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In the recent times, nanomaterials have emerged in the field of biology, medicine,

electronics, and agriculture due to their immense applications. Owing to their nanoscale

sizes, they present large surface/volume ratio, characteristic structures, and similar

dimensions to biomolecules resulting in unique properties for biomedical applications.

The chemical and physical methods to synthesize nanoparticles have their own

limitations which can be overcome using biological methods for the synthesis. Moreover,

through the biogenic synthesis route, the usage of microorganisms has offered a reliable,

sustainable, safe, and environmental friendly technique for nanosynthesis. Bacterial,

algal, fungal, and yeast cells are known to transport metals from their environment

and convert them to elemental nanoparticle forms which are either accumulated or

secreted. Additionally, robust nanocarriers have also been developed using viruses. In

order to prevent aggregation and promote stabilization of the nanoparticles, capping

agents are often secreted during biosynthesis. Microbial nanoparticles find biomedical

applications in rapid diagnostics, imaging, biopharmaceuticals, drug delivery systems,

antimicrobials, biomaterials for tissue regeneration as well as biosensors. The major

challenges in therapeutic applications of microbial nanoparticles include biocompatibility,

bioavailability, stability, degradation in the gastro-intestinal tract, and immune response.

Thus, the current review article is focused on the microbe-mediated synthesis of various

nanoparticles, the different microbial strains explored for such synthesis along with their

current and future biomedical applications.

Keywords: nanoparticles, microbial, synthesis, biogenic, metals, biocompatible, biomaterial, therapeutic

INTRODUCTION

Nanoparticles have found increasing industrial and biomedical applications in recent times.
Particles within the size of 10–1,000 nm are considered as nanoparticles (Arshad, 2017). However,
in general for most applications, <100 nm is deemed to be effective for applications due to
easier penetration and similar sizes to biomolecules. The smaller size of nanomaterials provide
myriad research opportunities for biologists. Owing to their dimensions matching the scale
of biomolecules, nanomaterials have the ability to interact with complex biological systems
in unique ways. This rapidly expanding field has allowed for the design and development of
multifunctional nanoparticles to diagnose target and treat diseases such as cancer (Sardar et al.,
2014; Pastorino et al., 2019). Nanoscale molecules, components, and devices are essentially of the
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same scale as biological entities and can easily cross the
blood-tissue barriers. New approaches such as drug delivery
through nanocarriers are being used for targeted and controlled
delivery to the specific site. They help in improving drug
efficacy and decrease the drug toxicity in disease therapy
(Blanco et al., 2015; Pastorino et al., 2019; Ahmad et al.,
2021). Further, nanocarriers interact with the biomolecules
on the cell surface and within the cell in ways that do not
alter these molecules’ biochemical properties and behavior
(Pastorino et al., 2019; Gao et al., 2020; Stillman et al., 2020).
Such ready access to a living cell’s interior allows remarkable
advantages on the clinical and basic research frontiers. These
days, with unique optical properties such as fluorescence and
surface plasmon resonance (SPR), nanomaterials are achieving
increasing attention in biomedical applications (Wang et al.,
2007; Boisselier and Astruc, 2009; Aminabad et al., 2019; Elahi
et al., 2019) especially in developing optics-based analytical
techniques used for bioimaging (Xia, 2008; Chisanga et al., 2019)
and biosensing (Kumar et al., 2019; Celiksoy et al., 2020; Noori
et al., 2020). For such biomedical applications, a metal surface’s
biocompatibility is a key consideration and metal nanoparticles
synthesized using biological systems, provide metals ions with
high biocompatibility.

Various nanoparticle synthesis methods include physical,
chemical, and biological routes (Chen and Mao, 2007; Ahmad
et al., 2015; Khatoon et al., 2015; Mazumder et al., 2016;
Abdulla et al., 2021). The different physical, chemical, and
biological methods of nano-synthesis are depicted in Figure 1.
Green synthesis approaches such as biological means provide
a sustainable, economical and less harsh nanoparticle synthesis
method compared to chemical or physical methods. Moreover,
biological synthesis offers control over size and shape for required
applications. This is now well-known that many organisms
can produce inorganic materials either intra or extracellularly
(Senapati et al., 2004). Organisms such as bacteria, actinomycetes,
fungi, yeasts, viruses, and algae are being explored as reducing
or stabilizing agents to synthesize metal nanoparticles such as
gold, silver, copper, cadmium, platinum, palladium, titanium,
and zinc, which find uses in numerous industrial and biomedical
application. Hence, the current review article is focused on the
microbial-mediated synthesis of various nanoparticles and their
applications in multiple sectors, with a particular focus on the
biomedical and pharmaceutical industry.

SYNTHESIS OF NANOPARTICLES BY
MICROBIAL STRAINS

There are three primary approaches to the synthesis of
nanoparticles, namely physical, chemical, and biological. These
three approaches of nanoparticles synthesis belong to either
the top-down or bottom-up methods. The top-down approach
involves the mechanical method of reducing size by gradually
breaking down the bulk materials into the nanoscale structure.
On the other hand, the bottom-up method is based on the
assembly of atoms or molecules in the nanoscale range into
the molecular structure. The bottom-up method depends on

the nanoparticles’ chemical and biological synthesis while top-
down approaches generally refer to the physical or chemical
route (Gan and Li, 2012; Lombardo et al., 2020). UV irradiation,
sonochemistry, radiolysis, laser ablation, are physical methods to
synthesize metallic nanoparticles (Kundu et al., 2008; Mohamed
and Abu-Dief, 2018; Maric et al., 2019; Sadrolhosseini et al.,
2019; Silva et al., 2019; Amulya et al., 2020). These methodologies
have their limitations. While physical and chemical methods
have successfully generated nanoparticles of high purity and
desired size, these processes are typically costly and require
toxic chemicals. The chemical synthesis process may lead to the
existence of certain toxic chemical species becoming adsorbed
on the surface of nanoparticles, which may lead to detrimental
effects in medical applications; these nanoparticles may also have
direct interactionwith the human body, where the related toxicity
becomes important. Thus, one of nanotechnology’s primary
objectives is to establish an eco-friendly production process that
can provide low toxicity nanoparticles. Several investigators have
focused their interest on biological methods of synthesizingmetal
nanoparticles to achieve this objective, as these are fast, cost-
effective and eco-friendly. For this reason, the biological synthesis
of nanoparticles includes a vast range of species in nature, such
as viruses, bacteria, fungi, algae, plants (using their enzymes,
proteins, DNA, lipids, and carbohydrates, etc.). Bacteria that
reduce metals are found environmental-friendly catalysts for
bioremediation as well as materials synthesis. In fact, microbes
may help in the synthesis of diverse metal oxides through
respiration processes (Kim et al., 2018). Electrons can be moved
from reduced organic to oxidized inorganic compounds through
microbial dissimilatory anaerobic respiration, thus promoting
the formation of crystal/nanoparticles along with bioremediation
processes. It is well-documented that the genus Shewanella are
able to do the oxidation of organic acids as electron donors and
reduction of inorganic metals as electron acceptors (Heidelberg
et al., 2002; Harris et al., 2018). Further, the mechanism for
detoxifying the immediate cell environment has been developed
by microorganisms such as bacteria by reducing toxic metal
species into metal nanoparticles (Deplanche and Macaskie, 2008;
Murray et al., 2017). Also, biomolecules secreted by bacteria was
used as capping as well as stabilizing agents of nanoparticles
synthesis. The nanoparticle synthesis by the microbial process
is depicted in Figure 2. The nanoparticles are usually formed
following the way where metal ions are first trapped on the
surface or inside of the microbial cells. The trapped metal ions
are then reduced to nanoparticles in the presence of enzymes.
In general, microorganisms impact the mineral formation in two
distinct ways. They can modify the composition of the solution
so that it becomes supersaturated or more supersaturated than
it previously was with respect to a specific phase. A second
means by which microorganisms can impact mineral formation
is through the production of organic polymers, which can impact
nucleation by favoring (or inhibiting) the stabilization of the
very first mineral seeds. Microbes, which are regarded as potent
eco-friendly green nanofactories, have the potential to control
the size and shape of biological nanoparticles. Even though
plant-extract based nanoparticle synthesis is a well-known
biological nanosynthesis platform, nanoparticles synthesized this
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FIGURE 1 | Different approaches for nanoparticles synthesis. Nanoparticles can be synthesized through physical, chemical, and biological routes.

way may become polydisperse in nature due to the presence
of phytochemicals as well as have difference in yield due to
seasonal variations (Mishra A. et al., 2013; Mishra et al., 2016;
Ovais et al., 2018; Sadaf et al., 2020; Ahmad et al., 2021). Thus,
these are the distinct advantages pertaining to the synthesis of
nanoparticles by microbes as compared to plants. Therefore,
many microorganisms are considered to be potential candidates
for synthesis of nanoparticles (Priyadarshini et al., 2013). The
list of microorganisms used for the synthesis of nanoparticles is
summarized in Table 1.

Nanoparticle Synthesis by Bacteria
Production of reduced metal ions by microbes arises from
their remarkable ability to adapt themselves to conditions
of environmental stress (Kulkarni et al., 2015). Therefore,
supernatants of various bacteria such as Pseudomonas proteolytic,
Pseudomonas meridiana, Pseudomonas Antarctica, Arthrobacter
gangotriensis, and Arthrobacter kerguelensis act as microbial cell
factories finding applications as reducing agents in the synthesis
of silver nanoparticles (Shaligram et al., 2009; Singh et al.,
2015). Silver nanoparticles (AgNPs) synthesized by using Bacillus

brevis have recently demonstrated remarkable antimicrobial
properties against Staphylococcus aureus and Salmonella typhi
multidrug-resistant strains (Saravanan et al., 2018). Pseudomonas
stutzeri is another bacterial strain which has been found to
accumulate AgNPs through an intracellular mechanism (Klaus
et al., 1999). In Bacillus sp., silver nanoparticles have also been
synthesized in intracellular periplasmic space (Pugazhenthiran
et al., 2009). The organisms that reside in gold mines would be
more able to resist soluble gold toxicity and efficiently produce
gold nanoparticles (Srinath et al., 2018). When Acinetobacter
sp. SW30 was incubated with different concentrations of gold
chloride and different cell density, it showed enormous variation
in the color of gold nanoparticles (AuNP) containing colloidal
solution, suggesting variation in size and shape. Surprisingly,
at the lowest cell density and HAuCl4 salt concentration,
monodispersed spherical AuNP of size ∼19 nm was observed,
whereas cell number increase resulted in polyhedral AuNP
(∼39 nm) formation. Amino acids are implicated in the gold
salt reduction, while amide groups assist in AuNP stabilization
(Wadhwani et al., 2016). Also, inside the lactic acid bacteria
cells, nanocrystals of silver, gold, and their alloys have been
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FIGURE 2 | Mechanistic representation of the synthesis of nanoparticle by microbes. Formation of nanoparticles by microbes involves metal capture, enzymatic

reduction, and capping. Metal ions are first trapped on the surface or inside of the microbial cells and then reduced to nanoparticles in the presence of enzymes. The

enzyme serves as the nucleation site, providing electrons to the metal for its reduction. Microorganisms can impact mineral formation through the production of

organic polymers, which can impact nucleation by favoring (or inhibiting) the stabilization of the very first mineral seeds.

biosynthesized (Nair and Pradeep, 2002). In order to synthesize
gold nanoparticles (AuNPs), two separate strains of Pseudomonas
aeruginosa were used in one sample, producing AuNPs of
different sizes (Husseiny et al., 2007). Rhodopseudomonas
capsulate mediated extracellular synthesis of gold nanoparticles
of various sizes and shapes was also reported. The strain
was used to generate spherical (10–50 nm) and triangular
plate (50–400 nm) AuNPs (He et al., 2007). ZnO nanoflowers
were synthesized using Serratia ureilytica and further used
on cotton fabrics to provide antimicrobial activities against
E. coli and S. aureus (Dhandapani et al., 2014). Lactobacillus
plantarum has also been reported to biosynthesize ZnO
nanoparticles (Selvarajan and Mohanasrinivasan, 2013). The
gram-negative bacterial strain Aeromonas hydrophila has been
explored for the biosynthesis of ZnO nanoparticles with further
antimicrobial applications (Jayaseelan et al., 2012). Triangular
CuO nanoparticles have been developed using Halomonas
elongatewhich displayed antimicrobial activity against E. coli and
S. aureus (Rad et al., 2018). In another study, super paramagnetic
iron oxide nanoparticles of about 29.3 nm dimensions were
manufactured using Bacillus cereus strain. As an application,
their anti-cancer effects were reported against the MCF-7 (breast
cancer) and 3T3 (mouse fibroblast) cell lines in a dose-dependent
manner (Fatemi et al., 2018). A rapid, convenient method
for the synthesis of manganese and zinc nanoparticles by
reducing manganese sulfate and zinc sulfate using Streptomyces
sp. (intracellular route) has been reported. The scale of NPs for
manganese and zinc was between 10 and 20 nm (Waghmare

et al., 2011). Bacillus amyloliquifaciens strain KSU-109 produced
surfactin, which helped in the synthesis of stable cadmium
sulfide nanoparticles of average size of 3–4 nm (Singh et al.,
2011). Escherichia coli E-30 and Klebsiella pneumoniae K-6 have
been shown to synthesize cadmium sulfide nanoparticles with
average size ranging from 3.2 to 44.9 nm and showed highest
antimicrobial activity on A. fumigatus, G. candidum, B. subtilis,
S. aureus, and E. coli strains (Abd Elsalam et al., 2018). Serratia
marcescensmediated synthesized antimony sulfide nanoparticles
were reported with size range <35 nm (Bahrami et al., 2012),
while Pseudomonas aeruginosa ATCC 27853 mediated synthesis
of selenium nanoparticles were reported with a size of 96 nm
(Kora and Rastogi, 2016). Lead nanoparticles synthesized using
Cocos nucifera were reported with 47 nm size and also showed
good activity against S. aureus (Elango and Roopan, 2015).
The bacterial strains isolated from Gabal El Sela in Eastern
Dessert, Egypt have been used for the biosynthesis of uranium
nanoparticles intracellularly with size ranging from 2.9 to
21.13 nm (Abostate et al., 2018).

Cyanobacteria are a phylum of photosynthetic bacteria widely
explored for their capacity to synthesize nanoparticles due to
the presence of bioactive components, which help in stabilizing
and functionalizing the nanoparticles, resulting in fewer steps in
synthesis. Their high-growth rate also facilitates higher biomass
production to aid in nanosynthesis. In most cases, cell-free
extracts of the cyanobacterial biomass are used for nanosynthesis.
Aqueous extracts of the cyanobacterium Oscillatoria limnetica
has been useful in synthesizing silver nanoparticles by reduction
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TABLE 1 | Microbial mediated synthesis of nanoparticles.

Nanoparticles Size Application References

Bacteria

Bacillus subtilis TiO2 10–30 nm Photocatalytic effect on

aquatic biofilm

Dhandapani et al., 2012

Lactobacillus sp. TiO2 50–100 nm Antibacterial activity Ahmad et al., 2014

Lactobacillus sp. TiO2 50–100 nm Immobilization and refolding of

enzyme

Ahmad et al., 2013

Escherichia coli Ag 5–50 nm Antimicrobial Activity Saeed et al., 2020

Exiguobacterium aurantiacumm Ag 5–50 nm Antimicrobial Activity Saeed et al., 2020

Brevundimonas diminuta Ag 5–50 nm Antimicrobial Activity Saeed et al., 2020

Thermophilic Bacillus sp. AZ1 Ag 9–32 nm Antimicrobial Activity Deljou and Goudarzi, 2016

Gordonia amicalis Ag 5–25 nm Antioxidant scavenging activity Sowani et al., 2016

Lactobacillus acidophilus Ag 45–60 nm Genomic toxicity Namasivayam et al., 2010

Acinetobacter sp. SW30 Au 15–40 nm Wadhwani et al., 2016

Lactobacillus kimchicus DCY51 Au 5–30 nm Antioxidant activity Markus et al., 2016

Paracoccus haeundaensis BC74171 Au 20.93 ± 3.46 nm Antioxidant activity and

antiproliferative effect

Patil et al., 2019

Micrococcus yunnanensis Au 53.8 nm Antibacterial, Anticancer Jafari et al., 2018

Mycobacterium sp. Au 5–55 nm Anticancer Camas et al., 2018

Lactobacillus sp. CdS 2.5–5.5 nm Prasad and Jha, 2010

Aeromonas hydrophila ZnO 57.7 nm Antimicrobial activity against

Pseudomonas aeruginosa and

Aspergillus flavus

Jayaseelan et al., 2012

Lactobacillus plantarum ZnO 7–19 nm Selvarajan and

Mohanasrinivasan, 2013

Lactobacillus sporogenes ZnO 145.70 nm Antimicrobial activity Mishra M. et al., 2013

Bacillus subtilis Fe3O4 60–80 nm Sundaram et al., 2012

Lactobacillus fermentum Iron oxide 10–15 nm Park et al., 2014

Thermoanaerobacter ethanolicus Magnetite 35–65 nm Yeary et al., 2005

Shewanella loihica Cu 10–16 nm Antibacterial activity Lv et al., 2018

Bacillus licheniformis cadmium sulfide 20–40 nm Antibacterial activity Shivashankarappa and Sanjay,

2015

Serratia nematodiphila zinc sulfide 80 ± 10 nm Antibacterial activity Malarkodi and Annadurai, 2013

Idiomarina sp. strain PR58-8 Lead(IV) Sulfide 6–10 nm Bioimaging Srivastava and Kowshik, 2017

Bacillus sp. Selenium

nanoparticles

80–220 nm Antioxidant and cytotoxic effect Forootanfar et al., 2014

Pantoea agglomerans Selenium

nanoparticles

90–110 nm Antioxidant activity Torres et al., 2012

Actinomycetes

Rhodococcus sp.(Actinomycete) Au 5–15 nm Ahmad et al., 2003b

Gordonia amarae Au 15–40 nm Application in rapid sensing of

copper ions

Bennur et al., 2016

Gordonia amicalis Au 5–25 nm Antioxidant scavenging activity Sowani et al., 2016

Streptomycetes viridogens HM10 Au 18–20 nm Antibacterial activity Balagurunathan et al., 2011

Actinomycetes sp. Ag 10–20 nm Antibacterial activity Abdeen et al., 2014

Marine Isolate Streptomyces

albidoflavus

Ag 10–40 nm Prakasham et al., 2012

Streptomyces sp. LK3 Ag 5 nm Acaricidal activity against

Rhipicephalus microplus and

Haemaphysalis bispinosa

Karthik et al., 2014

Streptomyces sp. JAR1 Ag 60–70 nm Antimicrobial activity Chauhan et al., 2013

Nocardiopsis sp. MBRC-1 Ag 45 nm Antimicrobial activity Manivasagan et al., 2013

Actinomycetes Ag 5–50 nm Antibacterial activity Narasimha et al., 2013

Streptomyces sp. VITPK1 Ag 20–45 nm Anticandidal activity Sanjenbam et al., 2014

Marine endophytic actinomycetes Cu Nanorange size Antibacterial efficacy Rasool and Hemalatha, 2017

(Continued)
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TABLE 1 | Continued

Nanoparticles Size Application References

Fungus

Penicillium sp. Ag 25–30 nm Antibacterial Singh et al., 2014

Neurospora crassa Ag 3–50 nm Castro-Longoria et al., 2011

Verticillium sp. Ag 25 ± 12 nm Antimicrobial activity Mukherjee et al., 2001

Trichoderma longibrachiatum Ag 10 nm Antifungal against

phyto-pathogenic fungi

Elamawi et al., 2018

Penicillium oxalicum Ag 60–80 nm Antibacterial activity Feroze et al., 2020

Aspergillus niger Ag 13.2–646.8 nm Antifungal effect Gursoy, 2020

Penicillium janthinellum DJP06 Ag 1–30 nm Pareek et al., 2020

Cladosporium perangustum Ag 30–40 nm Antioxidant, anticancer, and

nano-toxicological study

Govindappa et al., 2020

Macrophomina phaseolina Ag 5–40 nm Antimicrobial properties Chowdhury et al., 2014

Neurospora crassa Au 3–100 nm Castro-Longoria et al., 2011

Trichoderma harzianum Au 32–44 nm Antibacterial activity Tripathi et al., 2018

Morchella esculenta Au 16.51 nm Antimicrobial activity and

cytotoxic activity

Acay, 2020

Cladosporium sp. Au 5–10 nm Photodegradation, in vitro

anticancer activity and in vivo

antitumor studies

Munawer et al., 2020

Penicillium janthinellum DJP06 Au 1–40 nm Pareek et al., 2020

Neurospora crassa bimetallic Au/Ag 3–110 nm Castro-Longoria et al., 2011

Coriolus versicolor CdS 100–200 nm, Sanghi and Verma, 2009

Thermophilic fungus Humicola sp. CeO2 12–20 nm Khan and Ahmad, 2013

Aspergillus niger ZnO 53–69 nm Antibacterial activity Kalpana et al., 2018

C. geniculatus ZnO 2–6 nm Kadam et al., 2019

Agaricus bisporus ZnS 2.9 nm Senapati et al., 2015

Fusarium oxysporum ZnS ∼38 nm Mirzadeh et al., 2013

Penicillium chrysogenum Pt 5–40 nm Cytotoxicity Subramaniyan et al., 2018

Aspergillus flavus TiO2 62–74 nm Antimicrobial activity Rajakumar et al., 2012

Yeast

Yarrowia lipolytica (NCYC 789) Ag 2–5 nm Activity against E. coli, S.

aureus

Apte et al., 2013

yeast strain MKY3 Ag 2–5 nm Kowshik et al., 2002

Yarrowia lipolytica DSM 3286 Ag 12.4 ± 5.22 nm Antibacterial activity Bolbanabad et al., 2020

Candida guilliermondii Ag 10–20 nm Antimicrobial activity Mishra et al., 2011

Saccharomyces boulardii Ag 3–10 nm Anticancer activity Kaler et al., 2013

Kluyveromyces marxianus Ag 3–12 nm Antimicrobial agent Ashour, 2014

Candida utilis 22 Ag 6–20 nm Antimicrobial agent Ashour, 2014

Candida utilis Ag 20–80 nm Antibacterial activity against

pathogenic organisms

Waghmare et al., 2015

Saccharomyces cerevisiae Ag 10–60 nm Antimicrobial effect Sowbarnika et al., 2018

Candida glabrata Ag 2–15 nm Antibacterial and antifungal Jalal et al., 2018

Rhodotorula glutinis Ag 15.45 ± 7.94 nm Antifungal, catalytic and

cytotoxicity activities

Cunha et al., 2018

Rhodotorula mucilaginosa Ag 13.70 ± 8.21 nm Antifungal, catalytic and

cytotoxicity activities

Cunha et al., 2018

Candida guilliermondii Au 50–70 nm Antimicrobial activity Mishra et al., 2011

Yarrowia lipolytica NCIM Au 15 nm Agnihotri et al., 2009

Magnusiomyces ingens LH-F1 Au 10–80 nm Catalytic activities for the

reduction of nitrophenols

Zhang et al., 2016

Saccharomyces cerevisiae CdS 3.75 nm Prasad and Jha, 2010

(Continued)
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TABLE 1 | Continued

Nanoparticles Size Application References

Yeast

Candida albicans CdS 50–60 nm Bactericidal potential against

Salmonella typhi and

Staphylococcus aureus

Kumar et al., 2019

Baker’s yeast TiO2 6.7 ± 2.2nm Antibacterial activity Peiris et al., 2018

Saccharomyces cerevisiae TiO2 12 nm Jha et al., 2009a

Baker’s yeast Fe2O3 2–10 nm Detection H2O2 and Glucose Mishra et al., 2015

Saccharomyces cerevisiae Sb2O3 100 nm Jha et al., 2009b

Saccharomyces cerevisiae Amorphous iron

phosphate

50–200 nm He et al., 2009

Alga

Neochloris oleoabundans Ag 40 nm Antibacterial Bao and Lan, 2018

Enteromorpha compressa Ag 4–24 nm Antimicrobial, Anticancer Ramkumar et al., 2017

Nostoc linckia Ag 5–60 nm Antibacterial Vanlalveni et al., 2018

Leptolyngbya Ag 5–50 nm Antibacterial, Anticancer Zada et al., 2018

Spyridia fusiformis Ag 5–50 nm Antibacterial Murugesan et al., 2017

Chaetomorpha linum Ag 70–80 nm Efficient anticancer agent Acharya et al., 2021

Chlorella ellipsoidea Ag 220.8 ± 31.3 nm Photophysical, catalytic, and

antibacterial activity

Borah et al., 2020

Amphiroa rigida Ag 25 nm Antibacterial, cytotoxicity, and

larvicidal efficiency

Gopu et al., 2020

Ulva armoricana sp. Ag 33 nm Bactericidal activity Massironi et al., 2019

Spirulina platensis Au 15.60–77.13 nm Antiviral activity El-Sheekh et al., 2020

Sargassum cymosum Au 7 and 20 nm Costa et al., 2020

Tetraselmis kochinensis Au 5–35 nm Senapati et al., 2012

Stephanopyxis turris Au 10–30 nm Pytlik et al., 2017

Galaxaura elongate Au 3.85–77 nm Antibacterial Abdel-Raouf et al., 2017

Cystoseira baccata Au 8.4 nm Anticancer Gonzalez-Ballesteros et al.,

2017

Spirulina platensis Pd 10–20 nm Adsorbent Sayadi et al., 2018

Chlorella vulgaris Pd 5–20 nm Arsiya et al., 2017

Sargassum wightii ZrO2 18 nm Antibacterial Kumaresan et al., 2018

Chlorella pyrenoidosa CdSe QD 4–5 nm Imatinib sensing Zhang Z. et al., 2018

and further stabilizing them. The size of the nanoparticles was
3.30–17.97 nm and they showed anti-cancer and anti-microbial
activity (Hamouda et al., 2019). A similar Ag-NPs synthesis
by Microchaete sp. NCCU-342 was pursued using aqueous
biomass extracts and spherical, polydispersed nanoparticles of
60–80 nm size were obtained (Husain et al., 2019). Silver
nanoparticles synthesized from Desertifilum sp. (4.5–26 nm)
showed antibacterial activity and cytotoxic effects against HepG2,
MCF-7, and Caco-2 cancer cells (Hamida et al., 2020). Other
cyanobacterial strains explored for nanoparticle synthesis include
Scytonema sp., Nostoc sp., Phormidium sp. (Al Rashed et al.,
2018). One interesting study used filamentous cyanobacterium,
Plectonema boryanum (strain UTEX 485) biomass reacted with
AgNO3. Silver nanoparticles were found to precipitate on the
surface as well as inside of the cyanobacterium cell. Intracellular
nanoparticles were found to be of the size (<10 nm), while
that of extracellular ones exhibited size in the range of (1–
200 nm) (Lengke et al., 2007a). P. boryanum is also reported to

reduce gold (III)-chloride solutions to form Au nanoparticles
intracellularly via formation of gold (I) sulfide (Lengke et al.,
2006b); this species is also known to produce platinum and
palladium NPs (Lengke et al., 2006a, 2007b). Thus, cyanobacteria
present a promising platform for biogenic nanosynthesis with
widespread applications.

Nanoparticle Synthesis by Actinomycetes
Actinomycetes have gained significant attention because they are
the least studied, but important for metal nanoparticle synthesis
(Golinska et al., 2014). Actinomycetes are considered superior
groups among microbial species of commercial importance
due to the development of various bioactive components
and extracellular enzymes through their saprophytic behavior
(Kumar et al., 2008). For the biosynthesis and characterization
of gold nanoparticles, only a few of the genera such as
Thermomonospora, Nocardia, Streptomyces, and Rhodococcus
have been identified from actinomycetes (El-Batal et al.,

Frontiers in Chemistry | www.frontiersin.org 7 April 2021 | Volume 9 | Article 626834

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Ghosh et al. Microbial Nano-Factories: Synthesis and Biomedical Applications

2015). Streptomyces species are considered to be the dominant
biosynthesis contender (Zonooz et al., 2012). In actinomycetes,
intracellular reduction of metal ions takes place on the
surface of mycelia along with cytoplasmic membranes, leading
to the formation of nanoparticles (Ahmad et al., 2003b).
Some researchers suggested that the possible mechanism of
intracellular synthesis of metal nanoparticles occurs by trapping
Ag+ ions on cell surface, likely through electrostatic interactions
between Ag+ and negatively charged groups of carboxylate
in mycelial cell wall enzymes. Enzymes present in the cell
wall leading to the formation of silver nuclei decrease the
silver ions, subsequently expanding by further decrease and
accumulation of Ag+ ions on these nuclei (Abdeen et al., 2014).
A different mechanism for the intracellular synthesis of silver
nanoparticles by using lactic acid bacteria was suggested by
Sintubin et al. (2009). Furthermore, several other researchers
have also documented the intracellular synthesis of metal
nanoparticles utilizing actinomycetes strains (Usha et al., 2010;
Balagurunathan et al., 2011; Prakasham et al., 2012; Sukanya
et al., 2013).

Nanoparticle Synthesis by Fungi
Another biogenic route of biosynthesis of various metal
nanoparticles involves successful application of myco-
nanotechnological approaches. Similar to bacteria/cyanobacteria,
nanosynthesis may be extracellular or intracellular in nature.
In the intracellular route, metal salts in the mycelia, which
fungi can use, are converted into a less toxic form (Molnar
et al., 2018; Rajeshkumar and Sivapriya, 2020). The use of
fungal extracts involves extracellular biosynthesis (Zhao et al.,
2018; Rajeshkumar and Sivapriya, 2020). In the biosynthesis of
nanoparticles, fungi are comparatively more resourceful than
bacteria due to many bioactive metabolites, high aggregation,
and improved production (Castro-Longoria et al., 2011;
Alghuthaymi et al., 2015). Several filamentous fungi have been
reported to be capable in AuNP biosynthesis. In order to
biosynthesize AuNPs, this study employed various methods.
The authors suggested that fungal secreted compounds and
media components could be used to stabilize the nanoparticles
(Molnar et al., 2018; Guilger-Casagrande and de Lima, 2019).
Three different fungal strains (namely Fusarium oxysporum,
Fusarium sp., and Aureobasidium pullulans) were used by
another group to biosynthesize the reported AuNPs. The authors
suggested that biosynthesis happened inside fungal vacuoles,
and that sugar reduction was involved in tailoring the shape of
AuNPs. Additionally, fungus produced the secondary metabolite
contain protein or biomolecules which act as capping as well
as stabilizing agents (Zhang et al., 2011). Several Fusarium
oxysporum strains have been used in another study to generate
extracellular silver metal nanoparticles in the 20–50 nm range
(Ahmad et al., 2003a). The metal ion reduction by nitrate-
dependent reductase and extracellular shuttle quinone was
confirmed by UV-Visible, fluorescence, and enzymatic activity
analysis (Duran et al., 2005, 2007). Kumar and their groups
formed in vitro silver nanoparticles (10–25 nm) stabilized in the
presence of reduced cofactor nicotinamide adenine dinucleotide
phosphate (NADPH) by a capping peptide using the nitrate

reductase enzyme isolated from Fusarium oxysporum, along with
phytochelatinin, and 4-hydroxyquinoline (Kumar et al., 2007).
Another study indicated that the synthesis of monodispersed
AgNPs of 9.4 nm size was mediated by Rhizopus stolonifera
extracts, although condition optimization resulted in AgNPs of
2.86 nm (Abdelrahim et al., 2017). The extracellular synthesis of
AgNPs utilizing Candida glabrata suggested strong antimicrobial
activity (Jalal et al., 2018). ZnO nanoparticles mediated by
Aspergillus niger indicated excellent antibacterial potential,
while the Bismarck brown dye was also degraded by up to 90%
(Kalpana et al., 2018). Cobalt oxide nanoparticles have recently
been fabricated using Aspergillus nidulans (Vijayanandan and
Balakrishnan, 2018). Biosynthesis of platinum nanoparticles of
size range 100–180 nm from the Fusarium oxysporum fungus
was documented (Riddin et al., 2006). The fungi Verticillium
sp., Fusarium oxysporum sp., and Aspergillus flavus have shown
the ability to produce nanoparticles either extracellularly or
intracellularly (Mukherjee et al., 2002; Bhainsa and D’Souza,
2006). To create natural nanofactories, the change from bacteria
to fungi has the added benefit that downstream biomass
processing and handling can be much more straightforward.

Nanoparticle Synthesis by Yeasts
Yeast strains of several genera are known to employ different
mechanisms for nanoparticle synthesis resulting in significant
variations in size, particle position, monodispersity, and
other properties. One study found that glutathione (GSH)
and two classes of metal-binding ligands-metallothioneins
and phytochelatins (PC) were generated by detoxification
mechanisms in yeast cells. These molecules have a role to
play in deciding the mechanism for nanoparticle synthesis and
stabilize the resulting complexes in most of the yeast species
studied (Hulkoti and Taranath, 2014). Often as a resistance
mechanism, yeast cells in the vicinity of toxic metals can change
the absorbed metal ions into complex polymer compounds
that are not toxic to the cell. Typically, these nanoparticles
synthesized in the yeast are referred to as “semiconductor
crystals” or “quantum semiconductor crystals” (Dameron et al.,
1989). Yeasts cells are particularly well-known for their ability
to synthesize semiconductor nanoparticles, particularly that of
cadmium sulfide (CdS). There are reports on the production
of other metal nanoparticles, particularly AgNPs, by yeasts,
including Pichia capsulata (Subramanian et al., 2010), Candida
guilliermondii (Mishra et al., 2011), Saccharomyces boulardii
(Kaler et al., 2013), Kluyveromyces marxianus (Ashour, 2014),
Candida utilis (Waghmare et al., 2015), Candida lusitaniae
(Eugenio et al., 2016), Saccharomyces cerevisiae (Sowbarnika
et al., 2018),Candida glabrata (Jalal et al., 2018),Candida albicans
(Ananthi et al., 2018), Rhodotorula glutinis, and Rhodotorula
mucilaginosa (Cunha et al., 2018). The silver-tolerant yeast strain
MKY3 was used for the production of silver nanoparticles
(Kowshik et al., 2002).

Nanoparticle Synthesis by Algae
The use of algae for the biosynthesis of nanoparticles is
also increasingly becoming common. In order to synthesize
ZnO nanoparticles, Sargassum muticum was used and was
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reported to decrease angiogenesis in HepG2 cells in addition to
apoptotic effects (Sanaeimehr et al., 2018). In the biosynthesis
of AuNPs, Sargassum crassifolium, a macroalgae along with
sea grass, has been utilized. Interestingly in this study, a
blue shift in the UV absorption spectra was observed after
increasing the concentration of S. crassifolium, which was
attributed to a decreased size of the nanoparticles due to
increased nucleation centers in the reductant (Maceda et al.,
2018). CuO nanoparticles of around 7 nm dimensions have been
synthesized biogenically using Cystoseira trinodis and reported
to have improved antibacterial and antioxidant properties, along
with methylene blue degradation potential (Gu et al., 2018).
Using Sargassum ilicifolium, aluminum oxide nanoparticles with
∼20 nm size were produced (Koopi and Buazar, 2018). Various
algae strains, for example Turbinaria conoides, Laminaria
japonica, Acanthophora spicifera, and Sargassum tenerrimum
have been reported to synthesize gold nanoparticles (Ghodake
and Lee, 2011; Swaminathan et al., 2011; Vijayaraghavan et al.,
2011; Ramakrishna et al., 2016). Using Spirulina platensis,
synthesis of novel core (Au)-shell (Ag) nanoparticles has also
been investigated (Govindaraju et al., 2008).

Nanoparticle Synthesis by Viruses
Viruses have emerged as promising candidates as nanoparticles
for biomedical applications, owing to their biocompatibility,
biodegradability, capacity of mass production, programmable
scaffolds, and ease of genetic manipulation for desired
characteristics. Viral bodies, themselves are naturally occurring
nanoparticles due to their 20–500 nanometer dimensions.
Their robustness along with ability to detect changes in the
environment to release their genetic material has been exploited
in biomedical applications. The major applications of viral
nanoparticles has been in gene delivery, drug delivery, as
vaccines/immunotherapeutics and in imaging and theranostics.
Mostly mammalian viruses are used in gene delivery while
bacteriophages and plant viruses have been explored for
drug delivery, vaccines, and immunotherapeutics. Viral
nanoparticles (VNPs) can also be tagged with several ligands for
targeting, therapeutics or imaging agents for myriad biomedical
applications (Steinmetz, 2010). A similar class of materials are
virus-like particles (VLPs) derived from the protein coating of
the viruses (Chung et al., 2020). These nanoparticles can be of
bacteriophage, plant or animal viral origin and are dynamic,
self-assembling moieties with symmetrical, monodisperse
structures. Production of viral nanoparticles involve generation
in a host body (whether a bacteria, animal, or plant), further
chemical conjugation and tuning, followed by evaluation in-vitro
and in-vivo (Steinmetz, 2010). A major consideration for using
VNPs is regarding their toxicity, especially for human pathogens.
Thus, bacteriophages and plant viruses are preferred, compared
to mammalian viruses such as adenoviruses. Additionally,
immunogenicity of the viral particle affects their accumulation
in the tissue as well as clearance. Attachment to molecules
such as PEG, often helps in shielding of specific biointeractions
(Bruckman et al., 2008). Various VNPs and VLPs have been
exploited to deliver chemotherapeutic drugs. VLPs modified
with targeting peptide with a load of doxorubicin, cisplatin, and

5-fluorouracil were found to be effective in human hepatocellular
carcinoma cells (Ashley et al., 2011). Tobacco-Mosaic Virus
derived VNPs used to carry cisplatin have been used in
platinum-resistant ovarian cancer cells (Franke et al., 2017).
Bacteriophage fd based nanoparticles with peptides specifically
targeting pathogenic bacteria such as Staphylococcus aureus; and
loaded with antibiotic such as chloramphenicol have found better
antibacterial action than chloramphenicol alone (Yacoby et al.,
2006). Viral nanoparticles also find application as MRI contrast
agents, having large rotational correlation times due to their rigid
structures, which results in high relaxivity. Additionally, owing
to their polyvalent nature, a high number of contrast agents
such as gadolinium can be chelated to their interior or exterior
surfaces (Steinmetz, 2010). Such nanoparticles have also been
explored to develop vaccines against pathogens such as hepatitis
B, HIV, and Neospora caninum (Oh and Han, 2020).

In addition, one important precaution to be emphasized
relates to the handling of bacterial or viral strains that might be
harmful or pathogenic to humans. Thus, in order to implement
microorganism-mediated nanosynthesis on a large scale for
commercial exploitation, utmost importance is to be given to
associated biological safety issues as well.

BIOLOGICAL APPLICATION OF
MICROBIAL SYNTHESIZED
NANOMATERIALS

Due to their controlled sizes, unique properties, biocompatible
nature, non-toxicity, microbial nanoparticles find myriad
biomedical applications. They have found major applications in
the biomedical and pharmaceutical fields as antimicrobials, anti-
biofilm agents, antioxidants, anti-cancer agents, and diagnostic
or imaging agents, some of which are discussed here and shown
in Figure 3.

Antimicrobial Agents
In general, several metallic nanoparticles such as that of
silver, copper, zinc, magnesium, gold, and titanium are known
for their antimicrobial properties. The mode of antimicrobial
action attributed to the nanoparticles include disruption of
membrane structure, pore formation on the microbial cell
wall, inhibition of biofilm formation or production of reactive
oxygen species (ROS) in case of metal oxide nanoparticles (Busi
and Rajkumari, 2019). The antimicrobial property is heavily
dependent on the nanoparticle size and shape, with smaller,
monodispersed nanoparticles (with resulting larger surface to
volume ratio) displaying greater antimicrobial tendencies (Duran
et al., 2010). The search for novel antimicrobial nanoparticles
has been fuelled by the rise of multidrug resistance (MDR)
phenotype among pathogenic strains. An important advantage of
biogenic synthesis is the inherent presence of natural stabilizing
or capping agents such as polysaccharides or proteins on
the nanoparticle surface upon synthesis, which reduces post-
production steps to a large extent. AuNPs synthesized using
the culture supernatant of Ochrobactrum rhizosphaerae were
found to be coated with glycolipoprotein, with potent antibiotic
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FIGURE 3 | Biomedical applications of nanoparticles. Nanoparticles find biomedical applications as antimicrobial agents by disrupting membrane structure or by

generating ROS, as anti-biofilm agents in preventing antimicrobial resistance, as drug-delivery agents to carry drug loads, as anti-cancer agents causing apoptosis, as

diagnostic/imaging agents in MRI and biosensors and as anticoagulants/anthelmintics/tissue engineering materials.

activity against Vibrio cholerae. In case of fungally synthesized
nanoparticles, the capping agents are generally proteinaceous
in nature. Example of Ag-NPs synthesized intracellularly by
the mushroom fungus, Schizophyllum commune and that of by
Trichoderma viride showed capping by proteins and exhibited
antibacterial activity against strains such as Bacillus subtilis,
Pseudomonas sp., Trichophyton mentagrophytes, K. pneumonia,
Trichophyton simii, Trichophyton rubrum, E. coli, B. subtilis, and
Klebsiella planticola, respectively (Chitra and Annadurai, 2013;
Arun et al., 2014). The Silver nanoparticles generally act due to
the release of Ag+ ions which can disrupt bacterial membranes
as well as interfere with DNA and protein synthesis. Similarly,
gold nanoparticles, due to their photocatalytic activity, can be
developed in conjugation with photosensitizers for antimicrobial
photodynamic therapy. On exposure to near Infrared radiation
(NIR), the heat produced destroys the bacterial cell wall (Busi
and Rajkumari, 2019). Often conjugation of traditional antibiotic
moieties to nanoparticles have been found to enhance their
effect. AuNPs synthesized from the fungi, T. viride attached
to vancomycin showed suppression of growth in vancomycin
resistant S. aureus and E. coli, due to the proposed binding
of vancomycin-AuNPs to the S. aureus transpeptidase, in place
of terminal peptides of the glycopeptidyl precursors and easy
transport across membrane in case of E. coli, leading to

cell-wall lysis (Fayaz et al., 2011). Loading of multiple drugs
such as ciprofloxacin, gentamycin, vancomycin and rifampicin
on AuNPs, biogenically synthesized from B. subtilis exhibited
growth suppression in S. haemolyticus and S. epidermidis due
to enhanced surface area provided by the NPs for the drugs
to bind (Roshmi et al., 2015). From the above examples, it is
interesting to observe that the nanoparticles synthesized using
the extracts of onemicroorganism are effective in the killing other
microbial species and enhances the activity of existing antibiotics
to overcome antimicrobial resistance phenotypes.

Anti-biofilm Agents
The increasing incidences of antibiotic resistance are a major
challenge in the area of antibiotic/antimicrobial development.
An important reason for bacterial infection and their multidrug-
resistant phenotype arises from the ability of the organism to
form biofilms which make them resistant to drugs. Microbes
such as Staphylococcus aureus, Acinetobacter baumannii,
Escherichia coli, Pseudomonas aeruginosa, are known to cause
opportunistic infections due to biofilm formation and thus,
inhibiting it is a significant aspect explored in case of biogenic
nanoparticles. Additionally, biomedical and dental devices
are at high-risk of transmitting infections due to biofilm
formation and nanoparticle coating has been examined as
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an effective option to avoid this. In most studies, the biofilm
formation is generally assessed by cell staining (by crystal
violet) and absorbance measurements or by observation under
electron microscopes. In one research, TiO2 nanoparticles
were synthesized utilizing Bacillus subtilis biomass. Afterwards,
microbe-rich pond water was used for the growth of biofilm
in solution or on glass slides along with the nanoparticles
followed by irradiation of polychromatic light; the TiO2

nanoparticles acted as a photocatalyst releasing H2O2 to inhibit
the biofilm growth (Dhandapani et al., 2012). Another early
investigation, synthesized microbial Se and Te nanoparticles
from the intracellular extracts of Stenotrophomonas maltophilia
SeITE02 and Ochrobactrum sp. MPV1, which displayed
distinct antimicrobial and anti-biofilm capabilities against both
planktonic cells and biofilm cells of E. coli JM109, S. aureus
ATCC 25923, and P. aeruginosa PAO1 with production of
ROS suggested as the possible mechanism (Zonaro et al.,
2015). The disinfectant properties of silver nanoparticles are
pretty well-known. Silver nanoparticles harvested intracellularly
from B. licheniformis biomass exhibited 90% anti-biofilm
activity against P. aeruginosa and S. epidermidis (Kalishwaralal
et al., 2010). Additionally, gold-silver bimetallic nanoparticles
biogenically synthesized using the γ-proteobacterium Shewanella
oneidensis MR-1, showed antimicrobial properties and were able
to inhibit biofilm growth of P. aeruginosa, S. aureus, E. coli,
and Enterococcus faecalis cultures at a concentration of 250µM
(Ramasamy and Lee, 2016). Fungi such as Phanerochaete
chrysosporium have also showed promising biofilm eradication
capability. Silver nanoparticles (∼45 nm diameter) obtained
from the extracellular extracts of the fungus were able to act
on E. coli and C. albicans, even though the cell wall of both
the strains are different (Estevez et al., 2020). An interesting
negative effect of biofilm formation is observable in membranes,
mostly used for wastewater treatment, where biofouling caused
by microbial consortia present in the wastewater slurry, reduces
the efficacy of the bioreactor. Microbial silver nanoparticles
(bio-Ag0) of around 11 nm size, synthesized by Lactobacillus
fermentum LMG 8900 were embedded in polyethersulfone
(PES) membranes, and were further tested on (E. coli and P.
aeruginosa) and another mixed culture in an activated sludge
bioreactor. The membranes showed remarkable antibacterial
and anti-biofilm activity in both cases over a test period of 9
weeks (Zhang et al., 2011). All the above instances reveal an
excellent potential of microbial nanoparticles in inhibition and
eradication of biofilm formation.

Drug-Delivery Agents
Biogenic nanoparticles are important candidates over
conventional ones as drug delivery agents due to their
stability, biocompatibility, bioavailability, controlled drug
release characteristics, targeted delivery and non-toxic nature.
Such nano-agents can include nanospeheres, water soluble
polymers, emulsions, micelles, and liposomes (Meng et al.,
2010; Srivastava et al., 2021). As drug- carriers, what is needed
is the ability to encapsulate a particular drug and release it
conditionally at the disease site. Moreover, delivery agents
should be able to cross the blood-tissue and cellular barriers
for inter and intracellular transport in order to achieve targeted

delivery of the drug-load at site (Fariq et al., 2017). However, it
is pertinent to assess their safety to normal cells and efficacy in
cancer cells at the very outset. Magnetotactic bacteria are known
to convert magnetic greigite Fe3S4 and/or magnetite Fe3O4 into
bilayer membrane bound structures known as magnetosomes,
which can be used to encapsulate and carry drugs (Vargas et al.,
2018; Ahmad et al., 2019). Bacterial magnetosomes loaded with
doxorubicin were tested on H22 tumor-bearing mice and showed
higher tumor suppression than doxorubicin alone (Sun et al.,
2009). Magnetosomes from Magnetospirillum gryphiswaldense
loaded with anti-4-1BB agonistic antibody have been used as
immunotherapy against cancer in TC-1 mouse models (Tang
et al., 2019). Taxol conjugated to gold nanoparticles obtained
from the fungus Humicola sp. has been used for anti-tumor
drug-delivery applications (Khan et al., 2014). Biogenic gold
nanoparticles functionalized with moieties such as transferrin
also hold potential to cross the blood-brain barrier to target
drugs into the brain (Tripathi et al., 2015).

Anti-cancer Agents
As an extension to the above section, pristine biosynthesized
nanoparticles, without drug load have also been extensively
used to develop anti-cancer agents. Platinum nanoparticles
Saccharomyces boulardii were found to be effective against
A431 epidermoid carcinoma and MCF-7 breast cancer cell
lines (Borse et al., 2015). Gold nanoparticles biosynthesized
from Streptomyces cyaneus exhibited anticancer activity in vitro
against HEPG-2 human liver cancer cells and MCF-7 breast
cancer cells, respectively. The plausible mechanism of action
of the nanoparticles is through mitochondrial apoptosis, DNA
impairment and induced detention of cytokinesis (El-Batal et al.,
2015). Silver nanoparticles synthesized from the water extract
of the endophytic fungi, Cladosporium perangustum has been
found to reduce the viability of the MCF-7 cells through
enhancement in the levels of caspase-3, caspase-7, caspase-8, and
caspase-9 expression (Govindappa et al., 2020). Biocompatible
terbium oxide nanoparticles synthesized using the biomass of
fungus Fusarium oxysporum were effective in dose-dependent
cytotoxicity in MG-63 and Saos-2 cell-lines while being non-
toxic to primary osteoblasts; ROS production was enhanced
and apoptosis was confirmed with nanoparticle treatment (Iram
et al., 2016). ZnO nanoparticles biosynthesized from Rhodococcus
pyridinivorans, loaded with anthraquinone showed cell-death in
HT-29 colon carcinoma cells as compared to normal cells, and
can thus find application as an anti-cancer agent (Kundu et al.,
2014). AuNPs obtained from the fungi Helminthosporium solani
conjugated to doxorubicin had higher uptake and comparable
cytotoxicity in HEK293 cells compared to doxorubicin alone
(Kumar et al., 2008). Similar gold and gadolinium oxide
nanoparticles Humicola sp. could be conjugated to taxol or
doxorubicin for anti-cancer applications (Syed et al., 2013; Khan
et al., 2014). One interesting study used biomineralised magnetic
nanoparticles (from magnetotactic bacteria), guided by MRI to
convert the energy of near-infrared light into heat thus resulting
in ablation of tumor cells with no-known toxicity. This was
termed as a photothermal effect and the bacterial nanoparticles
acted as a theranostic (therapy + diagnostic) in this case (Chen
et al., 2016). Several in-vivo studies have revealed the potential
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of bacterial magnetic nanoparticles. In another study, BALB/C
mouse were immunized with bacterial magnetosomes to observe
their immune response, and found to have not so significant
response, proving their drug delivery potential (Meng et al.,
2010).

Diagnostics and Imaging Agents
In general, nanoparticles find increasing applications in
diagnostics and as biosensors often conjugated to diagnostic
enzymes (Rossi et al., 2004; Ghosh et al., 2018a,b). In recent
times, biogenic nanoparticles have also been explored as
biosensors and in imaging modalities such as MRI. In MRI,
contrast agents comprising of magnetites are found to be
synthesized by several Gram negative magnetotactic bacteria
(MTB) in the form of magnetosomes, which are intracellular
organelles with a lipid bilayer enclosing crystals of magnetic
iron oxides (Uebe and Schuler, 2016). Bacterial magnetosomes
display higher r2 relaxivity than synthesized nanoparticles
and have shown application in targeting human epidermal
growth factor receptor-2 (HER2) expressing tumor cells.
Relaxivity is a measure of how sensitive a contrast agent is. For
similar compounds, a molecule with higher relaxivity would
provide equivalent contrast at a lower dose compared to a low
relaxivity compound. A lower dose may lower the risk of the
nanoparticle toxicity (Jacques et al., 2010). In orthotopic breast
cancer models, intravenous administration of HER2-targeting
bacterial magnetosomes, showed augmented contrast in the
MR signals (Zhang Y. et al., 2018). Another study created
RGD-peptide expressing magnetosomes by generic engineering
Magnetospirillum magneticum AMB-1 strain, which targeted
αvβ3 integrins-overexpressing brain tumor cells in gliomas as
evident in MRI (Boucher et al., 2007, 2017; Zhao, 2017). A
theranostic photothermal therapy of cancer using magnetic
nanoparticles of the same bacterial strain under the guidance
of MRI was achieved in vitro and in vivo by another group
(Chen et al., 2016). An interesting study employed magneto-
endosymbionts as living contrast agent in the iPSC-derived
cardiomyocytes, which could be tracked by MRI and cleared
out within 1 week, thus enhancing biocompatibility (Mahmoudi
et al., 2016). Bacteriogenic metal nanoparticles such as that of
copper, palladium and gold have also been explored for their
potential in biosensing (Rai et al., 2016; Ghosh, 2018). In an
interesting study, AuNPs synthesized from Candida albicans
were conjugated to liver cancer cell surface specific antibodies.
Thus, when used to probe into liver cancer cells, they could
uniquely bind to the liver cancer specific surface antigen, thus
distinguishing them from normal cells. Such nanoparticles could
thus find application as a diagnostic or as a carrier of anti-cancer
drugs (Chauhan et al., 2011).

Other Medical Uses
As is evident, microbial synthesized nanoparticles find more
than the above stated pharmaceutical applications. One early
study employed the biomass of Brevibacterium casei to reduce
AgNO3 and HAuCl4 to obtain silver and gold nanoparticles
from the intracellular extracts, which were further explored
as an anti-coagulant of human plasma (Kalishwaralal et al.,

2010). From fungal species, gold nanoparticles derived from
Nigrospora oryzae displayed anthelmintic activity (paralysis and
death) against the cestode parasite Raillietina sp. (Kar et al.,
2014). Antimicrobial carbon dots (CDs) were synthesized by
hydrothermal method from cell free supernatant of Lactobacillus
acidophilus and they showed antimicrobial activity against
Escherichia coli (Gram-negative) and Listeria monocytogenes
(Gram-positive) (Kousheh et al., 2020). Nanocellulose is another
nanoscale material which is predominantly synthesized by
bacteria. Scaffolds based on nanocellulose (NC) have pivotal
applications in tissue engineering (TE) like to repair, improve or
replace damaged tissues and organs, including skin, blood vessel,
nerve, skeletal muscle, heart, liver, and ophthalmology, mainly
due to the biocompatibility, water absorption, water retention,
optical transparency, and chemo-mechanical properties (Luo
et al., 2019). Some of these nanocelluloses has been clinically
approved and available in the market in the form of patents
for wound healing, burn treatment and cosmetic applications
(Brown et al., 2015).

CONCLUSION AND FUTURE PROSPECTS

Nanoparticles synthesized by microbes prove promising
for several biomedical and therapeutic applications due
to their controlled biocompatible dimensions and unique
properties. Methods of biosynthesis are also beneficial since
nanoparticles are often coated with a lipid layer/biomolecules
that gives physiological solubility and stability, which is
essential for biomedical applications and is the bottleneck
of other synthetic methods. However, biogenic nanoparticles
pose a few challenges which need to be addressed for large
scale applications. Till now, the lack of monodispersity, time
intensive production process, low production rates, and
batch to batch variations has limited their use on commercial
scale. There are some important aspects which might be
considered in the process of synthesis of well-characterized
nanoparticles. For the synthesis of highly stable and well-
characterized NPs, biological protocols may be used when
critical aspects such as organism types, inheritable and
genetic properties of organisms, optimal conditions for cell
growth and enzyme activity, optimal reaction conditions, and
biocatalyst state selection have been considered. Additionally,
most biomedical studies with microbial nanoparticles have
been accomplished in-vitro and large scale clinical trials and
safety tests are of utmost importance to realize their effects
in-vivo. Thus, with further in-depth studies, it is hoped that
microbial nanoparticles will hold immense potential in medicine
and healthcare.
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