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The use of chemicals around the globe in different industries has increased tremendously,

affecting the health of people. The modern world intends to replace these noxious

chemicals with environmental friendly products for the betterment of life on the planet.

Establishing enzymatic processes in spite of chemical processes has been a prime

objective of scientists. Various enzymes, specifically microbial proteases, are the most

essentially used in different corporate sectors, such as textile, detergent, leather, feed,

waste, and others. Proteases with respect to physiological and commercial roles hold a

pivotal position. As they are performing synthetic and degradative functions, proteases

are found ubiquitously, such as in plants, animals, and microbes. Among different

producers of proteases, Bacillus sp. are mostly commercially exploited microbes for

proteases. Proteases are successfully considered as an alternative to chemicals and

an eco-friendly indicator for nature or the surroundings. The evolutionary relationship

among acidic, neutral, and alkaline proteases has been analyzed based on their protein

sequences, but there remains a lack of information that regulates the diversity in their

specificity. Researchers are looking for microbial proteases as they can tolerate harsh

conditions, ways to prevent autoproteolytic activity, stability in optimumpH, and substrate

specificity. The current review focuses on the comparison among different proteases

and the current problems faced during production and application at the industrial level.

Deciphering these issues would enable us to promote microbial proteases economically

and commercially around the world.

Keywords: microbial proteases, proteolytic enzymes, bacterial enzymes, industrial enzyme, substrate-specific

proteases

INTRODUCTION

Proteases are a universal entity that is found everywhere, namely, in plants, animals, and microbes.
The peptide bond present in the polypeptide chain of amino acids is hydrolyzed by means of
proteases (Barrett and McDonald, 1986). Proteases are degradative enzymes and show specificity
and selectivity in protein modification (Rao et al., 1998). In the industrial sector, Bacillus sp. are
the most active and dynamic extracellular alkaline protease producer. Of the three largest groups
of industrial enzymes, proteases are one of them, and their global market is drastically increasing
annually. Of the 60% of enzymes marketed worldwide, proteases account for 20% (Kang et al.,
1995; Rao et al., 2009; Singhal et al., 2012). Proteases are an integral component of existing life
on earth, such as animals, plants, and microbes. By a process of fermentation, proteases can be
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isolated and purified in a relatively shorter period of time,
exhibiting high substrate specificity and catalytic activity
(Kumar and Takagi, 1999; Rifaat et al., 2007; Singhal et al.,
2012). It is estimated that proteases account for 1–5% of
the genome of infectious organisms and 2% of the human
genome (Puente et al., 2003). According to researchers, proteases
control the activation, synthesis, and turnover of proteins to
regulate physiological processes (Rawlings et al., 2004). Different
physiological processes, such as formation, birth, aging, and even
death are regulated by proteases (Chou et al., 1997, 2000, 2003;
Chou and Howe, 2002; Chou, 2004, 2006). Proteases are vital
in the imitation and spread of infectious diseases, and because
of their significant role in the life cycle, they are imperative for
drug discovery. In more than 50 human proteases, a single amino
acid mutation may lead to a hereditary disease (Chou et al.,
1998). Proteases are involved in normal and pathophysiological
processes or conditions. This involvement of proteases may lead
them to produce a therapeutic agent against deadly diseases, such
as cancer and AIDS (Rawlings et al., 2004). Proteases similar in
sequences and structures are grouped into clans and families,
which are available in the MEROPS database (Kumar and Takagi,
1999). The proposed review highlights the proteolysis, function,
and wide range of sources among different bacteria of microbial
proteases. It also discusses the broad range of applications and
upcoming advancement for the discovery of new and fresh
proteases, especially alkaline proteases from bacteria (Reddy
et al., 2008; Haddar et al., 2009a).

MICROBIAL PROTEASES

Proteases have been successfully produced by researchers from
different microbial sources. Microbes account a two-thirds share
of commercial protease around the globe (Beg and Gupta,
2003). Since the advent of enzymology, microbial proteolytic
proteases have been the most widely studied enzyme. These
enzymes have gained interest not only due to their vital
role in metabolic activities but also due to their immense
utilization in industries (Rao et al., 1998; Sandhya et al., 2005;
Younes and Rinaudo, 2015). The proteases available in the
market are of microbial origin because of their high yield,
less time consumption, less space requirement, lofty genetic
manipulation, and cost-effectiveness, which have made them
suitable for biotechnological application in the market (Nisha
and Divakaran, 2014; Ali et al., 2016). These microbial proteases
are preferred to plant and animal proteases because of the
presence of all desired characteristics for industrial applications
(Palsaniya et al., 2012; Sathishkumar et al., 2015). Proteolytic
enzymes found in microbes and mammalian systems are small
in size, dense, and structurally spherical (Oberoi et al., 2001).
Among different producers of alkaline proteases, Bacillus sp. is of
immense importance (Rifaat et al., 2007). The proteases isolated
from these microbial sources have a large number of dilutions
in various industrial sectors (Pastor et al., 2001; Beg and Gupta,
2003; Das and Prasad, 2010). Usually, extracellular alkaline
proteases are secreted out from the producer into the liquid broth
from where these proteases are simplified and purified through

down streaming to produce an end product. Comparatively,
proteases produced by plants and animals are more labor-
intensive thanmicrobially produced proteases (Gupta et al., 2002;
Kalaiarasi and Sunitha, 2009). Proteases produced by microbial
sources are classified into groups based on their acidic or basic
properties. They are also classified based on the presence of
functional groups and the position of peptide bond (Gessesse,
1997; Panda et al., 2013). Microbial proteases are the most
commercially exploited enzyme worldwide. A large number of
intracellular proteases are produced by microbes playing a vital
role in differentiation, protein turnover, hormone regulation,
and cellular protein pool, whereas extracellular proteases are
significant in protein hydrolysis (Rao et al., 1998; Johnvesly and
Naik, 2001; Adrio and Demain, 2014), such as in processing
of photographic film (Kumar and Takagi, 1999; Patil and
Chaudhari, 2009), enzymatic synthesis on the basis of solvent
and detergent preparation (Simkhada et al., 2010a), substrate
specificity (Soroor et al., 2009), thermal tolerance (Amoozegar
et al., 2007), and production of zein hydrolysates (Miyaji et al.,
2006; Dodia et al., 2008; Jaouadi et al., 2008).

KERATIN

Keratins are proteins that are usually present in two forms,
namely, hard keratins and soft keratins. Hard keratins mainly
include the structural proteins that are prevalently present in
fingernails, horns, beaks, upper layer of skin, and mainly hair.
Fibers of the keratin proteins are self-assembled into compact
follicles that make up the structure of hair. The process of
assembling keratin proteins into a complex hair is under the
control of multiple genes, cytokines, and growth factors (Charles
et al., 2008). In contrast to hard keratins, soft keratins are
those that are abundantly present in tissues, such as epithelial
tissues. The structure of wool keratin shows great similarity
to hair keratin. Three types of hair keratin have been known
(Cheng et al., 1995). The first one is the alpha keratins; these
range in size from 60 to 80 kDa. Having low sulfur content,
these comprise mainly of alpha-helical domains. Overall, alpha
keratins make up the structural class of proteins, as they reside
in the fiber cortex of hair. The second type is the beta keratins,
which are a non-extractable, less-studied class of keratins. These
are usually present in the hair cuticle and perform protective
functions. The third type is the gamma keratins, which have a
high sulfur content; these keratins are∼15 kDa in size. Their size
is comparatively smaller than the other classes of keratin. These
keratins help to maintain the cortical superstructure by cross-
linking the disulfide bonds in the hair (Cheng et al., 1995; Gupta
et al., 2002; Prakasham et al., 2006). All these types of keratins can
be degraded by the enzyme keratinase, which belongs to a class
of protease enzymes. Proteases, which account for 60% of the
world’s marketed enzymes, is responsible for many applications,
such as detergents, food, and leather processing (Suntornsuk and
Suntornsuk, 2003; Călin et al., 2017; Adetunji and Adejumo,
2018; Kalaikumari et al., 2019).

The enzyme keratinase (E.C. 3.4.99.11) is one of the serine
hydrolase groups that disrupt the disulfide hydrogen bonds in the
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keratin proteins (Cavello et al., 2015; Bohacz and Korniłłowicz-
Kowalska, 2019; Kalaikumari et al., 2019). According to UniProt
results, one of the protein keratinases produced by Bacillus
subtilis contains two domains. The first one is 59 amino acids
long and encodes for inhibitor I9; the other one is 243 amino
acids long and encodes for peptidase S8. The first domain
occurs from 19 to 77 amino acid sequences and the second
domain occurs from 103 to 345 amino acid sequences. The
enzyme also has a metal ion binding site for calcium ion. This
means that calcium ions act as cofactors for keratinases; the
presence of calcium ions in the media can enhance the activity
of keratinases. The structure of keratinase makes it very efficient
in its function of degrading keratin proteins (Arora and Mishra,
2016; Moraga et al., 2019). Our daily green waste and animal
waste includes plenty of keratins, which remain undegraded
due to their complexity. Such insoluble keratins may lead to
environmental pollution if left untreated. Thus, as a solution,
such wastes are treated by keratinase enzymes, which convert the
waste into simpler as well as biodegradable substances (Cavello
et al., 2015; Hossain et al., 2017). The extracellular keratinases
have been successfully isolated from several microbes by using
several fermentation techniques and by optimizing conditions,
such as pH, temperature, and type of nitrogen and carbon
source and the choice of microbe (Govinden and Puchooa, 2012;
Lateef et al., 2015). The keratinases from microbes are effective,
biodegradable, and economic and provide much better results
as compared to chemical treatments (Manirujjaman et al., 2016;
Tamreihao et al., 2017).

ALKALINE PROTEASES

The genus Bacillus is vital for commercially important alkaline
protease (EC.3.4.21-24.99), which is active at alkaline pH ranging
between 9 and 11 (Varela et al., 1997; Kocher and Mishra,
2009; Singhal et al., 2012). These alkaline protease producers are
distributed in water, soil, and highly alkaline conditions. From a
variety of sources, such as detergent contamination (Hsiao et al.,
1994; Singh et al., 1999), dried fish (Centeno et al., 1996), sand
soil, and slaughterhouses, segregation of alkaline proteases has
been stated (Adinarayana et al., 2003). The detergent industry
consumes alkaline proteases most abundantly, which are serine
proteases with an alkaline pH range (Gupta et al., 2002). These
alkaline serine proteases, which are easily inactivated by phenyl
methane sulfonyl fluoride (PMSF), account for one-third of the
share of the enzyme market (Page and Di Cera, 2008). Alkaline
proteases are unique in their activity and maintain a constant
alkaline pH while being exploited for different formulations
in pharmaceutical, food, and other related industries (Banerjee
et al., 1999; Joo et al., 2002, 2004; Dias et al., 2008). A broad
range of applications of these alkaline proteases are getting more
attention from researchers with the hope of discovering new
strains with unique properties and substantial activity (Najafi
et al., 2005; Saeki et al., 2007). It is reported that for dehairing of
animal skin and hides, Bacillus sp. provide the desired hydrolytic,
elastolytic, and keratinolytic properties (Bhaskar et al., 2007;
Deng et al., 2010; Shankar et al., 2011). These Bacillus strains have

been commercially exploited around the globe due to the huge
amounts of enzyme secreted with high enzymatic activity (Jacobs,
1995; Ito et al., 1998; Yang J. K. et al., 2000; Beg et al., 2003).
Although alkaline proteases are produced by multiple sources
(Ellaiah et al., 2002; Prakasham et al., 2005), with the increasing
demand of protease in themarket, and for cost-effectiveness, only
those strains that show greater yield with hyperactivity will be
accepted in the current biotechnological advancement (Kumar
D. M. et al., 2012). Two essential types of alkaline proteases,
such as subtilisin Carlsberg and subtilisin novo are obtained from
Bacillus sp., which can be used as an industrial enzyme to produce
zein hydrolysates (Miyaji et al., 2006). In halophilic sources,
different microbial sp. secreting serine alkaline proteases are also
reported (Giménez et al., 2000; Dodia et al., 2008; Vijayaraghavan
et al., 2012). The entomopathogenic bacterium Photorhabdus
sp. strain EK1 (PhPrtPI) containing Ca2+ alkaline protease is
categorized as a metalloprotease. Owing to its broad-spectrum
specificity with different proteins and peptides, it is suggested that
PhPrtPI provides nutrients to the nematodes by degradation of
insect tissues (Soroor et al., 2009). A Salinivibrio sp. strain, AF-
2004, produces metallotype protease with a reasonable thermal
tolerance and a broad range of pH (5.0–10.0). It is a highly
recommended strain due to its thermal and halophilic properties
(Amoozegar et al., 2007). Another strain, Bacillus clausii, is
also recommended for use at a commercial scale for the
production of alkaline protease with the use of peptone, Cu,
and fructose as the sole source of energy. The optimum pH
and temperature recommended is 8–9 and 37–40◦C, respectively
(Vadlamani and Parcha, 2011). A strain of Bacillus sp., MPTK
712, isolated from dairy slush producing alkaline protease
exhibits a symbiotic relationship withmarine shipworms (Greene
et al., 1989; Kumar D. M. et al., 2012). Very rare microbes,
such as Kurthia spiroforme are also capable of producing
alkaline protease (Amoozegar et al., 2007). Some alkaline serine
proteases recognized by goat skin metagenomics library shows
homology to peptidases (Vadlamani and Parcha, 2011) and
Cryptococcus aureus shows good bioactivity with optimum
temperature (45–50◦C) and pH (9–10) (Kumar D. M. et al.,
2012). Different mushrooms producing alkaline protease are also
reported (Steele et al., 1992; Li et al., 2009; Pushpam et al., 2011).

ACIDIC PROTEASE

Acid proteases are stable and active between pH 3.8 and 5.6
and are frequently used in soy sauce, protein hydrolysate, and
digestive aids and in the production of seasoning material. The
optimum pH of acidic proteases is 3–4 and the isoelectric point
range is between 3 and 4.5 with a molecular weight of 30–45
kDa (Zheng et al., 2011; Ravikumar et al., 2012; Machado et al.,
2016). Furthermore, acid proteases are also exploited for use in
clearing beer and fruit juice, improving texture of flour paste, and
tenderizing the fibril muscle (Zhang et al., 2010). In comparison
with alkaline proteases, these extracellular acid proteases are
mostly produced by fungal species, such as Aspergillus niger
(Sielecki et al., 1991), Aspergillus oryzae (Yongquan, 2001),
Aspergillus awamori (Ottesen and Rickert, 1970), Aspergillus
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fumigatus (Shinmyo et al., 1972), and Aspergillus saitoi (Sodek
and Hofmann, 1970). Most of the fungal extracellular acid
proteases are known as aspergilla opepsins. Aspartic proteases
are acid proteases consisting of 380–420 long chains of amino
acid residues constituting the active site for catalytic activity.
These acidic proteases are endopeptidases and grouped into three
families: pepsin (A1), retropepsin (A2), and enzymes from Para
retroviruses (A3) (Somkuti and Babel, 1967). These three families
are placed in clan AA. It is found that A1 and A2 are closely
related to each other while members of the A3 family show
some relatedness to families A1 and A2. An active site cleft of
the members of the pepsin family is located between lobes of a
bilobal structure (Pushpam et al., 2011). A great specificity of
acidic proteases is exhibited against aromatic amino acid residues
located on both sides of the peptide bond. These aromatic amino
acid residues with peptide bonds are similar to pepsin but less
stringent in action. Broadly, acidic proteases are divided into
two groups: (i) pepsin-like enzymes and (ii) rennin-like enzymes
produced by Penicillium, Aspergillus, Rhizopus, Endothia, and
Mucor (Tomoda and Shimazono, 1964).

NEUTRAL PROTEASES

Neutral proteases are defined as, such as they are active at a
neutral or weakly acidic or weakly alkaline pH. Mostly neutral
proteases belong to the genus Bacillus and with a relatively low
thermotolerance ranging from pH 5 to 8 (Table 1). They generate
less bitterness in hydrolysis of food proteins due to a medium
rate of reaction; therefore, they are considered more valuable
in the food industry. Neutrase is incorporated in the brewing
industry due to its insensitivity to plant proteinase inhibitors. On
the basis of high affinity toward hydrophobic amino acids, neutral
proteases are identified and characterized. During production
of food hydrolysate, it is slightly advantageous to control the
reactivity of neutral proteases due to low thermotolerance. A
divalent metal ion is required for the activity of neutral proteases
belonging to the metalloprotease type (Barrett, 1995; Woessner
et al., 2000; Chavan and Patil, 2007).

Metalloproteases based on specificity in action are grouped
into (i) neutral, (ii) alkaline, (iii) Myxobacter I, and (iv)
Myxobacter II. A specificity of neutral proteases is shown for
hydrophobic acids and inhibited by a chelating agent, such as
EDTA (Ethylenediamine tetraacetic acid). Among different types
of proteases, metalloproteases are the most diverse. Thermolysin,
a well-characterized neutral protease having a single peptide
without disulfide bridges, is produced by B. stearothermophilus. It
has a molecular weight of 34 kDa. Between the 2-folded lobes of
a protein, an essential Zn atom and four Ca atoms are embedded,
exhibiting thermotolerance. This thermolysin neutral protease is
very stable with a half-life of 1 h at 80◦C (Fitzgerald et al., 1990;
Dawson and Kent, 2000).

SOURCES OF PROTEASES

Owing to the high demand of proteases in the global market,
the search for proteases has tremendously increased, as they

are found everywhere in nature, namely, in plants, animals,
and microbes. However, production of plant proteases, such as
bromelain, keratinases, and ficin, is time-consuming (Rani et al.,
2012). The animal proteases, such as pancreatic, trypsin, pepsin,
chymotrypsin, and renin are produced and prepared in pure form
in large quantities (Weaver et al., 1977; Boyer and Krebs, 1986).
The production of proteases from animal sources is insufficient
to fulfill the industrial demand worldwide; therefore, scientists
have extended their research of producing protease from bacterial
sources (Table 2). Owing to the broad-spectrum biochemical
variety and easy genetic manipulation, microbes produce an
exceptionally promising number of proteases (Godfrey and
West, 1996a; Kuhad et al., 2011). Among different sources,
such as plants, animals, and microbes, proteases are generally
produced by microbial sources. Among microbes, Bacillus sp.
are extensively studied for protease production in a large
scale, and they are exploited in various industries like leather,
detergent, pharmaceuticals, and textile; some fungal species like
Aspergillus sp. have been studied thoroughly for the production
of alkaline protease (Singhal et al., 2012; Singh et al., 2016;
Rehman et al., 2017). A list of microbes producing proteases is
given below. Halophilic enzymes are getting more attention in
biotechnological applications due to their thermal stability and
ability to retain activity under high stress from organic solvents
except for pyridine, which inhibits protease activity. The enzyme
activities remained the same up to 80% even at 50, 55, and 60◦C
for at least 30min (Madern et al., 2000; Margesin and Schinner,
2001; Xue et al., 2012).

PROTEASE AND SUBSTRATE SPECIFICITY

A number of techniques are being exploited for enzyme
production from a dominant microbial source for economic
improvement (Eichler, 2001; Haki and Rakshit, 2003), but a
quest for good quality grade enzymes for industrial use from
bacteria is still under consideration. The use microbial origin
proteases in the industrial sector is limited by their quality and
cost. The increasing interest in using proteases for the production
of various eco-friendly goods in the market is of immense
importance, and to make the products cost-effective, scientists
are in search of a cheap substrate for enzyme production.
Almost two-fourths of production cost is due to microbial
growth substrate (Singh et al., 2015; Hamza, 2017a). Both solid
substrate and submerged fermentation are exploited for the cost-
effective production of microbial proteases. The easily available
substrate wheat bran is found to be more promising for protease
production in solid substrate fermentation (Priya et al., 2016;
Hamza, 2017a,b). Other cheap sources of substrate, such as cow
dung, agro-industrial waste, groundnuts, and wheat bran can be
remarkable for the production of proteases (Krishnaveni et al.,
2012; Verma and Agarwa, 2016; Hamza, 2017a). Additionally,
other readily available sources of substrate, such as molasses from
sugar industry waste, dairy sludge, and effluents are interestingly
promising for value-added product enzyme production and
concurrently help to lessen eco-pollution (Prabhavathy et al.,
2012; Chatterjee et al., 2015; Rao et al., 2017; Corral et al., 2018).
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TABLE 1 | A comparison among different types of proteases.

Type of

protease

pH range Use of proteases Classification Sources References

Alkaline 9–11 Detergent and leather industry Serine proteases, subtilisin

Carlsberg and subtilisin

novo

Mostly produced by bacterial

species, such as A. salinivibrio

sp. strain AF-2004, marine

shipworms, Cryptococcus

aureus, mushrooms, Bacillus sp.

Miyaji et al., 2006; Dodia

et al., 2008; Patil and

Chaudhari, 2009; Soroor

et al., 2009; Simkhada

et al., 2010a; Vadlamani and

Parcha, 2011

Acidic 3.8–5.6 Soy sauce, protein hydrolysate,

digestive aids and in production

of seasoning material, clearing

beer and fruit juice, improving

texture of flour paste and

tendering the fibril muscle

Aspartic proteases, pepsin

(A1), retropepsin (A2) and

enzymes from Para

retroviruses (A3)

Mostly produced by fungal

species, such as A. niger, A.

oryzae, A. awamori, A.

fumigatus, and A. saitoi.

Sielecki et al., 1991; Steele

et al., 1992; Zhang et al.,

2010; Pushpam et al., 2011

Neutral 5–8 Food industry, brewing industry Neutrase, thermolysin Genus Bacillus Sodek and Hofmann, 1970

For the commercial production of various enzymes especially
proteases, waste from the agriculture industry is expected to be
used in the future.

PROTEASE AND YIELD IMPROVEMENT

Apart from the use of different substrates for protease
production from microbial sources to make them high quality
and cost-effective, genetic manipulation provides researchers
a new opportunity to make changes in bacterial genome
using various biotechnological tools to enhance the yield of
proteases with desired characteristics. The diversity in microbes
and tools opens a new path for strain improvement for
industrial use as well (Rathakrishnan and Nagarajan, 2012;
Aruna et al., 2014). Scientists have incorporated different
ways to improve protease yield for industrial use, such as
cloning and overexpression, screening of strains, fed batch, and
chemostat fermentation. Different statistical approaches, such
as response surface methodology have also been used for the
optimization of different media and growth conditions. Both
conventional (UV or chemicals) andmodern (rDNA) technology
are also used for strain improvement for hyperproduction of
proteases (Kumar D. M. et al., 2012; Homaei et al., 2016;
Rehman et al., 2017). The rDNA technology is recombinant
DNA technology carried out through the combination of our
desired gene and the genome of organisms like microbes, plants,
and/or animal cells. The new cell (plant, microbes, or animals)
produced transgenic organisms called genetically modified
organisms. The proteases produced through the transformation
of protease genes through microbes like Escherichia coli
are called recombinant proteases. Due to thermal instability
and the high cost of recovery of enzymes, proteases have
been restricted for use in the industry regardless of their
advantages. These concerns led to the use of immobilization
technology to attempt to increase thermal tolerance, stability
to pH, and organic solvents. Immobilization technology
has been employed to obtain a high yield of alkaline
proteases against a solid support of matrix (Kalisz, 1988;
Rao et al., 1998). The proteases are usually immobilized

in the alginate–chitosan beads, which exhibit reasonable
stability and good activity at 47◦C (Mehde et al., 2018; Xu
et al., 2018; Özacar et al., 2019; Xing et al., 2019). Genetic
engineering with the aim of hyperproduction of enzyme,
cost-effectiveness, and quality helps scientists to capture the
biotechnology market worldwide. Bioengineered enzymes with
greater stability are being generated in the detergent industry,
especially using rDNA technology. Under extreme conditions,
the expression of gene encoding for proteases through using
different vector systems including pHY300PLK, pKL9610, pFX1,
and plasmid may be maintained and expressed in Bacillus
stearothermophilus, B. stearothermophilus, E. coli, and B. subtilis
(Roja Rani et al., 2012; Kostyleva et al., 2016).

PURIFICATION OF PROTEASES

After production of enzymes, purification of these enzymes is
a very complex process. A number of methods are in line for
their purification. Several techniques are applied for the recovery
of value-added product enzymes. The choice of technique
depends on the source of enzyme, whether it is extracellular or
intracellular (Mienda and Yahya, 2011). During the production
and purification of enzymes, the basic consideration is to produce
end products that are cost-effective and of high value using
economical techniques. Usually, the precipitation method is used
for protein recovery from a crude biological mixture. Different
reagents, such as salts and organic solvents are used. The most
common practice is the use of ammonium sulfate for the
precipitation of proteins in an aqueous solution of acidic, neutral,
or alkaline pH, which develops ammonium under alkaline
conditions. But the use of ammonium sulfate for detergent
enzymes has been a choice because under low temperatures, the
solubility of salt limits the positive precipitating quality of sodium
sulfate salt while the ammonium sulfate enhanced the solubility
of salts (Sumantha et al., 2006; Naidu, 2011; Prabhavathy et al.,
2013). The use of ion exchange (CM-Sephadex, DEAE-Sephadex)
and gel filtration chromatography is expedient for the production
of purified proteases, such as alkaline, acidic, and neutral from
different bacterial sources, such as Bacillus cereusAT and Bacillus
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TABLE 2 | Some commercially available microbial proteases.

Product trade

name

Microbial source Applications Supplier Activity Characteristics

Alcalase Bacillus

licheniformis

Detergent, silk

degumming

Novozymes,

Denmark

Activity: ≥0.75 Anson units/ml.

Activated at high temperature from

45◦C up to 65◦C and moderate pH

of 7.0–8.5

Stereoselective hydrolysis of amino

esters and selective esters; suitable

for hydrolysis of proteins; used in

transesterification

and transpeptidation

Activated at high temperature,

moderate pH. Storage temperature:

+2◦C to +8◦C

Storage conditions: freezing

conditions

Toxicity: harmful

State: dark brown liquid

Density: 1.25 g/ml

Savinase Alkalophilic

Bacillus sp.

Detergent, textile Novozymes,

Denmark

Activity: 12 KNPU-S/g

Activated at low temperature from

10◦C up to 65◦C and high pH of

6.5–11, Stereoselective hydrolysis of

amino esters and selective esters;

suitable for hydrolysis of proteins,

hydrolysis of strained amides

Activated at low temperature, high pH

Storage temperature: +3◦C to +5◦C

Storage conditions: not freezing

conditions

Toxicity: Safe as it is not toxic

State: granulate

Density: 1,300 g/ml

Esperase B. lentus Detergent, food

silk degumming

Novozymes,

Denmark

Activity: 8 KNPU-E/g

Activated at temperature up to 55◦C

and high pH of 8.0–12.5, hydrolysis of

internal peptide bonds; characterized

by excellent performance at elevated

temperature and pH

Activated at low temperature, high pH

Storage temperature: +0◦C to

+10◦C

Storage conditions: not freezing

conditions

Toxicity: safe as it is not toxic

State: liquid

Density: 1,070 g/ml

Biofeed proteases B. licheniformis Feed Novozymes,

Denmark

Activity: ≥2.80 Anson units/ml, pH

9.0, temperature from 15 to 80◦C

Acid stable proteases

State: liquid, storage at 25◦C

Durazym Protein

engineered, variant

of Savinase®

Detergent Novozymes,

Denmark

Activity: ≥8.39 Anson units/ml, pH

7–12, temperature from 20 to 80◦C

while the activity measured at 60◦C

was regarded as the 100% value

Density 800 g/ml, size of active varies

from 18 to 90 kDa, granulates and

liquid form, crystalline enzyme

Neutrase Bacillus

amyloliquefa-ciens

Upgrade proteins

of animal and

vegetable origin

Novozymes,

Denmark

Activity: ≥0.8 Anson units/g, optimum

activity around pH 8 and 20–80◦C

Store at 2–8◦C

State: liquid

Novozyme 3403 B. licheniformis Denture cleaner Novozymes,

Denmark

Type XII-A, saline solution

Activity: ≥500 units/mg protein

(biuret), optimum activity around pH 8

and temperature 20–90◦C

Store at −8◦C

State: liquid

Novozyme 4551 B. licheniformis Leather Novozymes,

Denmark

Activity: 500 units/mg protein,

93–100% (SDS-PAGE), optimum

activity around pH 6.9 and

temperature 20–80◦C

Store at 2–8◦C

State: lyophilized powder

Protease B. licheniformis Food, waste Solvay Enzymes

GmbH, Germany

Activity: ≥2.4 units/g, active between

pH 6.5 and 8.5 and has an optimum

temperature of 60◦C

Store at 2–8◦C

State: aqueous solution

Proleather Alkalophilic

Bacillus sp.

Food Amano

Pharmaceuticals

Ltd.,

Activity: ≥3.5 units/g, active between

pH 4.5 and 5.5 and has an optimum

temperature of 70◦C

Store at 2–10◦C

State: liquid

Protease P Aspergillus sp. Not specific Amano

Pharmaceuticals

Ltd.,

Activity: ≥0.5 units/g, active between

pH 4 and 7.5, and has an optimum

temperature of <60◦C

Store at 3–5◦C

State: liquid

circulans (Kanmani et al., 2011; Annapurna et al., 2012). The
preferred technique for the recovery of enzyme formed is the
use of dialysis membrane. Ultrafiltration is a pressure-driven
separation process that is inexpensive and results in little loss
of enzyme activity (Rao et al., 1998; Rani et al., 2012). Such
promising techniques like gel filtration are used to determine the
molecular mass of proteins using a reference standard of mixture
of proteins with known molecular weight (Table 3).

COMPARISON AMONG ACIDIC, NEUTRAL,
AND ALKALINE PROTEASES

It has been studied extensively that among all enzymes, proteases
are being used in various industries abundantly, mainly those of
bacterial origin. Acid proteases are obtained from fungal species
and neutral proteases are of plant origin. Isolation of both acidic
and neutral proteases from fungi and plants is labor-intensive and
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TABLE 3 | Protease list isolated from various organisms with their molecular weight and classes.

Proteases Class Occurrence Molecular weights Subunit References

Tripeptidyl peptidase II Ser Cytosol >1,000,000 Many identical subunits

135 kDa

Tomkinson et al., 1987; Schomburg

and Salzmann, 1991; Kloetzel, 2004

Leucine aminopeptidase Metallo Cytosol 360,000 Hexamer 6 × 54 kDa

or 3 × two subunits, 53

and 65 kDa

Taylor et al., 1984; Kohno et al., 1986;

Weston, 2005; Stack et al., 2007

Calpain I/II Cys Cytosol 110,000 Heterodimer 80 and 30

kDa

Suzuki, 1987; Melloni and Pontremoli,

1989; Goll et al., 1992; Berchtold

et al., 2000

Multicatalytic proteinase Cys or Ser Cytosol 700,000 >10 different types of

subunits, 22–34 kDa

Rivett, 1989; Driscoll et al., 1993;

Hershko and Ciechanover, 1998

Megapain/UCDEN* Unknown Cytosol 1,500,000 Many different

subunits, 34–110 kDa

Fagan et al., 1987; Hough et al.,

1988; Biolo et al., 1995

Endopeptidase 24.11 Metallo Plasma membrane 90,000 Dimer Kenny, 1986; Perkins et al., 1999;

Keil, 2012

Meprin Metallo Plasma membrane 360,000 Tetramer Bond and Beynon, 1986, 1995

ATP-dependent protease Ser Mitochondria 550,000–650,000 Unknown Desautels and Goldberg, 1982;

Watabe and Kimura, 1985; Rock and

Goldberg, 1999

Proteinase yscE

(multicatalytic proteinase or

proteasome)

Cys and Ser Cytosol 600,000–700,000 Many different types of

subunits, 22–33 kDa

Achstetter et al., 1984; Kalisz, 1988;

Kleinschmidt et al., 1988

Proteinase ysc Y

aminopeptidase

ATP metallo Cytosol >600,000–640,000 Unknown Tanaka et al., 1988; Gomes et al.,

2006; Guillaume et al., 2010; Aiken

et al., 2011

uneconomical comparatively, while alkaline proteases obtained
from bacterial species are demanded by industries because of
their cost-effectiveness, ease of production, ready susceptibility to
genetic manipulation, less labor intensiveness, and limited space
for cultivation.

MICROBIAL PROTEASES AND INDUSTRY

Proteases of microbial origin are considered the most significant
hydrolytic enzymes, whereas alkaline proteases are ranked the
highest in the enzymemarket (Mukesh et al., 2012;Mahajan et al.,
2016). Interest in studying the proteases has increased not only
due to the regulation of different metabolic processes but also
due to the significant use in industrial community. The microbes
producing substantial numbers of extracellular proteases are of
great importance for the industry, and few products of alkaline
protease are successfully marketed (Gupta et al., 2002; Gupta and
Ramnani, 2006; Vijayaraghavan et al., 2014). Microbial proteases
have numerous applications in different industries listed below.

PROTEIN HYDROLYSIS

In the food industry, proteases are utilized for modification,
palatability, and storage life of all available sources of proteins.
High nutritional value preparations of protein hydrolysates are
achieved by the use of alkaline proteases. In meat tenderization,
alkaline proteases of microbial origin are of immense importance
(Rao et al., 1998; Sumantha et al., 2006).

FOOD AND FEED INDUSTRY

During cheese production from milk, proteases are added to
hydrolyze kappa casein to prevent coagulation by stabilizing
micelle formation. In the baking industry, for quicker
preparation of dough, its gluten is partially hydrolyzed by a
heat-labile fungal protease because of its early inactivation in
subsequent baking. Protein hydrolysate preparation with high
nutritional value has been accomplished by the addition of
microbial alkaline proteases. The bioactive peptides play an
important role in various pharmaceutical drug formations and
as potential molecules under stress environmental conditions
(Figure 1). This preparation of hydrolysate is vital in infant
food formulation and fortification of soft drinks and juices (Ray,
2012; Singhal et al., 2012; Mótyán et al., 2013; Singh et al., 2016).
The mackerel hydrolysates helped in the hydrolysis of protein
molecules into free amino acids including carosine, anserine,
and other small peptides through the use of proteases. The
hydrolysis of proteins into amino acids caused the formation of
antioxidants that inhibit autoxidation of linoleic acid and the
scavenging effects for α,α-diphenyl-β-picrylhydrazyl free radicals
(Wu et al., 2003; Li et al., 2008; Gómez-Guillén et al., 2011). It
was found that the long peptides with 1,400 Da molecular weight
were stronger antioxidants as compared with smaller peptides
with molecular weights of 200 to 900 Da (Clemente, 2000;
Foegeding et al., 2002; Tavano, 2013). It has been found that the
formation of extensive protein hydrolysates through sequential
actions of exoproteases and endopeptidases coupled with
the release and development of the post-hydrolysis processes
was considered as the most efficient way to produce protein
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FIGURE 1 | Food-protein-derived peptides and their roles.

hydrolysates that showed well-defined characteristics during
protein hydrolysis (Sarmadi and Ismail, 2010; Chalamaiah et al.,
2012; He et al., 2013; Power et al., 2013). The bioactive peptide
produced from the hydrolysis of various food proteins plays
an important role as antioxidants in cell (Thiansilakul et al.,
2007; Nalinanon et al., 2011; Kittiphattanabawon et al., 2012).
The protein hydrolysates showed excellent solubility, because
of which the antioxidant activities of protein hydrosylates were
enhanced (Kumar N. S. et al., 2012; Intarasirisawat et al., 2013;
Chi et al., 2015). The bioactive peptides show anticalmodulin,
anticancer, and hypocholesterolemic properties, and there are
also multifunctional properties of the food-protein-derived
peptides (Phoenix et al., 2012; Nicolia et al., 2014; Udenigwe,
2014; Nongonierma and FitzGerald, 2015; Agyei et al., 2016).

WASTE MANAGEMENT

The use of chemicals in industries is detrimental to the
environment and the surroundings. This hazardous use of
chemicals begs for an alternative ecofriendly way for the
treatment of waste management. Feathers of poultry containing
a very rigid keratin structure accounts for 5% of the body weight
and is a rich source of proteins for feed and food. Poultry
waste can be degraded into feed and food by the keratinolytic
process (Neklyudov et al., 2000; Lasekan et al., 2013). For
depilation and cleaning of hairs from drains and clogged pipes,
a formulation containing hydrolytic enzymes isolated from B.
subtilis, B. amyloliquefaciens, and Streptomyces sp. has been
prepared and patented as Genex (Blanch and Moo-Young, 1985;
Drew et al., 1985; Ichida et al., 2001; Lasekan et al., 2013).

LEATHER INDUSTRY

Increased application of alkaline protease at emerging leather
industries is due to the elastolytic and keratinolytic activity. These
influential properties of alkaline protease are very effective in
leather processing industries. The particular uses of protease
are found to be relevant in the soaking, bating, and dehairing
phase of preparing skin and hides. Extermination of unwanted
pigments by enzymatic measures helps in clean hide production.
Enzymatic proceedings of pancreatic proteases rely on the bating

system.Microbial alkaline proteases have become very popular in
leather industries (Takami et al., 1992; Brandelli et al., 2010).

DETERGENT INDUSTRY

Proteases have been widely used at commercial scale in the
detergent industry. The various products in the detergent
industry containing proteases as an essential component or
ingredient have been used for cleaning of household laundry,
dentures, or contact lenses. Of the total sale of enzymes, the
utilization of proteases in the detergent industry accounts for
∼20%. In 1913, the very first enzymatic preparation, “Brunus,”
was prepared consisting of crude pancreatic extract and sodium
carbonate. This enzymatic preparation was first marketed in
1956 with a trade name of BIO-40. Alcalase with a trade name
of BIOTEX produced by B. licheniformis was introduced into
the market by Novo industry A/S in 1960 (Jacobson et al.,
1985). Protease produced by B. cereus BM1 was reported as
a good detergent ingredient and shows stable activity in a
solution of 10% (w/v) commercial detergent (Fabs Perfect),
which suggests its commercial consumption (Varela et al.,
1997; Illanes, 2008). Isoelectric point is important for the
selection of proteases for detergent preparation. Proteases exhibit
remarkable results when pH and PI points of these enzymes are
approximately concomitant. There are a few other parameters,
such as compatibility with surfactants, bleaches and perfumes
(De Virgilio et al., 1993; Bayoudh et al., 2000), good activity,
optimum pH, and temperature (Aehle et al., 1993; Bech et al.,
1993; Kumar et al., 1998; Gupta et al., 1999) ionic strength,
stability and removal potential of stain, which have also been
considered for the choice of detergent proteases (Beg et al.,
2002; Baş and Boyaci, 2007). Traditionally, detergents work at
high temperature but the interest has been increased to search
and identify alkaline proteases working in a wide range of
temperature (Csuk and Glaenzer, 1991; Breuer et al., 2004).
Generally, in the presence of bleaching or oxidizing agent,
commercially available proteases are not stable. Recently, rDNA
technology has been incorporated to produce bioengineered
detergent proteases with greater stability and shelf life. By the
use of protein engineering, the replacement of few specific
amino acid residues has been studied for bleach and oxidation
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stability of proteases (Oberoi et al., 2001; Sellami-Kamoun et al.,
2008; Haddar et al., 2009b). Proteases have been used not
only as laundry detergent but also as dishwashing and cleaning
detergents both in institutional and industrial sectors (Estell et al.,
1985; Shanlin et al., 1997; Bornscheuer et al., 2012).

PHOTOGRAPHIC INDUSTRY

Alkaline proteases produced by B. subtilis, Streptomyces
avermectnus, and Conidiobolus coronatus have been successfully
reported to recover silver from X-ray films, ensuring that the
process is eco-friendlier over the use of chemicals (Godfrey
and West, 1996b; Wolff et al., 1996; Yang Y. et al., 2000). Silver
recovery by the efficient use of thermally stable mutant alkaline
protease produced by Bacillus sp. B21-2 has also been reported
for its potential (Bettiol and Showell, 2002; Dhawan and Kaur,
2007; Araujo et al., 2008).

CHEMICAL INDUSTRY

Various alkaline proteases producing microorganisms, such as
Bacillus pseudofirus SVB1, Aspergillus flavus, and Pseudomonas
aeruginosa PseA showed substantial results in peptide synthesis
due to stability in organic solvents (Nakiboglu et al., 2001;
Ahmed et al., 2008; Shankar et al., 2010). Some alkaline protease
producing species of Bacillus and Streptomyces in the water
system are active candidates for peptide and organic synthesis
(Masui et al., 2004; Jadhav andHocheng, 2012; Yadav et al., 2015).

SILK DEGUMMING

A proteinaceous substance, “sericin or silk gum,” must be
removed by the process of degumming from raw silk in an
alkaline solution of soap conventionally. Alkaline protease is the
best choice to remove sericin while not attacking the fiber. It has
been proven that fiber break is not amenable, and silk threads
are found to be much stronger than when previous traditional
treatments were used (Yadav et al., 2011; da Silva et al., 2017;
Radha et al., 2017).

MEDICAL FIELD

With the passage of time, scientists have found the broad
use of proteases in medical field successfully. In medicine,
different formulas, such as gauze, non-woven tissues, and
ointment composition containing alkaline proteases produced
by B. subtilis show promising therapeutic properties (Sen et al.,
2011; Anbu, 2013; Awad et al., 2013). Certain lytic enzyme
deficiency syndromes are diagnosed to be aided by an oral
administration of alkaline proteases (Gupta and Khare, 2007;
Joshi and Satyanarayana, 2013). It has been reported that
fibrin degradation has been achieved by alkaline fibrinolytic
proteases. The use of this fibrinolytic enzyme suggests its future
application as an anticancer drug and in thrombolytic therapy
(Jaouadi et al., 2011, 2012). Slow-release dosage form preparation
containing collagenases with alkaline proteases is extensively

used in therapeutic applications. The hydrolysis of collagen by
the enzyme liberates low-molecular-weight peptides without any
amino acid release for therapeutic use (Romsomsa et al., 2010;
Suwannaphan et al., 2017). For the treatment of various diseases,
such as burns, carbuncles, furuncles, and wounds, a preparation
of elastoterase immobilized on bandage is used (Davidenko,
1999; Palanivel et al., 2013).

OTHER PERSPECTIVES OF PROTEASES

Apart from vital industrial application of proteases, they are
being used for the cleavage of peptide bond to elucidate the
association between structure and function of peptides and
proteins. Alkaline proteases isolated from Vibrio metschnikovii
RH530 can be used as an alternative to proteinase K in DNA
isolation (Mukherjee and Rai, 2011; Narasimhan et al., 2015;
Vijayaraghavan and Vincent, 2015). Hence, the proteases can be
viewed as an alternative to many chemicals involved in various
biochemical and physiological processes.

PROTEASE ENGINEERING

Genetic engineering has an enormous contribution on various
aspects of life, such as in the field of environmental protection,
food production, human health care, animal husbandry,
manufacturing of biochemicals, and fuels. In the future,
the manipulation of genetic makeup of different organisms
will facilitate the production of different therapeutic and
industrially important proteins and enzymes to meet the human
requirements and combat different serious diseases (Pursel et al.,
1989; Cappello et al., 1990; Wang et al., 2003; Mittler and
Blumwald, 2010; Hockemeyer et al., 2011).

The production of genetic modified E. coli for the formation
of proteases has introduced new and emerging improvement in
the development of recombinant proteins (Figure 2). The use of
mutations may also be helpful for the formation and isolation
of proteases (Simkhada et al., 2010b; Kotb, 2013). Protease
engineering in laundry detergents provided improvement in
thermal or high-temperature resistance, which allowed proteases
to work even under low-temperature conditions. The three
protease engineering campaigns presented provide in-depth
analysis of protease properties and have identified principles
that can be applied to improve or generate enzyme variants for
industrial applications beyond laundry detergents (Barthomeuf
et al., 1992; Vijayaraghavan and Vincent, 2015; Vojcic et al.,
2015; Coker, 2016; Shahid et al., 2016; dos Santos Aguilar
and Sato, 2018). The cold-adapted protease subtilisin has been
successfully isolated through evolutionary engineering, which
is based on the sequential in vitro mutagenesis along with the
improved screening method. It was found that the mutation
in the subtilisin, termed m-63, exhibited higher efficiency for
catalytic activities, which was 100% much higher than that of
the wild type at 10◦C under N-succinyl-l-Ala-l-Ala-l-Pro-l-Phe-
p-nitroanilide as a synthetic substrate for enzyme activities. It
was found that the engineering for protease for cold resistance
gives cold tolerance in protease, which allowed it to work even
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FIGURE 2 | Engineering for various enzymes at the industry level.

under low temperatures (Banerjee and Ray, 2017; Castilla et al.,
2017; Onaizi, 2018; Zhou et al., 2019). The mutant proteases
from the papain family, such as Glnl9His, Glnl9Glu, and Gin
19Ala, indicated that the Gln19Glu and Glnl9His enzymes
participated in the acid-catalyzed hydrolysis in thiomidate, which
was converted into amide through the provision of H+ (proton)
to form themore reactive protonated thiomidate, which canwork
at low as well as higher levels of thermal conditions (D’Amico
et al., 2002; Siddiqui and Cavicchioli, 2006; Margesin et al., 2007;
De Maayer et al., 2014).

Specific inhibition for serin proteases caused crucial switches
in a large number of physiological processes for proteases, such
as therapeutic applications like ecotin (potential macromolecular
inhibitor for serin proteases), which shows as attractive scaffold
for engineering the specific proteases inhibitors. The scaffolds
showed higher protease inhibition with an apparent dissociation
equilibrium constant (Ki∗) at 11 pM; however, the Ki∗ values
that were related to proteases [Factor Xa (FXa), thrombin,
urokinase-type plasminogen activator (uPA), Factor XIa (FXIa),
and membrane-type serine proteases 1] showed four to seven
higher orders of magnitudes. The adaptabilities of the scaffolds
were also demonstrated though isolation for protease inhibitors
up to two additional serine proteases, such as Factor XIIa and
membrane-type serine proteases 1/matriptase (Liu et al., 2018;
Krasileva, 2019a,b; Zhang et al., 2019).

A large number of serin protease subtilisins require the
assistance of N-terminal pro-sequence for precursors for the
formation of mature and active protease enzymes. The findings
from this study indicates that engineering through the use of
pro-sequences, i.e., the site-directed or random mutagenesis for
proteases, chimeras, and the gene shufflings between the protease
members of the serin protease family, would be a very useful tool
for the improvement in functions of the autoprocessing protease
enzymes. The conventional or traditional protein engineering
techniques now have thus far employed mutagenesis in the

protease domains for modification in the enzymatic properties
of proteases. The new approach, termed pro-sequencing protein
engineering, is not only an important technique for the study
of protein folding mechanisms but also a highly promising
technology to create unique proteases that have various beneficial
catalytic properties (Hosse et al., 2006; Ruigrok et al., 2011;
Mascini et al., 2012; Fang et al., 2016, 2017a; Verma et al., 2016;
Huang et al., 2017). The Gly216 is an active site for proteases and
is specific to the MA190 mutant from α-lytic proteases. It has
also been found to be extraordinarily tolerant for an amino acid
substitution in proteins. The side chains are usually as long as the
Trp, which can be accommodated within the substrate binding
pocket without decreasing the catalytic activity of enzymes. The
GA216 + MA190 expression for specificities of enzymes was
altered due tomutation that produced GL216+MA190mutants,
which were crystallized both with and without a representative
in the series of peptide boronic acid transition state that were
analog inhibitors for proteases. Results show that the substrates
are the agents that specifically determine the α-lytic protease with
distributed properties of the active sites and substrate molecules
(Cunningham and Agard, 2003; Ljungdahl, 2009; Liu et al., 2014;
Fang et al., 2017b; Yang et al., 2017). The proteases are usually
not perfect in acyltransferases. All unwanted proteolytic side
reactions of proteases and the protease hydrolysis for the acyl-
enzyme during kinetic approaches are the key problems for
enzymatic peptide synthesis and activity losses. The planning and
optimization for enzymatic peptide synthesis always require the
“S” or subsite mapping for proteases along with the knowledge of
additional fundamental parameters that determined the reaction
courses of proteases (Jakubke, 1994; Jäckel and Koksch, 2005;
Baker and Numata, 2012; Asgher et al., 2018; Tavano et al., 2018;
Antink et al., 2019; de Souza Vandenberghe et al., 2019; Mota
et al., 2019; Siar et al., 2019).

Genetic engineering has been instrumental in understanding
the relationship between structure and function of different
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genetic systems and is an excellent method for manipulating
the genes. Genetic engineering is being incorporated for the
production of industrially important bacterial enzymes. It has
been reported that microbial proteases have been isolated and
manipulated with the aim of (i) enzyme overproduction, (ii)
studying the primary structure of protein, and (iii) applying
protein engineering to suit commercial applications. However,
the protease gene from bacteria has been cloned and sequenced
(Hogdson, 1994).

The ability of B. subtilis to be nonpathogenic and to produce
extracellular proteins in the medium makes it a potential
host for the production of recombinant protease enzyme. B.
subtilis secretes industrially important proteases subtilisin (apr)
or mettaloproteases (npr). This significant study reveals an
understanding of the mechanism of overproduction of the
proteins. Different strains, such as B. subtilis 168 secretes at least
six extracellular proteases into the medium, such as structural
genes, neutral protease A and B, minor extracellular protease,
bacillopeptidase F, and metalloprotease, which have been cloned.
Henner et al. replaced promoters of apr and npr WITH the
amylase promoter from B. amyloliquefaciens and B. subtilis,
respectively, to increase the expression (Henner et al., 1985;
Sloma et al., 1990; Connelly et al., 2004; Bloor and Cranenburgh,
2006; El-Gamal et al., 2012; Idbeaa and Omar, 2016).

A serine protease gene (hspK) of 90 kDa was cloned and
sequenced from B. subtilis (Natto) 16 (Yamagata et al., 1995;
Satyanarayana et al., 2012; Guleria et al., 2016). A conserved
sequence was found between subtilisin BPN and subtilisin
Carlsberg from B. amyloliquefaciens and B. licheniformis in the
coding region and must have a common precursor (Narhi et al.,
1991; Li et al., 2013; Souza et al., 2015). It was also reported that
the gene encoding subtilisin amylosacchariticus from B. subtilis
subsp. and sequence showed homology to subtilisin E from B.
subtilis 168. This gene was then expressed in B. subtilis ISW 1214
using a vector pHY300PLK and showed 20 times more activity
than the host (Vasantha et al., 1984; Bordusa, 2002; Gamblin et al.,
2008; Heck et al., 2013).

Serratia, a gram-negative bacterium, secretes extracellular
protease into the medium. Different strains of Serratia like E-
15 produce extracellular metalloprotease, which is used as an
anti-inflammatory agent. The corresponding gene was expressed
in both S. marcescens and E. coli and an active site and
three zinc ligands were revealed. Another study showed that
the extracellular serine protease of S. marcescens was excreted
through the outer membrane of E. coli. The nucleotide sequence
suggested that it produced a preproenzyme of 112 kDa composed
of N-terminal sequence and C-terminal sequence (Stabile et al.,
1996; Chalker et al., 2009; Dumas et al., 2013).

In the detergent industry, normally, alkaline proteases are
preferred over subtilisin with an optimum pH between 8.5 and
10.0. The ale gene was cloned and sequenced, encoding alkaline
elastase YaB based on the information available on enzymes (De
Vos, 1987; Rao et al., 1998; Sørvig et al., 2005). The resulting
amino acid sequence was 55% similar to subtilisin BPN. The
positively charged residues are present on the surface of the
alkaline elastase YaB molecule, which facilitates its binding to
elastin. Another amino acid sequence of alkaline serine protease

deduced from B. alcalophilus PB92 shows homology to YaB.
Using chromosola integration, the cloned gene was further used
to increase the protease production by gene amplification. An
ISP-1 encoding gene isolated from alkalophilic Bacillus sp. strain
NKS-21 was characterized. It was determined that its nucleotide
sequence showed 50% homology to the gene encoding ISP-1
isolated from B. subtilis, B. polymyxa, and Bacillus sp. strain 221
(Kaneko et al., 1989; Gupta et al., 2008; Deng et al., 2010).

A species of lactobacillus, such as Lactococcus lactis is used
as starter culture in the dairy industry, having a complex system
of proteolysis that enables it to grow in milk by the degradation
of casein into small peptides and free amino acids. This activity
leads to the development of flavor and texture of different dairy
products. Lactococcal proteases have been classified into P-I-type
protease and P-III-type protease on the basis of differences in
caseinolytic specificity. The former degrades predominantly beta
casein while the latter degrades alpha S1-, beta-, and K-casein
(305), but genetic studies focus more on the P-I-type protease.
These protease genes located on plasmids greatly differ in size
and genetic organization in different strains (Yamagata et al.,
1995; Rao et al., 1998; Helianti et al., 2018; Jeong et al., 2018;
Ariyaei et al., 2019).

Extracellular serine proteases A and B are secreted by an
organism, Streptomyces griseus, used for commercial production
of pronase. The genes encoding protease A (sprA) and protease B
(sprB) were isolated from the S. griseus genomic library, and their
proteolytic activity was demonstrated in Streptomyces lividans
(Henderson et al., 1987; Ramesh et al., 2009; Thirumurugan
and Vijayakumar, 2015). Each enzyme is initially secreted as a
precursor as suggested by the DNA sequences, which is then
incorporated to remove N-terminal propeptide from the mature
protease. A strong homology between their coding regions is
reported, which suggests that both genes must have originated
by gene duplication. Protease B is reported to be one of the major
proteases secreted by S. griseusATCC10137, expressed its gene in
S. lividans (Hwang et al., 1993; Tammawong, 2005).

The extracellular enzyme alpha-lytic protease representing the
family of trypsin in a soil bacterium Lysobacter enzymogenes 495
is of particular interest. S1 mapping and nucleotide sequence of
the structural gene for alpha-lytic protease from L. enzymogenes
495 suggested that it is synthesized as preproprotein with a size of
41 kDa and is processed to its mature extracellular form (20 kDa)
(Vasantha et al., 1984; Silen et al., 1988; Palumbo et al., 2003; Qian
et al., 2009). Fusing of the promoter and signal sequences of E. coli
phoA to the proenzyme portion of the alpha-lytic protease gene
was expressed in E. coli for protease enzyme production (Silen
et al., 1989; Rattenholl et al., 2001; Mitsuiki et al., 2004). With the
following induction, an active enzyme was produced both intra-
and extracellularly. Fusion of the mature protein domain alone
resulted in the production of an inactive enzyme, indicating that
the large N-terminal pro-protein region is necessary for activity.
Epstein and Wensink also cloned and sequenced the gene for
alpha-lytic protease, a 19.8-kDa serine protease secreted by L.
enzymogenes (Qian et al., 2009, 2014). The nucleotide sequence
contains an ORF that codes for the 198-residue mature enzyme
and a potential prepropeptide, also of 198 residues (Epstein and
Wensink, 1988; Reichenbach, 2006; Wang et al., 2013).
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FUTURE PROSPECTS

The study of biochemical and molecular aspects of proteolytic
systems, such as proteases is gaining interest from researchers
due to different reasons. Researchers and engineers are looking
for robust and novel bacterial enzymes because of the realization
of the commercial value of this enzyme. In the future, protein
engineering will play a primary role in producing proteases with
new properties. Among proteases, alkaline bacterial proteases
play a vital role in different industries due to their potential,
and their future use is likely to be increased. Advance
strategies like protein/genetic engineering, molecular biology,
and computational biology are being adopted by the researchers
to generate improved protease-producing strains. Bacterial
strains with desirable characteristics will be produced by using
in vitro evolutionary changes in the protein primary structure.
One major goal of scientists is to achieve bacterial proteases with
characteristics, such as yield improvement, changing substrate
specificity, enhancement of thermal stability, altering optimum
pH, and prevention of auto-proteolytic inactivation.

CONCLUSIONS

Since the advent of enzymology, enzymes have been
broadly utilized in a wide range of industries like textile,
pharmaceuticals, leather, food, and detergent. Globally, its
use and production are increasing with the use of cheap raw
material and by incorporating genetic manipulation. Now,
there is an urgent need for the use of such technology
that promises cleaner production as an alternative to
the use of hazardous chemicals, such as proteases. The
higher-ups and the state should take the responsibility of
encouraging investors for a cleaner production to mitigate the
risk of eco-pollution.
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