where tightly correlated nodes cluster together.
B. The hub microbes were partly independent, since about half of the nodes to which they correlated were unique and half were shared. They together
directly reach over half (100/191) of all nodes in the network. C. Hub microbes (high degree organisms with high centrality) can be considered as reasonable
keystone species, since the magnitude of their effects in the network extend over more edges than nonkeystone nodes (high abundance organisms with low
degree and low centrality) but over fewer than keystone nodes (high degree organisms with low centrality). An edge was considered dependent if it was not
observed in a network built using partial correlations controlling for abundance of the test microbes. Error bars show standard deviation, and significance was
tested with a one-sidedWelch’s t test where (*): p < 0.1, (**): p < 0.05 and (***): p < 0.01. Hub nodes: Albugo sp., Dioszegia sp. and a genus of
Comamonadaceae. Keystone nodes:Mycobacterium sp., Rhodoplanes sp., and Rhizobiales (other). Nonkeystone nodes: Pseudomonas sp.,
Oxalobacteriaceae (other), and Sphingomonas sp. (S1_Data.xlsx)

doi:10.1371/journal.pbio.1002352.g003
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that there is a specific mechanism whereby microbial hubs act as “receptors” of abiotic and

host factors and “regulatory units,” amplifying or dampening effects of microbiome perturba-

tions. To test our hypothesis, we examined the effect of the presence of isolates of Albugo

(Experiment 4) and Dioszegia (Experiment 5) on other phyllosphere microbiota.

Axenic isolation of Albugo is difficult because of its obligate biotrophic lifestyle, but several

characteristics make this a good model system for testing our hypothesis. First, Albugo is easily

propagated with associated microbes that would also be propagated in nature (i.e., spore- or

leaf-associated microbes) by washing infected leaves (where infection refers to susceptible

plants treated with live Albugo spores and visible white rust) and reinoculating. Second, its

presence is easily controlled independently of other microbes by introducing a resistant host.

We selected two strains (Alb. laibachii Nc14 and Alb. candida Nc2) that had been propagated

continually for> 1 yr, giving any associated microbiome time to acclimate to lab conditions.

We individually inoculated both strains using leaf washes (containing the Albugo strain spores

and the strain-associated microbial community) onto the three host accessions that we had

used for the garden experiment. As expected, susceptible plants displayed strong symptoms,

while resistant plants were asymptomatic and had very low detected levels of Albugo sp. (S8

Fig). To additionally simulate an abiotic factor limiting Albugo (e.g., a distribution limitiation

in the wild), we included a second set of Albugo-free controls by removing Albugo spores from

leaf washes by filtering (< 6 μm). This set of controls also allowed us to account for noise in

controls due to host genotype background. Filtering could have affected the abundance of

other microbes, so we confirmed observed trends in one replicate of an experiment in which

Albugo filtering was replaced by inactivation using a combination of the oomycete inhibitors

metalaxyl and benalaxyl. In all cases all tested conditions were grown together in growth cham-

bers and the communities were allowed to adapt over two cycles of reinoculation before sample

collection for microbial community profiling (S12 Fig).

If Albugo is indeed a “hub” that transmits, e.g., host factors, affecting colonization of many

microbes, we expected the following: 1) decreased alpha diversity as a consequence of infection

(following from the observed strong negative correlations to many bacterial taxa), 2) less vari-

ability between replicates of infected plants (since other microbes in the inoculum were coculti-

vated with Albugo and many are presumably reliant on its presence), 3) divergence of control

from infected communities, and 4) stronger differences between genotypes in the presence of

Albugo. Compared to the resistant host A. thaliana Ksk-1, epiphytic bacterial communities on

Alb. laibachii-infected plants had significantly lower alpha diversity (Fig 4A, S13 and S14 Figs)

and significantly more similar beta diversity between replicates (within-replicate distance, Fig

4A and S15 Fig). Bacterial communities on plants with Alb. laibachii infection were more simi-

lar to each other than to uninfected controls, although this effect was mostly apparent in the

bacterial V3/V4 dataset (between-treatment distance, Fig 4A and S16 Fig). Effects with abiotic

A. laibachii control (regardless of filter removal or chemical inhibition) were the same but less

significant than due to host resistance (filtering [Fig 4A and S13, S15 and S16 Figs]/chemical

inhibition: [S14 Fig]—significance for within-replicate and between-treatment distances were

stronger for the V3/V4 dataset). Alpha diversity or within-replicate distance differences

between the three A. thaliana accessions were strongly increased in the presence of active Alb.

laibachii (S13, S14 and S15 Figs), confirming that Alb. laibachii can amplify host genotype-spe-

cific bacterial community differences. The effect of Alb. laibachii on fungal communities were

less consistent and not as clear. Most apparent was a slight depression in fungal alpha diversity

with infection, but without statistical significance (Fig 4A and S13–S16 Figs).

For Alb. candida infections, a similar and consistent trend of relatively low bacterial and

fungal alpha diversity was observed on infected A. thalianaWs-0 (Fig 4A, S13 and S14 Figs),

but it was not significant. We also did not observe more similar bacterial or fungal
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Fig 4. Experiment 4: Species of the obligate biotrophic pathogen and hub genus Albugo can affect colonization of microbes in the phyllosphere,
linking abiotic or host genotype factors to a mechanism for observedmicrobial community variation. A. When Alb. laibachii Nc14 or Alb. candidaNc2
are absent due to abiotic (physical spore removal) or host (resistance) factors, the pathogen-associated microbial community increases in alpha diversity
(also see S12 Fig) is less replicable (A. laibachii only) and shifts significantly (A. laibachii only). B. Several genera of bacteria were observed to more
efficiently colonize the endophytic compartment of the phyllsophere in plants infected with Albugo sp. than in controls. For A and B: Ws-0: A. thalianaWs-0,
Col-0: A. thalianaCol-0, Ksk-1: A. thaliana Ksk-1. Green: Susceptible hosts, Red: Resistant hosts, Yellow: Filter removal of Albugo on all hosts. (S1_Data.
xlsx)

doi:10.1371/journal.pbio.1002352.g004
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communities between replicates or between treatments with Alb. candida infection (Fig 4A,

S15 and S16 Figs). These results, combined with much higher numbers of epiphytic bacteria on

Alb. candida-infected leaves than Alb. laibachii (S17 Fig) suggests a comparatively weak impact

on the bacterial community in A. thaliana caused by Alb. candida infection.

Not only epiphyte communities were disturbed by Albugo infection. Numbers of endophytic

bacterial or fungal reads (which have been used as a proxy for the amount of endophyte

microbes [22]) were lower in the absence and higher in the presence of Albugo (S18 Fig). We

identified a subset of bacteria that were significantly enriched as endophytes during infection

but not in any control, and most of them only due to Alb. laibachii infection, indicating that

Albugo enabled their colonization of endophytic space (Fig 4B and S18 Fig). These bacteria

were not likely to simply have been found because of higher epiphyte numbers in infected

plants, since not all abundant taxa were enriched during infection (S19 Fig).

Next, we tested the hub fungus Dioszegia sp., which we isolated from the endophytic com-

partment of A. thaliana at site EY. Unlike Albugo, Dioszegia can be axenically cultivated, mak-

ing possible tests of direct, one-on-one interactions with other microbes in the phyllosphere. In

short, we spray-inoculated 3-wk old axenically-grown A. thaliana seedlings with Dioszegia sp.

After 3 d, we inoculated isolates of one of six bacterial genera (all of which were isolated on or

near A. thaliana and which we observed in phyllosphere samples, S8 Table). Colony forming

units (CFUs) of Dioszegia and the bacteria were counted at the starting time and after one

week of coculture (S20A and S20B Figs). For four isolates (Janthinobacterium, Caulobacter,

Flavobacterium, and Agromyces), negative correlations to Dioszegia had been observed in the

network analysis, while for two isolates (Pseudomonas and Rhodococcus) we had observed no

correlation (S20C Fig). Of the latter two, only Rhodococcus, an isolate from Alb. laibachii Nc14

spores, interacted by reducing Dioszegia growth. Rhodococcus generally grew to high epiphytic

abundances in lab conditions (S21 Fig), and thus reduced growth was probably due to spatial

competition. Of the other four isolates, Janthinobacterium did not survive on the leaf and we

did not observe any effect of Flavobacterium. Agromyces caused slightly reduced Dioszegia

growth, but itself grew poorly in the phyllosphere. Of the negatively correlating genera, the

Caulobacter isolate grew the best alone on plants and was strongly inhibited by Dioszegia

(~100-fold lower CFU counts). Caulobacter was also identified as a hub at the genus and spe-

cies level (S7 Table).

Taken together, our findings confirm that the microbial “hub” Albugo is a strong interactor

in the phyllosphere, and that its presence limits alpha diversity and affects plant microbial

communities. They also support the hypothesis that Albugo could stabilize plant microbial

communities, for example on hosts in a single wild population. Negative correlations between

the fungal hub Dioszegia and bacteria in the phyllosphere are due to both antagonistic effects

by other bacteria on Dioszegia (e.g., due to spatial competition) and direct antagonism on spe-

cific bacteria. Therefore, host or abiotic signatures that affect the abundance of the hubs Albugo

and Dioszegia can also have disproportionately large effects among phyllosphere microbiota.

Microbial Hubs Mediate between Abiotic and Host Effects and Observed
Phyllosphere Diversity
To look closer at the mechanism of how hub microbes select phyllosphere microbiota, we

asked which endophytic taxa were enriched in the field in samples with high measurable levels

of endophytic Albugo sp., and whether these were also enriched in lab experiments. Generally,

in wild samples, no single bacterial genus dominated endophytes. Several taxa identified at the

genus level were enriched (>10% of reads) in individual samples, including Pseudomonas (up

to 93% of reads at many sites), Sphingomonas (up to 29% of reads at Cologne, ERG, and EY),
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Methylobacterium (up to 22% of reads at Cologne and PFN), Deinococcus (up to 12% of reads

at Cologne), and Flavobacteria (10% of reads JUG) (S4 Fig). Of these, Pseudomonas sp. was

also the genus that colonized the endophytic compartment during Alb. laibachii Nc14 infection

most efficiently (Fig 4B). Therefore, while specific bacterial genera seem to benefit from Albugo

infection, these seem to be location-specific rather than Albugo-specific.

Interestingly, we calculated interkingdom correlations of microbes to alpha diversity indices

and found that the hub taxa Albugo and Dioszegia are strongly negatively correlated overall to

bacterial diversity, as are two other epiphytic yeast-like fungal genera (Leucosporidiella and

Udeniomyces—the latter was identified as a hub at the genus level, S7 Table) and a genus of

Pleosporales fungi (S22 Fig). Only the epiphytic fungal genus Heterobasidion was positively

correlated with bacterial diversity based on support from both bacterial amplicon datasets; in

addition, one dataset supported positive correlations for several other fungal classes and the

genus Aspergillus. Additionally, several epiphytic bacterial classes positively correlated with

fungal epiphyte diversity and endophytic Pseudomonas negatively correlated to it (S22 Fig).

Negative correlations of hubs to bacterial diversity (also observed in lab experiments for Albugo

sp.) correspond to the network observation of extensive negative correlations to epiphytic bac-

terial genera. Thus, as hubs, Albugo and Dioszegia decrease bacterial diversity and thereby

increase relative abundances of a few groups of abundant and location-specific bacteria. Signifi-

cant correlations of other genera to alpha diversity of bacteria and fungi suggest that other bac-

terial and fungal taxa are also important and will be detected as hubs with different sampling

strategies (e.g., within single host populations).

Besides affecting relative abundances of specific bacterial groups, hub microbe abundance

is itself affected by abiotic or host factors like climate, distribution, or host resistance alleles.

Therefore, we used constrained ordination to ask to what extent external factors and microbial

hubs are responsible for observed beta diversity variation. The external factors location and

sampling time together correlated to ~40% of total epiphytic or endophytic bacterial variation.

The hub microbes Albugo sp. and Dioszegia sp. together correlated to about 15%–20% of varia-

tion (Fig 5). External factor and hub microbe effects were not completely independent, since

up to 34% of variation correlated to external factors overlapped with variation correlated to

hub microbes (~14.3% of 41.8% for bacterial epiphytes based on V5/V6/V7 amplicons, Fig 5).

Therefore, the external factors location and sampling time have important independent effects

on phyllosphere microbiome structures, but up to one-third of their observed effects could be

due to variation of two hub microbes.

Discussion

Evidence has mounted that the holobiont is the unit on which evolutionary selection acts, but a

full understanding of this concept, especially in plants, is missing complete explanations of

how the metaorganism forms and is structured [1,2]. To elucidate principles enabling identifi-

cation of mechanisms relevant for formation of the microbial fraction of the plant holobiont,

we have generated an unprecedented high-resolution microbiome “map” showing a significant

impact of biotic and abiotic factors. Analysis of three of the most important phyllosphere taxa

(oomycetes, fungi and bacteria) addresses a lack of data with a broad taxonomic resolution

which has prevented identification of specific mechanisms of microbial community differentia-

tion. Our results suggest that mechanisms contributing to observed abundances are taxa-spe-

cific and are mediated by complex interactions between abiotic factors and taxa, between taxa

and the host, and between multiple taxa. Sampling location (correlating to ~25%–35% of com-

munity variation) and sampling time (season, correlating to ~10% of community variation)

were correlated to robust patterns of diversity variation caused by taxa that were not evenly
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Fig 5. Experiment 1 and 3: Effects on bacterial colonization of eukaryotic “hub”microbes overlap with effects of location and sampling time. Each
bubble represents the amount of microbial community variation between samples at Tübingen wild sites (Experiment 1) that could be correlated to the
factor’s location and sampling time (blue), Albugo abundance (green), and Dioszegia abundance (red) using constrained ordination analysis. About 40% of
observed variation in both epiphytic or endophytic bacterial colonization could be attributed to the external factors location and sampling time and about 50%
when considering Albugo and Dioszegia in addition (total model). For epiphytes and endophytes, respectively, about 20%–35% and 15%–20% of variation
(the overlap percent) linked to location and sampling time could also be correlated to either Albugo sp. or Dioszegia sp. (The “overlap percent” is the “factor
overlap” divided by location/sampling time-correlated variation, where “factor overlap” is the percent of total community variation shared by Albugo/Dioszegia
and location/sampling time). Black lines show the percent variation correlated to pairs of factors, and stars indicate that the two factors connected by the
black line were significantly (p < 0.05) independent of one another.

doi:10.1371/journal.pbio.1002352.g005
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distributed among sampling sites or times or which were completely specific to certain sites.

Amplicon sequencing results in taxonomic resolution below the strain level, so microorgan-

isms might be even less evenly distributed than our data suggests. This is illustrated by the

oomycete genus Albugo, which was dominant and widely dispersed but which had site-specific

strains that might be adapted to local conditions or hosts. Consistently, previous work on both

phyllosphere and rhizosphere bacterial communities showed that location is a strong determi-

nant of microbial community structures, which then vary to a lesser extent between different

host species and genera [19,46]. Site-localized microbial taxa could result from both poor dis-

persal between sites (e.g., uneven distribution of microbial inocula like different soil conditions

which differentially inoculate plants [12,14]) or local sorting mechanisms that completely

exclude species in specific locations (e.g., local conditions or host plant effects [47,48]) [17].

Indeed, colonization of the phyllosphere and rhizosphere has been suggested to proceed with

an ordered effect of inocula distribution followed by species sorting [12,49].

Distribution, dispersal, and species sorting to some extent go hand in hand, since strong

adaptation of microbes to specific hosts have reproductive costs [50] and in some cases can

limit their transmissibility [51]. In our study, it was clear that species sorting occurred at least

in part due to hosts. For example, abundance of the genus Albugo was reduced (in the CG

experiment) or eliminated (in lab experiments) due to (partial) resistance in the accession A.

thaliana Ksk-1. We also observed much lower endophytic bacterial and fungal diversity than

epiphytic caused by the “gateway” between the leaf surface (epiphytes) and interior (endo-

phytes). This level of sorting occurs since endophytes and pathogens need to specialize and

coevolve with hosts [52,53] to avoid or evade an arsenal of host self-defense mechanisms such

as callose deposition [54], antimicrobial peptides [55], and reactive oxygen species (ROS)

bursts [56]. Recent studies seeking to more generally connect host adaptation to microbiota

colonization have utilized mutant plants [57,58] and genome-wide association studies

(GWAS) [59] to demonstrate that plant genotypes sort their associated microbiota. Most direct

allele or host accession effects, however, have only been minor and on specific taxa [21]. Com-

paratively, we observed significant effects on many diverse taxa in the CG experiment in this

study, raising the question of what leads to broader host genotype impacts on microbial coloni-

zation. We proposed that one mechanism can be via microbe–microbe interactions. For exam-

ple, despite high A. thaliana diversity between sites, we observed the genus Alternaria inside

plant samples at almost all sites. We did not expect this because it is a plant pathogen with a

necrotrophic lifestyle and host specificity on certain A. thaliana accessions [60]. This could

be indicative of diverse strains with different host adaptations (i.e., broad compatibility as a

genus), but an effectively expanded host range could also result from taking advantage of

already broken down host barriers. For example, wide cooccurrence of Alternaria has been

observed with Alb. candida [61].

We propose that microbe–microbe interactions generally increase host effects due to the

community correlation network topology we observed in which many microbes are weakly

connected, while only a few “hubs” are highly connected, dominant interactors. In other

words, many genotype effects (or other factors) will only perturb the activities of less influential

microbes. If, on the other hand, an external pressure “hits” a hub microbe, the disturbance can

be expected to cascade through the microbial community (Fig 6A). In this study, Albugo, the

causal agent of white rust, was identified as an important hub. To show experimentally its hub

status, we performed microbial “knockout” experiments in a CG experiment and in the lab, by

introducing a range of different A. thaliana accessions carrying functional resistance alleles

[45,62,63] or by physical/chemical removal/inhibition of Albugo in the lab (simulating an abi-

otic elimination of Albugo infection). We could show that, regardless of how Albugo is removed

from the system, the associated microbial community is more stable in the presence of the
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pathogen and significantly changes in its absence. Albugo functions as a hub from the “bottom

up” by limiting bacterial diversity and increasing relative abundance of major taxa in the phyl-

losphere. This supports the hypothesis that it also stabilizes abundance of site-specific taxa in

the wild since hubs will promote deterministic host-associated taxa selection at affected sites

(either directly or by modifying host phenotypes) (Fig 6B). On the other hand, community sta-

bility in the absence of major hubs is functionally based and occurs from the top down such

that many observed taxa vary stochastically (Fig 6B). Here, abundant taxa are the target of per-

turbations that eliminate them or reduce their abundance and rare community members are

required to fill the resulting open niches or functional voids [64]. Therefore, Albugo absence

can plausibly explain strongly differentiated bacterial communities at the wild site PFN and sig-

nificant accession-correlated microbial community differentiation in our garden experiment.

With the apparent importance of specific microbes for local species sorting in the phyllo-

sphere, the question arises as to what makes these microbes hubs? One possibility is that they

can exert strong indirect effects on other microbes via the host. On plants where host genetic

diversity is a result of selection under pathogen pressure [65], pathogens can cause phenotypic

expression of that diversity. At least some of the observed effects by Albugo sp. probably occur

in this way, since it has been shown to, for example, alter host metabolism [30], which could

lead to community differentiation. Therefore, from the point of view of its transformative

effects on the host, the hub status of Albugo is not too surprising. Other more specific antibiosis

selection mechanisms such as direct interactions and inhibition likely occur through, for exam-

ple, ecological effectors [52,66]. No such pathways have been identified in Albugo genomes

[67], but single protein effectors cannot be excluded. Our results suggest that the hub microbe

Dioszegia directly inhibits some taxa, since it affected colonization efficiency of only specific

bacteria. Not only Dioszegia but also other basidiomycetous yeasts [68] can directly interact

Fig 6. Direct targeting of a hub by a biotic or abiotic factor results in a cascade of abundance shifts throughout the community. A. The magnitude of
effects of host or abiotic factors on microbial community structures is dependent on the connectivity of microbes targeted by the factor. For example, host “A”
directly limits the colonization of an “edge”microbe (with low degree in the community network), and a relatively small shift in beta diversity is observed
compared to the inoculating microbiome. On the other hand, when host “B” affects the colonization of a “hub”microbe, a drastic shift of many members of the
inoculating microbiome is observed. B. A microbial community without a main “hub”microbe shows high fluctuations in beta diversity upon perturbation by
different factors that might act on different “edge”microbes differently and is likely to be more subject to stochastic variation. A microbial community that is
structured by a main “hub”microbe shows lower levels of fluctuation in beta diversity but is highly sensitive to perturbations of the “hub”microbe.

doi:10.1371/journal.pbio.1002352.g006
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with microbiota, and these are also likely to operate as microbial hubs. Plant-associated species

like Rhodotorula and Pseudozyma, for example, are known for compounds secreted that are

effective in “biocontrol” of bacteria and fungi, respectively [69,70]. Such direct effects would

then be expected to cascade through the interconnected community. Thus, hub microbes can

influence diversity by acting indirectly via the host or directly on colonization efficiency of

other microbes.

Both indirect (via host [71]) and direct effects (via metabolites [72]) have been suggested for

mechanisms of action of some microbes that cause abnormal human microbiomes. The hub

status of these pathogens (and the dysbiotic microbiota they cause) is suggested to benefit them

by promoting disease in the host [73]. Due to their disproportionally high impact on the meta-

community, these hubs are called “keystone” species [74]. Therefore, being a hub with a high

level of “keystoneness” [44], as we have detected specifically for Alb. laibachiimay be a critical

part of host colonization. This might explain why Alb. candida was absent on wild A. thaliana

(even where compatible strains were found on nearby Capsella sp. plants) since it was only

weakly able to control A. thalianamicrobial communities in lab experiments. Therefore, while

hub interactions can occur indirectly through the host, where benefits of being a hub microbe

can be identified, researchers should consider that strong selection exists for the ability of hubs

to directly select cocolonizing microbiota.

Not all pathogens, however, share the hub microbe or even keystone status, so pathogenicity

cannot be taken as a rule to detect “hub” or “keystone” species. The second most abundant

oomycete genus that we recorded on A. thaliana was another obligate biotrophic pathogen,

Hpa. Although Hpa was common, it was not a hub at the broad geographic and host diversity

scales that we tested since it was not a strong interactor in the network and did not significantly

correlate to bacterial diversity (S7 Fig, adjusted r2 value of 0.27 for correlation to epiphytic bac-

terial diversity). We still cannot exclude that Hpa might act as a hub within a specific A. thali-

ana population or by interacting with an A. thaliana genotype not in our survey. However, we

hypothesize that the lack of hub status across broad scales compared to Alb. laibachii reflects

fundamental differences in the biotrophic strategies of the pathogens. For example, a dispro-

portionate number of hybrid incompatibility (HI) loci in A. thaliana encode leucine-rich repeat

containing (NLR) resistance proteins to Hpa [65,75]. This evidence of active, strong selection

at HI loci suggests that Hpa must have significant consequences for host fitness. While alleles

are known that encode NLR proteins conferring resistance to Alb. laibachii [63,76], there are

comparatively few, and none have been implicated as HI loci. Thus, we hypothesize that the

“hub” characteristic of Alb. laibachii that leads to a low diversity and a stable phyllosphere

microbiome is part of an “under-the-radar” approach to biotrophy. We therefore hypothesize

that pathogens like Hpa, which thrive by participating in an extremely active evolutionary

“arms race,” should exhibit less microbiome control.

Dioszegia and Albugo were functionally redundant with regard to decreasing bacterial diver-

sity. Functionally redundant hubs in networks are characteristically stable, because the loss of

one hub minimally interrupts function [77] and so this may suggest a relationship between

these organisms. Interestingly, even after many generations of almost continuous subculturing

in the lab (> 8 yr [67]) of Alb. laibachii Nc14, the basidiomycetous yeast Pseudozyma sp. is by

far the most abundant associated fungus (S23 Fig). Associations of basidiomycetous yeasts

including Dioszegia with other eukaryotes on plants such as arbuscular mycorrhiza fungi

(AMF) and their spores [78] is known. Therefore, a close association and even beneficial rela-

tionship could exist between yeast and Albugo by limiting growth of complementary sets of

microbes. Other relationships may also exist: other hub microbes (e.g., Caulobacter and a

Comamonadaceae genus) seemed to have opposite effects on phyllosphere bacterial diversity.

In at least one study, host manipulation of bacterial diversity has been suggested to affect its
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resistance to pathogens [79]. Thus, diversity manipulation might be a key battleground where

hosts and various hubs cooperate or compete with one another. In this case, hubs with comple-

mentary or opposite microbial community functions are attractive targets for biocontrol

studies in plants. Since pathogens have been identified as influential hubs in human hosts as

well [71,72], a similar approach can be used there to find new targets for disease therapies.

Taken together, our results demonstrate that phyllosphere colonization by bacteria, fungi,

and oomycetes is determined by various mechanisms of species sorting. These include seasonal

effects, partitioning between epiphytic and endophytic leaf compartments, and host genetic dif-

ferences. Most effects so far attributed to these factors have implicitly assumed their direct

effect on microbes. Our broader-resolution study, however, strongly suggests that “hub”

microbes are important intermediaries between abiotic, temporal, and host factors and coloni-

zation of many other microbes in the phyllosphere. Although previous studies have postulated

the existence of keystone microbes in the phyllosphere [80,81] or suggested their existence

based on bacterial network analyses [82,83], this is the first study to identify and confirm hubs

from various kingdoms, to show their effects across kingdoms, and to identify hub microbes as

direct targets of abiotic or host factors and mediators of observed microbiome variation.

Because of complementary or antagonistic functions of these hubs, their resolution in plant,

human, and other host contexts will improve understanding of what a holobiont is and how it

functions. Specifically, if indeed hubs select cocolonizing microbiota to improve their own fit-

ness, the host holobiont has to be understood in the context-colonizing hubs which themselves

are holobionts. For example, host–pathogen coevolution can be expected to occur both on the

molecular and microbial level. Thus, identifying hub interactions will reveal central targets to

quickly revolutionize how we understand host–microbe–microbe relationships and to enable

better future management of plant microbiomes—a crucial tool for biocontrol and resource

saving food security.

Materials and Methods

Sampling Wild Populations of A. thaliana (Experiment 1)
We selected five sites near Tübingen in southern Germany for collection from wild populations

of A. thaliana (S1 Table). These sites were selected because plants grew in open conditions in

discrete populations with minimal disturbance from other plants such as grasses. Genotypic

diversity within these populations was previously studied [39]. At two time points, in the spring

and fall (5/7/13 and 11/26/13), we harvested several samples from each site. Because white rust

caused by Albugo sp. was an extremely common phenotype at most sites, we recorded whether

or not it was observed on collected plants. Where we recorded visible white rust (S2 Table),

all leaves in the pool had visible white rust. Commonly, plant leaves were extremely small, in

which case we pooled leaves from multiple plants, and otherwise we pooled multiple collected

leaves from single plants (S2 Table). When otherwise healthy plants had leaves that were

extremely dirty or where>50% of the leaf area exhibited lesions (most likely through mechani-

cal wounding, insects or other factors), these were avoided.

CG Experiment (Experiment 2)
In the garden experiment, three A. thaliana accessions (Ws-0, Col-0, and Ksk-1) were planted

in nine plots. Each plot consisted of 30 plants, 10 of each accession, that were ordered ran-

domly in 5 rows and 6 columns. The plants had been germinated from sterile seeds sown on

Jiffy seed pellets (Jiffy Products International BV), initially watered with 2 mL / 1 L of WuxAl

Liquid Foliar nutrient (AgNova Technologies Pty Ltd). After 10 d in a long-day greenhouse

(12-h light / 12-h dark), when the plants had the second set of true leaves, the peat pellets and
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plants were transferred to the field site on 10/18/12. On 5/5/13 and again on 5/10/13, three leaf

samples (pooled leaves from single plants) from rosettes of different A. thaliana Col-0, Ws-0

and Ksk-1 plants were harvested (see compartmentalization protocol below). We harvested

from plants from various locations in the nine plots, selecting plants that were setting seeds but

on which visible symptoms of senescence were not observed.

Infection of A. thaliana with Lab Strains of Albugo spp. (Experiment 4)
We conducted experiments with the lab strains of Alb. candida Nc2 and Alb. laibachii Nc14

that had previously been kept growing on A. thalianaWs-0 or Col-TH0, respectively,> 1 yr.

In short, leaf washes from infected A. thalianaWs-0 plants were collected and they or controls

in which spores were either filtered from the solutions or chemically inhibited were sprayed on

the A. thaliana accessions Ws-0, Col-0, and Ksk-1 (2 pathogens x 2 inocula x 3 hosts = 12 treat-

ments). In each experimental replicate, all treatments were kept together in the same growth

chamber under identical conditions. After 12 d, leaf washes were collected from all 12 treat-

ments and were used to reinoculate a second round of plants. After another 12 d, the epiphytic

(leaf surface) and endophytic (intra/intercellular) microbial communities were recovered from

collected leaves from each of the 12 treatments (S12 Fig). The infection experiments were per-

formed in three replicates. Further details can be found in the supporting materials and meth-

ods (S1 Text).

One-on-One Interaction Assays in Cocultures of Dioszegia spp. and
Bacterial Isolates Grown on A. thaliana (Experiment 5)
Interaction between Dioszegia sp. and individual bacterial isolates was observed on A. thaliana

Ws-0 seedlings grown under sterile conditions on 1/2 MS media. Bacteria and Dioszegia (see

S8 Table for strain information) were grown in liquid 10% TSB and PD media [84] until they

reached an OD600 of 0.6. The microbes were pelleted, suspended in 10 mMMgCl2, and 200 μl

microliter were sprayed on the individual plants using an airbrush pistol (Conrad Electronics,

Germany). Three-week-old seedlings were sprayed with Dioszegia, and 2 d later the bacterial

isolate was sprayed. After one week, leaf discs (0.07 cm2) were punched out from single leaves,

crushed with a mortar and pestle and suspended in 50 μl of water. The CFU's for bacteria and

Dioszegia were determined by growing on 10% TSB plates containing Nystantin and PDA

plates containing antibiotics, respectively.

Compartmentalization of Epiphytes and Endophytes from Leaf Samples
From each leaf sample (wild collection, garden experiments, and lab experiments), leaf epi-

phytic and endophytic microorganisms were collected using the same protocol. In short, the

collected leaves in a 15 mL tube were first rinsed with water by gentle agitation for 30 sec, from

which an aliquot was taken and stored. Next, 3–5 mL of epiphyte wash (0.1% Triton X-100 in

1x TE buffer) was added to the tube, agitated for about 1 min, and filtered through a 25 mm,

0.2 μm nitrocellulose membrane filter (Whatman, Inc). The filter containing epiphytic micro-

organisms was placed in a screw-cap tube and frozen in dry ice. Next, the same leaves were

surface sterilized first using 15 sec washes of 80% ethanol followed by 2% bleach (sodium hypo-

chlorite). Leaves were then rinsed three times with sterile autoclaved water and the resulting

leaves containing endophytic microorganisms were frozen on dry ice for further processing.

Microbial Hub Taxa Determine Host Microbiome Variation

PLOS Biology | DOI:10.1371/journal.pbio.1002352 January 20, 2016 20 / 31



DNA Extraction and Amplicon Library Preparation and Sequencing
We extracted DNA with a custom protocol and prepared amplicon libraries for ten samples

from each of two wild collection events (always two samples fromWH, two from ERG, three

from EY, two from JUG, and one from PFN) and three samples of each A. thaliana accession

from the garden experiment collected on 5/10/2013. From the controlled lab experiments, we

prepared libraries for triplicates of each of 12 treatments. In total, bacteria, fungi, and oomycete

amplicon libraries were prepared from 65 epiphyte and 65 endophyte leaf fraction samples (see

S1 File for samples and index sequences). A two-step amplification protocol was implemented,

and the first step was prepared in triplicate. Primers consisted of a concatenation of the Illu-

mina adapter P5 (forward) or P7 (reverse), an index sequence (reverse only), a linker region,

and the base primer for the region being amplified. For each region, we used 20 different

reverse primers that were identical except for the 12-bp index [85] that would be used later to

identify sequencing products in combined libraries. Information for all primers used can be

found in S2 File.

Amplicon libraries were quantified fluorescently, and products of 120 amplicon libraries

(the six targeted amplicon regions from epiphyte and endophyte templates from ten samples)

were combined in equimolar concentrations in seven combined libraries. The combined librar-

ies were concentrated and quantified via qPCR and were sequenced on an Illumina MiSeq lane

using a mixture of custom sequencing primers complementary to the linker/primer region of

the concatenated primers (S2 File). Sequencing was performed for 500 cycles to recover 250 bp

of information in the forward and reverse directions. Additional details can be found in sup-

porting materials and methods (S1 Text).

Raw sequence data is publicly available online through MG-RAST project number 13322

[http://metagenomics.anl.gov/linkin.cgi?project=13322].

Processing Amplicon Data
We developed a custom pipeline to simultaneously process reads from bacteria, fungi, and

oomycetes for downstream analysis. In short, for data from each Illumina lane, we de-multi-

plexed and quality filtered reads, split sequence files into the six amplicon groups, and sepa-

rated reads that were still paired or were orphans after filtering. We then trimmed adapter

sequences and aligned paired reads. Next, we placed all aligned paired, unaligned, and orphan

reads together and checked for chimeras then combined reads from which the first 125 or last

125 bases were identical (since all orphan reads were at least this long). We then combined the

prefix/suffix combined reads from all sequencing runs and picked OTUs at 97% similarity and

picked representative sequences for each OTU. Finally, OTUs were assigned taxonomy, and fil-

ters were applied to remove low abundance OTUs and nontarget amplicons. For downstream

analyses, OTU tables were rarefied to an even depth of reads per sample and summarized to a

specific taxonomic level (usually genus except where noted). More details on softwares used

and processing parameters can be located in supporting materials and methods (S1 Text). Data

and code used to generate the main figures in the text are being made available on GitHub

(https://github.com/magler1/HubMicrobes).

For further details on downstream statistical analyses and other details not included in the

main text, please refer to the Supporting Materials and Methods (S1 Text).

Supporting Information

S1 Data. Data supporting all data-based figures in the manuscript.

(XLSX)
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S1 Fig. Experiment 1 and 2: Ecological and host factors are important in shaping phyllo-

sphere microbial communities—additional datasets complementary to Fig 1. A. Experiment

1: Sampling location and sampling time correlated to significant portions of microbial commu-

nity structure variation observed between Tübingen wild sites. Circles and triangles are samples

collected in fall and spring, respectively. Colors of points illustrate the location where the sam-

ples were collected. Dot plots are unconstrained endophytic communities, while barcharts

show factor correlations to endophytic (endo) and epiphytic (epi) variation. Overlap of bars

represents factors correlated to the same variation. B. Experiment 2: The host A. thaliana

accession correlated to significant portions of microbial community structure variation

observed in the CG experiment. Colors of points represent the host accession. For A and B, fig-

ures are based on genus-level data from bacterial 16S V5/V6/V7 region, fungal ITS2 region and

oomycete ITS2 region amplicons. For A and B, a star indicates that the measured correlation is

statistically significant (p< 0.05) based on random permutations sample classes.

(TIF)

S2 Fig. Experiment 1: Boxplots of alpha diversity (number of observed genera) for endo-

phytic and epiphytic bacteria and fungi by location. Locations include CG (Experiment 2),

and the wild Tübingen sites ERG, EY, JUG, PFN, and WH (Experiment 1). Letters indicate sig-

nificant difference based on t test, p< 0.1.

(TIF)

S3 Fig. Experiment 1 and 2: Abundant fungal endophytes are less widely distributed than

fungal epiphytes or bacteria. Figures show the number of sites where individual genera (each

dot represents one genus) are observed (site CG [Experiment 2] and wild Tübingen sites ERG,

EY, JUG, PFN, and WH, Experiment 1). The red dashed line is provided at a total observation

depth of 500 to make comparison easier. Y-axes were scaled to 2,500 observations for direct

comparison between plots. Inset figures show expanded y-axes so that all genera are visible. To

make all plots comparable, all data sets were subsampled to 1,000 reads per sample.

(TIF)

S4 Fig. Experiment 1 and 2: Bacterial genera that make up at least 10% of reads in any one

sample. Legends are common for the barcharts in the figure. Data is based on relative abun-

dance calculated from data that was not first subsampled. Key: CG: Cologne garden experiment

[C: Col0, K: Ksk1, W: Ws0], and the Tübingen wild sites: ERG, EY, JUG, PFN, WH [F: Fall, S:

Spring].

(TIF)

S5 Fig. Experiment 1 and 2: Fungal genera that make up at least 10% of reads in any one

sample. Legends are common for the barcharts in the figure. Data is based on relative abun-

dance calculated from data that was not first subsampled. Key: CG: Cologne garden experiment

[C: Col0, K: Ksk1, W: Ws0], and the Tübingen wild sites: ERG, EY, JUG, PFN, WH [F: Fall, S:

Spring].

(TIF)

S6 Fig. Experiment 1 and 2: Oomycete genera that make up at least 10% of reads in any one

sample. Legends are common for the barcharts in the figure. Data is based on relative abun-

dance calculated from data that was not first subsampled. Key: CG: Cologne garden experiment

[C: Col0, K: Ksk1, W: Ws0], and the Tübingen wild sites: ERG, EY, JUG, PFN, WH [F: Fall, S:

Spring].

(TIF)
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S7 Fig. Experiment 1 and 2: Abundance of endophytic Albugo sp. is correlated to the mea-

sured endophytic and epiphytic bacterial diversity. Plotted points are scaled to measured

endophytic Hpa (based on the log of the average of ITS1 and ITS2 datasets relative abundance

information. Relative abundances were scaled from 0–1 before averaging so that information

between the two datasets would be comparable). The color of the plotted points corresponds to

whether or not “white rust” caused by Albugo sp. was observed on the sample.

(TIF)

S8 Fig. Experiment 2 and 4: Albugo sp. was detectable only at very low background levels in

control plants for Albugo sp. experiments, demonstrating effective host resistance and

Albugo removal from inoculum.W: A. thalianaWs-0, C: A. thaliana Col-0, K: A. thaliana

Ksk-1. Yellow: Albugo sp. spores physically removed from inoculum by filtering, Green: Sus-

ceptible plants inoculated with Albugo sp. and associated microbes, Red: Resistant plants inoc-

ulated with Albugo sp. and associated microbes.

(TIF)

S9 Fig. Experiment 2: Relative diversity of observed infecting strains of Alb. laibachii, and

observed white rust symptoms were dependent on host ecotype in the Cologne garden

experiment (CG). The A. thaliana accession Ksk-1 carries an allele for resistance to Albugo sp.,

which lent partial resistance to the wild pathogen strains. Letters indicate significance at

p< 0.1 (Tukey’s HSD).

(TIF)

S10 Fig. Computational Experiment 3: The generated correlation network is highly sup-

ported within subsamples of the datasets. A. The correlation network, which is identical to

that presented in Fig 2 in the main text. B. Edge support in the correlation network determined

by randomly subsampling 50% of the data for each correlation 100 times.

(TIF)

S11 Fig. Computational Experiment 3: Discovery of robust “hub”microorganisms (shown

for genus-level microorganisms) in microbial correlation networks. A. Comparison of the

effects of different cutoffs for edge filtering (removing weak correlations between taxa) for

three measures of node (taxa) centrality, where yellow highlights taxa that are significantly

more central in the network using a specific cutoff. ratio of abundance sum to maximum abun-

dance (STM) x R2
> 3 is a cutoff we designed that accounts for distribution of the microbes

and the strength of the correlation (see Supplementary Materials and Methods [S1 Text] for

details). Genera that were detected with any one of the filters were considered a possible “hub”

microbe. B. Only taxa that were discovered using all three metrics were considered as likely

“hub” taxa (see S7 Table for other taxonomic levels). Genus-level “hub” taxa are highlighted

in A.

(TIF)

S12 Fig. Experiment 4: The experimental setup for laboratory experiments with the strains

Alb. laibachii Nc14 and Alb. candida Nc2. Experiments were complemented with two differ-

ent types of controls for the experimental infected A. thaliana. The first control were Albugo-

free containing microorganisms that were associated with each Albugo strain but no Albugo

spores. This control represents an abiotic factor, such as a distribution limitation, that in nature

would limit the growth of Albugo. We tested both filter removal of Albugo spores (see Fig 4 and

S13, S15 and S16 Figs) and chemical Albugo inhibition (see S14 Fig). The second control was

resistant accessions (Ksk1 for Nc14 and Col0/Ksk1 for Nc2) that were inoculated with Albugo

and its associated microbial community. This control represents a host factor, resistance, that
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in nature would limit the growth of Albugo.

(PDF)

S13 Fig. Experiment 4: Boxplots of alpha diversity (observed number of taxa) of epiphytic

microbial communities at both the order and genus level taxonomies for the three replicate

lab experiments. Results demonstrate that Albugo-infected plants had significantly lower bac-

terial diversity than controls (lines indicate t test, p< 0.05). Key: Ws-0: A. thalianaWs-0, Col-

0: A. thaliana Col-0, Ksk-1: A. thaliana Ksk-1. Green: Susceptible hosts, Red: Resistant hosts,

Yellow: Filter removal of Albugo on all hosts.

(TIF)

S14 Fig. Experiment 4: Alpha diversity (observed number of taxa) of epiphytic bacteria and

fungi at the genus level for one replicate experiment using chemical inhibition or host

resistance to Albugo. A strong suppressive effect on bacterial alpha diversity by Albugo sp.

was confirmed regardless of the mechanism of removal of Albugo (see Fig 4 and S13 Fig for

removal of Albugo spores by filtering). Solid black lines are placed to facilitate comparison of

control samples to Albugo-infected samples. W: A. thalianaWs-0, C: A. thaliana Col-0, K: A.

thaliana Ksk-1. Green: Susceptible hosts, Red: Resistant hosts, Yellow: Chemical inhibition of

Albugo on all hosts by metalaxyl and benalaxyl.

(TIF)

S15 Fig. Experiment 4: Boxplots of within-replicate distances (i.e., replicability based on

chi-square distances of log-transformed microbial abundance data) of epiphytic microbial

communities at both the order and genus level taxonomies for the three replicate lab exper-

iments. Results demonstrate that the final microbial communities recovered from Albugo-

infected plants were more similar between experimental replicates than controls (lines indicate

t test, p< 0.05). Key: Ws-0: A. thalianaWs-0, Col-0: A. thaliana Col-0, Ksk-1: A. thaliana

Ksk-1. Green: Susceptible hosts, Red: Resistant hosts, Yellow: Filter removal of Albugo on all

hosts. (S1_Data.xlsx)

(TIF)

S16 Fig. Experiment 4: Boxplots of between-treatment distances (based on chi-square dis-

tances of log-transformed microbial abundance data) of epiphytic microbial communities

at both the order and genus level taxonomies. Results demonstrate that bacterial communi-

ties at the order level from Albugo-infected A. thaliana was more similar to other infected plant

communities than to uninfected controls (lines indicate t test, p< 0.05). For simplicity, not

every possible comparison is shown. Key: Ws-0: A. thalianaWs-0, Col-0: A. thaliana Col-0,

Ksk-1: A. thaliana Ksk-1. Green: Susceptible hosts, Red: Resistant hosts, Yellow: Filter removal

of Albugo on all hosts.

(TIF)

S17 Fig. Experiment 4: Abundance of epiphytic bacteria on A. thaliana infected with

Albugo based on fluorescent cell count data. Results demonstrate high counts of bacteria on

A. thaliana leaves infected with Alb. candida Nc2 (t test, p< 0.05). Controls with inhibited

spores used the oomycete-specific inhibitory compounds metalaxyl and benalaxyl.

(TIF)

S18 Fig. Experiment 4: Numbers of recovered microbial endophytic reads (after filtering

out plant plastid or plant ITS sequences) tended to be higher in infected compared to con-

trol leaf samples. For this analysis, bacterial reads identified as cyanobacteria at only the phy-

lum level (with no more specific taxonomic assignment) have been removed. Indicated
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significant differences are based on a t test with p< 0.05.

(TIF)

S19 Fig. Experiment 4: Additional endophytic microbe colonization data complementing Fig

4B. A. Genera with significant increase or decrease (t test, p< 0.05) on plants infected with Alb.

candida compared to both controls. B. Genera without statistically significant (t test, p< 0.05)

enrichment on two host accessions infected with Alb. laibachii. Some abundant taxa were not

enriched due to Alb. laibachii infection, while others were only enriched on Alb. thalianaWs-0

(the accession on which stock infections were kept) or were similar abundance in all treatments.

(TIF)

S20 Fig. Experiment 5: One-on-One interactions between Dioszegia sp. and bacterial iso-

lates in the phyllosphere measured with 1-wk coculture assays on A. thalianaWs-0. A. Dios-

zegia growth with bacteria (letters indicate significant differences at Tukey’s HSD p< 0.05).

Dioszegia growth was significantly negatively affected by Rhodococcus sp. and Agromyces sp.

compared to growth alone. B. Bacterial growth alone or with Dioszegia (letters indicate signifi-

cant differences with Tukey’s HSD p< 0.05 only within each bacterial isolate test, not between

isolates). The growth of Rhodococcus sp. was slightly increased in the presence of Dioszegia

compared to growth alone. The strongest effect was on Caulobacter sp. where strong growth

was completely inhibited by Dioszegia sp. Details about bacterial isolates are provided in S8

Table. C. Observed interactions confirmed and gave direction to several correlations observed

in our network analysis (green) and others (red) could be a result of indirect connections

(black). Rhodococcus sp. interactions were not observed in the network analysis, but this was a

lab isolate and the genus was very low abundance in the field.

(TIF)

S21 Fig. Experiment 4: Bacterial genera that make up at least 10% of reads in any one sam-

ple in the lab experiment with Albugo sp. Legends are common for the barcharts in the figure.

Data is based on relative abundance calculated from data that was not first subsampled. Key:

Spores + microbes: inoculation of Albugo sp. and associated microorganisms, Microbes only:

inoculation of associated microorganisms after filter removal of Albugo sp., W: A. thaliana

Ws-0, C: A. thaliana Col-0, K: A. thaliana Ksk-1, Green: Susceptible host, Red: Resistant host,

Yellow: filter removal of Albugo sp. on all hosts.

(TIF)

S22 Fig. Computational Experiment 3: Correlations of bacteria, oomycete, and fungal gen-

era to alpha diversity (number of observed taxa) for bacteria and fungi. Interkingdom

correlations reveal several genera correlated significantly to fungal and bacterial epiphyte and

endophyte diversity. Strong negative correlations of Albugo sp. and Dioszegia sp. reinforces

their putative role based on paired microbe correlations in limiting abundance of many epi-

phytic bacterial genera.

(TIF)

S23 Fig. Experiment 4: Fungal genera that make up at least 10% of reads in any one sample

in the lab experiment with Albugo sp. Legends are common for the barcharts in the figure.

Data is based on relative abundance calculated from data that was not first subsampled. Key:

Spores + microbes: inoculation of Albugo sp. and associated microorganisms, Microbes only:

inoculation of associated microorganisms after filter removal of Albugo sp., W: A. thaliana

Ws-0, C: A. thaliana Col-0, K: A. thaliana Ksk-1, Green: Susceptible host, Red: Resistant host,

Yellow: filter removal of Albugo sp. on all hosts.

(TIF)
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S24 Fig. Experiment 4: Flattening lines indicate near-complete sampling was achieved for

bacterial endophytes in laboratory experiment samples. This effect was especially apparent

in the V5/V6/V7 region where sampling was deepest. Data is based on observed number of

bacterial genera and each line represents one sample.

(TIF)

S1 File. Metadata for amplicon libraries matching library names and sequence barcodes to

sample metadata.

(XLSX)

S2 File. Sequences of all amplification and sequencing primers as well as concatenated

primers used for addition of Illumina adapter regions to amplicons.

(XLSX)

S1 Table. Locations of wild sampling sites (WH, ERG, JUG, EY, PFN) (Experiment 1) and

CG (Experiment 2) and the types of sites.

(DOCX)

S2 Table. Experiment 1 and 2: Supporting data on all wild or common garden experiment

samples collected that were used to generate data for this work.

(DOCX)

S3 Table. Experiment 1: Supporting data showing microbial genera that are enriched in

abundance at specific sampling locations in Tübingen wild samples. Enrichment at a loca-

tion is based a significantly higher relative abundance there compared to any other location

(Tukey’s HSD p< 0.01).

(DOCX)

S4 Table. Experiment 1: Supporting data showing microbial genera that are enriched in

abundance at specific sampling times in Tübingen wild samples. Enrichment in fall or

spring is based on a significantly higher relative abundance in that season compared to the

other season (Tukey’s HSD p< 0.01).

(DOCX)

S5 Table. Experiment 2: Supporting data showing microbial genera that are enriched in

abundance on a specific host accession in the Cologne garden experiment. Enrichment on

an accession is based a significantly higher relative abundance on that accession compared to

any other accession (Tukey’s HSD p< 0.05).

(DOCX)

S6 Table. Computational Experiment 3: Supporting information comparing numbers pos-

sible correlations (i.e., number of comparisons made) to number of correlations observed

in the network analysis.

(DOCX)

S7 Table. Computational Experiment 3: Comparison of “hub”microorganisms discovered

in correlation networks using similar constraints at various levels of taxonomic grouping

of OTUs.

(DOCX)

S8 Table. Experiment 5: Details about isolation and taxonomic characterization of Diosze-

gia sp. and bacterial strains tested with it in direct interaction assays on A. thaliana.

(DOCX)
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