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Abstract 

More than one hundred years have passed since the development of the first microbial inoculant for plants. Nowa-

days, the use of microbial inoculants in agriculture is spread worldwide for different crops and carrying different 

microorganisms. In the last decades, impressive progress has been achieved in the production, commercialization 

and use of inoculants. Nowadays, farmers are more receptive to the use of inoculants mainly because high-quality 

products and multi-purpose elite strains are available at the market, improving yields at low cost in comparison to 

chemical fertilizers. In the context of a more sustainable agriculture, microbial inoculants also help to mitigate envi-

ronmental impacts caused by agrochemicals. Challenges rely on the production of microbial inoculants for a broader 

range of crops, and the expansion of the inoculated area worldwide, in addition to the search for innovative microbial 

solutions in areas subjected to increasing episodes of environmental stresses. In this review, we explore the world 

market for inoculants, showing which bacteria are prominent as inoculants in different countries, and we discuss the 

main research strategies that might contribute to improve the use of microbial inoculants in agriculture.
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Introduction
Humanity has always been concerned about food pro-

duction to attend the increasing population and, for a 

long time, the solution was to expand agriculture to new 

areas. However, this scenario has changed in recent dec-

ades, first due to limitations of unexplored cultivable 

land, but also reinforced by the development of new tech-

nologies that allow higher yields, in addition to increasing 

environmental concerns, leading to agricultural prac-

tices aiming at achieving sustainable production. There-

fore, although the global demand for food continues to 

increase, the concepts of agriculture sustainability, recov-

ery of degraded areas, and mitigation of environmental 

impacts are gaining more respect (Canfield et  al. 2010; 

Godfray et  al. 2010). In this context, microbial inocu-

lants—denominated as biofertilizers in some countries—

have received increasing attention, gaining prominence 

and market scale in agriculture.

Inoculants are products that have in their composi-

tion living microorganisms capable of benefiting the 

development of different plant species. The most antique 

microorganisms used as inoculants are the “rhizobia”, 

diazotrophic bacteria able to colonize the rhizosphere 

and establish nodules in the roots of their host plants, 

composed by several species of the Fabaceae family. 

The symbiosis legumes-rhizobia leads to the process 

of biological nitrogen fixation (BNF), which very often 
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can fully supply the plant´s demands on N. Moreo-

ver, other diazotrophic bacteria, such as Azospirillum, 

establish less straight relationships with the host plant, 

but are also able to supply, at least partially, the plant’s 

demands on N. Both Azospirillum and rhizobia, among 

other diazotrophic and non-diazotrophic bacteria are 

named as plant-growth-promoting bacteria (PGPB) or 

plant-growth-promoting rhizobacteria (PGPR), as they 

may benefit the plants by a variety of single or combined 

processes, including the production of phytohormones, 

siderophores, phosphate solubilization, induction of 

plant intrinsic systemic resistance to abiotic and biotic 

stresses, among others (Bhattacharyya and Jha 2012; 

Malusá and Vassilev 2014; Fukami et al. 2017, 2018a, b). 

Other microorganisms have also been increasingly used 

in agriculture for biological control of pests and diseases 

(Ciancio et  al. 2016; Berg et  al. 2017; Singh et  al. 2017; 

Xiang et  al. 2017), but this review will only deal with 

inoculants carrying strains that facilitate plant growth. 

Moreover, we will name all rhizobia and other bacte-

ria carrying different mechanisms that promote plant 

growth as PGPB.

Currently, soybean (Glycine max (L.) Merr.) is the 

most inoculant-consuming crop worldwide, carrying 

bacteria belonging to the genus Bradyrhizobium. Bra-

zil is probably the global leader in the use of inoculants 

for the soybean crop (Hungria and Mendes 2015; Okon 

et  al. 2015; ANPII 2016) where approximately 78% of 

the copping area—nowadays 36.5 million hectares—is 

inoculated yearly (ANPII 2018). Additionally, inocula-

tion of common beans (Phaseolus vulgaris L.), cowpea 

(Vigna unguiculata (L.) Walp.), maize (Zea mays L.) 

and co-inoculation of soybean and common bean with 

rhizobia and Azospirillum have also increased in Brazil 

(Hungria et al. 2010, 2015), so that the number of doses 

commercialized in the last years has impressively grown 

(Fig. 1). Other top countries in the use of inoculants are 

Argentina and India (Mazid and Khan 2014; Hungria and 

Mendes 2015; Okon et  al. 2015; Sruthilaxmi and Babu 

2017).

However, there are limiting factors that restrict the use 

of inoculants in some areas. Biotic and abiotic stresses 

may affect the effectiveness of the product, making them 

inefficient in cases such as nutrient-poor or unbalanced 

soils, salinity, water stress, increasing temperatures, pests 

and diseases, among others (Bashan et al. 2014; Das et al. 

2017; Khan et al. 2017; Thilakarathna and Raizada 2017; 

Samago et al. 2018). To circumvent these factors, several 

studies have been addressed to gain better knowledge on 

the intrinsic properties of PGPB, seeking at understand-

ing their optimum growth conditions and interaction 

with the host plants (Flores-Félix et  al. 2018; Goulart-

Machado et al. 2018; Jiménez-Gómez et al. 2018). Efforts 

have also been applied to improve the efficiency of micro-

organisms already available and in the identification of 

new elite strains to be used as inoculants under unfavora-

ble and stressful environmental conditions, such as areas 

frequently experiencing drought, soils with low nutrient 

availability or with salinity, among others (Benidire et al. 

2017; Koskey et al. 2017; Youseif et al. 2017). There is an 

increasing number of studies aiming to isolate, identify 

and evaluate the capacity of plant-growth promotion of 

bacteria with a variety of plant species, with potential to 

be transformed into new microbial inoculants in a near 

future (Yanni et al. 2016; Koskey et al. 2017; Manasa et al. 

2017; Muleta et al. 2017).

Another technology with increasing application relies 

on the use of mixed inoculants, aiming to promote plant 

growth by combining distinct mechanisms of different 

microorganisms. Mixed inoculants can provide excellent 

results and show the great potential of being increasingly 

used by the farmers (Juge et al. 2012; Hungria et al. 2013, 

2015; Chibeba et al. 2015; Bulegon et al. 2017; Ferri et al. 

2017).

The objective of this short review is to explore the cur-

rent market of inoculants, highlighting what has been 

produced and marketed lately in several countries, and 

the impact on agricultural sustainability. We also explore 

new ideas, new objectives and new strategies that are 

needed to generate information for the development of 

new products, breaking down barriers needed to expand 

the use of microbial inoculants in agriculture.

Inoculant carriers
Since the beginning of the manufacturing of inocu-

lants, the industry has been concerned about generat-

ing increasingly efficient products, at a low cost, whose 

handling attends to the needs and the quality required 
Fig. 1 Market of microbial inoculants in Brazil in the last 15 years 

(million doses)
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by farmers. An important aspect is the choice of the car-

rier for the microorganisms, which should, among other 

things, provide long cellular viability and be of easy appli-

cation. In 1896, in the USA, the first inoculant commer-

cially produced, “Nitragin” (Fig. 2), used gelatin, and later, 

nutrient medium was employed as carrier for bacterial 

cells. Due to the high mortality rate, these carriers were 

soon replaced by peat, which remained as the “gold” car-

rier until the end of the 1990s, when the scenario began 

to change (Fig. 2) (Williams 1984).

Peat is a solid material, consisting of organic soil natu-

rally occurring in specific environments and formed after 

a long geological period. The choice of peat as carrier for 

inoculants is due to its richness in organic matter, which 

serves as an important source of nutrients for the micro-

organisms. The peaty matrix also provides physical pro-

tection to the microorganisms against soil adversities and 

allows better cell survival in conditions of water restric-

tion and high temperatures (Hungria et al. 2000a, 2005). 

In the process of seed inoculation with peat it is essen-

tial to use adhesives to help to stick the peaty matrix to 

the seeds; for example, in Brazil the most popular adhe-

sive is 10% sucrose solution (Hungria et  al. 2000a). The 

peat-based inoculant must be packed in sterilized poly-

ethylene or polypropylene bags, with thickness of 0.06–

0.38  mm, which preserves moisture but guarantees gas 

exchange with the external medium (Hungria et al. 2005).

Concerns about the use of peat as inoculant carrier rely 

on the exploitation of peat bogs, which may cause serious 

environmental impacts, including the destruction of hab-

itats and  CO2 emissions. In addition, in countries such 

as Brazil, where there are few peat bogs, importation of 

this material is required, increasing the production costs 

(Ribeiro et al. 2013). Due to these limitations, inoculants 

based on liquid formulations began to gain space, espe-

cially from the late 1990s onwards. In Brazil, the first 

liquid inoculant was approved by the Ministry of Agri-

culture for commercial used in 2000, and a decade later 

almost 80% of the inoculants sold in the country were in 

liquid formulations (Fig.  2); similar proportion is found 

in Argentina (ANPII 2018). Liquid inoculants consist of 

microbial cultures suspended in liquid medium rich in 

nutrients and cell protectors. They are easily handled and 

compatible with mechanized sowing, offering an advan-

tage over solid inoculants at sowing. Another advantage 

is the easiness of sterilization, facilitating the absence 

of contaminants and, consequently, allowing higher cell 

concentration (Bashan et al. 2014; Cassán et al. 2015).

In addition to seed inoculation, liquid inoculants allow 

alternative application methods, such as in-furrow, and 

sprayed on soil or by “foliar” application (Campo et  al. 

2010; Fukami et  al. 2016; Moretti et  al. 2018). Alterna-

tive methods of application may be advantageous in some 

cases, for example, the inoculation in-furrow, to alleviate 

the impact of pesticides used for seed treatments in con-

tact with the bacteria (Campo et al. 2010).

Other vehicles and methods for carrying microorgan-

isms, such as agricultural and industrial residues, lyophi-

lized bacteria and polymers for cell encapsulation, have 

been researched to develop more efficient and stable 

products. According to Bashan et  al. (2014), industrial 

residues and agricultural by-products such as sugarcane 

bagasse, sawdust or brewery waste can be used as car-

riers for inoculation of microorganisms. However, the 

major limitation for the use of these raw materials is their 

poorly consistent composition, and often difficulties for 

sterilization.

Fig. 2 Chronology of some important steps in the development of microbial inoculants
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As one of the challenges for inoculant production is to 

maintain cell viability for long period, lyophilization and 

freezing of microbial cells have emerged as possibilities 

to overcome this problem. The process of lyophilization 

consists of removing the intracellular water, reducing 

the metabolic activity and increasing microbial lifetime. 

The dry cell culture must be mixed with a liquid or gel 

formulation at sowing. The great barrier to the commer-

cial production of inoculants with lyophilized microor-

ganisms is the high production cost because it requires 

specialized equipment and skilled labor (Williams 1984; 

Hungria et  al. 2005). Besides, the time and conditions 

needed for cell recovering in liquid or gel formulations 

represent barriers for the adoption of inoculants by farm-

ers, especially high large areas are cropped, such as for 

the soybean crop in South America.

The encapsulation of living microbial cells with poly-

mers, such as alginate and polyacrylamide has also been 

increasingly mentioned. For the encapsulation, the liq-

uid inoculant containing bacterial culture is mixed with 

an adjuvant polymer, capable of causing solidification. 

The most used method consists of mixing dropwise the 

microbial culture in a solution containing calcium chlo-

ride, resulting in solid beads with high cell concentra-

tion. The spheres are placed in contact with the seeds at 

sowing time and the bacteria are slowly released. These 

spheres are biodegradable and do not cause environmen-

tal impact. Encapsulation confers protection to the cells 

for high temperature and environmental stresses and are 

also easy to handle. Once again, the economic factors 

have always represented the main obstacle for scaling the 

industrial production (Bashan 1986; Bashan et  al. 2002; 

Date 2001).

Great efforts have been applied by several indus-

tries to develop new products able to attend the new 

requirements of the market and compatible with new 

technologies. The trend for this next decade is to apply 

considerable investment in innovation, searching for new 

inoculant formulations to hit the ever growing market.

Inoculants containing mixes of bacteria
The great majority of the first manufactured inoculants 

contained only one species of microorganism, and in gen-

eral one strain, the one with the best inoculation results 

for a particular crop. Exceptions included a maximum 

of two microorganisms “of the same type”, for example, 

two Bradyrhizobium strains or species for soybean. The 

use of two strains in the same inoculant would increase 

the chances that at least one would nodulate and perform 

well with the legume. For example, in Brazil, the com-

bination of two Bradyrhizobium strains for the soybean 

crop has been preferentially used by the farmers since the 

1950s (Hungria et al. 1994; Hungria and Mendes 2015).

Particularly in the last decade, the use of inocu-

lants containing microorganisms of “different type” has 

expanded. The idea is of combining strains or species 

acting in different microbial processes, so that the com-

bined benefits of each one would result in higher benefits 

and, ultimately, yields. Examples of mixed inoculant are 

those combining microorganisms whose major processes 

are BNF (e.g. Bradyrhizobium spp., Rhizobium spp.) and 

phytohormone production (e.g. Azospirillum spp., Pseu-

domonas spp.), solubilization of phosphate (e.g. Bacillus 

spp.), or biological control (e.g. Pseudomonas spp., Bacil-

lus spp.). If the microorganisms cannot be combined in a 

single product, they are manufactured separately and the 

bags containing each one are sold in the same package.

The application of mixed inoculants is usually called co-

inoculation or mixed inoculation and it is currently possi-

ble to find co-inoculants for several crops in the market. 

The efficiency of co-inoculation is closely related to the 

appropriate selection of strains, the cellular concentration 

of each one, method of inoculation (applied to the seeds, 

leaf-spray, in-furrow), and to the plant genotype. There-

fore, research is needed to generate knowledge aiming at 

the production of new formulations for commercial inocu-

lants with mixed bacteria (Cassán et al. 2015), and on alter-

native methods of application of inoculants and microbial 

molecules (Campo et al. 2010; Fukami et al. 2016).

In Brazil, co-inoculation of A. brasilense with 

Bradyrhizobium spp. for the soybean crop and with 

Rhizobium tropici for the common beans was launched 

in 2014 and impressive increases in grain yield have been 

reported (Hungria et  al. 2013, 2015; Souza and Ferreira 

2017; Nogueira et al. 2018). Even in areas with high popu-

lation of compatible rhizobia for both crops (> 104  cells 

of compatible rhizobia/g soil), for the soybean crop sin-

gle inoculation of Bradyrhizobium resulted in mean 

increases of 8.4% in grain yield compared with the natu-

ralized population, whereas the co-inoculation with A. 

brasilense promoted an “upgrade” to 16.1%; for common 

beans, single inoculation with R. tropici increased yield 

by 8.3%, whereas the co-inoculation improved the yield 

by 19.6% (Hungria et  al. 2013) (Table  1). Since them, 

other benefits attributed to the co-inoculation of soy-

bean with Bradyrhizobium and Azospirillum in Brazil are 

the promotion of early nodulation (Chibeba et al. 2015), 

and increased tolerance to moderate water restriction 

(Cerezini et al. 2016; Silva et al. 2019).

In addition to Azospirillum spp., several other PGPB 

have been reported as successful in co-inoculation trials 

with soybean, as Pseudomonas sp. (Egamberdieva et  al. 

2017; Pawar et  al. 2018), Actinomyces sp. (Nimnoi et  al. 
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2014), Bacillus sp. (Atieno et al. 2012; Subramanian et al. 

2014; Petkar et  al. 2018). Improvements in yields have 

also been reported with the co-inoculation of rhizobia 

presenting different mechanisms of action. For example, 

Jesus et al. (2018) verified benefits by the co-inoculation 

of common bean with R. tropici CIAT 899, Bradyrhizo-

bium diazoefficiens USDA 110 and Bradyrhizobium elka-

nii 29w; according to the authors, Bradyrhizobium spp. 

would improve the symbiosis efficiency of Rhizobium, 

resulting in greater number of nodules, biomass produc-

tion and N accumulation. The suggested mechanism is 

that Bradyrhizobium sp. co-inoculated produces signal-

ing molecules, such as nodulation factors (Nod factors) 

and surface polysaccharides that stimulate root nodula-

tion by R. tropici, improving the efficiency of BNF.

Co-inoculation has also been shown to be efficient 

under several limiting conditions, such as in low phos-

phate soils. Generally, the BNF is compromised under 

these situations, but the co-inoculation with phosphate-

solubilizing microorganisms can make it available for 

plant nutrition and, in the case of legumes, help to ensure 

the benefits of BNF (Jorquera et  al. 2008; Morel et  al. 

2012; Shiri-Janagard et  al. 2012; Korir et  al. 2017). For 

example, Korir et  al. (2017) evaluated the effects of co-

inoculation in common beans grown in a soil with low 

P and observed that plants inoculated with Rhizobium 

strain IITA-PAU 987 and Bacillus megaterium increased 

nodulation, shoot dry weight and had 31% increase in 

BNF when compared with the single inoculation with 

Rhizobium.

Main inoculated crops
Soybean

Soybean is an annual herbaceous dicotyledonous, origi-

nally grown in the eastern region of Asia (Aliyev and 

Mirzoyev 2010). Until the nineteenth century, its culti-

vation remained restricted to the eastern countries, and 

spread to other continents, as America and Africa, only 

at the end of this period (Dall´Agnol et  al. 2007; Aliyev 

and Mirzoyev 2010). Nowadays, the main soybean pro-

ducers are the USA, Brazil, and Argentina.

Soybean is probably the most successful example of 

crop benefiting from the application of microbial inocu-

lants, more specifically, carrying Bradyrhizobium spp. 

strains. South American countries lead soybean inocu-

lation. In contrast, in the USA, estimates are that only 

15% of the area cropped with soybean has been inocu-

lated, what might be related to the low cost of N-fertilizer 

marketed in the country (Chang et al. 2015). The low cost 

of N-fertilizer may also have implied in lower interest in 

innovation of technologies updated with new agricultural 

practices.

The Brazilian research for the production and commer-

cialization of inoculants is very advanced and the coun-

try has one of the most complete legislation in this area. 

Common resolutions for inoculants commercialization 

were defined in 1998 for the Mercosur, the common mar-

ket including Brazil, Argentina, Uruguay and Paraguay. 

Following, in Brazil, a legislation of 2004 included defi-

nitions and norms on specifications, guarantees, registra-

tions, packaging and labeling of inoculants, as well as the 

list of the microorganisms that could be used in commer-

cial inoculants in the country; the document was updated 

in 2011 (MAPA 2004, 2011). Nowadays, four strains 

of Bradyrhizobium are authorized for the production 

of soybean inoculants in the country (Bradyrhizobium 

japonicum SEMIA 5079 (= CPAC 15), B. diazoefficiens 

SEMIA 5080 (= CPAC 7), B. elkanii SEMIA 5019 (= 29w) 

and SEMIA 587). The legislation still establishes a mini-

mum concentration of viable cells (1 × 109 viable cells/g 

or mL) of the inoculant until the expiration date, which 

must be at least 6 months, and void of contaminants at 

the 1 × 10−5 dilution (Hungria et al. 2010; MAPA 2011). 

The technical recommendation in Brazil indicates a dose 

that allows at least 1.2 million viable cells/seed to guaran-

tee a successful nodulation (Hungria et al. 2017; Hungria 

and Nogueira 2019). The credibility of the inoculant mar-

ket in Brazil relies on strict legal regulation. Interestingly, 

the legislation was created based mainly on the Austral-

ian legislation, where nowadays the regulation relies on 

an agreement between partners, as a voluntary control 

(Bullard et al. 2005; AIRG 2010).

In Brazil, the inoculation of soybean with elite 

Bradyrhizobium spp. strains can fully supply the crop’s 

demand on N, dismissing the use of N-fertilizers. Prob-

ably as a result of breeding for BNF, the symbiosis with 

soybean is very sensitive to N-fertilizers, drastically 

reducing nodulation (Hungria et  al. 2007; Hungria and 

Mendes 2015). Soybean cropping without any N-ferti-

lizer has generated an annual economy that today is esti-

mated at about 20 billion dollars.

In Brazil, Argentina and in other South American 

countries, successful results have been achieved with the 

re-inoculation of soybean, i.e., the yearly inoculation even 

in soils presenting well-established compatible rhizobial 

population from previous inoculations (Hungria et  al. 

2001; Hungria and Mendes 2015). This practice led to the 

commercialization of over 70 million doses of inoculants 

for soybean in Brazil in the last crop season. Estimates 

in Brazil are that re-inoculation increases soybean grain 

yield by 8% in average (Hungria and Mendes 2015) and 

by 6.8% (Leggett et al. 2017) to 14% (Hungria et al. 2016) 

in Argentina. In the USA, re-inoculation is traditionally 

not recommended, based on results from a former study 
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Table 1 Examples of  studies comprising inoculation of  various plant species with  specific bacterial strains resulting 

in increased grain yield

All experiments were carried out under field conditions with seed inoculation, except those marked (*), which inoculation occurred in-furrow. Yield increase varied 

between studies because of specific cropping conditions such as soil composition, temperature, site and environmental conditions

Crop Microorganism Strains Increase in grain yield 
compared with the non-
inoculated control (%)

References

Soybean Bradyrhizobium japonicum – 4.5 Hungria et al. (2001)

B. japonicum SEMIA 5079 and SEMIA 5080 8.4 Hungria et al. (2013)

B. japonicum 532 C and USDA 110 12–19 Ulzen et al. (2016)

B. japonicum – 1.6–6.3 Leggett et al. (2017)

Common beans Rhizobium tropici SEMIA 4080 (= PRF 81) 31.6–36 Hungria et al. (2000b)

R. tropici SEMIA 4080 8.3 Hungria et al. (2013)

R. tropici CPAO 12.5 L2 66 Mercante et al. (2017)

Rhizobium leguminosarum sv. 
phaseoli

HB-429 48 Samago et al. (2018)

Cowpea B. japonicum BR 3267 38.1 Ulzen et al. (2016)

Bradyrhizobium liaoningense VIBA-1 54.8 Padilla et al. (2016)

Bradyrhizobium yuanmingense VIBA-2 38.3 Padilla et al. (2016)

Faba beans R. leguminosarum sv. viciae NGB-FR 126 46.8–81.4 Youseif et al. (2017)

R. leguminosarum sv. vicieae NSFBR-30 and HUFBR-15 5–75 Argawa and Mnalku (2017)

Maize Azospirillum brasilense Ab-V5 and Ab-V6 27 Hungria et al. (2010)

A. brasilense Ab-V5 29 Ferreira et al. (2013)

A. brasilense Ab-V5 and Ab-V6 14.3 Galindo et al. (2019)

Pseudomonas fluorescens – 29–31 Sandini et al. (2019)

Wheat Bacillus polymyxa Bp 4317 13.6–19.5 Rodriguez-Caceres et al. (1996b)

A. brasilense Sp246 14.7 Ozturk et al. (2003)

A. brasilense Ab-V5 and Ab-V6 31 Hungria et al. (2010)

A. brasilense – 18 Karimi et al. (2018)

Rice Burkholderia vietnamiensis TVV75 22 Tran et al. (2000)

B. vietnamiensis MGK3 12.1 Govindarajan et al. (2007)

Tomato A. brasilense Sp-7 11 Alfonso et al. (2005)

P. fluorescens SS5 57 Ahirwar et al. (2015)

Co-inoculation

 Soybean A. brasilense and B. japonicum Ab-V5 and Ab-V6; SEMIA 5079 
and SEMIA 5080

14.1 Hungria et al. (2013)

A. brasilense* and B. japonicum* Ab-V5 and Ab-V6; SEMIA 5019 
and SEMIA 5079

81.9 Ferri et al. (2017)

 Common beans A. brasilense* and R. tropici Ab-V5 and Ab-V6; SEMIA 4080 19.6 Hungria et al. (2013)

 Wheat Serratia marcescens, Micro-
bacterium arborescens, and 
Enterobacter sp.

– 24 Kumar et al. (2017)

 Rice Klebsiella pneumoniae, P. fluores-
cens, and Citrobacter freundii

4P, 1N and 3C 17.5 Nguyen et al. (2003)

P. fluorescens, Bacillus subtilis, 
Bacillus amyloliquafaciens 
and Candida tropicalis

1N, B9, E19 and HY 26.7 Nguyen (2008)

A. brasilense and P. fluorescens – 20.2 de Salamone et al. (2012)
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showing that rhizobial populations as low as 10  cells/g 

would inhibit the nodule formation by inoculant strains 

(Thies et al. 1991a, 1995). However, mean yield increases 

due to inoculation considering areas of traditional soy-

bean cropping have been recently estimated at 1.67% 

(Leggett et al. 2017), but could probably be higher if high 

N-fertilizer levels were not applied to the crops compris-

ing the soybean agricultural systems (Chang et al. 2015). 

Amazingly, even the most recent studies on the quanti-

fication of soybean BNF in the USA take into considera-

tion a large number of sites, soil fertility, and application 

of mineral N, but not the re-inoculation component 

(Córdova et  al. 2019). Certainly, the annual re-inocula-

tion is responsible for the high contribution of BNF to 

the soybean N nutrition in Brazil, with values as high as 

94% of the aboveground N accumulation (Hungria et al. 

2006), while in the USA these values range from 23 to 

65% (Córdova et al. 2019).

The Sub-Saharan Africa (SSA) region has developed, 

over the years, strategies for the use of beneficial micro-

organisms in soybean adapted to local environment and 

social characteristics. As consequence of the lack of local 

production and difficulties in the importation of inocu-

lants in the 1970s, the International Institute of Tropical 

Agriculture (IITA) launched a breeding program aiming 

at developing high-yielding tropical soybean varieties 

capable of nodulating with indigenous rhizobial strains. 

These new varieties were named “TGx” (tropical Glycine 

cross) or “promiscuous” soybeans (Kueneman et al. 1984; 

Pulver et  al. 1985), and contributed to the expansion of 

soybean production in the SSA.

Because the usually acidic, saline, and low organic mat-

ter of the SSA soils, the average soybean yield is usually 

well below the world average (Thuita et al. 2012; Muleta 

et al. 2017). Therefore, in addition to the soybean genetic 

breeding, further studies have been carried out aiming at 

increasing yields. For example, in Ethiopia, Muleta et al. 

(2017) searched for acid-tolerant rhizobia as strategy to 

increase soybean performance. A local isolate was able to 

improve soybean yield, indicating that search for indig-

enous or naturalized elite isolates might represent an 

interesting strategy to be adopted in other African coun-

tries. Impressive yield increases have also been observed 

by combining application of P-fertilizer and rhizobial 

inoculant in Nigeria (Ronner et al. 2016), and along with 

other studies suggest that P is probably the main limiting 

factor to the BNF in Africa (Vanlauwe et al. 2019).

In Mozambique, the majority of soybean cropping was 

with promiscuous varieties without inoculation; how-

ever, due to the increased demand on exportation of 

grains and poultry industry, the cultivation of non-pro-

miscuous and more-productive cultivars associated with 

inoculation has increased (Dias and Amane 2011). As the 

agroclimatic conditions of the soybean production areas 

in Mozambique are similar to the main areas of soy-

bean cultivation in the Brazilian savanna, Chibeba et al. 

(2018) evaluated and confirmed that elite strains iden-

tified in Brazil could have a successful performance in 

Mozambique with non-promiscuous soybean genotypes. 

The feasibility of transferring inoculation technologies 

between countries is of outstanding importance, as it can 

accelerate the establishment of sustainable cropping sys-

tems, saving time, labor and money. However, it is always 

desirable to search for indigenous or adapted strains, and 

promising local soybean strains have been identified in 

Mozambique (Chibeba et al. 2017), in a near future, their 

performance should be compared with the imported 

strains under field conditions.

Common beans

Similar to soybeans, common beans (Phaseolus vulgaris 

L.) are cropped worldwide, representing the most impor-

tant source of protein in several countries, especially in 

South and Central America and Africa (Hungria et  al. 

2000b, 2013; Ribeiro et  al. 2013). Although Brazil is 

one of the main producers (3.17 million hectares in the 

2017/2018 crop season) and consumer of common beans 

worldwide, grain yields are usually low, bellow 1000 kg/

ha (Hungria et al. 2007; CONAB 2019). Therefore, many 

strategies have been considered to improve yield, con-

comitantly to the tolerance to environmental stresses, at 

low cost.

Studies carried out in Brazil identified two strains of 

the “R. tropici group” for common bean that show high 

BNF rates, competitiveness, tolerance to environmental 

stresses and genetic stability (Hungria et al. 2000a, 2003; 

Mostasso et  al. 2002). The strains PRF 81 (= SEMIA 

4080) of R. freirei and H 12 (= SEMIA 4088) of R. tropici 

have been used in commercial inoculants in Brazil since 

1998 and 2004, respectively, in addition to R. tropici 

CIAT 899, originally isolated in Colombia by Dr. Peter H. 

Graham (Hungria et al. 2000a, 2003; Gomes et al. 2015). 

Interestingly, CIAT 899 has been recognized as an out-

standing strain in several countries (Gomes et  al. 2015; 

Vanlauwe et al. 2019).

The use of inoculants for common bean favors yields, 

but there are reports indicating that BNF might not 

replace N-fertilizers completely, especially in soils where 

the N concentration is very low. Studies suggest that the 

application of 15 or 20  kg  N/ha along with inoculation 

at sowing might improve grain yield (Soares et al. 2016), 

but higher doses of N at sowing may lead to reduced 

nodulation (Hungria et al. 2003). Noteworthy, Mercante 

et  al. (2017), in a series of field trials performed in the 

Brazilian Cerrados verified that, in comparison with the 

indigenous population, the mean increase in grain yield 
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by inoculating R. tropici CIAT 899 was of 410 kg/ha, but 

decreased to 365 kg/ha with the application of 20 kg of 

N/ha at sowing; a new identified elite strain resulted in 

outstanding mean increases of 665  kg/ha in grain pro-

duction (Table 1).

The African continent also stands out in the production 

and consumption of common beans. Estimates are that 

25% of the total world area cropped with common beans 

are in Africa, where the legume is part of the diet of more 

than 100 million people (Aserse et al. 2012; Beebe et al. 

2013), with Tanzania, Kenya, Uganda and South Africa 

been the main producers (USDA 2012). Similar to South 

America, African researchers are studying different ways 

of increasing common bean yield by using BNF, espe-

cially in situations where the efficiency of nodulation by 

Rhizobium is compromised, such as dry conditions, low 

P concentrations, soil salinity and high temperatures 

(Yanni et al. 2016; Samago et al. 2018). In order to iden-

tify rhizobia capable of tolerating drought and salinity 

stresses, Yanni et  al. (2016) selected indigenous strains 

in the eastern and western regions of the Nile delta, and 

identified elite strains with good performance under 

saline and water stress conditions, promising for the use 

as inoculants (Kanonge-Mafaune et al. 2018).

The approach of selecting adapted indigenous strains 

with high capacity of BNF was also investigated by Kos-

key et al. (2017) in soils of low fertility in Kenya. Regard-

ing the symbiotic efficiency, four indigenous isolates 

showed good symbiotic performance, one being able to 

increase grain yield by 30% in comparison to the com-

mercial inoculum for beans, Biofix (strains not informed). 

The importance of P for the symbiotic performance of 

common bean was highlighted under field conditions in 

Nigeria (Ronner et al. 2016) and Ethiopia (Samago et al. 

2018).

Cowpea

Originated from the African continent, cowpea (Vigna 

unguiculata L. Walp.) is the major legume cropped in 

many African countries, responsible for more than 95% 

of the world’s production (Silva et  al. 2016). In Brazil, 

cowpea was introduced in the sixteenth century and 

has been cultivated mainly in the North and North-

east regions. Despite the still modest yield, Brazil has 

exported cowpea grains to some countries such as India, 

Egypt and Pakistan (Silva et al. 2016).

Cowpea is usually tolerant to high temperatures, 

low soil fertility and water restriction; grain yield can 

be limited by N availability, which can be supplied by 

BNF. Interestingly, African countries with climate and 

humidity conditions similar to the North and Northeast 

of Brazil have tested and observed positive responses 

to inoculation with elite Bradyrhizobium strains from 

Brazil. Boddey et  al. (2016) and Ulzen et  al. (2016) 

observed significant increases in nodulation and yield of 

cowpea inoculated with Brazilian rhizobia in northern 

Mozambique and northern Ghana.

Other indigenous microorganisms have also been iden-

tified, selected and proved to increase cowpea yield. A 

study carried out in a saline soil in Cuba demonstrated 

the efficacy of two indigenous strains (Bradyrhizobium 

liaoningense VIBA-1 and Bradyrhizobium yuanmingense 

VIBA-2) (Padilla et al. 2016) (Table 1). In another study, 

in Bangladesh, one strain isolated from cowpea nodules 

was identified as Rhizobium sp. SOY7 and presented 

excellent results of nodulation and plant growth, when 

compared with the non-inoculated control (Nushair et al. 

2017).

Faba beans

Used in Chinese cooking for at least 5000 years, the ori-

gin of faba beans (Vicia faba L.) is still controversial (Duc 

1997). Currently, the crop is produced and consumed in 

several countries, due to its adaptation to various climatic 

zones. The main producers are China, Italy, Spain, United 

Kingdom, Egypt, Ethiopia, Morocco, Russia, Mexico and 

Brazil (Duc et  al. 2010; Lavania et  al. 2015). However, 

there has been a considerable decline in the cropped area 

worldwide, mainly due to susceptibility to environmental 

stresses, affecting yield stability (Rubiales 2010).

In relation to the capacity of BNF, many soils favor the 

development of compatible rhizobial strains (Köpke and 

Nemecek 2010). The identification of rhizobia from nod-

ules of faba beans indicate that the most common spe-

cies are Rhizobium leguminosarum bv. viciae, Rhizobium 

fabae, Rhizobium laguerreae and Rhizobium anhuiense 

(Mutch and Young 2004; Tian et  al. 2008; Saïdi et  al. 

2014; Zhang et al. 2015). Because of the high population 

of rhizobia in areas cropped with the legume for a long 

time, inoculation is usually not adopted. However, in 

regions where faba beans are not intensively cropped, or 

under stressful conditions, inoculation can benefit plant 

development (Köpke and Nemecek 2010; Youseif et  al. 

2017).

Faba beans are one of the most consumed grains in 

Egypt. Despite the predominantly low-fertility soils, 

inoculation is usually not performed and grain produc-

tion is low, not attending the country’s demand. How-

ever, the potential of response to inoculation has been 

demonstrated in some studies, e.g. Youseif et  al. (2017) 

evaluated 17 indigenous rhizobial strains from differ-

ent regions of Egypt, and observed that seed inocula-

tion increased grain yield (Table 1) and N accumulation, 

reaching up to 155 kg ha of N in grains.

In saline soils in Morocco, Benidire et  al. (2017) 

reported two indigenous strains of R. leguminosarum 
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(RhOF34 and RhOF125) that induced plant protection 

against salinity, leading to increases in nodulation, plant 

biomass and N content, confirming that indigenous spe-

cies may have excellent results when inoculated in fava 

beans.

Other legumes

Legumes are generally part of the food base of people and 

animals throughout the world. In addition to soybeans 

and various types of beans, other crops are also impor-

tant sources of protein and nutrients and serve as raw 

materials for many industrialized products. Therefore, 

raising the yield of these crops under a variety of envi-

ronments, by means of inoculation with elite rhizobial 

strains has been the subject of several studies in several 

countries.

In Brazil, Bradyrhizobium sp. strain SEMIA 6144, orig-

inally from Africa, has been used in commercial inocu-

lants for peanut (Arachis hypogaea); however, inoculation 

is not a common practice for this crop in the country, 

attributed to the lack of response, due to the high pop-

ulation of indigenous rhizobia. Indeed, peanut is a very 

promiscuous species capable of nodulating with a broad 

range of soil rhizobia (Thies et  al. 1991b). However, an 

efficient contribution of the BNF may require specific 

elite strains, adapted to local biotic and abiotic condi-

tions and may vary with the plant genotype. For example, 

Marcondes et al. (2010) evaluated the BNF efficiency of 

isolates from two peanut varieties (IAC 886 Runner and 

IAC Tatu ST) and verified that the bacteria performance 

varied with the plant genotype.

In 2017 the first inoculant was produced for peanuts in 

Africa, 1  year after the establishment of the first indus-

trial plant for inoculant production in Ghana, in a part-

nership with Brazil (Fig.  2). Although it is still in the 

testing phase, the results are promising and peanut grow-

ers are expected to benefit from inoculation in the com-

ing years.

Chickpea (Cicer arietinum) is a highly nutritive legume 

cropped mainly in India, but also in more than fifty other 

countries (Jukanti et al. 2012). Bacteria of the genus Mes-

orhizobium sp. are commonly found in association with 

chickpea (Laranjo et al. 2014) and Mesorhizobium ciceri 

has already been indicated for the production of inocu-

lants. In Australia, M. ciceri strain CC1192 has been 

used in inoculants since the 1970s (Bullard et  al. 2005). 

Besides, several studies have been carried out to identify 

indigenous strains capable of nodulating and promot-

ing chickpea growth, even in unfavorable environments, 

such as low-fertility soils (Tena et al. 2016; Pandey et al. 

2018).

Guar (Cyamopsis tetragonolobus L.) is a legume that 

has gained prominence in global agriculture due to 

several industrial uses, as their seeds are rich in galac-

tomannan gum, which can be used as lubricant, binder, 

thickener and emulsifier. It is cultivated in several semi-

arid regions such as in India, Pakistan and the United 

States (Ibrahim et al. 2016; Thapa et al. 2018). Similar to 

other legumes, guar has the potential to associate with 

rhizobia, but the process of nodulation with rhizobia is 

still not well known (Abidi et  al. 2015); therefore, stud-

ies have been performed to identify elite rhizobial strains 

(Ibrahim et  al. 2016; Khandelwal and Sindhu 2012). 

Thapa et  al. (2018) evaluated two guar varieties inocu-

lated with two rhizobial inoculants, one composed by a 

complex mixture of Rhizobium and the other carrying 

Rhizobium USDA 3385, on two soils of different textures, 

and promising results were found, as abundant nodula-

tion, incentivizing further experiments.

An increasing number of yields increase have been 

reported for important crops such as soybeans, com-

mon beans and chickpeas inoculated with elite rhizobial 

strains, leading to interest in using microbial inoculants 

for several other legumes. However, it has also increased 

the interest for the use of other plant-growth promoting 

bacteria in non-legumes.

Maize

Maize (Zea mays L.) is a native grass from Central Amer-

ica (Doebley 1990a, b), and currently the third most 

cultivated cereal in the world. The interest in maize pro-

duction is due to its versatility and broad use, ranging 

from human and animal feed to the production of biofuel, 

and also as an input in the manufacture of many products 

(Awika 2011). The main producers and consumers are 

the USA and China, followed by Brazil (DERAL 2019).

Maize can associate with PGPB, particularly those 

belonging to the genus Azospirillum, which are currently 

used as inoculants for this crop worldwide. Mexico was 

one of the first countries to commercialize inoculants 

for maize carrying Azospirillum in 2002 (Reis 2007), fol-

lowed by Argentina.

Brazil has a long tradition in studies with Azospirillum, 

carried initially by Dr. Johanna Döbereiner. She described 

the capacity of Azospirillum, originally named as Spiril-

lum, to perform BNF when associated with grasses. In 

1978 the species Spirillum lipoferum, initially described 

by Beijerinck (1925), was reclassified as Azospirillum, 

with the prefix “azo” added as a reference to the term 

“azote,” nomenclature given by Lavoisier to nitrogen. At 

that time, the genus comprised two species, Azospiril-

lum lipoferum and Azospirillum brasilense (Tarrand et al. 

1978). Other species of Azospirillum were described in 

the following years, so that in 2019 the genus comprises 

21 species (DSMZ 2019).
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However, it was only in 2009 that the first commercial 

strains of A. brasilense, Ab-V5 and Ab-V6, were released 

for the use in commercial inoculants for maize and wheat 

(Triticum aestivum L.) in Brazil (Hungria et al. 2010; MAPA 

2011). In maize, these strains resulted in increases in grain 

yield that reached 27%, compared with the non-inoculated 

control (Hungria et al. 2010) (Table 1). Since the release of 

the first commercial inoculant for grasses in Brazil, in 2009 

(Fig. 2), the number of sold doses of inoculants carrying A. 

brasilense has grown significantly, reaching about 7 million 

doses in the 2017/18 crop season. In Argentina, the market 

of Azospirillum has started before Brazil, with the commer-

cial strain A. brasilense Az39 selected in the 1980s and able 

to increase maize and wheat yields from 13 to 33% (Cassán 

et al. 2015; Cassán and Diaz-Zorita 2016).

In addition to its ability for BNF, numerous studies 

have demonstrated other properties of Azospirillum, 

the most important being the capacity for synthesizing 

phytohormones. Many of these molecules are related to 

root development, positively influencing their growth, 

resulting in greater absorption of nutrients and water 

from soil (Bashan and De-Bashan 2010; Ardakani and 

Mafakheri 2011; Fukami et al. 2017, 2018a, b). Therefore, 

grasses associated with Azospirillum present root struc-

ture capable of absorbing larger amounts of nutrients and 

water (Bashan and De-Bashan 2010). Auxins (Fallik et al. 

1989; Fukami et al. 2017), gibberellins (Janzen et al. 1992; 

Cohen et  al. 2009), ethylene (Perrig et  al. 2007), cyto-

kinins (Strzelczyk et al. 1994; Abbasi et al. 2015) and sali-

cylic acid (Perrig et  al. 2007; Cohen et  al. 2009; Fukami 

et al. 2017) are the most commonly cited molecules.

Turan et al. (2012) emphasized the capacity of P solu-

bilization by some strains of Azospirillum, increasing P 

availability in the soil and yields of wheat. Some strains of 

Azospirillum may also attenuate damages caused by abi-

otic stress, such as salinity and drought, as well as biotic 

stresses, like plant resistance against pathogens (Bashan 

and De-Bashan 2010; Fukami et al. 2018a).

Despite the benefits of Azospirillum in cereals, the 

bacterium is not able to supply all N demand, requiring 

the application of complementary doses of N. However, 

the amount of N-fertilizer to achieve high yields can be 

reduced by 25 to 50% (Hungria et al. 2010; Piccinin et al. 

2013; Fukami et al. 2016).

Although Azospirillum is mainly inoculated on the 

seeds due to easiness and low doses (Cassán et al. 2015), 

the seed treatment with pesticides is potentially harm-

ful and may impair the survival and metabolism of the 

inoculated cells. To overcome such problem, alterna-

tive methods of inoculation via foliar, in-furrow or soil 

spraying can be used. Fukami et al. (2016) evaluated the 

responses of maize inoculated with Azospirillum in-fur-

row, via soil spraying at sowing or via leaf spraying after 

seedlings had emerged, in comparison seed inocula-

tion. Positive results were obtained with both alternative 

methods of inoculation, but higher doses were required 

than inoculation via seeds.

Besides Azospirillum, other groups of PGPB have been 

studied in inoculation of maize, such as Pseudomonas 

spp. (Burr et al. 1978; Ahirwar et al. 2015; Thirumal et al. 

2017; Sandini et al. 2019). Pseudomonas are able to pro-

duce siderophores, which are molecules capable of cap-

turing insoluble iron from the environment  (Fe3+), and 

convert it to a soluble form  (Fe2+) available for plants 

(Sharma and Johri 2003; Sah et  al. 2017). Considering 

that iron is essential for metabolism and consequently, 

for plant development, the siderophores-producing 

microorganisms can positively improve plant develop-

ment in Fe-deficient environments.

The production of siderophores by P. aeruginosa strains 

RSP5 and RSP8 was demonstrated in iron sufficient and 

iron-deficient soil (Sah et al. 2017). The strain RSP5 pro-

duced more siderophores in both soils and improved 

the Fe uptake by maize, in addition to increases in shoot 

and root length, number of spikes and number of grains. 

However, we must emphasize that many PGPB may also 

be highly pathogenic to humans, animals and plants. 

Therefore, it is critical to evaluate the non-pathogenicity 

of the strains before thinking about any use as inoculant 

and, certainly, P. aeruginosa is not a proper candidate for 

a commercial inoculant.

The use of Bacillus strains as inoculants is also increas-

ing, in replacement to fertilizers. In Brazil, strains have 

been selected that improve P mobilization, by mecha-

nisms as phytohormones production and P solubiliza-

tion, this last one attribute to acid production by the 

bacteria (de Abreu et  al. 2017). In Brazil, elite strains 

of Bacillus proved to improve P uptake production of 

grasses (Ribeiro et  al. 2018), and the first commercial 

inoculant carrying P-solubilizing bacteria (Bacillus subti-

lis and B. megaterium) was released in 2019, with great 

acceptance by the farmers.

Wheat

Wheat is a cereal of global importance for human and 

animal feeding and can also benefit from inoculation 

with A. brasilense (Bashan et  al. 2004; Hungria et  al. 

2010). In the 1980s an important study was carried out 

in Mexico on the inoculation of wheat with Azospirillum. 

The concentration of the inoculant was 3–5 × 108 CFU/g 

and the dose applied of 15 g/kg seed. Inoculation caused 

significant increases in yield, from 23 to 63% in 1986, and 

from 24 to 43% in 1987. The best results were obtained 

with strain Cd and with a local A. brasilense strain iso-

lated from the rhizosphere of Brachiaria mutica (UAP-

55) (Caballero-Mellado et al. 1992).
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In the following decade, in Argentina, many studies 

were carried out with inoculation of Azospirillum. In 

1992–1993 two experiments were carried out with inocu-

lation of strains Az39 and Cd on wheat under greenhouse 

conditions using soil from a semiarid region of Argen-

tina. Az39 and Cd strains increased the grain yield by 

30% and 16%, respectively, and both increased the root 

dry weight compared with the non-inoculated control 

(Rodriguez-Caceres et al. 1996a). Nowadays, Az39 is the 

major strain used in commercial inoculants in Argentina 

(Okon et al. 2015).

In Brazil, Hungria et  al. (2010) observed 13 to 18% 

increase in grain yield of wheat inoculated with A. brasi-

lense Ab-V1, Ab-V5, Ab-V6 and Ab-V8 strains. When the 

strains Ab-V5 and Ab-V6 were combined, wheat yields 

increased by 31%; therefore, inoculant industries have 

mixed both strains in wheat inoculants (Hungria et  al. 

2010) (Table 1).

Further beneficial action of A. brasilense has been 

reported on wheat, such as the photo-protection of pho-

tosynthetic pigments and increase of proton efflux of 

roots, positively affecting plant development (Bashan 

et al. 1989, 2005).

Successful wheat inoculation with Azospirillum has 

also being reported in Israel (Kapulnik et al. 1983, 1985), 

England (Harris et al. 1989), Egypt (El-Lattief 2012), and 

Pakistan (Zaheer et  al. 2019). Unfortunately, despite 

numerous studies proving the benefits of wheat inocu-

lation, this practice is poorly adopted, especially in the 

major wheat-producing countries such as European 

Union, Russia, China, India and the United States.

Rice

The origin of rice (Oryza sativa) is estimated at least 

130  million years ago in Asia and has spread over the 

years all over the planet (Khush 1997), representing 

about 11% of the global cropped area. This cereal repre-

sents the primary source of food for more than one-third 

of the world’s population; unlike other crops, rice is con-

sumed almost exclusively by humans (Khush 1997; Singh 

et al. 2018).

More than 90% of the world’s rice is grown and con-

sumed in Asia, where it accounts for 35 to 60% of the 

calories consumed by 3 billion people, 60% of the worlds’ 

population (Khush 1997; Seck et  al. 2012; Singh et  al. 

2018). The main producers are China, India, Indonesia 

and Bangladesh, with the production of 145.5; 103.5; 36.3 

and 34.6 million tons, respectively (Gadal et al. 2019).

Similar to the grasses earlier mentioned, rice can also 

benefit from the inoculation with PGPB. Although rice 

is typically grown in wetland, upland cropping is very 

important in several countries. In wetland, rice can be 

associated with aerobic and anaerobic PGPB (Choudhury 

and Kennedy 2004). Many bacterial species have been 

evaluated over the years, single or associated, for growth 

promotion of rice, e.g. A. lipoferum (Watanabe and Lin 

1984; Mirza et al. 2000), A. brasilense (de Salamone et al. 

2012; Zhang et  al. 2017) Pseudomonas spp. (Watan-

abe and Lin 1984; de Salamone et al. 2012; Zhang et al. 

2017), Herbaspirillum spp. (Baldani et  al. 2000; Mirza 

et al. 2000), Burkholderia spp. (Baldani et al. 2000; Tran 

et al. 2000; Govindarajan et al. 2007), Bradyrhizobium sp. 

(Greetatorn et al. 2019).

One of the most important studies related to inocu-

lants for rice was carried out in Vietnam from 1999 to 

2001 (Nguyen et  al. 2003) and resulted in a commer-

cial inoculant named “Biogro”. Three bacterial strains 

isolated from soils cropped with rice were selected and 

their inoculation promoted increase in grain yield com-

pared with the non-inoculated control, reaching yields of 

6.7; 6.0 and 6.2 t/ha in 1999, 2000 and 2001, respectively, 

when 111  kg/ha of biofertilizer were applied; the over-

all mean increase over the non-inoculated control was 

of 15% (728 kg/ha), ranging from 8.3 to 30.7%. (Nguyen 

et al. 2017). Similar results were obtained 1 year later in 

Australia, using the same mix of bacteria (Williams and 

Kennedy 2002).

Before 2005, the strains in “Biogro” were Klebsiella 

pneumoniae (4P), Pseudomonas fluorescens (1N) and Cit-

robacter freundii (3C) (Kecskes et  al. 2008). From 2005 

on, the inoculant was reformulated with the strains P. flu-

orescens (1N), B. subtilis (B9), Bacillus amyloliquafaciens 

(E19) and a soil yeast, Candida tropicalis (HY) (Nguyen 

et al. 2017). In addition to BNF, the pool of microorgan-

isms also improved the P mobilization from soil. In field 

trials the new inoculant applied at a rate of 50 kg/ha pro-

moted grain yield of 6.91  t/ha (Nguyen 2008; Nguyen 

et al. 2017) (Table 1). This inoculant was also efficient in 

rice grown on a degraded soil in the south of Vietnam 

(Phan and Tran 2008).

Sugarcane

An economically important Poaceae is sugarcane. 

Belonging to the genus Saccharum, it is native from the 

tropical region of South and Southeast Asia (Mukherjee 

1957). After many taxonomic revisions that occurred 

mainly during the twenty ninth century, currently the 

genus Saccharum has six species: S. officinarum, S. spon-

taneum, S. robustum, S. sinense, S. barberi e S. edule. 

Current sugarcane varieties are hybrids originating from 

interspecific crosses involving mainly 90% of S. offici-

narum and 10% of S. spontaneum. These hybrids are 

cited as Saccharum spp. (Ming et al. 2006).

America and Asia are the main sugarcane producing 

regions, such that in 2017 accounted for 55.7% and 37.2% 

of world sugarcane production, respectively (FAOSTAT 
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2019). The largest sugarcane producing country is Brazil, 

producing 758 Mt in 2017, about 41% of the world pro-

duction. India, China, Thailand, Pakistan and Mexico are 

also important producers, contributing with 306, 104, 

103, 73 e 57  Mt of sugarcane, respectively (FAOSTAT 

2019).

The economic importance of this culture is related to 

its various purposes. Sugarcane is a raw material in the 

production of ethanol, biofuel widely used mainly in 

Brazil, in addition to the production of sugar and cane 

molasses, products for the food and feed industry; the 

vast market of products keeps its production growing 

continuously (Silalertruksa and Gheewala 2019).

Sugarcane is able to associate with a great diversity of 

diazotrophic plant growth-promoting bacteria, includ-

ing species of the genera Azospirillum (Reis Junior et al. 

2000; Tejera et al. 2005), Azotobacter (Tejera et al. 2005), 

Burkholderia (Perin et al. 2006; Antonio et al. 2016; Silva 

et al. 2016; Leite et al. 2018a, b), Herbaspirillum (Baldani 

et al. 1996; Reis Junior et al. 2000), Pantoeae (Taulé et al. 

2012; Fischer et al. 2012, Silva et al. 2016), and the spe-

cies Gluconacetobacter diazotrophicus (basonym Aceto-

bacter diazotrophicus) (Cavalcante and Döbereiner 1988; 

Munõz-Rojas and Caballero-Mellado 2003; Restrepo 

et al. 2017), among others.

After the isolation and description of sugarcane-asso-

ciated diazotrophic bacteria, and in view of the observed 

benefits of bacterial/plant association for other cul-

tures, research has been intensified in Brazil. Dos San-

tos et  al. (2018) observed the effects of inoculating a 

mix of diazotrophic bacteria (G. diazotrophicus PAL5T, 

Herbaspirillum rubrisubalbicans HCC10, Herbaspirillum 

seropedicae HRC54, Nitrospirillum amazonense CBAmC 

and Paraburkholderia tropica PPe4T) on sugarcane 

growth. After 15 days of planting, a 50% increase in dry 

mass of inoculated roots was observed.

The same group of bacteria was used in hydroponic 

sugarcane cultivation for 59  days under different con-

centrations of N. Two varieties of sugarcane were used: 

RB867515 (adapted to low fertility soils) and IACSP95-

5000 (adapted to medium to high fertility soils). The 

authors reported that the two sugarcane varieties, when 

inoculated with the bacterial mix, presented different 

results regarding the activity of enzymes related to the 

assimilation of N. Under low N concentration, nitrate 

reductase activity was increased in RB867515 by 26% in 

the shoots, and by 48% in the roots, while glutamine syn-

thetase activity was 21% higher than the control. For the 

IACSP95-5000 under low N concentration, nitrate reduc-

tase activity decreased by 62% in roots, and glutamine 

synthetase activity was increased by 16% (Dos Santos 

et  al. 2019). This information corroborates with Schultz 

et al. (2017), who analyzed yield parameters in two field 

sites and with two sugarcane varieties (RB867515 and 

RB72454) inoculated or the same bacterial mix. For vari-

ety RB867515 the inoculation promoted increases in stem 

yield by 22.3 Mg ha−1 in the first site and 38.0 Mg ha−1 

in the second site compared to the control. The variety 

RB72454 showed increases of 16.7 and 37.5  Mg  ha−1, 

respectively.

Optimum yield results via inoculation with the same 

bacterial mix suggest reduced N-fertilizer application. 

Pereira et  al. (2018) consider that inoculation coupled 

with the application of a low dose of N (50 kg N  ha−1) can 

raise productivity with economy. In 2019 the first com-

mercial inoculant for the sugarcane was released in Bra-

zil, carrying Nitrospirillum amazonense strain.

Pastures with grasses and legumes

Estimates are that the global pasture area covers 26% of 

the ice-free land surface, but in many of these places, the 

pastures are degraded and insufficient to provide nutri-

ents to the animals, demanding new areas (Steinfeld et al. 

2006; Fonte et  al. 2014). The major problem in increas-

ing pasture areas is that they often occur in detriment of 

forests, leading to deforestation, decrease in biodiversity 

and other environmental damages (Steinfeld et al. 2006; 

Don et al. 2011).

In order to improve the development of grasses in 

degraded pastures, the use of PGPB is once again a via-

ble strategy. The idea is to increase soil fertility, yield and 

nutritional quality of grasses, decreasing the pressures 

on native forests (Monk et al. 2009; Campos et al. 2012; 

Hungria et al. 2016).

Grasslands in Brazil are estimated in 180 million ha, 

of which over 60 million ha are classified as degraded 

(LAPIG 2018), with Brachiaria (= Urochloa) represent-

ing the main component (Hungria et  al. 2016). Strains 

Ab-V5 and Ab-V6 of A. brasilense have been evaluated 

as inoculants for Urochloa spp. in different sites of Bra-

zil and the combination with N-fertilizer (40 kg ha of N) 

increased biomass production by 15% and of protein by 

25% in comparison to the control receiving only N-fer-

tilizer (Hungria et al. 2016). Other studies confirmed the 

good performance of these strains of A. brasilense with 

brachiarias (Bulegon et  al. 2016; Guimarães et  al. 2016; 

Leite et  al. 2018a, b), and also with another important 

pasture in Brazil, panicum Panicum maximum, = Meg-

athyrsus maximus) (Leite et  al. 2019). In addition to A. 

brasilense, positive results were reported for brachiaria 

inoculated with Bacillus sp. isolated from the rhizos-

phere of Urochloa brizantha (Araujo et al. 2012).

In New Zealand, Monk et  al. (2009) isolated bacteria 

capable of colonizing the roots of tall fescue (Festuca 

arundinacea) grasses with promising characteristics for 

pastures. The isolated bacteria were studied in vitro and 
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selected for their plant-growth promotion properties, 

such as the production of auxins, siderophores and P 

solubilization.

In Colombia, Pennisetum clandestinum (kikuyo) was 

inoculated with two PGPB strains of Stenotrophomonas 

sp. and Pseudomonas sp. able to synthesize indole 

compounds, to fix nitrogen and to solubilize phos-

phate in  vitro. Under greenhouse conditions, signifi-

cant increases in the biomass and root dry weight were 

observed in comparison to the non-inoculated control.

Pastures with legumes are also spread all over the 

world, and Trifolium spp., Arachis pintoi, Medicago sativa 

L., Stylosanthes spp. are important examples. Dozens of 

studies have been performed with PGPB with those leg-

umes. Trifolium repens and Trifolium pratense are two 

clovers species broadly used in pastures in Uruguay. To 

ensure good development there is a recommendation, 

since 1967, of inoculation of both clovers with R. legumi-

nosarum sv. trifolii strain U204, a commercial inoculant 

strain introduced from the USA (Tartaglia et al. 2019).

Alfalfa (Medicago sativa L.) is present in pastures in 

temperate and subtropical, and arid and semi-arid areas. 

Buntić et al. (2019) developed a liquid-formulated inocu-

lant containing Sinorhizobium (= Ensifer) meliloti strain 

L3Si allowing better shelf life, pre-inoculation and perfor-

mance in alfalfa, as there were no liquid inoculants avail-

able with this strain. Shoot N content of plants originated 

from seeds pre-inoculated 1 month before sowing ranged 

from 3.72 to 4.19%, whereas the control with N-fertilizer 

had 4.03%; the highest SDW value was of 27.12 mg/plant 

in the inoculated plants, higher than the control with 

N-fertilizer (20.20 mg/plant), indicating a high effective-

ness of the liquid formulation (Buntić et al. 2019).

Interest in increasing alfalfa production has also grow-

ing in Saudi Arabia. Daur et al. (2018) isolated, identified 

and exploited the PGPR potential of 17 bacterial iso-

lates belonging to the genus Bacillus, Acinetobacter and 

Enterobacter from the Saudi Arabia desert and evaluated 

their effects on alfalfa yield. The strains were single inoc-

ulated in alfalfa seeds and sown in the fields under desert 

conditions. All strains improved plant relative water 

content, chlorophyll (a and b), carotenoids, N, P and K 

contents, plant height, leaf-to-stem ratio and fresh and 

dry weight in comparison to the non-inoculated control. 

However, one major consideration in this and in several 

other studies is the need of regulation to avoid potentially 

pathogenic strains in microbial inoculants, such as Acine-

tobacter, Enterobacter and even some species of Bacillus.

In Brazil, forage peanuts (A. pintoi) and Stylosan-

thes spp. are the most commonly used legumes in pas-

tures. For A. pintoi, two Bradyrhizobium spp. strains are 

used in commercial inoculants, SEMIA 6439 (= MGAP 

13) and SEMIA 6440 (= NC 230). In a field experiment 

that resulted in the selection of these two strains, they 

increased shoot dry weight, in comparison to the non-

inoculated controls, without and with N-fertilizer, by 

63 and 47%, respectively (Purcino et  al. 2003). More 

recently, estimates of BNF in A. pintoi under field condi-

tions were up to 65% of the total N in plants in the spring 

period (Carvalho et al. 2019).

Despite the widespread use of Stylosanthes spp. in Bra-

zil, there are still few studies about the diversity and sym-

biotic efficiency of nitrogen-fixing bacteria associated 

to this plant. Two strains have been used in commercial 

inoculants, B. japonicum SEMIA 6155 (= BR 502) and 

SEMIA 6154 (= BR 446); recently, SEMIA 6154 was rec-

ognized as the type strain of a new species, Bradyrhizo-

bium stylosanthis (Delamuta et  al. 2016). da Chaves 

et al. (2016) reported that two bacterial species isolated 

from Stylosanthes (strains ERR 1178 and ERR 942 of 

Bradyrhizobium spp.) in savanna areas in Roraima, Bra-

zil, increased the shoot biomass and N of Stylosanthes 

capitata cv. Lavradeiro under greenhouse conditions.

Australia has a long-time tradition in selecting strains 

and inoculating forage legumes, with emphasis on Trifo-

lium spp. (Brockwell et al. 1982; Collins et al. 2002; Yates 

et  al. 2005). More recently, in the inland areas of cen-

tral Queensland, Leucaena has been sown and provided 

excellent results as forage in animal production (Buck 

et  al. 2019); however, the inoculation of this legume is 

still little studied in the country.

Vegetables

Vegetables can highly benefit from several PGPB, but this 

market niche is still not well explored. Taken as an exam-

ple, tomato (Solanum lycopersicum L.) takes part in the 

diet of million people, consumed in salads, as ingredient 

of hot dishes and with great application in the industry 

as raw material in the manufacture of many products, 

mainly sauces (Subramanian 2016). Due to its versatility, 

tomatoes are one of the most produced vegetables world-

wide. China accounts for one-quarter of world’s tomato 

production, followed by India and the USA (Heuvelink 

2018).

Tomatoes may respond to inoculation with Azospiril-

lum (Alfonso et  al. 2005; Mangmang et  al. 2015a; Lima 

et al. 2018). In Colombia, inoculation with A. brasilense 

resulted in better seedling growth, plant nutritional sta-

tus, and yield 11% higher than the non-inoculated con-

trol (Alfonso et al. 2005) (Table 1).

In India, PGPB of the genera Bacillus and Azotobac-

ter were isolated from the rhizosphere of tomatoes and 

tested as inoculants for this crop (Prashar et  al. 2014). 

Previous reports from Cuba show that inoculation of 

tomatoes seeds with Azotobacter chroococcum increased 

plant dry weight (Puertas and Gonzales 1999). In Brazil, 



Page 14 of 22Santos et al. AMB Expr           (2019) 9:205 

positive effects of inoculation of two tomatoes cultivars 

with Bacillus amyloliquefaciens subsp. plantarum FZB42 

have also been reported (Szilagyi-Zecchin et  al. 2015), 

increasing shoot growth, chlorophyll a, b and total, 

and favoring the synthesis of indole compounds and 

siderophores.

Several other vegetables have been reported as respon-

sive to microbial inoculants, including lettuce (Lactuca 

sativa) (Flores-Félix et  al. 2013; Mangmang et  al. 2014; 

Fasciglione et  al. 2015), carrot (Daucus carota L.) (Flo-

res-Félix et  al. 2013; Clemente et  al. 2016) and cucum-

ber (Cucumis sativus L.) (Mangmang et  al. 2015b). The 

increasing demands of the population on organic prod-

ucts may also stimulate the use of microbial inoculants 

for the production of vegetables.

Some of the actual threats for the use of microbial 
inoculants
Attention should be paid to some threats that appear 

from the increased scientific and commercial interest on 

microbial inoculants. Several studies are reporting plant-

growth promoting benefits in studies with bacteria that 

may be harmful to plants, animals and humans. Analyz-

ing these studies, there is no doubt that several strains of 

Enterobacter spp., of the Burkholderia cepacia complex, 

Pseudomonas aeruginosa, among others, can be isolated 

from soils and have the capacity of promoting plant 

growth (e.g. Adesemoye et  al. 2008; Daur et  al. 2018; 

Jung et  al. 2018; Rojas-Rojas et  al. 2019; Roychowdhury 

et al. 2019). However, they cannot be used as inoculants. 

Therefore, before proceeding with studies to verify the 

plant performance with such isolates, priority should be 

given to determine their taxonomic position.

In relation to agronomic practices, the compatibility 

with agrochemicals used for seeds treatments, with an 

emphasis on pesticides represents a major limitation to 

the survival of bacteria (e.g. Campo et al. 2009), and the 

problem has increased with the use of pre-inoculated 

seeds stored for long periods in contact with pesticides 

(Hungria and Mendes 2015). Priority should be given to 

the search for compatible agrochemicals and cell protec-

tors (Hungria et al. 2005), or alternative technologies of 

application, such as the application of inoculants in-fur-

row to avoid the direct contact with the products used 

for seed treatment (Campo et al. 2010).

Amazingly, information about the benefits of microor-

ganisms on plant growth is leading some farmers to the 

production of their own microbial inoculants and prod-

ucts for biological control. It is not difficult to perceive 

the threat that such practice can result to the agricul-

ture. Production of microbial inoculants require specific 

requirements not easily followed even under specialized 

conditions (Hungria et al. 2005). Therefore, plant, human 

and animal pathogens have been found as predominant 

microorganisms in farmers´ products (Valicente et  al. 

2018; Hungria and Nogueira 2019) and may jeopardize 

the benefits of high-quality products.

Perspectives for the future
Research on inoculants and inoculation with rhizo-

bia and legumes raised great interest from researchers 

and companies in the 1970s. In the following decades, 

although several reports of benefits of new PGPB 

and the advances achieved at the inoculant industry, 

modest interest from research and industry has been 

observed. However, nowadays, increased demand for 

food, interest in sustainable agriculture and increas-

ing reports on pests and pathogens resistance to agro-

chemicals are exponentially raising the global interest 

on microbial inoculants. Based on the information pre-

sented in this brief review, it is possible to perceive the 

increased number of studies that have been carried out 

about the development of new inoculants (Santos et al. 

2017; Gundi et  al. 2018), identification of new strains, 

and new inoculation methods, e.g. Zvinavashe el al. 

(2019), who developed a protein-based biomaterial 

capable of encapsulating and protecting rhizobacteria 

inoculated into seeds even after sowing, improving the 

effects of inoculation. According to information from 

the Web of Science database, between 2015 and 2019, 

68 papers (excluding revisions) were published using 

the keywords “inoculant” or “biofertilizer” followed by 

“production” or “development”. Therefore, it is expected 

that in the following years innovation will be presented, 

encompassing both microorganisms and technologies. 

China currently leads the number of registered patents 

related to inoculation, more than 800, and India already 

has more than 100 inoculant industries (Fig.  2). It is 

expected that these numbers will also increase in other 

countries.

One challenge to the development of new inoculants 

relies on the increasing concerns about climate changes. 

The expected increases in temperature and dry periods 

in the next years will have major impacts on agriculture. 

According to Ramirez-Villegas and Thornton (2015), 

in tropical areas, maize and rice yields may decrease by 

5–10% and 2–5%, respectively, for each degree of tem-

perature increase. Climate changes will decrease the 

available areas for cultivation. It is therefore manda-

tory to search for microbial inoculants more effective 

under stressful conditions; on the other hand, micro-

bial inoculants can also help to mitigate the effects of 

climate changes and other related abiotic stresses, such 

as salinity (e.g. Cerezini et al. 2016; Fukami et al. 2018b; 

Leite et al. 2018a, b). With increased availability of high-

quality products, in addition to commitments from the 
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governments towards more sustainable agricultural sys-

tems, the use of microbial inoculants is expected to dra-

matically increase in the following years.
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