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Abstract

The loss of organic material from the roots provides
the energy for the development of active microbial
populations in the rhizosphere around the root.
Generally, saproptrophs or biotrophs such as mycor-
rhizal fungi grow in the rhizosphere in response to this
carbon loss, but plant pathogens may also develop
and infect a susceptible host, resulting in disease.
This review examines the microbial interactions
that can take place in the rhizosphere and that
are involved in biological disease control. The inter-
actions of bacteria used as biocontrol agents of
bacterial and fungal plant pathogens, and fungi used
as biocontrol agents of protozoan, bacterial and
fungal plant pathogens are considered. Whenever
possible, modes of action involved in each type of
interaction are assessed with particular emphasis
on antibiosis, competition, parasitism, and induced
resistance. The significance of plant growth pro-
motion and rhizosphere competence in biocontrol
is also considered. Multiple microbial interactions
involving bacteria and fungi in the rhizosphere are
shown to provide enhanced biocontrol in many cases
in comparison with biocontrol agents used singly. The
extreme complexity of interactions that can occur
in the rhizosphere is highlighted and some potential
areas for future research in this area are discussed
briefly.
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Introduction

As seeds germinate and roots grow through the soil the
loss of organic material provides the driving force for

the development of active microbial populations around
the root, known as the rhizosphere effect (Whipps, 1990;
Morgan and Whipps, 2001). Although the stimulation
in microbial activity is a general phenomenon largely
involving saprotrophs, specific groups of symbionts may
be selectively enhanced. For example, mutualistic bio-
trophic symbioses may develop between Rhizobia and
legumes, and mycorrhizal fungi may interact with their
plant hosts. However, antagonistic symbioses between
pathogens and roots can also form resulting in disease.
The microbial interactions taking place in the spermo-
sphere and rhizosphere associated with disease develop-
ment and especially biocontrol of these diseases form the
background of this review.

Interest in biological control has increased recently
fuelled by public concerns over the use of chemicals in the
environment in general, and the need to find alternatives
to the use of chemicals for disease control. The key to
achieving successful, reproducible biological control is the
gradual appreciation that knowledge of the ecological
interactions taking place in soil and root environments is
required to predict the conditions under which biocontrol
can be achieved (Deacon, 1994; Whipps, 1997a) and,
indeed, may be part of the reason why more biocontrol
agents are reaching the market-place (Fravel, 1999;
Whipps and Lumsden, 2001; Whipps and Davies, 2000).
This type of work requires a study not only of any
potential biocontrol agent per se but also its interactions
with the crop, the natural resident microbiota and the
environment as well. In this regard, it is well known that
some soils are naturally suppressive to some soil-borne
plant pathogens such as Fusarium oxysporum Schlect.:
Fr. Emend. Snyder & Hansen, Gaeumannomyces graminis
(Sacc.) v. Arx & Oliver, Pythium and Phytophthora
species and this suppression relates to both physicochem-
ical and microbiological features of the soil (Whipps,
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1997a). Importantly, a soil that is suppressive to one
pathogen is not necessarily suppressive to another, and
so specificity in the soil-plant-microbe interactions for
disease suppression exists. Modern methods for analysing
microbial community structures may prove particularly
valuable to help define the key organisms or groups
of organisms responsible for such natural suppression
as well as for monitoring the spread and impact of
introduction of specific biocontrol agents or other
management practices on natural microbial populations
(Duineveld et al., 1998; Natsch et al., 1998; Abassi et al.,
1999; Buyer et al., 1999; Gamo and Shoji, 1999; Mazzola,
1999; Shiomi et al., 1999; Tiedje et al., 1999; Smit
et al., 1999; Postma et al., 2000). Significantly, disease
suppression can also be achieved by manipulation of
the physicochemical and microbiological environment
through management practices such as the use of soil
amendments, crop rotations, use of fumigants or soil
solarization. However, at present, greatest interest resides
with the development and application of specific biocon-
trol agents for the control of diseases on seeds and roots
and the interaction of these with pathogens and hosts,
and will form the focus of this paper. There have been
numerous reviews in recent years on this topic (see
Whipps, 1997a, b, c¢; Punja, 1997; van Loon, 1997,
Burges, 1998; Boland and Kuykendall, 1998; Harman
and Kubicek, 1998; Funck Jensen and Lumsden, 1999;
Hoitink and Boehm, 1999; Mathre et al., 1999, and
references therein) and so only selected recent examples,
illustrating key features of biocontrol on seeds and roots,
particularly the different modes of action, will be
discussed whenever possible. Modes of action include:
inhibition of the pathogen by antimicrobial compounds
(antibiosis); competition for iron through production of
siderophores; competition for colonization sites and
nutrients supplied by seeds and roots; induction of plant
resistance mechanisms; inactivation of pathogen germina-
tion factors present in seed or root exudates; degradation
of pathogenicity factors of the pathogen such as toxins;
parasitism that may involve production of extracellular
cell wall-degrading enzymes, for example, chitinase and
B-1,3 glucanase that can lyse pathogen cell walls
(Keel and Défago, 1997, Whipps, 1997a). None of the
mechanisms are necessarily mutually exclusive and fre-
quently several modes of action are exhibited by a single
biocontrol agent. Indeed, for some biocontrol agents,
different mechanisms or combinations of mechanisms
may be involved in the suppression of different plant
diseases.

Bacteria-bacterial pathogen interactions

In the last few years there have been relatively few studies
of bacteria applied to seeds and roots for the purpose

of controlling bacterial diseases. One example, is the
application of non-pathogenic strains of Streptomyces to
control scab of potato (Solanum tuberosum L.) caused
by Streptomyces scabies (Thaxter) Waksman and Henrici
(Ryan and Kinkel, 1997; Neeno-Eckwall and Schottel,
1999). Here biocontrol may operate through antibiosis or
competition for space or nutrients in the rhizosphere.
In contrast, Pseudomonas fluorescens (Trevisan) Migula
F113 was shown to control the soft rot potato pathogen
Erwinia carotovora subsp. atroseptica (van Hall) Dye by
production of the antibiotic 2,4-diacetylphloroglucinol
(DAPG) and, through use of co-inoculation experiments
with mutants lacking DAPG production, that competi-
tion was not a feature of biocontrol in this system (Cronin
et al., 1997). Some evidence was also obtained that
siderophore production by P. fluorescens F113 may play a
role in biocontrol of potato soft rot under iron-limiting
conditions, but DAPG appears to be the major biocon-
trol determinant. Pseudomonas species may also control
crown gall disease in many dicotyledonous plants caused
by Agrobacterium tumefaciens (Smith & Townsend)
Conn (Khmel et al., 1998). However, the classic, and still
commercially successful, bacterial-based biocontrol sys-
tem is the use of non-pathogenic Agrobacterium strains to
control Agrobacterium tumefaciens. Long-term molecular
and ecological studies of this control system have identi-
fied how the biocontrol works and have also allowed
potential problems associated with its use in the field
to be overcome. The most widely used non-pathogenic
Agrobacterium strain K84 produces a highly specific
antibiotic agrocin 84, which is encoded by plasmid
pAgK84. Inundative inoculation of Agrobacterium strain
K84 to roots by dipping in cell suspensions prior to
exposure to the pathogen effectively controls those strains
of pathogen susceptible to agrocin 84. However, because
there is a risk that plasmid pAgK84 could be transferred
to pathogenic strains and reduce effectiveness of control
(Vicedo et al., 1996; Stockwell et al., 1996; Lopez-Lopez
et al., 1999), a transfer deletion mutant of K84, K1026
has been constructed (Jones et al., 1988). Strain K1026
is as efficient as K84 in biocontrol of both strains
susceptible to agrocin 84 and those resistant to agrocin 84
(Jones and Kerr, 1989; Vicedo et al., 1993) and so, clearly,
production of agrocin 84 is not the only mechanism of
biocontrol. Production of other antibiotics such as agrocin
434 or ALS 84 may play a part (Pefalver et al., 1994;
McClure et al., 1998), but the ability to survive and
compete on roots may also be important. Studies where
pathogenic cells were co-inoculated with K84 or K1026
resulted in survival of the pathogen on roots up to
8 months later, although no symptoms were present,
providing evidence that the non-pathogenic strains
prevented disease expression rather than killing pathogen
cells directly (Penialver and Lopez, 1999; Johnson and
DiLeone, 1999).



Bacteria—-fungal pathogen interactions

The volume of literature in this area continues to increase
at a rapid rate, stimulated by the increasing ease with
which molecular techniques can be applied to answer
questions concerning distribution, and occurrence and
relative importance of specific modes of action. Some
examples of the different types of bacteria-fungal patho-
gen interactions examined in the spermosphere and rhizo-
sphere in just the last three years are given in Table 1.
Although a range of different bacterial genera and species
have been studied, the overwhelming number of papers
have involved the use of Pseudomonas species. Clearly,
Pseudomonas species must have activity but it begs
the question as to the features that make this genus so
effective and the choice of so many workers. Pseudo-
monads are characteristically fast growing, easy to culture
and manipulate genetically in the laboratory, and are
able to utilize a range of easily metabolizable organic
compounds, making them amenable to experimentation.
But, in addition, they are common rhizosphere organisms
and must be adapted to life in the rhizosphere to a large
extent (deWeger et al., 1995; Marilley and Aragno, 1999).
Having appropriate ecological rhizosphere competence
may be a key feature for reproducible biological control
activity in the spermosphere and rhizosphere. This
criterion is already widely appreciated for many fungal
biocontrol agents (see later). A few specific examples of
the modes of action involved with bacterial biocontrol
of fungal pathogens in the rhizosphere and spermosphere
are given below.

Antibiosis

There are numerous reports of the production of anti-
fungal metabolites (excluding metal chelators and
enzymes) produced by bacteria in vitro that may
also have activity in vivo. These include ammonia,
butyrolactones, 2,4-diacetylphloroglucinol (Phl), HCN,
kanosamine, Oligomycin A, Oomycin A, phenazine-1-
carboxylic acid (PCA), pyoluterin (PIt), pyrrolnitrin (Pln),
viscosinamide, xanthobaccin, and zwittermycin A as
well as several other uncharacterized moieties (Milner
et al., 1996; Keel and Défago, 1997; Whipps, 1997q;
Nielson et al., 1998; Kang et al., 1998; Kim et al., 1999;
Thrane et al., 1999; Nakayama et al., 1999). To demon-
strate a role for antibiotics in biocontrol, mutants lacking
production of antibiotics or over-producing mutants have
been used (Bonsall er al., 1997, Chin-A-Woeng et al.,
1998; Nowak-Thompson et al., 1999). Alternatively, the
use of reporter genes or probes to demonstrate produc-
tion of antibiotics in the rhizosphere is becoming more
commonplace (Kraus and Loper, 1995; Raaijmakers
et al., 1997, Chin-A-Woeng et al., 1998). Indeed, isola-
tion and characterization of genes or gene clusters
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responsible for antibiotic production has now been
achieved (Kraus and Loper, 1995; Bangera and
Thomashow, 1996; Hammer et al., 1997; Kang et al.,
1998; Nowak-Thompson et al., 1999). Significantly, both
Phl and PCA have been isolated from the rhizosphere
of wheat following introduction of biocontrol strains
of Pseudomonas (Thomashow et al., 1990; Bonsall et al.,
1997; Raaijmakers et al., 1999), finally confirming that
such antibiotics are produced in vivo. Further, Phl pro-
duction in the rhizosphere of wheat was strongly related
to the density of the bacterial population present and
the ability to colonize roots (Raaijmakers et al., 1999).
PCA from Pseudomonas aureofaciens Kluyver Tx-1 has
even been used as a direct field treatment for the control
of dollar spot (Sclerotinia homeocarpa F. T. Bennett) on
creeping bentgrass (Agrostis palustris Hudson) (Powell
et al., 2000).

Antibiotic production by bacteria, particularly
pseudomonads, seems to be closely regulated by a two-
component system involving an environmental sensor
(presumably a membrane protein) and a cytoplasmic
response factor (Keel and Défago, 1997). Mutation in
either gene has similar multiple effects on antibiotic pro-
duction. For example, P. fluorescens Pf-5 with a mutation
in the apdA sensor gene lost the ability to produce HCN,
Plt and Pln (Hrabak and Willis, 1992; Corbell and Loper,
1995) and P. fluorescens CHAO with a defect in the gacA
response gene lost the ability to produce Phl, Plt and
HCN as well as protease and phospholipase C (Laville
et al., 1992; Sacherer et al., 1994). However, the environ-
mental signals that control the two-component system are
unknown. Interestingly, the gacA gene is required for
biocontrol activity in P. fluorescens CHAO in the rhizo-
sphere of dicotyledous plants, but not in those of the
Gramineae (Schmidli-Sacherer et al., 1997), although the
mechanisms are unclear.

Other two-component signalling phenomena may also
be involved in PCA production by pseudomonads on
roots. Pseudomonas aureofaciens 30-84 is a biocontrol
agent of take-all disease of wheat (7riticium aestivum L.)
caused by Gaeumannomyces graminis var. tritici Walker
and operates through inhibiting growth of the pathogen
by production of PCA (Pierson III and Pierson, 1996). In
this system, pathogen growth on the root increases root
exudation and this results in an increase in the population
of P. aureofaciens 30-84 and other bacteria in the infection
zone. Consequently, there is an increase in the level of
the signal molecule N-acyl-L-homoserine lactone (HSL)
produced at low levels constitutively by the phzI gene, in
the rhizosphere which is sufficient to switch on the PCA
synthesis pathway in P. aureofaciens 30-84 controlled
by the phzR gene. The resulting PCA production inhibits
further growth of the pathogen. This explains why
P. aureofaciens 30-84 does not reduce the number of
infection sites on the roots, but inhibits secondary growth



Table 1. Recent examples of bacteria applied to seeds or roots providing biocontrol of fungal plant pathogens

Bacteria Fungal pathogen Plant Environment Reference
Actinoplanes spp. Pythium ultimum Table beet Soil Khan et al., 1997
Bacillus spp. Rhizoctonia solani; Gaeumannaomyces graminis var. tritici ~ Wheat Soil Ryder et al., 1999
Bacillus subtilis GB03 Fusarium oxysporum f. sp. ciceris Chickpea Sterile soil Hervas et al., 1998
B. subtilis BACT-D Pythium aphanidermatum Tomato Soil Utkhede et al., 1999
Burkholderia cepacia A3R Fusarium graminearum Wheat Soil Huang and Wong, 1998
B. cepacia PHQM 100 Fusarium spp. Maize Soil Hebbar et al., 1998
Pythium spp. Maize Soil Hebbar et al., 1998
Comamonas acidovorans HF42 Magnaporthe poae Kentucky bluegrass  Soil Thompson et al., 1998
Enterobacter sp. BF14 Magnaporthe poae Kentucky bluegrass  Soil Thompson et al., 1998
Paenibacillus sp. 300 Fusarium oxysporum f. sp. cucumerinum Cucumber Soil-less mix Singh et al., 1999
Pseudomonas spp. Fusarium oxysporum f. sp. radicis-lycopersici Tomato Rockwool Sharifi-Tehrani et al., 1998
Pseudomomas aureofaciens AB244  Pythium ultimum Tomato Soil-less mix Warren and Bennett, 1999
P. aureofaciens 63-28 P. aphanidermatum Cucumber Vermiculite Chen et al., 1998
Pseudomonas chlororaphis MA342  Drechslera graminea Barley Soil Johnsson et al., 1998
D. teres Barley Soil Johnsson et al., 1998
D. avenae Oats Soil Johnsson et al., 1998
Ustilago avenae Oats Soil Johnsson et al., 1998
U. hordei Barley Soil Johnsson et al., 1998
Tilletia caries Wheat Soil Johnsson et al., 1998
P. chlororaphis PCL 1391 Fusarium oxysporum f. sp. radicis-lycopersici Tomato Soil Chin-A-Woeng et al., 1998
P. chlororaphis RD31-3A Fusarium spp. Douglas fir Seed Hoefnagels and Linderman, 1999
Pseudomonas corrugata 13 Pythium aphanidermatum Cucumber Vermiculite Chen et al., 1998
Pseudomonas fluorescens Fusarium oxysporum f. sp. raphani Radish Soil/sand de Boer e al., 1999
P. fluorescens WCS417 F. oxysporum f. sp. raphani Radish Rockwool Duijff et al., 1998
P. fluorescens WCS358 F. oxysporum f. sp. lini Flax Nutrient solution Duijff et al., 1999
P. fluorescens Q8rl1-96 Gaeumannomyces graminis Wheat Soil Raaijmakers and Weller, 1998
P. fluorescens BTP7 Pythium aphanidermatum Cucumber Vermiculite Ongena et al., 1999
P. fluorescens VO61 Pythium ultimum Lotus corniculatus Soil mix Bagnasco et al., 1998
Rhizoctonia solani Rice Soil Vidhyasekaran and Muthamilan, 1999
Pseudomonas putida Fusarium oxysporum f. sp. raphani Radish Soil/sand de Boer et al., 1999
P. putida BTP1 Pythium aphanidermatum Cucumber Vermiculite Ongena et al., 1999
Serratia plymuthica Pythium ultimum Cucumber Peat-perlite-vermiculite ~ Benhamou et al., 2000
Stenotrophomonas maltophilia C3 Rhizoctonia solani Tall fescue Soil mix Giesler and Yuen, 1998
Streptomyces sp. 385 Fusarium oxysporum f. sp. cucumerinum Cucumber Soil-less mix Singh et al., 1999
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of the pathogen. Significantly, HSL from other members
of the rhizosphere microbial community can contribute
to PCA production in P. aureofaciens 30-84 raising the
question of the significance of interpopulation signalling
on biocontrol and perhaps the enhanced performance of
certain strains of bacteria when introduced with mixtures
of other bacterial biocontrol strains (Pierson and Weller,
1994). In addition, antibiotic production in Pseudomonas
spp. may be further controlled by the activity of house-
keeping sigma factors encoded by rpoS or rpoD genes
(Sarniguet et al., 1995; Schnider et al., 1995), illustrating
the complexity of these regulatory systems.

Interestingly, signalling between pathogenic fungi and
potential biocontrol bacteria has also been detected.
In one case, trehalose derived from Pythium debaryanum
Hesse up-regulated genes in its biocontrol strain
Pseudomonas fluorescens ATCC 17400 (Gaballa et al.,
1997) and yet in another example Pythium ultimum Trow
caused a down-regulation of five gene clusters of P.
fluorescens F113 which provides biocontrol of this patho-
gen in the rhizosphere of sugar beet (Beta vulgaris L.)
(Fedi et al., 1997). These findings may be of consid-
erable significance for bacterial-fungal interactions in
general and has major implications for the control of gene
expression in complex microbial communities.

Competition for iron

Although competition between bacteria and fungal plant
pathogens for space or nutrients has been known to exist
as a biocontrol mechanism for many years (see Whipps,
1997a, for references) the greatest interest recently has
involved competition for iron. Under iron-limiting
conditions, bacteria produce a range of iron chelating
compounds or siderophores which have a very high
affinity for ferric iron. These bacterial iron chelators are
thought to sequester the limited supply of iron available
in the rhizosphere making it unavailable to pathogenic
fungi, thereby restricting their growth (O’Sullivan and
O’Gara, 1992; Loper and Henkels, 1999). Recent studies
have clearly shown that the iron nutrition of the plant
influences the rhizosphere microbial community structure
(Yang and Crowley, 2000). Iron competition in pseudo-
monads has been intensively studied and the role of the
pyoverdine siderophore produced by many Pseudomonas
species has been clearly demonstrated in the control of
Pythium and Fusarium species, either by comparing the
effects of purified pyoverdine with synthetic iron chelators
or through the use of pyoverdine minus mutants (Loper
and Buyer, 1991; Duijff ez al., 1993). Pseudomonads
also produce two other siderophores, pyochelin and
its precursor salicylic acid, and pyochelin is thought to
contribute to the protection of tomato plants from
Pythium by Pseudomonas aeruginosa (Schroeter) Migula
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TNSK?2 (Buysens et al., 1996). However, siderophores are
not always implicated in disease control by pseudo-
monads (Schmidli-Sacherer et al., 1997; Ongena et al.,
1999). The dynamics of iron competition in the rhizo-
sphere are often complex. For example, some sidero-
phores can only be used by the bacteria that produce
them (Ongena et al., 1999), whereas others can be used
by many different bacteria (Loper and Henkels, 1999).
Different environmental factors can also influence the
quantity of siderophores produced (Duffy and Défago,
1999). There is also the further complication that pyo-
verdine and salicylate may act as elicitors for inducing
systemic resistance against pathogens in some plants
(Métraux et al., 1990; Leeman et al., 1996b).

Parasitism and production of extracellular enzymes

The ability of bacteria, especially actinomycetes, to
parasitize and degrade spores of fungal plant pathogens
is well established (El-Tarabily ez al., 1997). Assuming
that nutrients pass from the plant pathogen to bacteria,
and that fungal growth is inhibited, the spectrum of
parasitism could range from simple attachment of cells
to hyphae, as with the Enterobacter cloacae (Jordan)
Hormaeche & Edwards—Pythium ultimum interaction
(Nelson et al., 1986) to complete lysis and degradation
of hyphae as found with the Arthrobacter—Pythium
debaryanum interaction (Mitchell and Hurwitz, 1965).
If fungal cells are lysed and cell walls are degraded then
it is generally assumed that cell wall-degrading enzymes
produced by the bacteria are responsible, even though
antibiotics may be produced at the same time. Consider-
able effort has gone into identifying cell wall-degrading
enzymes produced by biocontrol strains of bacteria
even though relatively little direct evidence for their pres-
ence and activity in the rhizosphere has been obtained.
For example, biocontrol of Phytophthora cinnamomi
Rands root rot of Banksia grandis Willd. was obtained
using a cellulase-producing isolate of Micromonospora
carbonacea Luedemann & Brodsky (El-Tarabily et al.,
1996) and control of Phytophthora fragariae var. rubi
Hickman causing raspberry root rot was suppressed
by the application of actinomycete isolates that were
selected for the production of B-1,3-, B-1,4- and B-1,6-
glucanases (Valois et al., 1996). Chitinolytic enzymes
produced by both Bacillus cereus Frankland and Pantoea
(Enterobacter) agglomerans (Beijerinck) Gavini et al. also
appear to be involved in biocontrol of Rhizoctonia solani
Kithn (Chernin et al., 1995, 1997; Pleban et al., 1997).
Tn5 mutants of E. agglomerans (Beijerinck) Gavini et al.
deficient in chitinolytic activity were unable to protect
cotton (Gossypium barbardense 1..) and expression of the
chid gene for endochitinase in Escherichia coli (Migula)
Castellani & Chalmers allowed the transformed strain
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to inhibit R. solani on cotton seedlings. Similar tech-
niques involving Tn5 insertion mutants and subsequ-
ent complementation demonstrated that biocontrol of
Pythium ultimum in the rhizosphere of sugar beet
by Stenotrophomonas maltophila (Hugh) Palleroni &
Bradbury W81 was due to the production of extracellular
protease (Dunne et al., 1997).

Induced resistance

Perhaps the greatest growth area in biocontrol in the last
few years has been concerned with induced resistance
defined as ‘the process of active resistance dependent on
the host plant’s physical or chemical barriers, activated by
biotic or abiotic agents (inducing agents)’ (Kloepper
et al., 1992). This has come about through the synergistic
interaction of microbiologists, plant pathologists and
plant scientists armed with an appropriate battery of
molecular tools. The effect had previously often been
overlooked through inadequate techniques or controls
as well as the biocontrol agent exhibiting other modes
of action at the same time. Most work has focused on
the systemic resistance induced by non-pathogenic rhizo-
sphere-colonizing Bacillus and Pseudomonas species in
systems where the inducing bacteria and the challenging
pathogen remained spatially separate for the duration of
the experiment, and no direct interaction between the
bacteria and pathogen was possible (Sticher ef al., 1997,
van Loon, 1997). Such split root or spatial root inocula-
tion experiments were used to demonstrate the phe-
nomenon in radish (Raphanus sativus L.) and Arabidopsis
against Fusarium oxysporum (Leeman et al., 1996a; van
Wees et al., 1997) and in cucumber (Cucumis sativus L.)
against Pythium aphanidermatum (Edson) Fitzp. (Chen
et al., 1998). Various combinations of timing and posi-
tion have indicated that induced resistance also occurs
in carnation (Dianthus caryophyllus 1.) (van Peer et al.,
1991), tobacco (Nicotiana tabacum L1.) (Maurhaufer
et al., 1994) and tomato (Lycopersicon esculentum Mill.)
(Duijff et al., 1997). Bacteria differ in ability to induce
resistance, with some being active on some plant
species and not others; variation in inducibility also exists
within plant species (van Loon, 1997). The full range
of inducing moieties produced by bacteria is probably
not yet known, but lipopolysaccharides (Leeman et al.,
1995) and siderophores (Métraux et al., 1990; Leeman
et al., 1996b) are clearly indicated.

The definition of induced resistance suggested by
Kloepper et al. covered both biotic and abiotic inducers
(Kloepper et al., 1992). Although the phenotypic effects
of root inoculation with bacteria may be similar to
treatment with abiotic agents or micro-organisms that
cause localized damage, the biochemical and mechan-
istic changes appear to be subtly different. This has
resulted in the term induced systemic resistance (ISR)

for bacterially-induced resistance and systemic acquired
resistance for the other forms (Pieterse et al., 1996). The
major differences are that pathogenesis-related (PR)
proteins such as chitinases, B-1,3-glucanases, proteinase
inhibitors and one or two other rarer types, are not
universally associated with bacterially induced resistance
(Hoffland et al., 1995) and salicylic acid (a known inducer
of SAR) is not always involved in expression of ISR,
but this is dependent on bacterial strain and host plant
involved (Pieterse ez al., 1996; de Meyer et al., 1999;
Chen et al., 1999). Ethylene responsiveness may also be
required at the site of inoculation of the inducing bacteria
for ISR to occur (Knoester et al., 1999).

Changes that have been observed in plant roots
exhibiting ISR include: (1) strengthening of epidermal
and cortical cell walls and deposition of newly formed
barriers beyond infection sites including callose, lignin
and phenolics (Benhamou et al., 1996a, b, ¢, 2000;
Duijff et al., 1997; Jetiyanon et al., 1997; M’Piga et al.,
1997); (2) increased levels of enzymes such as chitinase,
peroxidase, polyphenol oxidase, and phenylalanine
ammonia lyase (M’Piga et al., 1997; Chen et al., 2000);
(3) enhanced phytoalexin production (van Peer et al.,
1991; Ongena et al., 1999); (4) enhanced expression of
stress-related genes (Timmusk and Wagner, 1999). How-
ever, not all of these biochemical changes are found in
all bacterial-plant combinations (Steijl ez al., 1999). Sim-
ilarly, the ability of bacteria to colonize the internal
tissue of the roots has been considered to be an
important feature in many of the bacterial-root inter-
actions involving ISR, but is not a constant feature of
them all (Steijl et al., 1999).

Plant growth-promoting rhizobacteria (PGPR)

The concept of PGPR is now well established (Bashan,
1998; Shishido and Chanway, 1999) and so some consid-
eration of the relationship of PGPRs to biocontrol is
worthwhile. PGPR increase plant growth indirectly either
by the suppression of well-known diseases caused by
major pathogens or by reducing the deleterious effects
of minor pathogens (micro-organisms which reduce plant
growth but without obvious symptoms). Most of the
bacteria discussed so far in this review fall into this
category of PGPR. Alternatively, PGPR may increase
plant growth in other ways, for example, by associative
N, fixation (Hong et al., 1991), solubilizing nutrients such
as P (Whitelaw, 2000), promoting mycorrhizal function
(Garbaye, 1994), regulating ethylene production in roots
(Glick, 1995), releasing phytohormones (Arshad and
Frankenberger, 1991; Beyeler et al., 1999), and decreasing
heavy metal toxicity (Burd er al., 1998). It has been
suggested that the two groups should be reclassified into
biocontrol plant growth-promoting bacteria (biocontrol
PGPB) and PGPB (Bashan and Holguin, 1998). To date



this proposal does not seem to have been widely accepted,
but it does highlight the need to consider the full
ecological interactions taking place following application
of bacteria to seeds and roots that lead to plant growth
promotion. It is also important to remember that
deleterious rhizobacteria that inhibit plant growth are
also known (Nehl et al., 1996) which can influence such
interactions.

Irrespective of mode of action, a key feature of all
PGPR is that they all colonize roots to some extent. In
some cases this may involve specific attachment through,
for example, pili, as with the attachment of Pseudomonas
fluorescens 2-79 to the surface of wheat roots (Vesper,
1987). However, such specific attachment does not seem
to be an absolute requirement for colonization (de Weger
et al., 1995). Colonization may involve simply root
surface development but, endophytic colonization of
the root is also known, and the degree of endophytic
colonization depends on bacterial strain and plant type.
Endophytic growth in roots has been recorded with the
PGPR Bacillus polymyxa (Prazmowski) Macé Pw-ZR
and Pseudomonas fluorescens Sm3-RN on spruce (Picea
glaucax P. engelmannii) (Shishido et al., 1999), with the
biocontrol strains of Bacillus sp. 1324-92R;, and
P. fluorescens 2-79RN;y on wheat (Kim et al., 1997)
and with several that induce resistance such as Bacillus
pumilus Meyer & Gottheil SE34 and P. fluorescens 63-28
on pea (Pisum sativum L.) (Benhamou et al., 1996a, b;
M’Piga et al., 1997), P. fluorescens CHAO on tobacco
(Troxler et al., 1997) and P. fluorescens WCS417r on
tomato (Duijff er al., 1997). Large scale differences in
spread within the plant may occur. Some, such as
B. polymyxa Pw-2B, P. fluorescens SM3-RN, Bacillus
sp. L324-92R 5, and P. fluorescens 2-719RN spread from
roots to aerial plant parts whereas others may not (Kim
et al., 1997). Small scale differences are also known. For
example, both B. pumilus SE34 and P. fluorescens 63-28
grow on the root surface and intercellarly in pea roots
(Benhamou et al., 1996a, b; M’Piga et al., 1997) whereas
surface growth, inter- and intra-cellular growth occurred
with P. fluorescens WCS417r in tomato and P. fluorescens
CHADO in tobacco (Duijff et al., 1997; Troxler et al., 1997).
These endophytic bacteria may be in a particularly
advantageous ecological position in that they may be
able to grow and compete on the root surface, but also
may be capable of developing within the root, relatively
protected from the competitive and high-stress environ-
ment of the soil. Indeed, many seeds, roots and tubers are
normally colonized by endophytic bacteria (McInroy and
Kloepper, 1995; Sturz et al., 1999). Any plant resistance
encountered must be minimal, although, in many cases,
sufficient to allow ISR to develop. The localized signalling
between plant and bacteria within the root environment
deserves further study. Certainly, use of mutants and
promoter probe techniques are beginning to identify

Disease biocontrol on roots 493

genes in bacteria that are important in colonization
and these are often related to nutrient uptake (Bayliss
et al., 1997; Roberts et al., 2000). Such nutrient uptake
genes may also play a role in biocontrol by aiding the
uptake and metabolism of nutrients that stimulate
germination of pathogen propagules (Maloney et al.,
1994).

The ability to colonize seeds is also an important fea-
ture for many bacterial biocontrol agents. Pseudomonas
chlororaphis (Guignard & Sauvngeau) Bergey et al.
MA342 is applied to cereal seeds to control many seed
and soil-borne pathogens (Table 1) and has been found to
colonize specific areas of the seed coat (Tombolini ez al.,
1999). After inoculation, the bacteria were found
under the seed glume (or husk), but after planting they
were found to colonize the glume cells epiphytically.
Bacterial aggregates were also found in the grooves
formed by the base of the coleoptile and the scutellum,
and near the embryo but never within it. In this case,
the biocontrol bacteria co-located with the seed-borne
pathogen Drechslera teres (Sacc.) Shoemaker providing
biocontrol through the production of fungitoxic com-
pounds. The spermosphere competence of this bacterium
allowed biocontrol to take place. Microcolony or micro-
aggregate production by bacteria has also been found
on the grooves or cracks on the outer seed coat of
sugar beet and cotton (Gossypium hirsutum L.) (Fukui
et al., 1994; Hood et al., 1998) perhaps reflecting
areas of increased nutrient availability or environmental
protection.

Fungal-protozoan interactions

The soil-borne protozoan Plasmodiophora brassicae
Woronin is an ecologically obligate biotroph of brassicas
causing clubroot disease which is characterized by pro-
liferation of galls on infected roots. From a large-scale
screening exercise, two isolates of the root-colonizing
fungus Heteroconium chaetospira (Grove) Ellis were
found to suppress clubroot on chinese cabbage (Brassica
campestris L.) in non-sterile soil (Narisawa et al., 1998).
Hyphal growth occurred in the inner parts of the cortical
tissues and into the root tips without causing any external
symptoms on the plant and there was no sign of infection
by P. brassicae. Further studies demonstrated that
H. chaetospira infected epidermal cells from appressoria
via infection pegs and, subsequently, intracellular hyphal
growth occurred (Narisawa et al., 2000). However, the
actual mechanism of the disease control observed in
the field was unclear. Heteroconium chaetospira appears
to form a mutualistic symbiosis with B. campestris
in terms of disease control which is of interest as the
Brassicacae family is largely non-mycorrhizal. In addi-
tion, H. chaetospira was found to colonize the roots of
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plants from eight families and may have a wide host range
(Narisawa et al., 2000). Its ability to control diseases in
these other plant families and the mechanisms involved
deserves further study.

Fungal-bacterial pathogen interactions

In the last few years there have been no clear examples
of fungi used to control bacterial plant pathogens in the
rhizosphere or spermosphere. The reasons for this are
unclear but could perhaps indicate an area that deserves
further research in the future.

Fungal-fungal pathogen interactions

Interactions between biocontrol fungi and fungal plant
pathogens continue to be the focus of a large number of
researchers, on a par with work on bacterial-fungal plant
pathogen interactions described earlier. However, there
is an extra dimension in the quality of the interactions
between fungi as biocontrol fungi have much greater
potential than bacteria to grow and spread through soil
and in the rhizosphere through possession of hyphal
growth. Some recent examples of fungal-fungal interac-
tion concerning biocontrol in the rhizosphere and
spermosphere are given in Table 2. There are a variety
of fungal species and isolates that have been examined
as biocontrol agents but Trichoderma species clearly
dominate, perhaps reflecting their ease of growth and
wide host range (Whipps and Lumsden, 2001). There has
been an upsurge in interest in non-pathogenic Pythium
species, particularly P. oligandrum Drechsler where addi-
tional modes of action have been determined recently,
and a continued interest in well-established saprotrophic
antagonists such as non-pathogenic Fusarium species,
non-pathogenic binucleate Rhizoctonia isolates and
Phialophora species, as well as mutualistic symbionts
including mycorrhizal fungi such as Glomus intraradices
Schenk & Smith. At least one novel biocontrol agent,
Cladorrhinum foecundissimum Saccardo & Mardial, has
been described. Numerous others are listed elsewhere
(Whipps, 1997a). The most common pathogen targets are
Pythium species, Fusarium species and Rhizoctonia solani
reflecting their world-wide importance and perhaps their
relative ease of control under protected cropping systems,
although numerous other pathogens have been examined.
Significantly, relatively few of the examples given in
Table 2 involve studies in non-sterile soil or field con-
ditions, with most carried out in soil-less conditions
reflecting the need to keep the complexity of the system to
a minimum in order to achieve reproducible control.
Some specific examples of the modes of action found
to occur in the rhizosphere and spermosphere during
interactions between fungi and fungal plant pathogens are
given below.

Competition

There have been relatively few studies on competition
for nutrients, space or infection sites between fungi in
the rhizosphere and spermosphere recently. Competition
for carbon, nitrogen and iron has been shown to be
a mechanism associated with biocontrol or suppression
of Fusarium wilt in several systems by non-pathogenic
Fusarium and Trichoderma species (Mandeel and
Baker, 1991; Couteadier, 1992; Sivan and Chet, 1989)
and competition for thiamine as a significant process
in the control of Gaeumannomyces graminis var. tritici
by a sterile red fungus in the rhizosphere of wheat
(Shankar et al., 1994). Many studies have shown a
relationship between increased colonization of the
rhizosphere by a non-pathogen, associated subsequently,
with disease suppression. This is well established for
non-pathogenic strains of Fusarium oxysporum con-
trolling pathogenic F. oxysporum on a variety of crop
plants (Eparvier and Alabouvette, 1994; Postma and
Rattink, 1991), hypovirulent or non-pathogenic binucle-
ate strains of Rhizoctonia species to control pathogenic
isolates of R. solani (Herr, 1995) and several fungi
including Phialophora species, Gaeumannomyces graminis
var. graminis and Idriella bolleyi (Sprague) von Arx
as well as several non-sporulating fungi, to control G.
graminis var. tritici (Deacon, 1974; Wong and Southwell,
1980; Kirk and Deacon, 1987; Shivanna et al., 1996).
As just one example, I. bolleyi exploits the naturally
senescing cortical cells of cereal roots during the early
stages of the crop and outcompetes G. graminis var.
tritici for infection sites and nutrients. Rapid produc-
tion of spores, which are then carried down the root
by water, continue the root colonization process and
this is suggested to be a key feature in the establish-
ment of the biocontrol agent on the root (Lascaris and
Deacon, 1994; Allan et al., 1992; Douglas and Deacon,
1994).

Mycorrhizal fungi are also strong candidates for pro-
viding biocontrol through competition for space by virtue
of their ecologically obligate association with roots.
Ectomycorrhizal fungi because of their physical sheathing
morphology may well occupy normal pathogen infection
sites. Strangely, little work has been carried out to
demonstrate this mechanism since it was first suggested
(Marx, 1972) with most biocontrol interest focused on
antibiotic production and induced resistance (Perrin,
1990; Duschesne, 1994). Similarly, arbuscular mycor-
rhizas also have potential to occupy space and infection
sites on roots, but evidence suggests that biocontrol
provided by arbuscular mycorrhizas relates more to
induced resistance, improved plant growth and changes
in root morphology rather than competition per se
(Cordier et al., 1996; Norman et al., 1996; Mark and
Cassells, 1996).



Table 2. Recent examples of fungal—fungal interactions examined in the spermosphere and rhizosphere associated with biological disease control

Antagonist

Pathogen

Host plant

Medium

Reference

Cladorrhinum foecundissimum

Fusarium spp. (CS-1, CS-20, Fo47) (non-pathogenic)

Fusarium oxysporum Fo47 (non-pathogenic)
Fusarium oxysporum (non-pathogenic)
Fusarium solani (non-pathogenic)

Glomus intraradices

Idriella bolleyi

Penicillium oxalicum

Phialophora sp. 1-52

Pythium acanthophoron

Pythium mycoparasiticum

Pythium oligandrum

Pythium periplocum
Rhizoctonia solani (binucleate, non-pathogenic)

Talaromyces flavus
Trichoderma hamatum TRI-4
Trichoderma harzianum 2413
T. harzianum T-22

T. harzianum T-1

T. harzianum 1295-22

T. harzianum Th-87

T. harzianum BAFC 742

Trichoderma longibrachiatum CECT 2606
Trichoderma viride WT-6

Trichoderma (Gliocladium) virens GL-21

T. virens GL-1, GL-21, GL-23
T. virens GL-3

Pythium ultimum

Rhizoctonia solani

Fusarium oxysporum f. sp. lycopersici

. oxysporum f. sp. niveum

. oxysporum f. sp. lycopersici

. oxysporum f. sp. lycopersici

. oxysporum f. sp. lycopersici

oxysporum f. sp. dianthi

Bipolaris sorokiniana

F. oxysporum f. sp. lycopersici

Gaeumannomyces gramminis var. tritici

Fusarium culmorum

Fusarium culmorum

Fusarium culmorum

Pythium spp.

Pythium spp.

P. ultimum

Verticillium dahliae

Fusarium culmorum

Phytophthora parasitica var. nicotianae

Rhizoctonia solani

R. solani; Pythium ultimum

Verticillium dahliae

Rhizoctonia solani

Phytophthora capsici

Pyrenophora triticis-repentis

Pythium ultimum

Rhizoctonia solani

R. solani

R. solani

Sclerotinia sclerotiorum

Pythium ultimum

Rhizoctonia solani

Pythium ultimum

Rhizoctonia solani

R. solani

Fusarium graminearum, Pythium arrhenomanes;
P. ultimum

RO RO RO R

Eggplant, pepper
Eggplant, pepper
Tomato
Watermelon
Tomato
Tomato
Tomato
Carnation
Barley
Tomato
Wheat
Barley
Barley
Barley
Cucumber
Sugar beet
Sugar beet
Pepper
Barley
Tobacco
Cabbage
Pepper
Eggplant
Eggplant
Pepper
Wheat
Bean

Bean
Creeping bent grass
Eggplant
Soybean
Cucumber
Eggplant
Cucumber
Pea
Eggplant
Maize

Soil-less potting mix
Soil-less potting mix
Soil-less potting mix
Soil-less potting mix
Soil and rockwool
Soil-less potting mix
Soil-less potting mix
Clay

Soil

Peat/soil

Soil

Sand

Sand

Sand

Hydroponic system
Soil

Soil-based compost
Potting mix

Sand

Soil-less mix

Soil

Potting mix

Soil-less potting mix
Soil-less potitng mix
Peat-sand mix

Soil

Soil

Soil

Peat

Soil-less potting mix
Soil

Potting mix

Soil-less potting mix
Potting mix

Potting mix

Soil-less potting mix
Soil

Lewis and Larkin, 1998
Lewis and Larkin, 1998
Larkin and Fravel, 1999
Larkin and Fravel, 1999
Fuchs ef al., 1999
Larkin and Fravel, 1998
Larkin and Fravel, 1998
St Arnaud et al., 1997
Duczek, 1997

de Cal et al., 1999
Mathre et al., 1998
Davanlou et al., 1999
Davanlou et al., 1999
Davanlou et al., 1999
Wulff ez al., 1998
McQuilken ez al., 1998
Holmes et al., 1998
Al-Rawahi and Hancock, 1998
Davanlou et al., 1999
Cartwright and Spurr, 1998
Ross et al., 1998

Harris and Adkins, 1999
Engelkes et al., 1997
Lewis et al., 1998
Ahmed et al., 1999

da Luz et al., 1998

Woo et al., 1999

Woo et al., 1999

Lo et al., 1998

Lewis et al., 1998
Menendez and Godeas, 1998
Migheli et al., 1998
Lewis et al., 1998

Koch, 1999

Koch, 1999

Lewis et al., 1998

Mao et al., 1997
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Antibiosis

Although production of antibiotics by fungi involved in
biocontrol is a well-documented phenomenon (Howell,
1998; Sivasithamparam and Ghisalberti, 1998), there is
little recent work clearly demonstrating production of
antibiotics by fungi in the rhizosphere and spermosphere.
Unlike the situation with biocontrol bacteria, there
appear to be no detailed studies in biocontrol fungi of
genes coding for antibiotic synthesis. Mutants with raised
or decreased production of antibiotics are either natural
spontaneous ones or generated by UV or chemical
mutagenesis, with inherent problems of pleiotropic gene
effects, rather than targeted gene disruption (Howell and
Stipanovic, 1995; Graeme-Cook and Faull, 1991; Wilhite
et al., 1994; Fravel and Roberts, 1991). Consequently,
clear identification and understanding of the role of
antibiotics in disease control lags far behind that in
bacteria and needs to be addressed.

Antibiotic production by fungi exhibiting biocontrol
activity has most commonly been reported for isolates of
Trichoderma/Gliocladium (Howell, 1998) and Talaromyces
flavus (Klocker) Stolk & Samson (Kim ez al., 1990; Fravel
and Roberts, 1991) although in the last few years anti-
biotics have been at least partially characterized in
Chaetomium globosum (Kunze) (Di Pietro et al., 1992).
Minimedusa polyspora (J. W. Hotson) Weresub & Le
Clair (Beale and Pitt, 1995) and Verticillium biguttatum
Gams (Morris et al., 1995). Of particular interest
are those studies where antibiotic production has a
definite link to biocontrol. For example, Trichoderma
(Gliocladium) virens (J. Miller, Giddens & Foster) von
Arx comprises P and Q group strains, based on their
antibiotic profiles (Howell, 1999). Strains of P group
produce the antibiotic gliovirin which is active against
Pythium ultimum but not against Rhizoctonia solani
AG-4. Strains of the Q group produce the antibiotic
gliotoxin which is very active against R. solani but less
so against P. ultimum. In seedling bioassay tests, strains
of the P group are more effective biocontrol agents of
damping-off on cotton caused by Pythium, while those
from the Q group are more effective as biocontrol agents
of damping-off incited by R. solani (Howell, 1991;
Howell et al., 1993). Thus there is strong circumstantial
evidence for a role for antibiotics in biocontrol in this
experimental system. This has been confirmed in a
zinnia—Pythium system where 7. virens G-20 incorpor-
ated into soil and potting mix resulted in disease suppres-
sion clearly associated with maximum accumulation of
gliotoxin in the medium (Lumsden and Locke, 1989;
Lumsden et al., 1992a, b). Gliotoxin minus mutants
displayed only 54% of the Pythium disease suppressive
activity in zinnia compared with the wild-type (Wilhite
et al., 1994). Gliotoxin production by Trichoderma is
also thought to be responsible for cytoplasmic leakage

from R. solani observed directly on membranes in potting
mix (Harris and Lumsden, 1997).

Production of hydrogen peroxide in the rhizosphere,
catalysed by glucose oxidase from Talaromyces flavus
is thought to be responsible for the biocontrol of
Verticillium wilt caused by Verticillium dahliae Kleb. on
eggplant (Solanum tuberosum L.) (Stosz et al., 1996).
Purified glucose oxidase significantly reduced the growth
rate of V. dahliae in the presence, but not the absence, of
eggplant roots, suggesting that a supply of glucose from
the roots was of major importance (Fravel and Roberts,
1991). Further, a single-spored variant, Tf-l-np, which
produced 2% of the level of glucose oxidase activity of the
wild-type did not control Verticillium wilt on eggplant
in non-sterile field soil in a glasshouse experiment,
whilst the wild-type provided significant control (Fravel
and Roberts, 1991). Glucose oxidase also suppressed
growth of V. dahliae in vitro and killed microsclerotia
of V. dahliae in vitro and in soil.

Induced resistance

As with bacteria described earlier, the ability of fungi
to induce resistance in plants and provide biocontrol
has gradually been receiving more attention in the last
few years. A considerable number of fungi previously
described to provide biocontrol by mechanisms such as
competition, antibiosis, mycoparasitism or direct growth
promotion are now thought to provide control, at least in
part, by this mechanism. These include saprotrophs such
as non-pathogenic Fusarium isolates (Hervas et al., 1995;
Larkin et al., 1996; Postma and Luttikholt, 1996; Fuchs
et al., 1997, 1999; Duijff et al., 1998; Larkin and Fravel,
1999), Trichoderma species (Yedidia et al., 1999), Pythium
oligandrum (Benhamou et al., 1997; Rey et al., 1998), non-
pathogenic binucleate Rhizoctonia isolates (Poromarto
et al., 1998; Xue et al., 1998; Jabaji-Hare et al., 1999), and
Penicillium oxalicum Currie & Thom (de Cal et al., 1997)
as well as mutualistic biotrophs such as mycorrhizal fungi
(Volpin et al., 1995; Dugassa et al., 1996; Morandi, 1996;
St Arnaud et al., 1997).

However, not all these studies used the strict cri-
terion of spatial separation between application of the
biocontrol fungus and the challenging pathogen to
define induced resistance. Indeed, some simply meas-
ured changes in enzymes, PR-proteins or cell wall charac-
teristics found to be induced in plants through SAR
(described earlier) without involvement of a pathogen at
all (Volpin et al., 1995; Morandi, 1996; Yedidia et al.,
1999; Rey et al., 1998). Certainly with some mycorrhizal
fungi it has been questioned whether the biochemical
responses similar to induced resistance found following
infection are of sufficient magnitude or quality, or too
transient, to provide disease control (Dumas-Gaudot
et al., 1996; Morandi, 1996; Mohr et al., 1998). Indeed,



during some mycorrhizal syntheses there is little or
no induced resistance response detected (Mohr et al.,
1998). However, spatial or temporal separation experi-
ments have indicated that increased levels of chitinases,
B-1,3 glucanases, B-1,4 glucosidase, PR-1 protein, and
peroxidase as well as cell wall appositions and phenolics
may be associated with induced resistance due to fungi
(Benhamou et al., 1997; Fuchs et al., 1997, Duijff
et al., 1998; Xue et al., 1998; Jabaji-Hare et al., 1999).
Nevertheless, more work is needed to identify the
biochemical changes taking place in a larger number of
fungal-plant combinations as not all these biochemical
markers were found to be important in each system
examined. Further, there appear to be differences in the
quality of the induced resistance found between bacteria
and on fungi on the same plant. For example, the
suppression of Fusarium wilt (F. oxysporum f. sp.
lycopersici) (Sacc.) Snyder & Hansen on tomato by
Pseudomonas  fluorescens WCS417r did not involve
production of PR-1 protein and chitinases whereas that
induced by F. oxysporum Fod7 did (Duijff et al., 1998).
Again more work in this area is required to determine the
extent of differences in induced resistance produced by
bacteria and fungi.

The elicitors responsible for inducing resistance are
not known in detail. Trichoderma species produce a
22 kDa xylanase that, when injected in plant tissues,
will induce plant defence responses including K, H™
and Ca’* channelling, PR protein synthesis, ethylene
biosynthesis, and glycosylation and fatty acylation of
phytosterols (Bailey and Lumsden, 1998). However,
whether such a system is active in roots exposed to
Trichoderma is not known. Pectic oligogalacturonides
released after hydrolysis by a non-pathogenic binucleate
Rhizoctonia isolate may act as elicitors of defence
responses in bean (Phaseolus vulgaris L.) (Jabaji-Hare
et al., 1999).

Dose-response experiments involving non-pathogenic
Fusarium species to control F. oxysporum on tomato have
indicated that induced resistance is not an all or nothing
response (Larkin and Fravel, 1999). By varying the level
of inoculum of the inducing strain and the pathogenic
isolate in soil, it was shown that some non-pathogenic
isolates such as Fusarium CS-20 controlled Fusarium wilt
effectively with antagonist levels of only 100 chlamydo-
spores g ' of soil (cgs) with pathogen densities of up
to 10° cgs. In contrast, isolate Fo47 was effective only
at antagonist densities of 10*-10° cgs, regardless of
pathogen density. Subsequent mathematical modelling
provided evidence that CS-20 control was largely
through induced resistance whereas Fo47 was active
primarily through competition for nutrients (Larkin and
Fravel, 1999). Similar dose-response effects were found
with non-pathogenic isolate of F. oxysporum f. sp. ciceris
(Padw.) Matuo & Sato and non-pathogenic isolates
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of F. oxysporum to control wilt of chickpea (Cicer
arietinum L.) caused by pathogenic F. oxysporum f. sp.
ciceris (Hervas et al., 1995). However, in addition, the
plant genotype also seemed to influence the degree of
resistance induced.

Mycoparasitism

There is a huge literature on the ability of fungi to
parasitize spores, sclerotia, hyphae, and other fungal
structures and many of these observations are linked with
biocontrol (Jeffries and Young, 1994; van den Boogert
and Deacon, 1994; Madsen and de Neergaard, 1999;
Mischke, 1998; Al-Rawahi and Hancock, 1998; Davanlou
et al., 1999). However, most of the microscopical observa-
tions concerning mycoparasitism have come from in vitro
studies or sterile systems (Benhamou and Chet, 1996,
1997; Inbar et al., 1996; Cartwright et al., 1997; Benhamou
et al., 1999; Davanlou et al., 1999) and examples clearly
demonstrating mycoparasitism in the rhizosphere or
spermosphere are rare (Lo ef al., 1998). However, indirect
population dynamic studies showed that mycelium of
Rhizoctonia solani in the rhizosphere of potato was
a prerequisite for development of the mycoparasite
Verticillium biguttatum (van den Boogert and Velvis,
1992) and rhizosphere competence was strongly related
to biocontrol in mycoparasite isolates of Trichoderma
species (Sivan and Harman, 1991; Peterbauer et al., 1996;
Thrane et al., 1997, Harman and Bjorkman, 1998).

The process involved in mycoparasitism may consist of
sensing the host, followed by directed growth, contact,
recognition, attachment, penetration, and exit. Although
not all these features occur in every fungal-fungal inter-
action, the key factor is nutrient transfer from host to
mycoparasite. Directed growth of hyphae of Trichoderma
to hyphae of Rhizoctonia solani prior to penetration has
often been observed (Chet et al., 1981) and the presence of
host sclerotia have been shown to stimulate germination
of conidia of Coniothyrium minitans Campbell (Whipps
et al., 1991) and Sporidesmium sclerotivorum Uecker,
Adams & Ayers (Mischke et al., 1995; Mischke and
Adams, 1996). However, the factors involved in control-
ling directed growth in these systems have not been fully
characterized. Similarly, the factors controlling recogni-
tion and binding between fungal host and parasite are not
yet clear. This process may involve hydrophobic inter-
actions or interactions between complementary molecules
present on the surface of both the host and the myco-
parasite such as between lectins and carbohydrates. With
Trichoderma, there is good evidence of lectin production
by both parasite and host Corticum (Sclerotium) rolfsii
Curzi and involvement of lectins in the differentiation of
mycoparasitism-related structures (Inbar and Chet, 1994;
Neethling and Nevalainen, 1995). Recently, both hydro-
phobic characteristics and surface carbohydrate moieties
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have been investigated in the mycoparasite C. minitans
as a prerequisite to examining the interaction with its
host Sclerotinia sclerotiorum (Lib.) de Bary (Smith
et al., 1998, 1999). Little is known of the signalling
pathways following recognition of the host. However,
preliminary evidence in Trichoderma harzianum indic-
ates that the signal is transduced by heterotrimeric G
proteins and mediated by cAMP (Omero et al., 1999).
As penetration or cell wall degradation are frequently
observed during mycoparasitism, great emphasis has been
placed on characterizing and cloning the extracellular
enzymes such as B-1,3 glucanases, chitinases, cellulases,
and proteases produced by fungal biocontrol strains
(Haran et al., 1996a; Peterbauer et al., 1996; Archambault
et al., 1998; Deane et al., 1998; Vazquez-Garciduenas
et al., 1998). By manipulating their activity through con-
struction of ‘overproducing’ mutants, enzyme-negative
mutants or even transgenic plants expressing the enzyme,
a role for their production in biocontrol has been implied.
Several fungi have been examined in this way including
Talaromyces flavus (Madi et al., 1997), but this type of
work has essentially focused on Trichoderma species. For
example, a series of transformants of 7. longibrachiatum
Rifai were constructed with extra copies of egll gene
encoding the production of B-1,4 endoglucanase (Migheli
et al., 1998). When applied to cucumber seeds sown in
Pythium ultimum-infested soil, the transformants with
inducible or constitutive expression of egl/ were generally
more suppressive than the wild type strain. In this case, it
was suggested that P. ultimum was controlled through the
action of B-1,4 glucanase degrading the cellulose of the
cell wall of the pathogen. Similarly, transformants of
T. harzianum, overproducing proteinase encoded by prbl,
provided up to a 5-fold increase in control of damping-off
in cotton caused by Rhizoctonia solani (Flores et al.,
1996). Interestingly, the best protection was provided by
a strain which produced only an intermediate level of
proteinase activity and it was suggested that very high
levels of proteinase production might cause degrada-
tion of other enzymes which are important in the
mycoparasitic process (Flores et al., 1996). In this
regard, chitinases have received the greatest attention in
mycoparasitism. Numerous studies have been made of -
N-acetylhexosaminidase (EC 3.2.1.52) (which splits
the chitin polymer into N-acetylglucosamine monomers
in an exo-manner), endochitinase (EC 3.2.1.14) (which
cleaves randomly at internal sites over the entire length
of the chitin microfibril) and chitin 1,4-B-chitobiosidase
(exochitinases or chitobiosidases) (which releases diacet-
ylchitobiose in a stepwise fashion such that no mono-
saccharides or oligosaccharides are formed) (Haran
et al., 1996a; Schickler et al., 1998; Lorito, 1998). For
example, transformants of T. harzianum CECT 2413
that over-expressed on 33 kDa endochitinase (chit33)
were more effective in inhibiting the growth of

Rhizoctonia solani in vitro compared with the wild type
(Limon et al., 1999).

The combination of chitinases as well as other cell
wall-degrading enzymes differ between species and strains
(Lorito, 1998) and chitinases are differently expressed
during mycoparasitism (Haran et al., 1996b; Mach
et al., 1999; Zeilinger et al., 1999). For example, an
N-acetylhexosaminidase (CHIT 102) was the first to be
induced in 7. harzianum T-Y, but as early as 12 h after
contact with its host Sclerotium rolfsii, its activity dimin-
ished, while that of another N-acetylhexosaminidase
increased (Haran er al. 1996b). In contrast, when
Rhizoctonia solani was the host, CHIT 102 was stimulated
along with three endochitinases within 12 h following
contact but, as the interaction proceeded, CHIT 102
activity decreased and that of the endochitinases increased
(Haran et al., 1996b). In T. (atroviride) harzianum P1,
expression of endochitinase eci42 occurred before contact
with the host R. solani when a N-acetylhexosaminidase
nagl was not induced until after contact (Zeilinger et al.,
1999). Degradation products of the cell wall were
considered to act as inducers of these enzymes in this
host-pathogen system. Interestingly, when examining
T. harzianum P1 interaction with Botrytis cinerea Pers.,
ech42 gene transcription was found to be triggered by
physiological stress reflecting carbon source depletion
rather than the presence of chitin as the inducer (Mach
et al., 1999). Significantly, ech42 minus mutants did
not reduce biocontrol activity against Pythium ultimum
or S. rolfsii and appeared to enhance activity against
R. solani, suggesting that expression of this gene in
T. harzianum P1 was not directly important for the
biocontrol of these fungi (Woo et al., 1999; Carsolio et al.,
1999). In contrast, activity against B. cinerea was
impaired, clearly indicating that the mechanism involved
in antagonistic interactions with 7. harzianum P1 differs
with host, and is unlikely to depend solely on the
production of a single cell wall-degrading enzyme.
Indeed, evidence from studies involving combinations of
purified cell wall-degrading enzymes and antibiotics
from Trichoderma species support this idea (Lorito,
1998; Schirmbock et al., 1994).

The final evidence for a role for cell wall-degrading
enzymes in biocontrol involves the expression of fungal
genes in transgenic plants. For example, an endochitin-
ase from Trichoderma harzianum has been transformed
into tobacco and potato and the transgenic plants
showed a high level of resistance to a broad spectrum of
diseases (Lorito, 1998). Similarly, transgenic apple trees
expressing an endochitinase from 7. harzianum also
exhibited increased resistance to apple scab caused by
Venturia inaequalis (Cooke) Winter, although plant
growth was reduced (Bolar et al., 2000). The potential
consequently exists to combine different enzymes in
transgenic plants to obtain synergistic biocontrol and



these experiments are underway (Lorito, 1998; Bolar
et al., 2000).

One feature often overlooked with mycoparasitism is
that it may not always be confined to control of plant
pathogens. A mycoparasite may also have the potential to
attack beneficial fungi such as those forming mycorrhiza.
For example, T. harzianum T-203 was shown to attack
mycelium of the arbuscular mycorrhizal fungus Glomus
intraradices in an axenic system (Rousseau er al.,
1996). However, in a soil-based system, G. intraradices
was unaffected by the presence of 7. harzianum T3a.
Indeed T. harzianum appeared to be suppressed through
nutrient competition (Green et al., 1999). In contrast, in
a different in vitro system, soluble material obtained
from G. intraradices mycelium stimulated conidial ger-
mination of 7. harzianum, but not that of the patho-
gen F. oxysporum f. sp. chrysanthemi G. M. & J. K.
Armstrong & Littrell (Filion et al., 1999). These results
may reflect the different isolates of fungi and plants
used, and the experimental systems applied, but they
clearly demonstrate the complexity of the interactions
that can occur in the rhizosphere.

Plant growth promotion and rhizosphere competence

The terminology associated with biocontrol in the rhizo-
sphere and with soil-plant-microbe interactions has
gradually become more complex through the use of a
range of descriptive rather than mechanistic terms such
as plant growth promotion and rhizosphere competence.
Much like the situation with PGPR, many saprotrophic
fungi, particularly certain isolates of Trichoderma species,
can provide plant growth promotion in the absence of any
major pathogens (Whipps, 1997a; Inbar et al., 1994). In
many cases these studies are restricted to simple observa-
tions of improved plant growth with no indication of the
possible mechanisms involved, although there are excep-
tions. For example, Trichoderma harzianum 1295-27
was shown to solubilize phosphate and micronutrients
that could be made available to provide plant growth
(Altomare et al., 1999). This situation is compounded
by the fact that many proven fungal biocontrol
agents including some Trichoderma species, binucleate
Rhizoctonia isolates and Pythium oligandrum can provide
improved plant growth in the absence of pathogens
(Chang et al., 1986; Windham et al., 1986; Shivanna et al.,
1996; Wulff et al., 1998; Harris, 1999). Further, colon-
ization of the surface of the seeds or roots or behaviour as
endophytes has frequently been seen to be a desirable trait
for biocontrol activity (Kleifeld and Chet, 1992; Harman
and Bjorkman, 1998) and although there is a clear
relationship between rhizosphere colonization and bio-
control activity with some isolates of biocontrol fungi
such as Trichoderma species, non-pathogenic Fusaria,
P. oligandrum, Verticillium biguttatum, and Talaromyces
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flavus (Ahmad and Baker, 1988; Couteadier et al., 1993;
van den Boogert and Velvis, 1992; Al-Rawahi and
Hancock, 1997; Lo et al., 1996; Tjamos and Fravel,
1997; Nagtzaam and Bollen, 1997; Bjorkman ef al., 1998),
this is not always the case. Indeed transient plant growth
inhibition following application of some biocontrol agents
to seeds or roots is known (Wulff et al., 1998; Bailey and
Lumsden, 1998). Consequently, it is important to appreci-
ate that just because a microorganism can grow in the
rhizosphere or spermosphere, it may not automatically
provide biocontrol or plant growth promotion. Similarly,
the converse is true. A proven biocontrol agent of a
soil-borne plant pathogen may not always be capable
of colonizing the rhizosphere or providing plant growth
promotion.

The situation is much clearer with mycorrhizal fungi
where, through ecologically mutualistic symbiosis with
the plant, the major feature involves improving plant
nutritional status, perhaps water balance and thus plant
growth. Biocontrol of plant pathogens is generally viewed
as a secondary role (Hooker et al., 1994). Interestingly, a
non-mycorrhizal endophytic fungus Piriformospora indica
Verma, Varma, Kost, Rexer and Franken has recently
been shown to promote growth of a range of plant
species (Varma et al., 1999) and it would be valuable
to understand the mechanisms of action.

The factors controlling rhizosphere competence are
unclear. It has been suggested that ability to produce
cellulases and thus utilize substrates available in the
rhizosphere may be an important feature (Baker, 1991).
However, UV mutants of Trichoderma harzianum lacking
cellulase production were found to have enhanced rhizo-
sphere competence whereas two cellulase overproducers
were found not to colonize the rhizosphere of bean plants
(Melo et al., 1997). In a different system, both pathogenic
and non-pathogenic Fusarium oxysporum populations
exhibited their own characteristic growth and develop-
ment features, as well as nutritional competence, which
were not related to the ability to grow in the rhizosphere
or to infect roots of tomato (Steinberg et al., 1999a, b).
Factors controlling rhizosphere competence deserve
further study.

Multiple microbial interactions

The majority of interactions considered so far concern
a single pathogen and a single biocontrol agent in the
rhizosphere. However, one way of improving biocontrol
in the rhizosphere may be to add mixtures or combina-
tions of biocontrol agents, particularly if they exhibit
different or complementary modes of action or abilities
to colonize root microsites. Such multiple interactions
are the normal situation in the rhizosphere. Numerous
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permutations have been considered, including com-
binations of different bacteria, fungi and both bacteria
and fungi. For example, a seed application of a combina-
tion of three PGPR, Bacillus pumilus Meyer & Gothell,
Bacillus subtilis (Ehrenberg) Cohn and Curtobacterium
Aaccumfaciens (Hedges) Collins & Jones provided
greater control of several pathogens on cucumber
(Cucumis sativa L.) than when any were inoculated
singly (Raupach and Kloepper, 1998), combinations of
Paenibacillus sp. and a Streptomyces sp. suppressed
Fusarium wilt of cucumber better than when either
was used alone (Singh et al, 1999) and a combina-
tion of Pseudomonas fluorescens and Stenotrophomonas
maltophila improved protection of sugar beet against
Pythium-mediated damping-off in comparison with either
applied individually (Dunne et al., 1998). Combinations
of fungi and bacteria have also been shown to provide
enhanced biocontrol. For instance, Trichoderma koningii
Oud. combined with either Pseudomonas chlororaphis
30-84 or P. fluorescens Q2-87 provided greater suppres-
sion of take-all of wheat than T. koningii alone (Duffy
et al., 1996), Trichoderma (Gliocladium) virens GL-3 com-
bined with Burkholderia cepacia (Burkholder) Yabunchi
et al. provided stands of pepper (Capsicum annuum L.)
greater protection than either antagonist used alone in
the presence of a mixture of up to four soil-borne patho-
gens (Mao et al., 1998) and non-pathogenic Fusarium
oxysporum Fod47 combined with Pseudomonas putida
WCS358 provided better suppression of Fusarium wilt
of flax (Linum usitassimum L.) caused by F. oxysporum
f. sp. lini (Bolley) Snyder & Hansen than either alone
(Duijff et al., 1999). In the latter study, a high population
density of Fo47 was important for disease control in
general. Only when Fo47 was present at low population
density was enhanced activity of the combination seen.
Enhanced plant growth promotion has also been recorded
in the absence of pathogens by applications of combina-
tions of bacterial or fungal plant growth promoting
microorganisms. For example, Trichoderma aureoviride
Rifai inoculated with the arbuscular mycorrhizal fungus
Glomus intraradices enhanced growth of Citrus reshni
more than the G. intraradices used alone (Camprubi
et al., 1995).

However, it is important when considering the use
of mixtures or combinations of strains that no member
of the mixture is inhibitory to another or interferes
excessively with the existing, normal and non-pathogenic
microbiota associated with the roots. Certainly there are
examples of combinations of different bacteria or fungi
providing no better or, in some cases, worse plant growth
promotion or biocontrol than the isolates used singly
(Chiarini et al., 1998; Larkin and Fravel, 1998; de Boer
et al., 1999). Similarly, a combination of Bacillus subtilis
and non-pathogenic Fusarium oxysporum did not provide
control of Fusarium wilt of chickpea (F. oxysporumi f. sp.

ciceris) whereas either applied alone did (Hervas et al.,
1998). Several biocontrol agents including isolates of
Pseudomonas, Gliocladium and Trichoderma species have
been shown to have little or no adverse effect on
establishment and function of arbuscular mycorrhizas
(Paulitz and Linderman, 1989, 1991; Calvet et al., 1989;
Edwards et al., 1998) although there are reports of
adverse effects of some isolates of Trichoderma and
Streptomyces griseoviridis Anderson et al. on arbuscular
mycorrhiza formation (Wyss et al., 1992; McAllister et al.,
1994). Clearly, the complex interactions that can take
place in the rhizosphere between biocontrol agents and
the indigenous microbiota needs to be considered during
development of commercial microbial products.

Conclusions and future considerations

This review has focused on recent research concerning
interactions between biocontrol agents and pathogens in
the rhizosphere and a large number of differing types
of interaction operating through a variety of modes of
action have been identified. Greatest interest recently has
concerned the phenomenon of induced resistance as the
molecular tools for its study became available and more
work in this area is clearly justified. Several other areas
requiring further work have been highlighted in the text,
and in addition, there are a few other topics that could
develop further in the future. For example, the concept of
breeding plants to improve the effectiveness of biocontrol
agents or plant growth promoting microbes appears
to be a novel approach (Smith ez al., 1997; Smith and
Goodman, 1999). This idea has been tested using math-
ematical modelling systems whereby the relative influence
of host plant, pathogen and biocontrol agent could be
partitioned (Smith ez al., 1997). A tomato pathogen
(Pythium species) and biocontrol agent (Bacillus cereus
Frankland & Frankland UWS8S5) combination was the
experimental system used but could easily be adapted to
other plant-microbe combinations to extend these studies
further. Statistical procedures have also been devised
using other systems which allow separation of direct
growth promotion effects of a biocontrol agent from
that effect obtained by disease control, using data from
factorial experiments in which biocontrol agents were
applied in the presence or absence of pathogens (Larkin
and Fravel, 1999; Ryder et al., 1999). Mathematical
modelling has also been used to predict the behaviour
of epidemics of soil-borne pathogens in populations of
plants, in the presence of a biocontrol agent, based on
a simple, single plant system (Bailey and Gilligan, 1997).
These examples indicate the potential of modelling
approaches in general for predicting the outcome of
interactions in the rhizosphere.

Integration of biological and chemical control systems
may also be an approach that receives more attention in



the future. If pesticide tolerant isolates of biocontrol
agents could be used to reduce the application of pesti-
cides then an environmental benefit would ensue. Thus,
combined treatment of rosemary (Rosemarinus officinalis
L.) with the biocontrol agent Laetisaria arvalis Burdsall
and an experimental fungicide CGA 173506 at one-half
the recommended rate reduced Rhizoctonia disease more
than treatment with either fungus or fungicide alone
(Conway et al., 1997). Several other combinations of bio-
control agents and pesticides have been tested and others
are under development (Harris and Nelson, 1999; Budge
and Whipps, 2001).

Another area that has been largely neglected is the role
of soil fauna in the interaction between biocontrol agents
and plant pathogens in the rhizosphere. Often soil fauna
are studied in isolation from microorganisms and the
significance of this is only just beginning to be appre-
ciated. For instance, sclerotia of Sclerotinia sclerotiorium
which had been grazed by the larvae of the fungus
gnat Bradysia coprophila Lintner were degraded rapidly
in soil infested with Trichoderma hamatum (Bon.)
Bain (Gracia-Garza et al., 1997). Larval damage altered
the sclerotia both physically and chemically, enhanc-
ing the activity of 7. hamatum. In other studies, both
collembolans and mites were shown to transmit conidia of
the mycoparasite Coniothyrium minitans between sclerotia
of S. sclerotiorum in soil (Williams et al., 1998a, b).

Finally, perhaps the greatest interest in the future lies
with the application of modern molecular techniques and
their integration with conventional experimental pro-
cedures to understand and utilize soil-plant-microbe
interactions. The significance of these techniques has
already been described with the monitoring of biocontrol
agents and their impact on microbial populations, in the
construction of Agrobacterium radiobacter K1026, and in
understanding the modes of action of biocontrol agents,
particularly with induced resistance in plants. Further,
much effort has gone into developing transgenic bacteria
and fungi expressing genes that provide enhanced bio-
control activity, and in transgenic plants expressing genes
that provide disease resistance, while also allowing a
greater understanding of the mechanisms operating in the
rhizosphere. With environmental concerns and existing
legislation, it remains to be seen whether transgenic
micro-organisms and plants for disease control become
universally accepted both as research tools and as
commercial products.
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