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Abstract

Background: Mosquito larval control may prove to be an effective tool for incorporating into

integrated vector management (IVM) strategies for reducing malaria transmission. Here the efficacy

of microbial larvicides against Anopheles gambiae s.l. was tested in preparation for a large-scale

larviciding programme in The Gambia.

Methods: The impact of water-dispersible (WDG) and corn granule (CG) formulations of

commercial Bacillus sphaericus strain 2362 (Bs; VectoLex®) and Bacillus thuringiensis var.israelensis

strain AM65-52 (Bti; VectoBac®) on larval development were tested under laboratory and field

conditions to (1) identify the susceptibility of local vectors, (2) evaluate the residual effect and re-

treatment intervals, (3) test the effectiveness of the microbials under operational application

conditions and (4) develop a method for large-scale application.

Results: The major malaria vectors were highly susceptible to both microbials. The lethal

concentration (LC) to kill 95% of third instar larvae of Anopheles gambiae s.s. after 24 hours was

0.023 mg/l (14.9 BsITU/l) for Bs WDG and 0.132 mg/l (396 ITU/l) for Bti WDG. In general Bs had

little residual effect under field conditions even when the application rate was 200 times greater

than the LC95. However, there was a residual effect up to 10 days in standardized field tests

implemented during the dry season. Both microbials achieved 100% mortality of larvae 24–48 hours

post-application but late instar larvae were detected 4 days after treatment. Pupae development

was reduced by 94% (95% Confidence Interval = 90.8–97.5%) at weekly re-treatment intervals.

Field tests showed that Bs had no residual activity against anopheline larvae. Both microbials

provided complete protection when applied weekly. The basic training of personnel in identification

of habitats, calibration of application equipment and active larviciding proved to be successful and

achieved full coverage and control of mosquito larvae for three months under fully operational

conditions.

Conclusion: Environmentally safe microbial larvicides can significantly reduce larval abundance in

the natural habitats of The Gambia and could be a useful tool for inclusion in an IVM programme.

The costs of the intervention in this setting could be reduced with formulations that provide a

greater residual effect.
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Background
At the start of the new millennium malaria is still deeply
entrenched in Africa and effective malaria control is under
threat from drug and insecticide resistance [1,2]. In
response to that, mosquito larval control has recently
received renewed attention by the international scientific
community [3-11] and recent attempts to develop inte-
grated vector management (IVM) strategies for different
eco-epidemiological settings re-consider mosquito larval
control as one of the tools to reduce malaria transmission
[12].

Promising new formulations of the microbial larvicides
Bacillus sphaericus (Bs) and B. thuringiensis var. israelensis

(Bti) have recently been shown to give excellent control of
the major vectors of malaria in Africa [4,13]. Use of these
biological control agents is better than chemical larvicides
since they are very species specific, environmentally safe
[14] and appear not to induce resistance when used
together [15]. It is envisaged that the utilization of such
biological control agents may be best carried out using a
vertical approach that actively involves local communities
[10,16].

The national strategy for malaria control in The Gambia
includes larval control [17], yet there has been no detailed
evaluation of this methodology. Whilst Bs and Bti have
been tested in different ecological settings in Africa [4,18-
22], the riparian habitats found in The Gambia represent
a novel habitat for investigating these microbials. In the
presented study the efficacy of microbial larvicides was
tested against malaria vectors in The Gambia, West Africa,
to identify the optimal formulations, dosages and applica-
tion methods in order to prepare for a large-scale larvicid-
ing programme.

Methods
Study area

The Gambia is in the southern Sahel and is characterized
by a single rainy season from June to October. The country
lies in an area of open flat Sudan savannah that is domi-
nated by the River Gambia, a large, slow moving water-
way, characterized by tidal movements and saltwater
intrusions as far as 200 km up river. River Gambia is rep-
resentative of many large river systems in Africa. Its tidal
movements flood successive belts of vegetation from the
mangrove forest through flooded Phragmites, sedge and
grass species, punctuated by large bands of barren flood-
plain. The tidal movement of the river and its flooding
during the rainy season creates suitable breeding habitats
for malaria vectors [23,24].

The study was based in and around Farafenni town (UTM
zone 28 1500200mN, 435500mE), in the central part of
the country, about 100 km from the coast (Figure 1). Lab-

oratory and standardized field tests were carried out at
Farafenni Field Station of the Medical Research Council
(MRC) Laboratories. Field tests were implemented near
Tamba-Koto village, 10 km east of Farafenni. The area is
predominantly flat farmland and woodland savannah.
The main inland crops are sorghum, millet, groundnut
and pumpkin and in the floodplains swamps rice is grown
during the rainy season. The villages in the area are dis-
crete clusters of houses and are not scattered as seen in
many parts of Africa. The primary malaria vectors are
Anopheles gambiae sensu stricto, Anopheles arabiensis and
Anopheles melas [23,25].

Climate

Data on daily minimum and maximum temperatures
were available from the meteorological station at Kaur 30
km from Farafenni town. Rainfall was collected with a
rain gauge at the MRC station, Farafenni.

Larvicides

Water-dispersible granular formulations (WG/WDG) of
the commercial strains of Bs (VectoLex® strain 2362, Lot
number 115-498-PG, 650 International Toxic Units, ITU/
mg) and Bti (VectoBac® strain AM65-52; Lot number 114-
114-32, 3000 ITU/mg; Valent BioSciences Corporation,
Illinois, USA,) were tested in the laboratory and under
field conditions, in a similar manner to that described by
Fillinger et al. [13] in Kenya, in order to make direct com-
parisons between west and east Africa. WG/WDG formu-
lations were applied as liquid with handheld or knapsack
sprayers. Bs (VectoLex®, Lot number 117-999-NB, 50 ITU/
mg) and Bti (VectoBac®, Lot number 131-661-NB, 200
ITU/mg) corn granule (CG) for hand application or
motorized granule spreaders was evaluated under field
conditions only.

Laboratory assays

Laboratory assays were conducted to assess the suscepti-
bility of the principal malaria vector in The Gambia, An.

gambiae s.s., to microbial larvicides. Laboratory assays
were carried out with a colony of insectary-reared larvae
originated derived from wild-caught mosquitoes collected
from Saruja in The Gambia and maintained at the MRC
Laboratory in Farafenni since 2002. All mosquito larvae
used in the laboratory experiments were reared at a room
temperature of 28°C, 80% relative humidity and an
approximate 12 hour light : 12 hour dark cycle. Larvae
were reared in transparent, 1.5 L capacity plastic contain-
ers (24 × 17 × 8 cm) filled with 1 L tap water that had been
left in the insectary for at least 48 hours to equilibrate. Lar-
vae were fed by adding a pinch of crushed Tetramin®

(Tetra, Germany) fish food spread evenly on the water sur-
face twice daily.
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Assays were performed with the WG/WDG formulation of
VectoLex® and VectoBac® to determine their minimum
effective dosages following the standard testing proce-
dures for microbial tests [14]. Fifty third instar larvae were
randomly collected for the experiment from several bowls
to compensate for size differences that could have
reflected the amount of food available [26] and trans-
ferred to new 1.5 L plastic containers filled with 1 L of the

test solution or distilled water only (control). On every
test date a fresh stock solution of 100 mg/l WG/WDG was
prepared and test aliquots made up to 1 L with distilled
water. After range finding tests [14], five to six different
test concentrations were chosen for each experiment. Test
concentrations ranged between 0.001 and 0.1 p.p.m for Bs

and between 0.001 and 0.016 p.p.m for Bti. Each experi-
ment contained an untreated control. The experiment was

Map of The Gambia, West Africa (A) and the study area (B)Figure 1
Map of The Gambia, West Africa (A) and the study area (B). The black line encloses the control, the red line the intervention 
area. The 24 sentinel sites for larval surveys are marked as stars.

A

B



Malaria Journal 2007, 6:76 http://www.malariajournal.com/content/6/1/76

Page 4 of 14

(page number not for citation purposes)

run in three replicates at the same time and the entire
experiment carried out on five occasions. Larvae were not
fed during the experiments and all tests were run at ambi-
ent temperature ranging between 21 and 34°C. Larvae
were counted and mortality scored after 24 hours. Where
mortality exceeded 10% in the controls, the experiment
was discarded and repeated.

Standardized field trials

Standardized field trials were conducted at the MRC field
station in Farafenni during the rainy (September to Octo-
ber 2004) and dry season (December 2004 to May 2005)
to identify the optimum dosages of Bs and Bti required
under field conditions and to evaluate the residual effect
and re-treatment intervals for the test microbials. Artificial
ponds were created following the experimental design of
Fillinger et al. [13]. Eighteen light blue plastic tubs (0.5 m
diameter) were buried into an open sunlit field in three
lines of six tubs (distances between tubs was approxi-
mately 2 m). The tubs were filled with approximately 6 kg
of top soil from the experimental area to provide the abi-
otic and biotic conditions suitable for mosquitoes. Tubs
were filled with tap water and maintained at a depth of 0.4
m. Overflow holes were created at the 0.4 m level and
screened with nylon netting to allow excess water to leave
the tubs during heavy rainfall and prevent larvae from
being washed over the edges. The habitats were left open
for mosquito oviposition. Experiments were imple-
mented eight to nine days after the tubs were set-up to
allow third and fourth instar larvae to develop. Water tem-
peratures during the experiments ranged between a mini-
mum of 23°C and a maximum of 40°C. Acknowledging
the hazard artificially created breeding sites present, all
habitats were carefully screened for pupae twice daily with
a dipper and visually and any pupae were removed to pre-
vent the emergence of malaria vectors.

Of the 18 artificial habitats, six served as untreated con-
trols and two treatments (six tubs each) were allocated to
the remaining 12. Treatment and control ponds were
selected randomly using a web-based randomisation tool
[27]. Treatment concentrations were calculated on the
basis of a standard water depth of 0.1 m and fixed surface
area [28,29] irrespective of the actual water depth to sim-
ulate operational procedures. Both microbial larvicides
were tested in this set up at the following concentrations:
Bs WDG at 0.5, 1.0, 2.5 and 5 mg/l (0.5, 1, 2.5 and 5 kg/
ha), and, Bti WG at 0.2 mg/l (equivalent to a surface appli-
cation of 0.2 kg/ha). Each concentration was tested in six
habitats at a time and repeated once (i.e. 12 habitats in
total). The first round of tests with Bs were implemented
during the rainy season 2004 and replicated during the
dry season 2005. Bti was tested during the cold dry season,
in December, and repeated during the hot dry season in
May (Figure 2). Liquid formulations were sprayed evenly

over the entire water surface of the habitats using a 250 ml
handheld sprayer. Each day the average number of larvae
and pupae per dip (350 ml capacity dipper, Clarke Mos-
quito Control Products, Illinois, USA) was determined by
taking five dips from four different directions of each
pond close to the edge and one from the middle. Mos-
quito larvae were classified as anophelines or culicines
and recorded as early (1st and 2nd) or late (3rd and 4th)
instars. After counting, larvae were returned to the water
and pupae removed. Treatment was done once at day 0.
The experiment was terminated when the difference
between late instar and pupae density was no longer sta-
tistically significant between control and treatment tubs. A
sub-sample of 69 Anopheles adults were allowed to emerge
from pupae collected from the control and identified
morphologically; rDNA-PCR markers were used for spe-
cies determination of adults of the An. gambiae species
complex [30].

Field trial

Based on the results from the laboratory and the standard-
ized field tests a pilot-scale field operation was designed
and implemented between August and November 2005 to
test the efficiency and life span of the larvicides under nat-
ural conditions in representative habitat types in the
floodplains of the River Gambia. The field tests served to
identify (1) the operational requirements e.g. time needed
per surface area treated, equipment and manpower
needed, (2) the optimal microbial and (3) the best formu-
lation in preparation for large-scale larviciding campaigns
scheduled for the following rainy season 2006.

Liquid (WDG) and granule (CG) formulations of both Bs

and Bti were tested. Liquids were applied using 5 L capac-
ity compression sprayers (Mesto Resistent No. 3600,
Freiberg, Germany) or 15 L capacity diaphragm knapsack
sprayers (SOLO® 475, Sindelfingen, Germany; Figure 3).
Both sprayers were operated at an average pressure of 4

Temperature (°C) and rainfall pattern (mm) during the study periodFigure 2
Temperature (°C) and rainfall pattern (mm) during the study 
period.
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bar. Corn granules were either applied by hand carrying
the granules in a 5 L bucket on a carrying strap over the
shoulder (Figure 4) or were spread with 13 L backpack
power chemical applicators (MD 150DX-13 Maruyama,
Tokyo, Japan) covering a swath width of 10–15 metres.

The pilot zone was situated 10 km east of Farafenni and
had an area of 24 km2. The area included the major breed-
ing habitats for anophelines in this region of The Gambia:
extensive rice fields, pools that were people-made and
natural, and large floodwater areas interspersed with
grass. Notably, aquatic habitats harbouring anopheline
larvae in the Gambia might be described as 'atypical'
when compared with other parts of Africa. The habitats
are water-fed primarily through the flooding of the river
and are additionally under tidal influence leading to
flooding and contraction of the habitats which are usually
shallow but can be extensive in size (Figure 3) and are
probably fairly typical for many large rivers in the Sahel.

After mapping all aquatic habitats in the pilot zone the
area was divided into an intervention and a non-interven-
tion zone (Figure 1). In the intervention zone, 6 km2 was
routinely larvicided. In each zone 12 sentinel sites were
randomly selected from the total list of habitats for meas-
uring mosquito larval density. The sentinel sites were
located in rice fields and floodwater habitats covered with
grass and sedge. Larviciding was implemented under
operational conditions by a team of four men from the
National Malaria Control Programme who had under-
gone two weeks of training prior to the field trial. The
monitoring of the intervention's impact in the 24 sentinel
sites was implemented independently by the research

team. The larviciding teams were unaware of the location
of the sentinel sites.

Bs treatments were applied at rates of 1 kg/ha for WDG
and 15 kg/ha for CG; dosages proven to be effective from
the standardized field trials and previous experiences
[4,13]. Bs WDG was tested for two consecutive weeks and
followed by Bs CG for one week. This allowed the authors
to train larviciding staff how to use different application
equipment and assess whether the two formulations per-
formed differently under field conditions. Larval density
was surveyed using the standard dipping technique [31].
Ten dips were taken at each sentinel site to determine the
larval density at the day of the first treatment (day 0) and
at day two, four and seven after treatment for three consec-
utive weeks. Purposive sampling was done to maximise
the sensitivity of collections. Re-treatments took place on
a weekly basis if late instar larvae occurred at day four.

Following the Bs field test, operational application of Bti

was evaluated at dosages of 4.0 kg/ha for CG for two
weeks, followed by WDG applications of 0.2 kg/ha for
seven weeks. Dosages were based on laboratory and field
trial results and on previous studies [4,13]. During the
application of Bti larval density was monitored once a
week in the sentinel sites using the same methodology as
described above. The monitoring was implemented one
to three days after application.

Due to the specific habitat characteristics in the tidal
floodwater of The River Gambia we covered the entire sur-
face of all aquatic habitats with larvicide.

Hand application of corn granule in highly vegetated areas of the floodplainsFigure 4
Hand application of corn granule in highly vegetated areas of 
the floodplains.

Liquid application of microbial larvicides with 15 litres capac-ity knapsack sprayers on open water surface (edge of flood-water)Figure 3
Liquid application of microbial larvicides with 15 litres capac-
ity knapsack sprayers on open water surface (edge of flood-
water).
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Analyses

LC50 and LC99 values were determined using log-probit
regression analysis. The percentage reduction in larval
mosquito densities in the standardized field trials was cal-
culated using the formula of Mulla et al. [32]: % Reduc-
tion = 100 - (C1/T1 × T2/C2) ×100, where C1 and C2

describe the average number of larvae in the control tubs
pre- and post-treatment, T1 and T2 describe the average
number of larvae in the treated tubs pre- and post-treat-
ment. Mean number of larvae and pupae per dip in con-
trol and treatment sites in field tests were compared using
non-parametric Mann-Whitney tests. The tests were
implemented separately for each sampling day comparing
mean numbers of immature stages in the controls with
treatments. When multiple comparisons of more than
one treatment and control were made the Bonferroni cor-
rection was used to define the alpha cut off value. The cor-
rected significance levels are presented with the figures. All
analyses were carried out using version 11.0 of the SPSS
statistical software package.

Ethics

Ethical approval for this study was given by the Joint
Gambian Government and Medical Research Council's
Laboratories in The Gambia, as well as Durham Univer-
sity's Ethics Advisory Committee.

Results
Climate

Figure 2 summarizes average minimum and maximum
temperatures and the monthly rainfall during the study
period from September 2004 to November 2005. The dry
season extended from November 2004 to May 2005 and
can be portioned into a 'cold dry season', from November
to February, and a 'hot dry season', from March to May.
The rainy season is characterized by more constant tem-
peratures with little difference between minimum and
maximum values. Rain fell only once during the experi-
ments on day 4 of the rainy season test of low (0.5 and 1
kg/ha) Bs WDG dosages, but did not appear to influence
the results.

Laboratory assays

After 24 hours exposure of third instar larvae of An. gam-

biae s.s. to Bs WDG (VectoLex®, 650 BsITU/mg), a concen-
tration of 0.004 mg/l (2.6 BsITU/l) caused 50% mortality
(LC50) and a concentration of 0.023 mg/l (14.9 BsITU/l)
caused 95% mortality (LC95). Bti WDG (VectoBac®, 3000
ITU/mg) concentrations of 0.039 mg/l (117 ITU/l) killed
50% of the larvae and 0.132 mg/l (396 ITU/l) 95% (Table
1).

Standardized field trials

Throughout the year, oviposition occurred soon after the
artificial habitats were set up and immature stages of

anopheline and culicine mosquitoes detected after four to
five days. Overall Anopheles larvae accounted for 40% of
larvae collected during the trials. 69 Anopheles adults that
emerged from pupae collected from the control tubs were
identified to species level. 36 Anopheles adults belonged to
the An. gambiae s.l. species complex and PCR analyses
revealed that the tubs contained a mix of An. arabiensis

(66%), An. gambiae s.s. (30%) and An. melas (4%). Since
there were no differences of the impact of the larvicides on
anophelines and culicines in the standardized field trials
the data were pooled for all analyses and presentation.

Bti WG

Field trials with Bti WG were implemented with the min-
imum dosage [33] required to cause 100% mortality
within 24–48 hours after application as identified in the
laboratory assays. Since no improvement of the impact or
activation of any residual effect was expected [34] higher
dosages were not tested after the minimum dosage of 0.2
kg/ha under standardized field conditions killed all larvae
within 48 hours and provided therefore optimum control
for the period of one week (Figure 5 and Table 2).
Although reduced late instar densities were recorded up to
eight to ten days after application (Table 2) these differ-
ences were only statistically significant up to day five (Fig-
ure 5) in both test periods. Late instar larvae and pupae
developed in increasing numbers five to six days after Bti

application. The seasons had little impact on the outcome
of the trials. Notably, pupal production could not be com-
pletely suppressed despite the well-controlled implemen-
tation of the experiment, although pupal production was
more successfully suppressed during the cold than the hot
dry season. The results indicate that weekly treatment
intervals can reduce pupae production by 64–94%. A
recent study though showed that higher rates of the WG
formulation of Bti may produce longer control since the
WG particles redistribute throughout the water column
after application (S. Krause, personal communication)
and, therefore, the effect of higher Bti WG rates on field
residual control of An. gambiae requires further study.

Bs WDG

Four different doses of Bs WDG were tested (0.5, 1.0, 2.5
and 5.0 kg/ha) and each experiment run twice to evaluate
whether any residual effect of the larvicide could be
detected which would allow extended re-treatment inter-
vals. The results of the impact of the different dosages are
presented in Figure 6 and 7. The results are shown sepa-
rately for the replicates implemented during the rainy (A)
and the dry season (B). The daily percent reduction of late
instar larvae is summarized in Table 3.

Irrespective of dosage and season 96–100% larval mortal-
ity was achieved 24–48 hours after application. No resid-
ual effect of a single Bs application was detected during
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the rainy season at any application rate tested but was
extended during the dry season for all tested dosages (Fig-
ure 5 and 6, Table 3). Statistically significant reductions in
pupae densities were achieved up to five days post-treat-
ment in the rainy season and up to 10 days during the dry
season. There were no statistically significant differences
between the different test concentrations (Figure 6 and 7).
Consequently, pupae development could be reduced by
over 95% when Bs WDG was applied at weekly intervals.
Low dosages have shown to be as effective as high dos-
ages. During the dry season similar suppression of pupae
densities could be achieved at 10-day re-treatment inter-
vals.

Field trial

Field trials were conducted in the floodplains of the River
Gambia to confirm results from standardized field set up
and to evaluate the effect of larviciding under operational
conditions. The field tests were implemented during the
rainy season which is the main malaria transmission sea-
son in The Gambia and the period with most larval habi-
tats. At the start of the field trials late instar Anopheles

larvae were found in 33% of all sentinel sites. The propor-
tion of habitats with late instar Anopheles increased in the
non-intervention sites with continuous rainfall to 67% in
October 2005. Culicine and anopheline larvae co-existed
in most of the habitats and did not show any difference in
response to the larviciding. Both sub-families have, there-
fore, been pooled for presentation and analyses.

Bs WDG and CG formulations were evaluated to detect
any residual effect of the microbial under operational
application in the field. Application took place at weekly
intervals to evaluate whether continuous application
might result in an increasing residual effect with time. The
results of the three week trial are presented in Figure 8.
100% mortality of late instar larvae was achieved two days
post-treatment at any application date irrespective of the
formulation applied. A residual effect of the microbial
which would allow re-treatment intervals greater than one
week was not detected (Figure 8), which supports the
results from the standardized field trials. Weekly applica-
tion of Bti under operational conditions (Figure 9)
achieved a consistent suppression of larval development
over the entire nine weeks study period with minimum
dosages (as identified in laboratory) irrespective of the
formulation and equipment used. Surprisingly, pupae
were not collected under field conditions in either the
intervention or control sites.

Larvicides were applied by four men from 7:00 to 13:00 (6
hours) a day. While staff worked continuously to cover
the entire study area, each habitat was spayed only once a
week. All formulations could be successfully applied
under operational conditions and were equally effective.
Different application equipment though had an impact
on the time required per surface area treated. On average
seven hectares were treated per day (0.29 ha/person/hour)
using 5 L compression sprayers or 13 L motorised granule

Table 2: Percent reduction (%) of late instar larvae (Anopheles and culicine combined) after application of Bti WDG at 0.2 kg/ha in the 

cold (Dec) and hot (May) dry season

Day after application Cold dry season Hot dry season

1 100 95

2 100 100

3 100 95

4 100 94

5 98 81

6 90 54

7 67 68

8 45 68

9 0 33

10 0 74

Table 1: Laboratory bioassays results of Bs and Bti WDG/WG against third instar larvae of Anopheles gambiae s.s. after 24 h exposure 

(lethal concentrations (LC) in p.p.m.)

WDG/WG Formulations LC50 (95% CI) LC95 (95% CI) Slope (SE) c2 (d.f.)

VectoLex (650 BsITU/mg) 0.004 (0.003<LC<0.005) 0.023 (0.016<LC<0.042) 2.208 (0.112) 123.518 (25)

VectoBac (3000 ITU/mg) 0.039 (0.033<LC<0.047) 0.132 (0.100<LC<0.199) 3.110 (0.141) 140.513 (23)

CI, confidence interval; SE, standard error; d.f., degrees of freedom
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spreaders; nine hectares were covered using 15 L knapsack
sprayers (0.38 ha/person/hour) and 5 hectares when gran-
ules were applied by hand (0.21 ha/person/hour).

Discussion
The results show that the major malaria vectors in The
Gambia are highly susceptible to Bs and Bti under labora-
tory and field conditions, with Bs even more toxic per
weight applied than Bti. The LC values found in the labo-
ratory experiments are very similar to those found in ear-
lier studies [13,35] conducted in East Africa suggesting
that the susceptibility of malaria vectors to microbial larv-

icides is inherent to the species and not to the ecological
settings of the area. Bs has shown residual activity for two
to 10 weeks in previous studies [36-39], with repeated
applications increasing the likelihood of greater residual
activity [4,40]. Larvicides with long residual activity
would be advantageous for larviciding campaigns because
less manpower and larvicide would be required, helping
to keep down costs and increase effectiveness. However,
in contrast to previous results Bs did not show extended
residual effect under field conditions in The Gambia even
after repeated treatments and when the application rate
was as high as 200 times the LC95 (5 kg/ha). Only a

Impact of Bti WDG at 0.2 kg/ha on early and late larval and pupae density in standardized field testsFigure 5
Impact of Bti WDG at 0.2 kg/ha on early and late larval and pupae density in standardized field tests. A: during cold dry season 
(Dec); B: during hot dry season (May). Daily differences in immature densities were analysed using Mann-Whitney tests at a sig-
nificance level of p < 0.05. Different letters (a, b) on bars indicate a significant difference at the specific sampling day.
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slightly extended residual effect up to 10 days could be
detected in the standardized field tests implemented dur-
ing the dry season (January to March) but not the wet sea-
son. It can be hypothesized that the different daily water
temperature profile in the experimental tubs during the
rainy season might be responsible for the reduced effect of
the microbial. Although the average air temperatures did
not differ between the experimental periods in the rainy
and dry seasons the low variation between minimum and
maximum temperatures during the rainy season (Figure
2) will have resulted in high water temperatures for longer
during the rains compared with the dry season. High
water temperatures result in faster destruction of the pro-
tein toxin [41]. The low residual activity could also be due
to the low larval density observed in the artificial and nat-
ural habitats. Bs seems to persist or recycle in some envi-
ronments because it rapidly increases its numbers in the
midgut of killed larvae [42-44]. Where larval densities
were high the residual activity of the microbial larvicides
appears to be greater [45,46]. Dead and dying larvae

release the bacteria into the water increasing the bacterial
content of the water and infecting new generations of lar-
vae.

The presence and abundance of pupae can serve as a proxy
measure for adult mosquito emergence, since pupae sur-
vive for only a few days before adult emergence. The iden-
tification of the most productive habitats for adults could
help target larviciding operations especially in the exten-
sive water surface areas of the river's floodplains. In this
study no pupae were collected in the field during the pilot
field tests. This unexpected finding may be a consequence
of the dipping technique. Although the technique is com-
monly used for studying larval ecology in Africa, it
appears to be inappropriate for sampling the very sensi-
tive and agile pupae from natural aquatic habitats, partic-
ularly in The Gambia where larval densities are generally
low consequently leading to even lower pupae densities.
This insensitivity of the sampling technique is further
compounded by the highly aggregated distribution of

Impact of low dosages of Bs WDG (0.5 and 1 kg/ha) on immature mosquito density in standardized field testsFigure 6
Impact of low dosages of Bs WDG (0.5 and 1 kg/ha) on immature mosquito density in standardized field tests. A: during rainy 
season; B: during dry season. Daily differences in immature densities were analysed using Mann-Whitney tests at a significance 
level of p < 0.017. Different letters (a, b) on bars indicate a significant difference at the specific sampling day.
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pupae in natural habitats compared to larvae [31,47,48].
Even in the tubs dipping underestimated the density of
pupae. Sweep nets may prove to be a better sampling tool
since they collect 10 times more pupae in fewer sweeps
than dips (see also [47]). Since pupae abundance is often
used for establishing the 'productivity' of habitats [8] fur-
ther studies to develop more efficient sampling protocols
are desirable.

Large-scale application of larvicides in The Gambia will be
implemented during the rainy season when the river
floods and surface water is plentiful. At the end of the wet
season over 90% of the Anopheles-containing breeding
sites dry up quickly leaving only a few dry season refugia.
For these dry season sites a targeted application of Bs

might be useful to suppress the build up of the adult pop-
ulation at the start of the rains. The results indicate that
with commercially available microbials weekly larviciding
will be necessary during the rainy season in The Gambia.
In this instance the use of Bti products is preferred since
the costs for this microbial are far lower than Bs [4] and

the development of resistance is unlikely [15,34,49]. Very
low dosages of 0.2 kg/ha (representing the LC99) lead to
optimal suppression of mosquito larvae and pupae which
is consistent with results from East Africa [4,13].

Granule and liquid formulations have proven equally
effective in killing mosquito larvae but the selection of
application equipment was important for the speed of
coverage. The 5 L compression sprayers were easier to
carry than the higher capacity sprayers, but they were
slower to use because they needed to be refilled more fre-
quently. This was exacerbated by the fact that most water
bodies in the floodplains of The Gambia are very shallow
and muddy, and, therefore, unsuitable for water collec-
tion, which led to long distances being covered to re-fill
the sprayers. Another disadvantage of the compression
sprayers was that they have to be pressurized by pumping
air into the tank before spraying which proved difficult on
the very muddy ground in the floodplains. The problem
of finding suitable water sources for mixing WDG formu-
lations and the increasing plant growth during the rainy

Impact of high dosages of Bs WDG (2.5 and 5 kg/ha) on immature mosquito density in standardized field testsFigure 7
Impact of high dosages of Bs WDG (2.5 and 5 kg/ha) on immature mosquito density in standardized field tests. A: during rainy 
season; B: during dry season. Daily differences in immature densities were analysed using Mann-Whitney tests at a significance 
level of p < 0.017. Different letters (a, b) on bars indicate a significant difference at the specific sampling day.
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season favours the application of granule formulations in
an environment like the river floodplains. Motorized
granule spreaders provided excellent coverage and proved
especially useful in areas with tall vegetation where access
on foot is impossible. However, when filled with the
microbials they weighed close to 20 kg and walking on
soft ground became difficult and, coupled with the loud
noise of the engine, made them uncomfortable for long-
term use. The relatively high purchase and running costs
of motorized spreaders (approximately $300/spreader
plus fuel costs) compared to knapsack sprayers (approxi-
mately $100/sprayer) represent another disadvantage in
resource poor African settings. Based on the pilot field
trial, it is recommended for a large-scale larviciding pro-
gramme in The Gambia to use 15 L knapsack sprayers for
all large, open water surface areas, and to use granule for-
mulations for highly vegetated areas. In the view of the
authors hand application is the preferred method for larv-
icide application because it represents a low-tech and low-
cost technology. Even though granule distribution does
not result in an even application, as that achieved with
motorized sprayers, it is easily manageable and mainte-
nance free. Nevertheless, motorized sprayers must be used
when tall vegetation dominates or access on foot is impos-
sible due to high water level or soft underground.

The basic training of larviciding personnel in identifica-
tion of habitats, calibration of application equipment and
active larviciding proved to be successful and achieved full
coverage and control of mosquitoes for three months

under fully operational conditions. To reduce labour and
management effort though it would be desirable to have
larvicides available which would express extended effi-
ciency under extreme climate conditions. Microbial larvi-
cides were chosen in this study because, in contrast to
many other larval control agents, they exhibit the highest
environmental safety to non-target organisms and appli-
cation personnel, they are very easy to handle and are
unlikely to lead to the development of resistance
[15,34,49,50]. Nevertheless, it would be useful to explore
whether greater persistence could be achieved with alter-
native products. Organophosphates, like temephos,
appear to be less useful since they rarely show much per-
sistence compared with microbials [9,51]. Moreover,
organophosphates can have a negative impact on non-tar-
get organisms [52,53] and need careful resistance man-
agement. On the other hand, the use of insect growth
regulators (IGRs), like pyriproxyfen, might prove more
advantageous [54-56]. IGRs have been highly successful
elsewhere when applied at monthly intervals, although
this was usually administered in highly confined habitats
[56,57]. Whether this residual effect could be replicated in
a highly mobile aquatic environment like the floodplains
of The Gambia needs careful evaluation. The greatest dis-
advantage of IGRs though is the difficulty in monitoring
whether they are still effective or not since larvae will
always be detected in the water and the development and
emergence of pupae needs to be observed, which repre-
sents a challenge given the difficulty of collecting any
pupae. Moreover complicated monitoring systems using

Table 3: Percent reduction (%) of late instar larvae (Anopheles and culicine combined) after application of Bs WDG in different 

dosages in the dry and rainy season

Rainy season Dry season

Day after application 0.5 kg/ha 1.0 kg/ha 2.5 kg/ha 5.0 kg/ha 0.5 kg/ha 1.0 kg/ha 2.5 kg/ha 5.0 kg/ha

1 100 100 100 100 96 96 100 100

2 100 100 96 100 100 100 100 95

3 100 100 89 68 100 100 100 100

4 100 100 68 85 100 100 100 100

5 60 44 52 55 100 100 88 100

6 59 0 86 69 76 100 96 60

7 11 0 62 2 4 68 89 84

8 9 0 74 0 40 100 91 94

9 - - 70 1 54 54 58 97

10 - - 36 0 0 17 60 86

11 - - - - 0 0 4 75

12 - - - - 0 48 0 70

13 - - - - 0 0 0 54

14 - - - - 0 0 - 66

15 - - - - 0 0 - -

16 - - - - 0 0 - -

17 - - - - 0 0 - -

18 - - - - 0 0 - -

-, test was terminated earlier
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emergence cages or similar devices might not be easy to
handle in a large-scale operational programme.

Conclusion
The results support the hypothesis that the implementa-
tion of large-scale larviciding with commercially available
microbials in The Gambia will lead to a reduction in larval
abundance in the natural habitats. Both microbial strains
tested, can be applied successfully in extended floodplain
areas either as liquid with knapsack sprayers or as granules
by hand and motorised sprayers. Due to the lack of resid-
ual effect of Bs, products Bti should be applied weekly dur-
ing the rainy season. Dry season refugia should be
targeted with bi-monthly Bs applications.

Environmentally safe microbial larvicides could be an
additional tool in an IVM programme in The Gambia but
due to the lack of residual effect of the microbial larvi-
cides, there is a need to assess the costs of weekly applica-
tions in consideration of reduction in transmission
intensity.
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