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Among the innovative trends in the wine sector, the continuous exploration of enological
properties associated with wine microbial resources represents a cornerstone driver
of quality improvement. Since the advent of starter cultures technology, the attention
has been focused on intraspecific biodiversity within the primary species responsible
for alcoholic fermentation (Saccharomyces cerevisiae) and, subsequently, for the so-
called ‘malolactic fermentation’ (Oenococcus oeni). However, in the last decade, a
relevant number of studies proposed the enological exploitation of an increasing
number of species (e.g., non-Saccharomyces yeasts) associated with spontaneous
fermentation in wine. These new species/strains may provide technological solutions
to specific problems and/or improve sensory characteristics, such as complexity,
mouth-feel and flavors. This review offers an overview of the available information
on the enological/protechnological significance of microbial resources associated with
winemaking, summarizing the opportunities and the benefits associated with the
enological exploitation of this microbial potential. We discuss proposed solutions to
improve quality and safety of wines (e.g., alternative starter cultures, multistrains starter
cultures) and future perspectives.

Keywords: wine, yeasts, non-Saccharomyces, lactic acid bacteria, microbial resources, starter cultures, alcoholic
fermentation, malolactic fermentation

INTRODUCTION

Wine has been consumed by humans for thousands of years and produced by crushing
grapes and allowing them to ferment using the organisms present on the grapes and in the
surrounding environment (Whitener et al., 2016). The microbiology of wines involves two
main phases, alcoholic fermentation (AF) and malolactic fermentations (MLF) that rely on a
heterogeneous microbiota composed by different indigenous microorganisms (e.g., yeast, bacteria
and filamentous fungi). Considerable possible cellular/biochemical interactions can take place
among these microbial resources in wine (Liu J. et al., 2017). Although of the entire wine
microflora contribute to the wine chemistry, yeasts detain a predominant role (Capozzi et al.,
2015). Yeast species are usually classified in two groups: Saccharomyces and non-Saccharomyces
(Taillandier et al., 2014). Saccharomyces species play the key role, with Saccharomyces
cerevisiae as the dominant species (Masneuf-Pomarède et al., 2010). On the other side, non-
Saccharomyces yeast include different genera such as Hanseniaspora, Issatchenkia, Pichia and,
Schizosaccharomyces, Brettanomyces, Zygosaccharomyces, Kluyveromyces, Candida, Torulaspora
(Taillandier et al., 2014). These yeasts can experience anaerobic or aerobic growth and may
persist during the fermentation, competing with Saccharomyces for nutrients, producing secondary
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compounds or modifying the metabolism of S. cerevisiae (Ciani
et al., 2016). Several genera of lactic acid bacteria (LAB)
have been reported in association to the wine prokaryotic
consortia: Enterococcus, Lactobacillus, Leuconostoc, Oenococcus,
Pediococcus, and Weissella (Capozzi et al., 2011; Berbegal et al.,
2016; Salvetti et al., 2016; Cappello et al., 2017). In particular,
Oenococcus oeni is the main species associated with MLF because
of its tolerance to the harsh wine conditions (high ethanol
concentration, low pH and nutrient content) (Cappello et al.,
2017), even if increasing studies confirmed the relevance of
Lactobacillus plantarum strains associated with specific physico-
chemical conditions (du Toit et al., 2011).

Inoculation of selected starter cultures in wine must
is an established enological practice in order to mitigate
product losses or the production of off-flavors (García-Ríos
et al., 2014; Whitener et al., 2015). Currently, a debate
is still open about the use of commercial starters able
to mimic some advantageous enological traits, which are
present when the spontaneous fermentation is ruled by
indigenous populations (Capozzi et al., 2015). For example,
wines produced using single inocula are thought to lack the
sensory complexity and rounded palate structure (Bellon et al.,
2013). In this respect, mixed fermentation/multi-strains starter
cultures including non-Saccharomyces yeasts/malolactic bacteria
are generally regarded as having improved characteristics,
such as complexity, mouth-feel and flavors (Tronchoni et al.,
2017).

This review offers an overview of the available information
on the enological/protechnological significance of microbial
resources associated with winemaking, with a special focus
on non-Saccharomyces yeast genera/species. A summary of the
current state of knowledge about the microbial strategies to solve
some technological and safety problems in winemaking is given
in Table 1.

Saccharomyces cerevisiae MODEL FOR
WINEMAKING WORKHORSE

For the last two decades, the natural variation of the
yeast S. cerevisiae has been massively exploited with the
aim of understanding ecological and evolutionary processes
(Cubillos, 2016). It has been used as a model to study aging,
regulation of gene expression, signal transduction, cell cycle,
metabolism, apoptosis, neurodegenerative disorders, and many
other biological processes (Karathia et al., 2011). Genome
sequence information is now available for >80 strains of
S. cerevisiae in some form (complete, draft, or raw data)
(Borneman and Pretorius, 2015). In addition, it is a key
player in many industrial fermentation of food matrices such
as wine, bread and sake (Cubillos, 2016). The first reported
use of a selected yeast starter for wine production dates
from 1890, when Müller-Thurgau introduced this technology
adapting the techniques developed by Christian Hansen for
the Carlsberg Brewery (Padilla et al., 2016). Since then, the
role of S. cerevisiae as starter culture in the wine industry
has received the most attention. This yeast is not only

responsible for the metabolism of grape sugar to alcohol
and CO2 but has other important side-roles, including the
conversion of grape aroma precursors to sensory active molecules
(Jolly et al., 2014; Belda et al., 2017). The metabolism of
fermenting S. cerevisiae can be divided into primary and
secondary. Primary metabolism is essential for growth, cell
division and survival, producing metabolites such as ethanol,
glycerol, acetaldehyde, and acetic acid. Secondary metabolites
include the fusel alcohols, esters, carbonyls, sulfur compounds,
thiols and terpenoids (Romano et al., 2015; Hirst and Richter,
2016). The dominance of S. cerevisiae in the fermentation
is expected and desired (Jolly et al., 2014; Capece et al.,
2016). One of the main features that allow S. cerevisiae
to overcome is its remarkable sugar consumption rate and
ethanol production coupled with a high alcohol tolerance.
Through this quick proliferation in grape must S. cerevisiae
efficiently depletes nitrogen sources and other nutrients required
for yeast biomass production from the medium (Tronchoni
et al., 2017). In addition, several studies raised evidence that
microbial interactions play an important role in the early
death of non-Saccharomyces yeasts (Albergaria and Arneborg,
2016). Therefore, S. cerevisiae has been the primary choice
for producing wine starters (Albergaria and Arneborg, 2016).
In modern winemaking, fermentations are driven largely by
single-strain inoculations; pure cultures of selected strains of
S. cerevisiae are added to grape must as soon as possible after
crushing. This practice ensures the control of vinification, leads
to outcomes that are more predictable and decreases the risk
of spoilage by other microorganisms (Chambers and Pretorius,
2010). Several studies addressed the genetics underlying these
unique properties and tried to unravel the evolutionary path
Saccharomyces strains have undergone to become the specialized
fermentation organisms they are today. It was shown that
duplication of several key genes, such as those encoding alcohol
dehydrogenase, hexose transporters, and enzymes linked to
glycolysis, as well as global rewiring of the transcriptional
network after whole genome duplication, might contribute
to the suitability of S. cerevisiae as a driver of industrial
fermentations (Steensels and Verstrepen, 2014). There are many-
probably hundreds of-different yeast strains available, and the
winemaker’s choice could have a significant effect on the
quality of the wine (Chambers and Pretorius, 2010). Table 2
shows the main enological properties of some exemplificative
commercially available S. cerevisiae wine yeasts. However, while
this practice may reduce sources of microbial spoilage, some
winemakers feel that the exclusive use of S. cerevisiae has
resulted in a lack of organoleptic complexity when compared
with successful spontaneous fermentations (Whitener et al.,
2015), thus contributing to an increased interest on the role
of non-Saccharomyces yeasts in winemaking (Whitener et al.,
2016).

NON-Saccharomyces YEASTS

The world wine market is experiencing increasing interest in new
yeast strains that can produce unique wines with novel properties
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TABLE 1 | Microbial strategies to solve some technological and safety problems in winemaking.

Specific application Microbial resource(s) Reference

Reducing volatile acidity Torulaspora delbrueckii Renault et al., 2009

Torulaspora delbrueckii + Saccharomyces cerevisiae Bely et al., 2008

Candida zemplinina + Saccharomyces cerevisiae Rantsiou et al., 2012

Candida stellata + Saccharomyces cerevisiae Ferraro et al., 2000

Hanseniaspora uvarum + Saccharomyces cerevisiae Tristezza et al., 2016

Alcohol reduction Metschnikowia pulcherrima + Saccharomyces cerevisiae Contreras et al., 2014

Torulaspora delbrueckii + Saccharomyces cerevisiae Belda et al., 2015

Candida stellata + Saccharomyces cerevisiae Ferraro et al., 2000

Candida zemplinina + Saccharomyces cerevisiae Bely et al., 2013

Saccharomyces cerevisiae (genetically engineered yeast) Varela et al., 2012

Modulation of acidity Schizosaccharomyces pombe + Lachancea thermotolerans Gobbi et al., 2013

Lachancea thermotolerans + Saccharomyces cerevisiae Benito A. et al., 2015

Schizosaccharomyces pombe Benito et al., 2016b

Oenococcus oeni Cappello et al., 2017

Lactobacillus plantarum Sun et al., 2016

Increased glycerol content Candida stellata + Saccharomyces cerevisiae Soden et al., 2000

Pichia fermentans + Saccharomyces cerevisiae Clemente-Jimenez et al., 2005

Candida zemplinina + Saccharomyces cerevisiae Englezos et al., 2016b

Lachancea thermotolerans + Saccharomyces cerevisiae Comitini et al., 2011

Saccharomyces cerevisiae (genetically engineered yeast) Dequin, 2011

Modulation of aroma profiles Torulaspora delbrueckii Renault et al., 2009

Saccharomyces bayanus Masneuf-Pomarède et al., 2010

Metschnikowia pulcherrima + Saccharomyces cerevisiae Sadoudi et al., 2012

Zygotorulaspora florentina + Saccharomyces cerevisiae Lencioni et al., 2016

Hanseniaspora vineae + Saccharomyces cerevisiae Viana et al., 2009

Enhancing varietal aromas Pichia kluyveri and Candida zemplinina Anfang et al., 2009

Saccharomyces cerevisiae Swiegers et al., 2009

Metschnikowia pulcherrima, Torulaspora delbrueckii, and Lachancea
thermotolerans

Zott et al., 2011

Mannoprotein release Saccharomyces cerevisiae × Saccharomyces kudriavzevii (hybrids) Pérez-Través et al., 2016

Torulaspora delbrueckii Belda et al., 2015

Saccharomyces cerevisiae (genetically engineered yeast) Gonzalez-Ramos et al., 2008

Control of spoilage microflora Torulaspora delbrueckii Comitini et al., 2017

Candida pyralidae Mehlomakulu et al., 2014

Lactobacillus plantarum Sun et al., 2016

Low sulphite formation Saccharomyces cerevisiae Balboa-Lagunero et al., 2013

Reduction of copper content Saccharomyces cerevisiae Sun et al., 2015

Reduction of ochratoxin A Saccharomyces cerevisiae Petruzzi et al., 2017

Reduced production of ethyl carbamate Schizosaccharomyces pombe Benito et al., 2016b

Saccharomyces cerevisiae (recombinant strain) Guo et al., 2016

Low biogenic amine formation Hanseniaspora vineae + Saccharomyces cerevisiae Medina et al., 2013

Schizosaccharomyces pombe Benito et al., 2016b

(Mylona et al., 2016). Non-Saccharomyces yeasts have garnered
interest in winemaking due to their beneficial effects and because
consumers are demanding new wine styles (Lleixà et al., 2016).
Recently, some commercial yeast manufacturers have already
included non-Saccharomyces yeasts as part of their product
portfolio (Albergaria and Arneborg, 2016). The main enological
properties of some commercially available non-Saccharomyces
wine yeasts are outlined in Table 3. The main benefit of using
complementary yeast starters in winemaking is the improved
aromatic complexity (Comitini et al., 2011; Tronchoni et al.,

2017). Non-Saccharomyces yeasts possess enzymatic activities,
which can catalyze the release of volatile aroma compounds from
non-volatile bound precursors. These yeasts can also affect aroma
production directly by their own metabolic activity (production
of alcohols and esters) or by the release of extracellular enzymes
which transform S. cerevisiae-derived metabolites. Strains of non-
Saccharomyces yeasts have also shown potential for producing
aroma compounds not associated with fermentation by many
strains of S. cerevisiae, such as various monoterpenes and other
terpenoid compounds (Rossouw and Bauer, 2016). In addition,
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TABLE 2 | Main enological properties of some commercially available S. cerevisiae wine yeasts.

Commercial name Feature(s) of interest in winemaking Providing company

MeritTM Is able to achieve alcoholic fermentation in high-alcohol wines (up to 16% vol.)
or during the second alcoholic fermentation in sparkling wines.

Chr. Hansen (Hørsholm, Denmark)

Actiflore R© BO213 Extreme resistance to alcohol (18% vol.), with neutral characters and low SO2

production. Recommended for fermentation restart. Adapted to low
temperature fermentations.

Laffort (Bordeaux, France)

WE372 Fermentation in cold temperature. Anchor Yeast (Eppindust, South Africa)

Fermivin R© PDM Sparkling wines (either for first or second fermentation). DSM (Heanor, United Kingdom)

Levuline R© BRG R© Yseo R© Overproduction of mannoproteins. Oenofrance (Reims, France)

Vitilevure R© MT R© YSEO R© Preservation of color of red wine. Martin Vialatte (Reims, France)

Lalvin C R© Cross Evolution Enhances the varietal character. Lallemand (Montréal, QC, Canada)

Premier Cuvée Tolerance to ethanol and free sulfur dioxide, and fermentation to dryness. Red Star (Milwaukee, WI, United States)

AW4 Powerfully fragrant, full spice aromatic wines; is a perfect match for
Gewurztraminer and recommended for Sauvignon and Semillon.

Vintner’s Harvest (Saskatoon, Canada)

Oenoferm R© F3 Rouge Color preservation. This yeast is very suitable for red wines with pronounced
fruit character.

Erbslöh (Geisenheim, Germany)

SafOEnoTM STG S101 It develops fruit (especially fermentative esters) and flower aromas; it is
recommended for primeurs processed from carbonic maceration or
thermovinification, as well as rosés. Wines have a fresh and light finish.

Fermentis (Marcq en Baroeul, France)

GV2 For full bodied red and white wines. Quick start, rapid ferment, low foam. Muntons (Suffolk, United Kingdom)

WLP730 Slight ester production, low sulfur dioxide production. Enhances varietal
character.

White Labs (San Diego, CA, United
States)

4946 Bold Red/High
Alcohol

Dominating, strong fermentation characteristics. Ideal for Zinfandel, Pinot Noir,
Syrah, or any high sugar must. Good choice for restarting stuck fermentations.

Wyeast (Hood River, United States)

SIHA R© Aktivhefe 3 Quickly suppresses wild yeasts and bacteria, prevents unwanted fermentation
side products. Produces clear wines with a prominent character (clear bouquet
according to the variety and vineyard location).

Begerow (Langenlonsheim,
Deutschland)

Ferm D20 Is recommended for the production of high-end red wines intended to be aged.
It tolerates high fermentation temperatures, promotes extraction of phenolic
compounds, and reduces the perception of green notes while enhancing
aromatic intensity and complexity.

Enartis (Windsor, CA, United States)

Blastosel FR95 The aromatic profile is particularly rich and complex, with strong fruity notes to
the fore completed by significant notes of rose.

Perdomini (Verona, Italy)

the use of non-Saccharomyces yeasts has been proposed to
improve glycerol or mannoprotein content, volatile acidity, or
color stability (Tronchoni et al., 2017) or to reduce the ethanol
levels of wines (Rossouw and Bauer, 2016). On the other hand,
there have been a large number of researches on the isolation
and characterization of yeast strains degrading malic acid, as
alternative to malolactic bacteria-fermentation starters (Kim
et al., 2008). Positive features of non-Saccharomyces yeasts have
been highlighted regarding to the production of metabolites
beneficial for wine quality and stability. This is the case of yeasts
producers of active extracellular molecules, able to counteract the
development of wild spoilage microorganisms (Comitini et al.,
2017).

However, most non-Saccharomyces yeasts cannot ferment to
dryness, thus S. cerevisiae should be also inoculated. Two modes
of inoculation have been proposed and used (Whitener et al.,
2016): the first is known as co-inoculation and some studies
have showed that the inoculation of selected non-Saccharomyces
yeasts at high cell concentration together with S. cerevisiae
might produce wines with distinct characteristics while avoiding
stuck fermentations. Others researchers have explored the use
of non-Saccharomyces yeasts in sequential inoculations; non-
Saccharomyces yeasts are first inoculated at high levels and

allowed to ferment on their own for a given amount of time
before S. cerevisiae is added to take over the fermentation.
This practice gives the non-Saccharomyces yeast more time
to express their unique metabolic footprint uninhibited by
the stress of Saccharomyces competition (Whitener et al.,
2015). Moreover, the effects of the non-Saccharomyces yeasts
on fermentation and wine quality were strictly dependent on
the Saccharomyces/non-Saccharomyces inoculum ratio (Comitini
et al., 2011).

The principal outcomes of fermentations conducted with
the aid of non-Saccharomyces yeast genera/species have been
documented in the following subsections and summarized in
Supplementary Table S1.

Torulaspora delbrueckii
Torulaspora delbrueckii was one of the first commercial non-
Saccharomyces yeast to be released (Jolly et al., 2014). This
species has been previously suggested for the vinification of
low sugar and acidity musts, and it has been used for the
production of red and rosé wines in Italy and for Sauvignon
Blanc in South Africa (González-Royo et al., 2015). T. delbrueckii
is characterized by high purity fermentation, low production
of glycerol, acetaldehyde, acetic acid, and ethyl acetate (Loira
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TABLE 3 | Main enological properties of some commercially available non-Saccharomyces wine yeasts.

Specie(s) Commercial name Feature(s) of interest in winemaking Providing company

Torulaspora delbrueckii BiodivaTM Enhances aroma and mouthfeel complexity in white and red wines. Lallemand

Torulaspora delbrueckii Zymaflore R© Alpha
TD n. sacch

Makes wines of high organoleptic complexity. Laffort

Torulaspora delbrueckii PreludeTM Increases body, soft structure. Chr. Hansen

Torulaspora delbrueckii Oenoferm R© wild & pure
[HR23]

Creamy texture with a pleasant and lasting mouthfeel. Erbslòh

Torulaspora delbrueckii WLP603 Provides aromatic complexity and a fresh fruit characteristics. Produces
low volatile acids, volatile phenols, and ethyl acetate.

Vintner’s Harvest

Lachancea thermotolerans ConcertoTM Produces lactic acid, giving roundness and balanced acidity to wines;
suggested in warm regions.

Chr. Hansen

Lachancea thermotolerans,
Torulaspora delbrueckii and
Saccharomyces cerevisiae

MelodyTM Increases wine complexity. gives tropical fruitness and an overall
aromatic intensity, combined with a round, balanced mouthfeel

Chr. Hansen

Metschnikowia pulcherrima Flavia R© Enhances varietal aromas, terpenes and thiols aromas Lallemand

Metschnikowia fructicola GaiaTM Selected for its ability to dominate the must during cold soak in order to
offer a natural protection against spoilage microorganisms. The use of
this yeast allows winemaker to reduce the SO2 at crushing.

Perdomini

Pichia kluyveri WLP605 Produces rose petal and floral aromas, contributing to overall bouquet
of wine.

Vintner’s Harvest

Pichia kluyveri FrootZen R© Enhances varietal aromas, and thiols aromas. Chr. Hansen

Schizosaccharomyces pombe ProMalic R© Allows maloalcoholic deacidification. Proenol

et al., 2015). When used in sequential or mixed fermentations
with S. cerevisiae, it can contribute to correct certain defects
such as the volatile acidity (Loira et al., 2015). In Semillon
wine, a mixed T. delbrueckii/S. cerevisiae culture at a 20:1
ratio produced 53% less in volatile acidity and 60% less
acetaldehyde than a pure culture of S. cerevisiae (Bely et al.,
2008). Some authors showed that the strong β-glucosidase
activity of this species enhanced wine aroma by modulating the
levels of nor-isoprenoids, terpenols, and lactones by hydrolysing
their respective precursors (Renault et al., 2015). Maturano
et al. (2012) confirmed the high production of extracellular
enzymes of enological relevance by this species. Amarone
wines produced by co-inoculation/sequential inoculation with
T. delbrueckii and S. cerevisiae were judged to have increased
aroma intensity, including ‘ripe red fruit’ aroma, increased
sweetness and astringency and decreased intensity for vegetal
attributes (Azzolini et al., 2012). Gewurztraminer wines produced
by sequential inoculation showed increased concentration of
terpenes α-terpineol and linalool (Cus and Jenko, 2013).
T. delbrueckii/S. cerevisiae multi starters have been proposed to
modulate wine flavor in Sauvignon Blanc and Merlot (Renault
et al., 2015), as well as Shiraz wines (Loira et al., 2015).

The growth of T. delbrueckii is often negatively affected by
the presence of S. cerevisiae. Indirect interaction, i.e., interaction
between strains via components of the medium have been
demonstrated. Substrate competition or amensalism (production
by S. cerevisiae of metabolites that inhibit T. delbrueckii growth)
are examples of the indirect interactions already suggested
(Taillandier et al., 2014).

Recently, new killer toxins from T. delbrueckii with potential
biocontrol activity of Brettanomyces bruxellensis, Pichia
guilliermondii, P. manshurica and P. membranifaciens wine
spoilage were identified and characterized (Comitini et al., 2017).

Lachancea thermotolerans
Lachancea thermotolerans has been investigated for its ability to
enhance wine acidity and improve the overall quality (Whitener
et al., 2016). L. thermotolerans produces high concentration of
L-lactic acid from glucose and fructose as well as low levels of
volatile acidity and undesirable flavor compounds (Erten and
Tanguler, 2010). This attribute could be of concern to address
the problems of increased alcohol content and a reduction in the
total acidity of wines associated with global climate change and
variations in viticulture and wine-making practices (Balikci et al.,
2016). L. thermotolerans was used as starter culture in Airén wine
(increase of lactic acid of 3.18 g/L and pH reduction of 0.22)
(Benito et al., 2016a), Emir wines (the use of L. thermotolerans
in mixed and sequential cultures led to an increase in final total
acidity of 5.40–6.28 g/L) (Balikci et al., 2016), Riesling wine
(peach/apricot character) (Benito S. et al., 2015), Sangiovese and
Cabernet-Sauvignon (spicy attributes) (Gobbi et al., 2013).

Metschnikowia pulcherrima
Metschnikowia pulcherrima is commonly associated with grapes
and wine (Whitener, 2016). It is a high producer of β-glucosidase
and its presence in mixed cultures can decrease the volatile
acidity and increase the production of medium-chain fatty acids,
higher alcohol, esters, terpenols and glycerol (González-Royo
et al., 2015). Wines of the grape varieties Chardonnay and
Shiraz obtained by sequential fermentation with Caesalpinia
pulcherrima and S showed ca. 1% v/v lower ethanol concentration
(Varela et al., 2016). In addition, M. pulcherrima has been
reported to increase: (1) the levels of methyl butyl-, methyl
propyl-, and phenethyl esters production in Sauvignon Blanc
(Whitener et al., 2016); (2) the ‘overall impression,’ ‘citrus/grape
fruit’ and ‘pear’ attributes of Riesling (Benito S. et al., 2015); (3)
foam persistence and ‘smoky’ and ‘flowery’ attributes of Macabeo
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wine (González-Royo et al., 2015). It has also been reported that
M. pulcherrima might have an antagonistic effect toward several
yeast. cerevisiaes including S. cerevisiae which leads to delays in
fermentation. This phenomenon was the result of a pulcherrimin
pigment (Jolly et al., 2014).

Candida Species
The genus Candida is large and extremely diverse with over
50 different identified species several of which have been
associated with winemaking (Whitener, 2016). Among the non-
Saccharomyces wine yeasts involved in grape juice fermentation,
C. stellata has been frequently isolated during the course of must
fermentations in different countries (fermentation of botrytized
wines and other wines produced by overripe grapes, in cooked
musts, and in traditional balsamic vinegars) (Tofalo et al., 2012).
Ciani and Maccarelli (1998) suggested that it might be used as a
starter culture to increase glycerol levels in Trebbiano Toscano
wine, where it 11.76 g/L of glycerol, which is higher than the
sensory threshold level for glycerol sweetness, i.e., 5.2 g/L (Jolly
et al., 2006). Similarly, wines of the grape variety Syrah obtained
by mixed and sequential fermentation with C. cantarellii and
S. cerevisiae showed 44.3 to 52.8% glycerol content higher than
the control wines (Toro and Vazquez, 2002). C. sake increased
concentrations of terpenes and higher alcohols in Pedro Gimenez
wines (Maturano et al., 2015).

C. zemplinina (synonym Starmerella bacillaris; Duarte et al.,
2012) is a non-Saccharomyces yeast, isolated for the first time in
Napa Valley (California, United States) in 2002, under the name
EJ1 (Mills et al., 2002). This yeast differs from the other common
non-Saccharomyces yeasts, since it can survive and resist until the
end of the AF due to its ability to tolerate high concentrations of
ethanol (Englezos et al., 2016a).

Candida zemplinina showed some interesting characteristics,
such as: (1) high glycerol production (Tofalo et al., 2012; Zara
et al., 2014; Englezos et al., 2016b); (2) reduced ethanol yield
(Bely et al., 2013; Englezos et al., 2016b); (3) increase of aroma
complexity (Tofalo et al., 2016; Whitener et al., 2016); (4) ability
to metabolize malic acid (Tofalo et al., 2012); (5) reduction
of the acetic acid production in combination with S. cerevisiae
(Rantsiou et al., 2012). These applications support the use of
C. zemplinina, which could be a good choice to achieve various
desired results, mainly due to its fructophilic character and the
poor ethanol yield from sugar (Masneuf-Pomarede et al., 2015;
Englezos et al., 2016a).

Recently, Mehlomakulu et al. (2014) found two novel killer
toxins, CpKT1 and CpKT2, from the wine isolated strains of
C. pyralidae, able to control the development of spoilage yeast
B. bruxellensis. In addition, these killer toxins inhibited neither
the Saccharomyces cerevisiae nor the LAB strains tested.

Pichia Species
Pichia fermentans was investigated by Clemente-Jimenez et al.
(2005) in lab-scale vinifications of Macabeo wine. Sequential
fermentations with P. fermentans and S. cerevisiae produced
wines with increased concentrations of acetaldehyde, ethyl
acetate, 1-propanol, n-butanol, 1-hexanol, ethyl caprilate, 2,3-
butanediol and glycerol.

Sequential inoculum of Riesling must with P. kluyveri and
S. cerevisiae increased the ‘overall impression’ and ‘peach/apricot’
character (Benito S. et al., 2015). Co-fermentation of Sauvignon
Blanc grape juice with P. kluyveri has been reported to lead to
higher levels of 3-mercaptohexyl acetate (Anfang et al., 2009);
however, it has also been reported to produce many off odor
compounds (Whitener et al., 2016).

Malic acid is sometimes detrimental to the quality of wines
when present at high concentrations in some varieties. Several
grape varieties contain considerable amounts of malic acid and
grapes grown in the cooler regions contain higher amounts of
malic acid than those grown in the warmer regions. Excessive
amounts of malic acid (15–16 mg/ml) were detected in grapes
grown during exceptionally cold summer in cool regions (Kim
et al., 2008). In this respect, co-inoculation of P. kudriavzevii
enhance the catalysis of malic acid in grape juice fermentation
(Kim et al., 2008).

It is reported that P. membranifaciens increased esters
production in Muscat wine (Viana et al., 2008).

Schizosaccharomyces pombe
Schizosaccharomyces pombe was initially considered as a spoilage
yeast because of the production of undesirable metabolites
with a negative sensory impact; on the other hand, it could
be successfully used at an industrial level in cane sugar
fermentation during rum making, palm wine production
and cocoa fermentation (Mylona et al., 2016). However,
Schizosaccharomyces pombe species is highly appreciated in
colder regions because of its ability to completely transform the
malic acid of the must into ethanol, thanks to its particular
metabolism of maloalcoholic fermentation (Loira et al., 2015). In
this respect, S. pombe perform effective malic acid deacidification
and significantly reduces the levels of biogenic amines and
ethyl carbamate precursors without the need for any secondary
bacterial MLF (Benito et al., 2014, 2016b). Mylona et al. (2016)
confirmed the ability of yeast to produce safe wines.

One new application exploits Schizosaccharomyces ability
to increase the formation of vitisins and vinylphenolic
pyranoanthocyanin (Loira et al., 2015). In addition, the
rapid autolytic release of cell wall polysaccharides after death
could reduce the time required to complete aging over lees
(Benito et al., 2014).

Hanseniaspora Species
The apiculate yeast Hanseniaspora uvarum is the non-
Saccharomyces found at highest levels in grape must, in fact
it is among the relevant contributors to wine quality (Jolly
et al., 2014). In single fermentation, H. uvarum produced low
volatile acidity and high levels of glycerol (Tofalo et al., 2016).
H. uvarum has also been used in mixed fermentations with
S. cerevisiae for wine production. Tristezza et al. (2016) assessed
the oenological potential of H. uvarum in co-inoculation and
in a sequential inoculation with S. cerevisiae for industrial
wine production. The mixed starter was able to successfully
dominate the different stages of the fermentation process and the
H. uvarum strain ITEM8795 contributed to increase the wine
organoleptic quality and reduce the volatile acidity. In Solaris
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wine, mixed fermentations produced higher levels of glycerol,
heptyl acetate, and 2-phenylethyl acetate (Liu et al., 2016).

Hanseniaspora vineae has been demonstrated to increase
fruity aromas and produce high amounts of acetate esters, such
as 2-phenylethyl acetate and ethyl acetate, in wines produced by a
sequential fermentation with S. cerevisiae (Lleixà et al., 2016). Co-
fermentation of Bobal grape must with H. vineae and S. cerevisiae
produced wines that not only showed an increased concentration
of 2-phenylethyl acetate (approximately three–ninefold higher)
but also exhibited higher ‘fruity’ sensory scores than wines
produced with S. cerevisiae pure culture (Viana et al., 2009).
Chardonnay wines produced with H. vineae and S. cerevisiae have
shown increased aroma and flavor diversity and reduced biogenic
amines content (Medina et al., 2013).

Hanseniaspora guilliermondii can contribute to the overall
quality of wines. In single-culture this yeast produced high
amounts of 2-phenylethyl acetate (Viana et al., 2008). Tinta
Roriz grape must inoculated with H. guilliermondii led to
the production of wine with higher concentrations of 1-
propanol, 2-phenylethyl acetate and 3-(methylthio)propionic
acid, and lower amounts of ethyl hexanoate, pentanoic acid,
free fatty acids, 2-methyltetrahydrothiophen-3-one and acetic
acid-3-(methylthio)propyl ester (Moreira et al., 2011).

Zygosaccharomyces Species
The genus Zygosaccharomyces is known, together with
Brettanomyces species (Capozzi et al., 2016a), for its ability
to spoil wine, namely sweet and sparkling wines (Whitener et al.,
2016). Zygosaccharomyces bailii and Zygosaccharomyces rouxii
are often the source of spoilage in acidic and shelf-stable foods
as well as sweet wines due to their ability to tolerate high acid,
salt and sugar conditions (Whitener, 2016). However, selected
strains of Zygosaccharomyces spp. might be useful (Garavaglia
et al., 2015), because they can yield high levels of ethyl esters in
Chardonnay wine (Garavaglia et al., 2015). Ethyl esters are highly
interesting because they have a pleasant fruity and floral aromatic
note, and are responsible for beer and wine aroma (Garavaglia
et al., 2015).

Zygosaccharomyces bailii is fructophilic, and metabolizes
fructose more easily than glucose (Garavaglia et al., 2015). This
triat could be beneficial in grape musts from over-ripened grapes
(Jolly et al., 2006). Zuehlke et al. (2015) used inoculation with
Z. bailii to remove residual sugar from Cabernet Sauvignon and
Syrah sluggish fermentations.

Zygosaccharomyces kombuchaensis is a newly discovered yeast.
It can contribute to increase flavor intensity’ and several ‘fruity’
attributes in Ribolla Gialla (Dashko et al., 2015), as well as
benzaldehyde in Sauvignon Blanc and Syrah (Whitener et al.,
2015) wines.

Debaryomyces Species
Debaryomyces may contribute to the maturation, aroma, and
flavor of foods, such as cheese and meat products, but it also
might spoil fermented food products (Wrent et al., 2014).
In winemaking, two species are of interest: Debaryomyces
pseudopolymorphus and Debaryomyces vanriji. Co-fermentation
of Chardonnay grape juice with D. pseudopolymorphus and

S. cerevisiae resulted in an increased concentration of the
terpenols (citronellol, nerol, and geraniol) (Cordero Otero
et al., 2003). Sequential fermentation of Muscat of Frontignan
grape juice with D. vanriji and S. cerevisiae produced wines
with increased concentration of geraniol (Garcia et al., 2002).
Sequential fermentation of Pedro Gimenez must with D. vanriji
and S. cerevisiae increased the concentrations of esters and fatty
acids (Maturano et al., 2015).

Kazachstania Species
The Kazachstania genus as a whole is fairly new; it was first
mentioned in literature in 2003. Kazachstania aerobia was first
identified in 2004 from corn silage while Kazachstania gamospora
was discovered as a species in 2007. Being relatively new yeasts
and closely related to S. cerevisiae, the genus is worthy of
investigation (Whitener, 2016).

Dashko et al. (2015) used K. gamospora in Ribolla Gialla
fermentation, resulting in increased acetate and ethyl ester
amounts. In Sauvignon blanc and Syrah musts, this yeast caused a
200-fold increase of phenethyl propionate (Whitener et al., 2015).
Sauvignon Blanc wines produced with K. aerobia and S. cerevisiae
have shown increased ethyl acetate production (Whitener et al.,
2016).

Wickerhamomyces anomalus
Wickerhamomyces anomalus is a constituent of the normal
grape flora in the early phases of fermentation. It could
spoil wine by excessive production of acetic acid and
ethyl acetate, but also contributes to wine aroma by the
production of volatile compounds. This species has gained
considerable biotechnological interest due to its tolerance toward
environmental stress factors (e.g., low pH, high osmolarity),
metabolic versatility and production of exoenzymes (Sabel et al.,
2014). Mazuela wines produced by sequential inoculation of
W. anomalus and S. cerevisiae showed increased concentration
of acetate- and ethyl- esters, along with a significant and panel
preference (Cañas et al., 2014).

Williopsis saturnus
Williopsis saturnus has been reported to increase the levels of
main terpenols (linalool, citronellol, and α-terpineol), produce
some terpenoid esters (citronellyl and neryl acetate) and retain
the concentration of cis-rose oxide in mango wine with ethanol
levels of 2–4% (v/v) (Chen et al., 2015). This specie is not
generally found from the natural environment of surfaces of
grapes and winery equipments: however, it might potentially
enhance the fruity flavor in wines obtained from neutral cultivar
characteristics (Erten and Tanguler, 2010).

Emir wines produced by co-inoculation with W. saturnus and
S. cerevisiae showed higher concentrations of acetic acid, ethyl
acetate and isoamyl acetate (Erten and Tanguler, 2010).

Zygotorulaspora florentina
Zygotorulaspora florentina was used in mixed fermentations at
different inoculum ratio with S. cerevisiae, and caused an increase
of the production of polysaccharides and a modulation of the final
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TABLE 4 | Main enological properties of some commercially available wine malolactic bacteria.

Specie(s) Commercial name Feature(s) of interest in winemaking Providing company

Oenococcus oeni Bactelia Crescendo Can perform MLF under the most difficult winemaking conditions. Oenofrance

Oenococcus oeni Viniflora R© OenosTM Produces a medium amount of diacetyl. Chr. Hansen

Oenococcus oeni 450 PreAc R© Specifically selected for high alcohol wines. Laffort

Oenococcus oeni Vitilactic PrimeurTM Selected for easily and effectively carrying out MLF on red wines. Martin Vialatte

Oenococcus oeni Lalvin VP41TM Can perform under the most difficult winemaking conditions. It is
recognized for its sensory contribution to red berry fruit aroma, its late
and slow degradation of citric acid and very low production of diacetyl.

Lallemand

Oenococcus oeni Ey2D Suggested for white wines, and selected for its tolerance to low cellar
temperatures.

Wyeast

Oenococcus oeni Bi-Start R© Vitale SK11 Enhances the typical red wine character with very pronounced jam,
cherry or ripe paprika flavors.

Erbslöh

Oenococcus oeni WLP675 Produces moderate levels of diacetyl. Has a high tolerance to low pH
(3.0), low temperature environments (down to 55◦F or 12◦C), and high
alcohol percentages (up to 15% alcohol by volume).

Vintner’s Harvest

Oenococcus oeni SihalactTM Oeno Produces low concentration of diacetyl. High alcohol tolerance up to 15
vol.%.

Begerow

Oenococcus oeni ML One It produces clean and fruit forward aromas and helps reducing the
impact of herbaceous notes that are sometimes present in red wines.

Enartis

Lactobacillus plantarum Viniflora R© NovaTM Is ideal for low-malic-acid must. Increases fruity aroma and flavor,
especially red and blackberry attributes.

Chr. Hansen

Lactobacillus plantarum V22TM Recommended for high pH must. The strain has proved to result in a
high expression of dark and red fruits in red wine. It can also degrade
ochratoxin A in wine.

Lallemand

Lactobacillus plantarum,
Oenococcus oeni

Anchor NT 202 Co-Inoculant Enhances fruitiness of wines by producing esters that reduce the
vegetative characters.

Anchor Yeast

concentrations of the various volatile compounds (Domizio et al.,
2011). Recently, Sangiovese wines produced by co-inoculation
with Zygotorulaspora florentina and S. cerevisiae showed an
enhancement of polysaccharides and 2-phenylethanol content, a
reduction of volatile acidity, and high concentration of glycerol
and esters (Lencioni et al., 2016).

BACTERIA

Malolactic fermentations is a secondary microbial-based
biochemism that usually takes place in wine during or at the end
of AF; MLF is mainly carried out by one or more species of LAB
(Lerm et al., 2011; Cappello et al., 2017). During this phase, the
biological conversion of interest in enology is the L-malic acid
decarboxylation to produce L-lactic acid and carbon dioxide.
Aside from impacts on acidity, LAB can also metabolize other
precursors present in wine during fermentation and, therefore,
affect the chemical composition of the wine resulting in an
increased complexity of wine aroma and flavor (Sumby et al.,
2014; Campbell-Sills et al., 2016).

Spontaneous MLF implies several risks, such as a considerable
increase in volatile acidity, the consumption of residual sugars,
and the formation of undesirable metabolites, such as biogenic
amines, that can affect human health and lead to low quality
wines (Spano et al., 2010). In recent years, wine industries have
moved toward using pure starter cultures of selected LAB to
promote a reliable and rapid malic acid bioconversion (Spano
et al., 2010). Table 4 shows the main enological properties of
exemplificative commercially available wine malolactic bacteria.

Actually, the production of efficient malolactic starter cultures
has become one of the main challenges for oenological research
(Lerm et al., 2011; Berbegal et al., 2016; Cappello et al., 2017).
There are various important criteria to address when selecting
LAB for possible use in a starter culture, like the ability to tolerate
low pH, high ethanol and SO2 concentrations, good growth
characteristics under winemaking conditions, compatibility with
the selected yeast strain, the inability to produce biogenic amines
and the lack of off-flavor or off-odor production (Capozzi et al.,
2010; Lerm et al., 2011). A minor but also important aspect to
be considered is the susceptibility of LAB to polyphenols. O. oeni
is the major LAB used in commercial starter cultures for MLF
(Lerm et al., 2011). O. oeni has been the only species within
the Oenococcus genus until the mid-2000s when O. kitaharae
was identified in composting distilled shochu residue. Over
centuries of selective pressure, O. oeni has honed and perfected
various adaptive strategies that enable it to outcompete with other
potential MLF bacteria, during the later stages of vinification and
thus to dominate in wine (Campbell-Sills et al., 2015). Recently a
third Oenococcus species has been identified, O. alcoholitolerans
isolated from Brazilian cachaça (Cappello et al., 2017).

In the selection of MLF starters, a challenge is the time of
inoculation. Starter cultures can be co-inoculated with yeast (at
the beginning or toward the end of AF), or sequentially (after
AF) (Bartowsky et al., 2015). Generally, it has been demonstrated
that bacteria inoculated in must performed better than those
inoculated after AF, especially when cell growth conditions
are not favorable (Azzolini et al., 2010). Some Lactobacillus
species have also showed the ability to survive the harsh wine
conditions; the species Lactobacillus plantarum has shown the
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most potential as a starter culture (Lerm et al., 2011). This
versatile bacterium tolerates ethanol up to 14% v/v and has
similar SO2 tolerance of O. oeni (Cappello et al., 2017). The
introduction of some L. plantarum strains to the fermenting
musts could significantly modify the wine aroma profile due to
a different enzymatic profile. In addition, L. plantarum could
synthesize antimicrobial peptides which might help preventing
the production of undesired compounds, or inhibiting the
indigenous LAB microflora (Sun et al., 2016). Due to these
characteristics, selected strains of L. plantarum are currently
being commercialized to induce MLF in wine (Table 4).

CONCLUDING REMARKS

Wine fermentation is generally performed through inoculated
or spontaneous fermentation (Martiniuk et al., 2016). One of
the main trends in the industry of starter cultures for enology
relies on the survey of the microbial resources associated with
spontaneous fermentation in order to design products able to
maximize wine quality (Bokulich et al., 2016; Corbo et al.,
2017; Romano and Capece, 2017; Russo et al., 2017). In this
light, our contribute proposes an overview of the opportunities
and benefits associated with the exploitation of this microbial
potential in winemaking. Considering future perspectives, the
increasing number of species/strains used, often associated to
new isolations from spontaneous fermentations (e.g., Garofalo
et al., 2015; Garofalo et al., 2016), introduces a relevant change
in terms of interspecific interactions (Ciani et al., 2016; Liu
Y. et al., 2017; Tronchoni et al., 2017). A field of particular
interest if we consider that different grape juices and batch
volumes could influence the growth and final biomass of yeasts
in mixed fermentations (Gobbi et al., 2013) and that most studies
have been performed at laboratory scale without an effective
validation at industrial or semi-industrial scale, questioning their
applicability at cellar (Belda et al., 2016). Moreover, it is relevant

to underline how this protechnological potential is often a
reservoir of interesting biotechnological applications in the food
sector (Capozzi et al., 2011, 2016b; Russo et al., 2016; Petruzzi
et al., 2017).
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