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Abstract:  175 

Mortality among patients with COVID-19 and respiratory failure is high and there are no known 176 

lower airway biomarkers that predict clinical outcome. We investigated whether bacterial 177 

respiratory infections and viral load were associated with poor clinical outcome and host 178 

immune tone. We obtained bacterial and fungal culture data from 589 critically ill subjects with 179 

COVID-19 requiring mechanical ventilation. On a subset of the subjects that underwent 180 

bronchoscopy, we also quantified SARS-CoV-2 viral load, analyzed the microbiome of the lower 181 

airways by metagenome and metatranscriptome analyses and profiled the host immune 182 

response. We found that isolation of a hospital-acquired respiratory pathogen was not 183 

associated with fatal outcome. However, poor clinical outcome was associated with enrichment 184 

of the lower airway microbiota with an oral commensal (Mycoplasma salivarium), while high 185 

SARS-CoV-2 viral burden, poor anti-SARS-CoV-2 antibody response, together with a unique 186 

host transcriptome profile of the lower airways were most predictive of mortality. Collectively, 187 

these data support the hypothesis that 1) the extent of viral infectivity drives mortality in severe 188 

COVID-19, and therefore 2) clinical management strategies targeting viral replication and host 189 

responses to SARS-CoV-2 should be prioritized. 190 

 191 
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Introduction 198 

The earliest known case of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-199 

CoV-2) infection causing coronavirus virus disease (COVID-19) is thought to have 200 

occurred on November 17, 20191. As of February 20, 2021, 110.3 million confirmed 201 

cases of COVID-19 and 2.4 million deaths have been reported worldwide2. As the 202 

global scientific community rallied in a concerted effort to understand SARS-CoV-2 203 

infections,  our background knowledge is rooted in previous experience with the related 204 

zoonotic betacoronaviruses Middle East Respiratory Syndrome coronavirus (MERS-205 

CoV) and SARS-CoV-1 that have caused severe pneumonia with 34.4% and 9% case 206 

fatality, respectively3. As observed for these related coronaviruses, SARS-CoV-2 207 

infection can result in an uncontrolled inflammatory response4 leading to acute 208 

respiratory distress syndrome (ARDS) and multi-organ failure, both associated with 209 

increased mortality. While a large proportion of the SARS-CoV-2 infected population is 210 

asymptomatic or experiences mild illness, a substantial number of individuals will 211 

develop severe disease and require hospitalization, with some progressing to 212 

respiratory failure. Mortality among hospitalized COVID-19 patients is estimated to be 213 

approximately 20%, which can go up to 70% among those requiring invasive 214 

mechanical ventilation 5-12.   215 

 216 

Mortality in other viral pandemics, such as the 1918 H1N1 and 2009 H1N1 influenza 217 

pandemics, has been attributed in part to bacterial co-infection or super-infection 13,14. 218 

To determine if this is also the case for COVID-19, we can use next generation 219 

sequencing (NGS) to probe the complexity of the microbial environment (including RNA 220 

and DNA viruses, bacteria and fungi) and how the host (human) responds to infection. 221 
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Recent studies have used this approach to uncover microbial signatures in patients with 222 

ARDS.15,16 Increased bacterial burden and the presence of gut-associated bacteria in 223 

the lung were shown to worsen outcomes in these critically ill patients 15,17, highlighting 224 

the potential role of the lung microbiome in predicting outcomes in ARDS. In a recent 225 

study using whole genome sequencing to profile the gut microbiome of 69 patients from 226 

Hong Kong, investigators identified an increased abundance of opportunistic fungal 227 

pathogens among patients with confirmed COVID-1918. While there is emerging interest 228 

in understanding the microbial environment in patients with SARS-CoV-2 infections, few 229 

studies have attempted to characterize this at the primary site of the disease activity: 230 

the lower airways19,20. Furthermore, no study has yet determined whether microbial 231 

differences in the airways of COVID-19 patients could be contributing to the different 232 

outcomes in patients receiving mechanical ventilation.  233 

 234 

In this investigation, we accessed a large prospective cohort of critically ill patients with 235 

SARS-CoV-2 infection who required invasive mechanical ventilation, and from whom 236 

bronchoalveolar lavage (BAL) samples were collected. We characterized the lung 237 

microbiome of these patients in parallel with analyses of lower airway markers of host 238 

immunity. While we did not find that isolation of a secondary respiratory pathogen was 239 

associated with prolonged mechanical ventilation (>28 days) or fatal outcome, we did 240 

identify critical microbial signatures—characterized by enrichment of oral commensals, 241 

high SARS-CoV-2 load, and decreased anti-SARS-CoV-2 IgG response—associated 242 

with fatal outcome, suggesting a need for more targeted antiviral therapeutic 243 

approaches for the care of critically ill COVID19 patients.  244 

  245 
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Results 246 

Cohort 247 

From March 3rd to June 18th 2020, a total of 589 patients with laboratory-confirmed 248 

SARS-CoV-2 infection were admitted to the intensive care units of two academic 249 

medical centers of NYU Langone Health in New York (Long Island and Manhattan) and 250 

required invasive mechanical ventilation (MV). This included a subset of 142 patients 251 

from the Manhattan campus who underwent bronchoscopy for airway clearance and/or 252 

tracheostomy from which we collected and processed lower airway samples for this 253 

investigation (Supplementary Fig. 1). Table 1 shows demographics and clinical 254 

characteristics of the 142 patients who underwent bronchoscopy divided into three 255 

clinical outcomes: survivors with ≤28 Days on MV; survivors with >28 Days on MV; and 256 

deceased. The median post admission follow-up time was 232 days (CI=226-237 days). 257 

Supplementary Tables 1 and 2 compare similar data across all 589 subjects, divided 258 

per site and sub-cohorts. Patients at the Manhattan campus who underwent 259 

bronchoscopy were younger, had lower body mass index (BMI), and a lower prevalence 260 

of chronic obstructive pulmonary disease (COPD; Supplementary Table 1). Among the 261 

cohort that provided lower airway samples through bronchoscopy, 37% of the subjects 262 

were successfully weaned within 28 days of initiation of MV and survived 263 

hospitalization, 39% required prolonged MV but survived hospitalization, and 23% died. 264 

Patients within the bronchoscopy cohort had a higher overall survival than the rest of 265 

the NYU COVID-19 cohort since most critically ill patients were not eligible for 266 

bronchoscopy or tracheostomy. Mortality among those in the no-bronchoscopy cohort 267 

was 77%. In the overall NYU cohort, higher age and BMI were associated with 268 

increased mortality (Supplementary Table 2). There was a similar, albeit non-269 
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significant, trend for the bronchoscopy cohort. Among the clinical characteristics of this 270 

cohort, patients within the deceased group more commonly had a past medical history 271 

of chronic kidney disease and cerebrovascular accident. 272 

Study patients were admitted during the first wave of the pandemic in the US, prior to 273 

current standardized management of COVID-19. Within the bronchoscopy cohort, more 274 

than 90% of the subjects received hydroxychloroquine and anticoagulation (therapeutic 275 

dose), 69% received corticosteroids, 41% received tocilizumab (anti-Interleukin (IL)-6 276 

receptor monoclonal antibody), 21% required dialysis, and 18.9% were started on 277 

extracorporeal membrane oxygenation (ECMO) (Table 1). Antimicrobial therapy 278 

included use of antivirals (lopinavir/ritonavir in 16% and remdesivir in 10%), antifungals 279 

(fluconazole in 40% and micafungin in 57%), and antibiotics (any, in 90% of the 280 

subjects). Among the factors associated with clinical outcome within the bronchoscopy 281 

cohort, patients who survived were more commonly placed on ECMO whereas patients 282 

who died had frequently required dialysis (Table 1); these trends were also observed 283 

across the whole NYU cohort. Neither hydroxychloroquine or azithromycin were 284 

significantly associated with clinical outcome; however, patients who survived were 285 

more frequently treated with the combination antibiotic piperacillin/tazobactam. 286 

 287 

Within the first 48hrs from admission, respiratory bacterial cultures were rarely obtained 288 

(n=70/589, 12%) with very few positive results (n=12, 17%). Blood cultures were more 289 

commonly obtained (n=353/589, 60%) but the rate of bacterial culture positivity was 290 

much lower (n=5, 1.4%). These data support that community acquired bacterial co-291 

infection was not a common presentation among critically ill COVID-19 patients. 292 

 293 
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During their hospitalization, most patients had respiratory and/or blood specimens 294 

collected for bacterial cultures (Table 1 and Supplementary Table 1). The proportions 295 

of positive bacterial respiratory cultures and blood cultures were 73% and 43%, 296 

respectively. We evaluated whether respiratory or blood culture results obtained as per 297 

clinical standard of care were associated with clinical outcome. Risk analyses for the 298 

culture results during hospitalization for the whole cohort (n=589) demonstrated that 299 

bacterial culture positivity was not associated with increased odds of dying but was 300 

associated with prolonged mechanical ventilation in the surviving patients (Figure 1). 301 

Since length of stay could potentially affect these results (patients who died could have 302 

a shorter hospitalization, and therefore may have had fewer specimens collected for 303 

cultures), we repeated the analysis using culture data obtained during the first two 304 

weeks of hospitalization. This analysis showed that bacterial pathogen culture positivity 305 

(both respiratory and blood) during the early period of hospitalization was not 306 

associated with worse outcome (Figure 1 and Supplementary Table 3). Interestingly, 307 

identification of oral bacteria in respiratory culture, commonly regarded as procedural 308 

contaminants, was associated with higher odds of prolonged mechanical ventilation 309 

(>28 days) among survivors. Similar trends were noted when analysis was performed 310 

on subjects from NYU LI and NYU Manhattan separately, or for the bronchoscopy 311 

cohort (Supplementary Table 2). Among the bronchoscopy cohort, there was no 312 

statistically significant association between culture results and clinical outcome, but 313 

there was a trend towards an increased rate of positive respiratory cultures for 314 

Staphylococcus aureus (including MRSA), S. epidermidis, and Klebsiella pneumoniae in 315 

the survival groups (Table 1). These data suggest that in critically ill patients with 316 

COVID-19 requiring MV, hospital isolation of a secondary respiratory bacterial pathogen 317 
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is not associated with worse clinical outcome.  318 

 319 

SARS-CoV-2 load in the lower airways is associated with poor clinical outcome 320 

Using supraglottic and BAL samples from patients undergoing bronchoscopy (n=142), 321 

we evaluated the viral load by rRT-PCR for the SARS-CoV-2 N gene, adjusted by levels 322 

of human ribosomal protein (RP). Of note, the majority of samples were largely obtained 323 

in the second week of hospitalization (Table 1, median[IQR] = 10[6-14], 13[8-16], and 324 

13[8-16] for the ≤28-days MV, >28-days MV, and deceased groups, respectively, p=ns). 325 

Paired analysis of upper and lower airway samples revealed that, while there was a 326 

positive association between SARS-CoV-2 viral load of the paired samples (rho = 0.60, 327 

p<0.0001), there was a subset of subjects (21%) for which the viral load was greater in 328 

the BAL than in the supraglottic area, indicating topographical differences in SARS-329 

CoV-2 replication (Figure 2a). Importantly, while the SARS-CoV-2 viral load in the 330 

upper airway samples was not associated with clinical outcome (Supplementary Fig. 331 

2), patients who died had higher viral load in their lower airways than patients who 332 

survived (Figure 2b). We then evaluated virus viability in BAL samples by measuring 333 

levels of subgenomic RNA (sgRNA) targeting the E gene of SARS-CoV-2. This mRNA 334 

is only transcribed inside infected mammalian cells and is not packed into virions, thus, 335 

its presence is indicative of viable infecting viral particles in a sample21. In BAL, levels of 336 

sgRNA correlated with viral load as estimated by rRT-PCR for the SARS-CoV-2 N gene 337 

(Figure 2c) and the highest percentage of measurable sgRNA was in the deceased 338 

group followed by the ≤28-days MV group, and the >28-days MV group (17,7%, 11.5%, 339 

and 3.7%, respectively, chi-square p=0.028 for the comparison deceased vs. >28-days 340 

MV group). Thus, while in most cases levels of sgRNA were not measurable in BAL 341 
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suggesting that there were no viable viral particles in the lower airways of COVID-19 342 

patients at the time of bronchoscopy (overall median[IQR] = 12[7-16] days from 343 

hospitalization), the lower airway viral burden, as estimated by rRT-PCR, is associated 344 

with mortality in critically ill COVID-19 patients. 345 

 346 

Microbial community structure of the lower airways is distinct from the upper airways in 347 

critically ill patients. 348 

Considering the bacterial species and the viral loads identified in the lower and upper 349 

airways of this cohort and their association with outcomes, we profiled in detail their viral 350 

and microbial composition. Microbial communities were evaluated using parallel 351 

datasets of RNA and DNA sequencing from 118 COVID-19 patients with lower airway 352 

samples that passed appropriate quality control and a subset of paired 64 upper airway 353 

samples, along with background bronchoscope controls.  354 

 355 

RNA sequencing (RNAseq) of the metatranscriptome provided insight into the RNA 356 

virome as well as the transcriptomes of DNA viruses, bacteria, and fungi. Given the low 357 

biomass of lower airway samples we first identified taxa as probable contaminants by 358 

comparing the relative abundance between background bronchoscope and BAL 359 

samples (Supplementary Fig. 3a and Supplementary Table 4). However, we did not 360 

remove any taxa identified as probable contaminants from subsequent analyses. A 361 

comparison of the microbial community complexity captured in these data, determined 362 

using the Shannon diversity Index, showed there was significantly lower α diversity in 363 

the lower airway samples than in the upper airways and background controls 364 

(Supplementary Fig. 4a). Similarly, β diversity analysis based on the Bray Curtis 365 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.23.21252221doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.23.21252221


 13

Dissimilarity index indicated that the microbial composition of the lower airways was 366 

distinct from the upper airways and background controls (Supplementary Fig. 4b, 367 

PERMANOVA p<0.01). Sequence reads indicated a much higher relative abundance of 368 

SARS-CoV-2 in the lower than in the upper airways for this cohort (Supplementary Fig. 369 

4c). Comparisons of the most dominant bacterial and fungal taxa that were functionally 370 

active showed that S. epidermidis, Mycoplasma salivarium, S. aureus, Prevotella oris, 371 

and Candida albicans, many often-considered oral commensals, were present in both 372 

upper and lower airway samples (Supplementary Fig. 4c). Interestingly, the lytic phage 373 

Proteus virus Isfahan, known to be active against biofilms of Proteus mirabilis 22, was 374 

found to be highly transcriptionally active in the BAL. 375 

 376 

DNA sequencing data provided insight into the DNA virome, as well as the bacterial and 377 

fungal metagenomes. As for the metatranscriptome data, we first identified taxa as 378 

probable contaminants but these were not removed for subsequent analyses 379 

(Supplementary Fig. 3b). Both α and β diversity analyses of the metagenome support 380 

distinct microbial community features in the lower airways as compared with the upper 381 

airways and background controls (Supplementary Fig. 5a, 5b). Among the top 10 taxa 382 

across lower and upper airway samples were S. aureus, Salmonella enterica, 383 

Burkholderia dolosa, and Klebsiella variicola.  Candida albicans only ranked #77 in the 384 

BAL while it was ranked 5th in the metatranscriptome data indicating that while present 385 

at low relative abundance, it was highly active (Supplementary Table 4). K. variicola, 386 

while prevalent at a high relative abundance (#4 in BAL, and #5 in the upper airways) in 387 

patients of this cohort, its ranking in the RNAseq data was not among the top 50, 388 

indicating that it was not as active functionally as other bacteria. Conversely, while S. 389 
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epidermis ranked as the most highly functional taxon in both lower and upper airways, 390 

based on RNAseq reads (Supplemental Fig. 3c), it was 33rd in relative abundance in 391 

the BAL DNAseq data but was present at very high relative abundance in the upper 392 

airways (ranked #3). These data suggest that microbes that colonize the upper airways 393 

and the skin were common in the lower airways in this cohort of COVID-19 patients 394 

requiring invasive mechanical ventilation. 395 

 396 

Distinct microbial signatures are associated with different clinical outcomes. 397 

To determine the potential impact of vertebrate viruses on outcome, we compared virus 398 

enrichment differences in BAL samples across the three clinical outcome groups (≤28-399 

days MV, >28-days MV, and deceased). As it pertains to the vertebrate RNA virome 400 

subfraction, there were significant differences (β diversity) between the three clinical 401 

outcome groups (Supplementary Fig. 6, PERMANOVA p<0.01). There were no 402 

significant differences for the vertebrate DNA virome or DNA virus transcriptome 403 

subfractions of the sequence reads (data not shown). Consistent with the SARS-CoV-2 404 

viral load assessed by RT-PCR, differential expression analysis (DESeq) of the RNA 405 

virome identified SARS-CoV-2 as being enriched in the deceased group, as compared 406 

with both ≤28-days and >28-days MV groups (fold change >5, Figure 2d). Cox 407 

proportional hazards modeling supports that enrichment with SARS-CoV-2 was 408 

associated with increased risk for death (HR 1.33, 95% CI= 1.07-1.67, pvalue=0.011, 409 

FDR adjusted pvalue=0.06; Supplementary Table 5).  410 

 411 

Analysis of differential DNA virus abundance using DEseq did not show statistically 412 

significant differences. Because the virome includes viruses of bacteria and archaea, 413 
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we also analyzed the phage data (including viruses of archaea). Phages impact the 414 

bacterial population—including bacterial pathogens—and so could be clinically relevant. 415 

At a compositional level, the virome of DNA phages did not display statistically 416 

significant differences or significant virus enrichment based on clinical outcome groups 417 

(data not shown). However, while the phage metatranscriptome α and β diversity was 418 

similar across the clinical outcome groups, there were various taxonomic differences at 419 

the RNA level with enrichment of Staphylococcus phages CNPx in the deceased and 420 

>28-day MV groups when compared with the ≤28-day MV group (Figure 2e). 421 

Differential expression from two other Staphylococcus phages was also observed in the  422 

>28-days MV group as compared with the ≤28-days MV group (Figure 2e). None of the 423 

described taxa were identified as possible contaminants (Supplementary Table 4). 424 

 425 

Enrichment of the lower airway microbiota with oral commensals is associated with poor 426 

outcome 427 

We evaluated the overall bacterial load by quantitative PCR, targeting the 16S rRNA 428 

gene. As expected, the bacterial load in the lower airways was several folds lower than 429 

in the upper airways but clearly higher than the background bronchoscope control 430 

(Supplementary Fig. 7). Patients who died had higher total bacterial load in their lower 431 

airways than patients who survived (Figure 3a). 432 

 433 

While no statistically significant differences were noted in α or β diversity across clinical 434 

outcome groups (Figure 3b-c), several differences were noted when differential 435 

enrichment was evaluated using DESeq. For the comparisons made across the clinical 436 

outcome groups we focused on consistent signatures identified in the lower airway 437 
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metagenome and metatranscriptome. Coherence of differentially enriched taxa was 438 

determined by gene set enrichment analysis (GSEA) (Figure 3d) and directionality of 439 

enrichment between the two datasets was evaluated (Figure 3e). Among the most 440 

abundant taxa, the oral commensal M. salivarum was enriched in the deceased and 441 

>28-days MV groups as compared with the ≤28-days MV group. In contrast, a different 442 

oral commensal, Prevotella oris, was enriched in the ≤28-days MV group as compared 443 

with the deceased and >28-days MV groups. These data support that oral commensals 444 

are frequently found in the lower airways of critically ill COVID-19 patients and that 445 

differences between groups could be due to differential microbial pressures related to 446 

host factors. Interestingly, most of the statistically significant taxa were identified in the 447 

metatranscriptome rather than in the metagenome data, with only P. oris identified in 448 

both datasets. None of the described taxa were identified as possible contaminants 449 

(Supplementary Table 4). Overall, most of the microbial signatures identified as 450 

enriched in the deceased or in subjects on prolonged MV are regular colonizers of 451 

healthy skin and mucosal surfaces rather than frequent respiratory pathogens. 452 

 453 

For the fungal data, there were no statistically significant differences in α or β diversity 454 

identified between clinical outcome groups in the metagenome or the 455 

metatranscriptome data (Supplementary Fig. 8a and 8c). However, in the 456 

metagenome data, we identified Candida glabrata enriched in the deceased group as 457 

compared with the ≤28-days MV and the >28-days MV groups but this was not 458 

consistent in the metatranscriptome data (Supplementary Fig. 8b and 8d).  459 

 460 
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Poor clinical outcomes are associated with enrichment of antimicrobial resistance genes 461 

and glycosphingolipid biosynthesis  462 

We used the gene annotation of the DNAseq and RNAseq data to profile the microbial 463 

functional potential of the lower airway samples. For the comparisons made across the 464 

clinical outcome groups, we focused on consistent functional signatures identified in the 465 

lower airway metagenome and metatranscriptome. Coherence of differentially enriched 466 

functions was determined using GSEA (Figure 4a) and directionality of enrichment was 467 

also evaluated (Figure 4b). Overall, there was coherence of directionality between the 468 

metranscriptomics and metagenomics datasets for the comparisons between deceased 469 

vs ≤28-days MV, and >28-days MV vs ≤28-days MV groups. Interestingly, statistically 470 

significant differences were only noted in the metatranscriptome data and not in the 471 

metagenome data. Among the top differentially expressed pathways in the poor 472 

outcome groups were glycosylases, oxidoreductase activity, transporters, and two-473 

component system, among other genes. The two-component system is used by 474 

bacteria and fungi for signaling. A specific analysis of antibiotic resistance genes shows 475 

that there was significant gene enrichment and expression of biocide resistance in the 476 

deceased group as compared to the two other MV groups (Supplementary Fig. 9). 477 

There was also significant expression of genes resistant to trimethoprim and phenolic 478 

compound, as well as multi drug resistance in the deceased group as compared to the 479 

≤28-days MV group. Presence of the resistance gene against Trimethropim was not 480 

significantly associated with prior exposure with Trimethoprim. However, only 7 patients 481 

received this drug before sample collection.  482 

 483 
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Lower airway host immune phenotype shows failure of adaptive and innate immune 484 

response to SARS-CoV-2 among deceased subjects 485 

To evaluate the host immune response to SARS-CoV-2 infection, we first measured 486 

levels of anti-Spike and anti-RBD (receptor binding domain) antibodies in BAL samples. 487 

For both anti-Spike and anti-RBD immunoglobulins, levels of IgG, IgA and IgM were 488 

several logs higher than levels found in BAL samples from non-SARS-CoV-2 infected 489 

patients. Importantly, IgG levels of anti-Spike and anti-RBD were significantly lower in 490 

the deceased group as compared to the levels found in patients who survived (Figure 491 

5a and Supplementary Fig. 10a-c, p<0.05). A neutralization assay performed using 492 

BAL fluid showed varying levels of neutralization across all samples (as estimated by 493 

EC50) but no statistically significant differences between the clinical outcome groups 494 

(Supplementary Fig. 10d). We then evaluated whether levels of antibodies correlated 495 

with viral load in BAL samples. While viral load levels of SARS-CoV-2 measured with 496 

rRT-PCR did not correlate with BAL measurements of SARS-CoV-2 specific antibodies, 497 

sgRNA viral load levels negatively correlated with BAL levels of Anti-Spike (IgG and 498 

IgA), Anti-RBD (IgG and IgA) and the Neutralization assay (Supplementary Table 6). 499 

These data suggest that the IgG subfraction is an important marker of the adaptive 500 

immune response in the lung of critically ill COVID-19 patients and that both sub-501 

fractions of IgG and IgA anti-SARS-CoV-2 may contribute to the viral replication control 502 

in the lower airways. 503 

 504 

Host transcriptome analyses of BAL samples showed significant differences across 505 

clinical outcome groups based on β diversity composition (Supplementary Fig. 11). We 506 

identified multiple differentially expressed genes across the clinical outcome groups 507 
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(Supplementary Fig. 11b-d). First, we noted that the lower airway transcriptomes 508 

showed downregulation of heavy constant of IgG (IGHG3), and heavy constant of IgA 509 

(IGHA1) genes in those with worse clinical outcome (Supplementary Table 7). We 510 

then used IPA (Ingenuity Pathway Analysis) to summarize differentially expressed 511 

genes across the three clinical outcome groups (Figure 5b). The sirtuin Signaling 512 

Pathway (a pathway known to be involved in aging, gluconeogenesis/lipogenesis, and 513 

host defense against viruses)23 and the ferroptosis pathway (an iron-dependent form of 514 

regulated cell death present in bronchial epithelium)24,25 were both upregulated in those 515 

with worse outcome. While this may reflect the host response to viral infection, other 516 

differences in the transcriptomic data showed downregulation of mitochondrial oxidative 517 

phosphorylation, HIF1α, STAT3, and Phospholipase C Signaling. Additional canonical 518 

signaling pathways, including insulin secretion, multiple Inositol related pathways, 519 

noradrenaline/adrenaline degradation signaling, and xenobiotic related metabolism 520 

were significantly downregulated when comparing the >28-days MV vs. ≤28-days MV 521 

groups. Upstream pathway prediction analyses of the host airway transcriptome support 522 

previously reported mitochondria dysfunction26 (inhibition in mitochondrial related 523 

regulators NSUN3, MRPL14, MRPL12, LONP1, DAP3), and metabolic/gluconeogenesis 524 

dysregulation27,28 (SIRT3) in critically ill COVID-19 subjects with poor outcome 525 

(Supplementary Table 8). We also observed decreased activation in the inflammatory 526 

response in critically ill COVID-19 subjects with poor outcome (phagocytes, neutrophils, 527 

and granulocytes, and leukocytes; Supplementary Table 9). A comparison of clinical 528 

outcome between the >28-days MV vs. ≤28-days MV groups showed upstream 529 

predicted inhibition in insulin, estrogen, beta-estradiol, EGF, EGFR, IL-5, and IL-10RA 530 

in the >28-days MV group (Supplementary Table 9). These differences suggest that, at 531 
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the stage that we sampled the lower airways of patients with critically COVID-19, an 532 

overt inflammatory tone was not predictive of worst outcome. 533 

 534 

To determine if the abundance of immune cells varies between different clinical 535 

outcome groups, we estimated cell type abundance from the host transcriptome with 536 

computational cell type quantification methods, including a deconvolution approach 537 

implemented in CIBERSORTx 29 and a cell type signature enrichment approach 538 

implemented in xCell 30. As reported recently in other studies31, among the cell types 539 

detected in the BAL samples we observed a consistent enrichment of mast cells and 540 

neutrophils in the >28-days MV and deceased groups compared with the ≤28-days MV 541 

group (Figure 5c and Supplementary Table 10). We also identified significantly higher 542 

inflammatory macrophages (M1), innate T-cells and memory T-cells (CCR7+) among 543 

subjects with worse clinical outcome. 544 

 545 

Cross-kingdom network analyses identify bacteria, fungi, and host pathways functionally 546 

impacted by SARS-CoV-2 547 

To identify potential microbe-microbe and microbe-host interactions that could have an 548 

effect on outcome, we used a multi-scale network analysis approach (Multiscale 549 

Embedded Gene co-Expression Network Analysis, MEGENA)32. We first used the 550 

relative abundance from the RNAseq data to capture co-expressing taxa in the 551 

metatranscriptome network neighborhood of SARS-CoV-2 (SARS2-NWN). We 552 

examined five such network neighborhoods (constructed by including nodes with 553 

increasing distance 1 to 5 from SARS-CoV-2, i.e. neighborhood 1 to neighborhood 5) 554 

that were significantly enriched for taxa functionally active in the deceased group when 555 
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compared with the ≤28-day MV group. Only the largest cluster, with 504 taxa, had 556 

significantly enriched taxa in both the deceased and in the ≤28-day MV outcome groups 557 

(Supplementary Fig. 12a) (FET P-value = 4.6e-45, 4.0 FE). Many of these taxa are 558 

among the top 50 most abundant microbes we had previously identified in the 559 

metatranscriptome dataset. Taxa present that are influenced by SARS-CoV-2 and 560 

significantly differentially enriched in the deceased group include bacteria such as M. 561 

salivarium, Bifidobacterium breve, and Lactobacillus rhamnosus (a gut commensal), 562 

that we had previously identified by differential expression analysis (Figure 3e), but also 563 

taxa such as S. epidermis, Mycoplasma hominis (urogenital bacteria), and the phage 564 

VB_PmiS-Isfahan (also referred to as Proteus virus Isfahan) that we had previously  565 

only picked up as being highly abundant but not necessarily differentially enriched in the 566 

deceased group. Most of the fungi, such as C. albicans, C. glabrata and C. orthopsilosis 567 

were enriched in the ≤28-day MV group. Interestingly, our earlier analysis of the 568 

metagenome (Supplementary Fig. 8b) had identified C. glabrata as being enriched in 569 

the deceased group with no enrichment in the metatranscriptome. This analysis 570 

indicates that some of these abundant taxa could be responding to SARS-CoV-2 571 

disruption in a similar manner, or indirectly interacting functionally.   572 

 573 

We further investigated the association of the network neighborhood with host network 574 

modules using the host transcriptome data to identify groups of host genes that are co-575 

expressed in response to SARS-CoV-2 disruption. The 3 host modules with the most 576 

significant correlations to SARS2-NWN are M175, M277 and M718. M277 is the parent 577 

module of M718, and both are enriched with genes related to respiratory electron 578 

transport, while M175 is enriched for IFN-γ signaling (Supplementary Fig. 12b).  579 
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Module M175 is positively correlated with the SARS2-NWN (ρ = 0.32, P-value = 2.1e-3). 580 

While there was no collective enrichment of the module by differentially expressed 581 

genes (DEGs) in the deceased vs ≤28-days MV, there was for >28-days vs ≤28-days 582 

MV (FET P-value = 0.030, 4.5 FE). This module includes well-known antiviral IFN 583 

stimulated genes (ISGs), such as IRF7 and OASL. Investigating module response on an 584 

individual gene level, Interleukin 4 induced 1 (IL4I1) appears as one of the most up-585 

regulated genes in this module when comparing the deceased group with the ≤28-day 586 

MV group. The transporter 1, ATP binding cassette subfamily B member (TAP1) is also 587 

upregulated and a key regulator (hub gene). Together with TAP2, TAP1 plays a central 588 

role in MHC I antigen presentation33. Transcriptional regulators SP110 and SP140, both 589 

ISGs and also identified as hub genes, were down-regulated. Module 718 was also 590 

positively correlated with the SARS2-NWN (ρ = 0.31, P-value = 1.3e-3; enrichment FET 591 

P-value = 0.029, 3.7 FE of M178 by differentially expressed genes in deceased vs ≤28-592 

days MV). The majority of genes in this module are down-regulated in the deceased 593 

group compared with the ≤28-day group. Some of the genes encode subunits of the 594 

mitochondrial ATP synthase, such as ATP6 and ATP8, the cytochrome C oxidase, with 595 

COX2 and COX3 as well as the NADH dehydrogenase complex, such as ND1-ND6. 596 

ND4L, ATP6, COX2, ND1, ND3, ND4L and ND6 are key regulators, potentially 597 

modulating the expression of the other genes in the module. These findings further 598 

support mitochondria dysfunction26, potentially disrupting processes indicated by the 599 

module. Other down-regulated genes are humanin1 (MTRNR2L1) and R-spondin 1 600 

(RSPO1). Humanin is known to protect against oxidative stress and mitochondrial 601 

dysfunction34. RSPO1 protects against cell stress by activating the Wnt/β-catenin 602 

signaling pathway35. Non-coding RNAs, such as MALAT1 and RHOQ-AS1 were found 603 
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to be up-regulated. MALAT1 is known to suppress IRF3-initiated antiviral innate 604 

immunity36 while the function of RHOQ-AS1 is unknown.  605 

 606 

 607 

Metatranscriptome and Transcriptome signatures are predictive of mortality 608 

We evaluated the strength of the metatranscriptomic, metagenomic and host 609 

transcriptomic profiles to predict mortality in this cohort of critically ill COVID-19 patients. 610 

To this end, we identified features in each of these datasets and constructed risk scores 611 

that best predicted mortality. Figure 6a shows that the metatranscriptome data, alone or 612 

combined with the other two datasets, was most predictive of mortality. Importantly, the 613 

predictive power (as estimated by the area under the curve) of the metatranscriptome 614 

data was improved by excluding probable contaminants and worsened when SARS-615 

CoV-2 was removed from the modeling. The selected features we used to construct the 616 

metatranscriptome, metagenome and host transcriptome risk scores are reported in 617 

Supplementary Table 11).  Using the means of the scores, we classified all subjects 618 

into high risk and low risk groups for mortality. Figure 6b shows Kaplan-Meier survival 619 

curve comparisons evaluating the predictive power of risk score stratification based on 620 

metatranscriptome, metagenome and host transcriptome data. Combining risk scores 621 

from different datasets showed an optimal identification of mortality when 622 

metatranscriptome and host transcriptome were considered (Figure 6c). We then used 623 

the gene signature found as being the most predictive of mortality to conduct IPA 624 

analyses. Among the upstream regulators, mortality was associated with predicted 625 

activation of interferon alpha while chemotaxis and infection by RNA virus were 626 

predicted as activated in diseases and functions. These data highlight the importance of 627 
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SARS-CoV-2 abundance in the lower airways as a predictor for mortality, and the 628 

significant contribution of the host cell transcriptome, which reflects the lower airway cell 629 

response to infection.   630 
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Discussion 631 

A limited number of studies to date have evaluated the lower airway microenvironment 632 

in patients with SARS-CoV-2 infection because of the increased risk of virus 633 

transmission to healthcare providers during sampling19,20,37-42. This has limited 634 

molecular investigations into the primary site of the disease. Having built a substantial 635 

biorepository of lower airway samples among COVID-19 patients on mechanical 636 

ventilation recruited during the first wave of SARS-CoV-2 infections in New York City, 637 

we used a metagenomic approach to characterize the microbiome in the lower airways 638 

and assessed its impact on clinically meaningful outcomes. In this analysis of 142 639 

critically ill hospitalized patients with confirmed SARS-CoV-2 infection and lower airway 640 

biorepository samples available, we determined that higher SARS-CoV-2 viral load, 641 

higher relative abundance of Mycoplasma salivarium, and limited anti-SARS-CoV-2 642 

Spike protein IgG response in the lower airways were associated with increased 643 

mortality. This signature was supported by the metatranscriptome data of the lower 644 

airway samples where SARS-CoV-2 sequence reads were significantly enriched in 645 

those patients who died compared to those who survived after developing respiratory 646 

failure requiring mechanical ventilation. Importantly, although we observed changes in 647 

other microbial components of the lower airway microbiome in our analysis of lower 648 

airway samples from 118 patients and by clinical laboratory culture results obtained 649 

from 589 patients, we did not find evidence to support the hypothesis that co-infection 650 

with common (bacterial, viral, fungi) respiratory pathogens was associated with poor 651 

outcome—although most patients received empiric treatment with broad spectrum 652 

antibiotics and anti-fungals.  653 

 654 
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Several studies have explored the relationship between SARS-CoV-2 viral load and 655 

mortality43-48. Severe influenza requiring hospitalization has also been associated with 656 

higher viral loads49,50. It has been argued that high viral load might merely be a 657 

reflection of an individual’s immune response43.  In fact, in SARS-CoV-1, clinical 658 

progression was not associated with increased viral load or uncontrolled viral replication 659 

in the nasopharynx but rather with an upregulated immune profile in these patients51. In 660 

a large cohort of 1145 patients with confirmed SARS-CoV-2, viral load measured in 661 

nasopharyngeal swab samples was found to be significantly associated with mortality, 662 

even after adjusting for age, sex, race and several co-morbidities 48. Similar results were 663 

found in a cohort of patients in New York City with or without cancer, where in-hospital 664 

mortality was significantly associated with a high SARS-CoV-2 viral load in the upper 665 

airways 47.  The data presented here through the use of direct quantitative methods 666 

(RT-PCR) and a semiquantitative untargeted approach (metatranscriptome sequencing) 667 

support the hypothesis that the SARS-CoV-2 viral load in the lower airways plays a 668 

critical role in the clinical progression of critically ill COVID-19 patients. It is important to 669 

note that current guidelines for treatment of COVID-19 do not recommend treatment 670 

with remdesivir for patients receiving invasive mechanical ventilation52. The results of 671 

this investigation suggest that antivirals might still have a role in the treatment of 672 

critically ill COVID-19 patients. 673 

 674 

We investigated the possibility that mortality with SARS-CoV-2 infection was related to 675 

co-infection with other pathogens. To this point several investigations have shown 676 

evidence of SARS-CoV-2 co-infection with other viruses, bacteria and fungi identified by 677 

culture-based techniques 18,53-60.  In a cohort of 116 specimens positive for SARS-CoV-678 
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2, 21% were positive for one or more additional respiratory pathogens including 679 

rhinovirus/enterovirus and respiratory syncytial virus53. In a meta-analysis of 3,338 680 

patients with COVID-19, only 3.5% of patients had an identified bacterial co-infection at 681 

admission, while 14.3% were found later to have a secondary bacterial infection55. The 682 

most common pathogens identified included species in the genera Mycoplasma, 683 

Hemophilus, and Pseudomonas.  In another study, the most commonly identified co-684 

infections were with Streptococcus pneumoniae, Klebsiella pneumoniae, and 685 

Haemophilus influenzae57. Using detailed clinical laboratory culture data available for 686 

589 subjects hospitalized with respiratory failure due to COVID-19, we showed that 687 

higher rates of respiratory infection with other organisms, especially early in their 688 

hospitalization, did not occur among subjects with poor clinical outcome. Further, we did 689 

not observe an association between positive cultures for any pathogen tested and 690 

increased odds of dying in critically ill COVID-19 patients.   691 

 692 

In the subset of COVID-19 patients with BAL samples, we used NGS to identify all 693 

potential pathogens and commensals in the lower airways beyond microbial cultures 694 

routinely obtained as per clinical care. The RNA virome data showed that SARS-CoV-2 695 

dominates the lower airways and was significantly associated with death. A small 696 

number of samples had a few sequences that mapped to influenza A or B viruses, 697 

suggesting that co-infection with influenza did not occur frequently during this first wave 698 

of SARS-CoV-2 infections. Within the DNA virome, there was no significant difference in 699 

viruses between the three outcome groups despite the frequent finding of HSV-1. 700 

Similarly, when evaluating the metatranscriptome of DNA viruses, there were few 701 

differences between the three outcome groups. Although analysis of the phage 702 
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metagenome data showed no differential enrichment between the three cohorts, we did 703 

identify in the metatranscriptome data differentially active phages when comparing the 704 

three cohorts, suggesting that changes in the bacterial microbiome may be occurring in 705 

critically ill patients with COVID-19. Certain Staphylococcus phages were differentially 706 

active in those who were ventilated for more than 28 days and in those who died. 707 

Interestingly, the bacterial signatures also identified Mycoplasma salivarium, a known 708 

oral commensal that has previously been associated with ventilator-acquired 709 

pneumonia61, as differentially active in those who died and those who were ventilated 710 

for more than 28 days when compared to those ventilated less than 28 days. From 711 

previous data published by us, enrichment of the lower airway microbiota with oral 712 

commensals was seen to be associated with a pro-inflammatory state in several 713 

diseases including lung cancer62,63 and non-tuberculosis mycobacterium related 714 

bronchiectasis64.  715 

 716 

With the use of metagenomic and metatranscriptomic analyses it is also possible to 717 

examine how functionally active microbes impact the host65.  In this cohort of patients, 718 

we evaluated the functional profile of the microbiome within the lower airways and its 719 

effect on mortality, something that, to our knowledge, had not yet been assessed in 720 

COVID-19 patients. The only significant gene function enrichment was found with the 721 

metatranscriptome data suggesting that functional activation of microbes can provide 722 

further insights into the lower airway microbial environment of patients with worst 723 

outcome. Among the pathways that were differentially expressed in those patients with 724 

poor outcome, we identified genes associated with degradation, transport, and 725 

antimicrobial resistance genes, as well as with signaling. These differences may 726 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.23.21252221doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.23.21252221


 29

indicate important functional differences leading to a different metabolic environment in 727 

the lower airways that could impact host immune responses. It could also be 728 

representative of differences in microbial pressure in patients with higher viral loads and 729 

different inflammatory environments.  730 

 731 

In the current investigation, we also characterized the immune response within the 732 

lower airways by measuring anti-SARS-CoV-2 Spike antibodies and profiling the host 733 

RNA transcriptome. We observed that low levels of anti-Spike and anti-RBD IgG in the 734 

lung were associated with poor outcome. Although we did not find a statistically 735 

significant association between SARS-CoV-2 neutralizing capacity and poor outcome, 736 

levels of SARS-CoV-2 neutralizing antibodies, anti-Spike and anti-RBD antibodies (both 737 

IgG and IgA) were negatively correlated with SARS-CoV-2 viability. Prior investigations 738 

have suggested that IgA levels are a key driver of neutralization in the mucosa66-68. The 739 

differences noted in the current investigation in the IgG pools are intriguing and future 740 

work investigating the antibodies generated during SARS-CoV-2 infections will be 741 

essential.  742 

 743 

When examining host transcriptomic differences across the different clinical outcome 744 

groups, Sirtuin and Ferroptosis signaling pathways were found to be upregulated in the 745 

most critically ill COVID-19 patients. Upregulation in the Sirtuin pathway demonstrates 746 

an increased host inflammatory response to viral infection23. In addition, ferroptosis, a 747 

recently identified form of non-apoptotic regulated cell death through iron-dependent 748 

accumulation of lipid peroxides, has been shown to cause direct lung injury69 or 749 

pulmonary ischemia-reperfusion injury70,71. Interestingly, there is evidence to support 750 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.23.21252221doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.23.21252221


 30

that STAT369 and ACSL470 alleviated ferroptosis-mediated acute lung injury 751 

dysregulation, which are both down-regulated in COVID-19 patients with worse clinical 752 

outcome. Further analysis showed that there appeared to be an inactivation of 753 

phagocytes, neutrophils, granulocytes, and leukocytes, including downregulation of IgG 754 

expression levels, with additional mitochondria dysfunction, and down-regulation of 755 

Inositol related pathways and noradrenaline/adrenaline degradation. There is evidence 756 

that in the neonatal lung, inositol related components exert an anti-inflammatory effect 757 

and can prevent acute lung injury72,73.  758 

 759 

Collectively, these data suggest that an imbalance rather than an elevated inflammatory 760 

state in the lung is an important marker that predicts poor outcomes in critically ill 761 

COVID-19 patients. Indeed, the inferred cell composition analysis from the bulk 762 

transcriptome data overall points to a tepid immune response. Memory T cells have 763 

been implicated with a robust immune response in SARS-CoV-2.74 The deficiency of 764 

these memory T cells that we found in the lungs of COVID-19 patients with worse 765 

outcome further supports the presence of an ineffective immune response or presence 766 

of immune exhaustion. IL4I1, found in the network analysis to be up-regulated in the 767 

deceased group in association with SARS-CoV-2, is an immunosuppression enzyme 768 

that plays a role in infection and the control of immunopathology75. IL4I1 induction has 769 

been reported in viral infections with influenza virus76. The ISGs and transcriptional 770 

regulators SP110 and SP140, both downregulated in the deceased group. play 771 

important roles in resisting intracellular pathogens77.  772 

 773 
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Strikingly, interrogation of the host transcriptomic analysis identified survival-associated 774 

differences in interferon-related responses. Our host transcriptomic risk stratified model 775 

seems to point to a predictive activation of type I interferon as a prediction for mortality. 776 

This might be inconsistent with the current suggestion that, based on systemic levels, 777 

early interferon responses are associated with poor outcome in COVID19.78,79 Others 778 

have suggested that a robust interferon response may lead to a hyperinflammatory 779 

state that could be detrimental in the disease process, justifying the use of Janus kinase 780 

inhibitor inhibitors in patients with COVID-19.80 Studies comparing transcriptomic 781 

signatures in BAL of patients with severe COVID-19 and controls have shown activation 782 

of type 1 interferons.81 While further longitudinal data will be needed to clarify the role of 783 

interferon signaling on the disease, the data presented here suggest that combining 784 

microbial and host signatures could help understand the increase risk for mortality in 785 

critically ill COVID-19 patients. 786 

 787 

By collecting BAL samples rather than endotracheal aspirate specimens we were able 788 

to ensure extensive sampling of the lower respiratory tract in intubated patients. 789 

However, 790 

we were limited to samples from intubated patients in whom a clinically indicated 791 

bronchoscopy was done to place a percutaneous tracheostomy or for airway clearance. 792 

Although this included a large number of patients with various clinical outcomes, those 793 

sampled may not be representative of the extremes in the spectrum of disease severity 794 

who were most likely not eligible for bronchoscopy. For example, patients that 795 

presented with very rapid clinical deterioration and died within the first few days of 796 

hospitalization or those who were quickly weaned from mechanical ventilation did not 797 
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receive bronchoscopy. However, extensive and detailed clinical data were also obtained 798 

from intubated COVID-19 patients without bronchoscopy performed within the 799 

Manhattan Campus (no bronchoscopy cohort) and from the Long Island cohort for 800 

whom bronchoscopies were done without collecting research samples. In both of these 801 

cohorts, clinical laboratory culture data did not identify untreated secondary pathogen 802 

infections associated with poor outcome.  803 

 804 

The samples used in this investigation were obtained during the first surge of cases of 805 

COVID-19 in New York City, and management reflected clinical practices at that time. 806 

Among the differences with current therapeutic approaches in COVID-19 patients, 807 

corticosteroids and remdesivir, two medications that likely affect the lower airway 808 

microbial landscape, were rarely used during the first surge. Other medications, such as 809 

antibiotics and anti-inflammatory drugs could affect our findings and we therefore 810 

considered them as potential confounders. However, the use of these medications was 811 

not found to be associated with clinical outcome. The cross-sectional study design 812 

precluded evaluation of the temporal dynamics of the microbial community or the host 813 

immune response in this cohort, which could provide important insights into the 814 

pathogenesis of this disease. Performing repeated bronchoscopies without a clinical 815 

indication would be challenging in these patients and other less invasive methods might 816 

need to be considered to study the lower airways at earlier timepoints and serially over 817 

time in patients with respiratory failure. It is important to note that there were no 818 

statistically significant differences in the timing of sample collection across the three 819 

outcome groups. 820 

 821 
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In summary, we present here the first evaluation of the lower airway microbiome using a 822 

metagenomic and metatranscriptomic approach, along with host immune profiling in 823 

critically ill patients with COVID-19 requiring invasive mechanical ventilation.  The RNA 824 

metatranscriptome analysis showed an association between the abundance of SARS-825 

CoV-2 and mortality, consistent with the signal found when viral load was assessed by 826 

targeted rRT-PCR. These viral signatures correlated with lower anti-SARS-CoV-2 Spike 827 

IgG and host transcriptomic signatures in the lower airways associated with poor 828 

outcome. Importantly, both through culture and NGS data, we did not find evidence for 829 

an association between untreated infections with secondary respiratory pathogens and 830 

mortality. Together, these data suggest that active lower airway SARS-CoV-2 831 

replication and poor SARS-CoV-2-specific antibody responses are the main drivers of 832 

increased mortality in COVID-19 patients requiring mechanical ventilation. The potential 833 

role of oral commensals such as Mycoplasma salivarium need to be explored further. It 834 

is possible that M. salivarium can impact key immune cells and has recently been 835 

reported at a high prevalence in patients with ventilator-acquired pneumonia61. Critically, 836 

our finding that SARS-CoV-2 evades and/or derails effective innate/adaptive immune 837 

responses indicates that therapies aiming to control viral replication or induce a targeted 838 

antiviral immune response may be the most promising approach for hospitalized 839 

patients with SARS-CoV-2 infection requiring invasive mechanical ventilation.   840 

 841 

  842 
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Methods 843 

Subjects 844 

Enrolled subjects were 18 years or older, admitted to the intensive care units (ICUs) at 845 

NYU Langone Health from March 10th to May 10th, 2020 with a nasal swab confirmed 846 

diagnosis of SARS-CoV-2 infection by reverse transcriptase polymerase chain reaction 847 

(RT-PCR) assay and respiratory failure requiring invasive mechanical ventilation. 848 

Samples were obtained during clinically indicated bronchoscopy performed for airway 849 

clearance or for percutaneous tracheostomy placement. Surviving subjects signed 850 

informed consent to participate in this study. Samples and metadata from subjects who 851 

died or were incapacitated were de-identified and included in this study. Comprehensive 852 

demographic and clinical data were collected. We also collected longitudinal data on 853 

clinical laboratory culture results and treatment. Supplementary figure 1 shows the 854 

distribution of subjects and sampling strategy used for this study. The study protocol 855 

was approved by the Institutional Review Board of New York University. 856 

 857 

Lower airway bronchoscopic sampling procedure 858 

Both background and supraglottic (buccal) samples were obtained prior to the 859 

procedure, as previously described62. The background samples were obtained by 860 

passing sterile saline through the suctioning channel of the bronchoscope prior to the 861 

procedure.  Bronchoalveolar lavage (BAL) samples were obtained from one lung 862 

segment as per discretion of the treating physician as clinically indicated. Samples were 863 

then transferred to a BSL3 laboratory for processing. Once there, 2 mL of whole BAL 864 

was stored in a tube prefilled with 2 mL of Zymo Research’s DNA/RNA Shield™ 865 

(R1100-250, https://www.zymoresearch.com/pages/covid-19-efforts) for RNA/DNA 866 
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preservation and virus inactivation. In addition, background control samples (saline 867 

passed through the bronchoscope prior to bronchoscopy) and supraglottic aspirates 868 

were stored in the same RNA/DNA shield. A subset of samples underwent BAL cell 869 

separation by centrifugation and cells were cryopreserved in DMSO while acellular BAL 870 

fluid was aliquoted for cytokine measurements. A paired blood sample was also 871 

obtained in EDTA tubes (Becton Dickinson, ref# 366450) and PAXgene Blood RNA 872 

tubes (PreAnalytiX) ref# 762165).  873 

 874 

Viral load detection targeting the N gene 875 

SARS-CoV-2 viral load was measured by quantitative real-time reverse transcription 876 

polymerase chain reaction (rRT-PCR) targeting the SARS-CoV-2 nucleocapsid (N) 877 

gene and an additional primer/probe set to detect the human RNase P gene (RP). 878 

Assays were performed using Thermo Fisher Scientific (Waltham, MA) TaqPath 1-Step 879 

RT-qPCR Master Mix, CG (catalog number A15299) on the Applied Biosystems (Foster 880 

City, CA) 7500 Fast Dx RealTime PCR Instrument. Using the positive controls provided 881 

by the CDC, which are normalized to 1000 copies/mL, we converted the different Ct 882 

positive to copies/mL. This was done using the DDCT method, applying the formula: 883 

Power [2, (CT (sample, N1 gene) - CT (PC, N1 gene)] – [CT (sample, RP gene) - CT 884 

(PC, RP gene)]*1000. 885 

 886 

SARS-CoV-2 viral viability through measurement of subgenomic transcripts 887 

Viral subgenomic mRNA (sgRNA) is transcribed in infected cells and is not packaged 888 

into virions. Thus, presence of sgRNA is indicative of active infection of a mammalian 889 
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cell in samples. We therefore measure sgRNA in all BAL samples obtained targeting the 890 

E gene as previously described.21 Briefly, five µl RNA was used in a one-step real-time 891 

RT-PCR assay to sgRNA (forward primer 5’- CGATCTCTTGTAGATCTGTTCTC-3'; 892 

reverse primer 5’- ATATTGCAGCAGTACGCACACA-3'; probe 5’-FAM-893 

ACACTAGCCATCCTTACTGCGCTTCG-ZEN-IBHQ-3') and using the Quantifast Probe 894 

RT-PCR kit (Qiagen) according to instructions of the manufacturer. In each run, 895 

standard dilutions of counted RNA standards were run in parallel to calculate copy 896 

numbers in the samples. 897 

 898 

DNA/RNA isolation, library preparation and sequencing 899 

DNA and RNA were isolated in parallel using zymoBIOMICS™ DNA/RNA Miniprep Kit 900 

(Cat: R2002) as per manufacturer's instructions. DNA was then used for whole genome 901 

shotgun (WGS) sequencing using it as input into the NexteraXT library preparation kit 902 

following the manufacturer’s protocol. Libraries were purified using the Agencourt 903 

AMPure XP beads (Beckman Coulter, Inc.) to remove fragments below 200 bp. The 904 

purified libraries were quantified using the Qubit dsDNA High Sensitivity Assay kit 905 

(Invitrogen) and the average fragment length for each library was determined using a 906 

High Sensitivity D1000 ScreenTape Assay (Agilent). Samples were added in an 907 

equimolar manner to form two sequencing pools. The sequencing pools were quantified 908 

using the KAPA Library Quantification Kit for Illumina platforms. The pools were then 909 

sequenced on the Illumina Novaseq 6000 in one single run. For RNA sequencing, RNA 910 

quantity and integrity were tested with a BioAnalyzer 2100 (Agilent). Among 911 

bronchoscope control (BKG) samples, only 5 yielded RNA with sufficient quality and 912 

quantity to undergo library preparation and sequencing. The automated Nugen Ovation 913 
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Trio Low Input RNA method was used for library prep with 3ng total RNA input of each 914 

sample. After 6 amplification cycles, samples were sequenced using 2x Novaseq 6000 915 

S4 200 cycle Flowcells using PE100 sequencing. 916 

 917 

Microbial community characterization using whole genome shotgun sequencing (WGS) 918 

and RNA metatranscriptome 919 

For all metagenomic and metatranscriptomic reads, Trimmomatic v0.3682, with leading 920 

and trailing values set to 3 and minimum length set to 36, was used to remove adaptor 921 

sequences. All rRNA reads were then removed from the metatranscriptomic reads using 922 

SortMeRNA v4.2.083 with default settings. Metagenomic and filtered metatranscriptomic 923 

reads were mapped to the human genome using Bowtie2 v2.3.4.184 with default settings 924 

and all mapping reads were excluded from subsequent microbiome, mycobiome, and 925 

virome metagenomic and metatranscriptomic analysis. Technical replicates for each 926 

biological sample were pooled together for subsequent analyses. Taxonomic profiles for 927 

all metagenomic and metatranscriptomic samples were generated using Kraken 928 

v2.0.785 and Bracken v2.5 [https://doi.org/10.7717/peerj-cs.104] run with default 929 

settings. The database used for quantifying taxonomic profiles was generated using a 930 

combined database containing human, bacterial, fungal, archaeal, and viral genomes 931 

downloaded from NCBI RefSeq on January 8, 2021. Additionally, genomes for Candida 932 

auris (Genbank: GCA_003013715.2, GCA_008275145.1) and Pneumocystic jirovecii 933 

(Genbank: GCA_001477535.1) were manually added to the database. Differentially 934 

abundant bacterial and viral taxa were identified for the BAL and UA samples groups 935 

individually using DESeq2 v1.28.186 with the three group clinical outcome meta-data 936 

readouts set as the sample groupings. Significantly differentially abundant taxa 937 
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contained at a minimum an aggregate of 5 reads across samples and had an FDR 938 

<0.287,88. 939 

 940 

For functional microbial profiling, processed sequencing reads were further depleted of 941 

human-mapping reads by removing all reads classified as human by Kraken v2.0.785  942 

using KrakenTools v0.1-alpha (https://github.com/jenniferlu717/KrakenTools). FMAP 943 

v0.1589 was run on both the metagenomic and metatranscriptomic reads to profile the 944 

metabolic pathways present in each sample. FMAP_mapping.pl paired with diamond 945 

v0.9.2490 and FMAP_quantification.pl were used with default settings to identify and 946 

quantify proteins in the Uniref90 database. Using DESeq2 v1.28.186, differentially 947 

expressed genes were identified for the BAL samples individually using the three group 948 

clinical outcome-metadata readouts for all genes that had an aggregate 5 reads across 949 

all samples. 950 

 951 

Antibiotic resistance genes were quantified in all metagenome and metatranscriptome 952 

samples using Salmon v1.3.091 run with --keepDuplicates for indexing and --libtype A --953 

allowDovetail --meta for quantification. Genes were filtered such that only genes that 954 

actively conferred antibiotic resistance were kept. To assess differentially expressed 955 

classes of antibiotic resistance genes, gene counts for individual antibiotic resistance 956 

genes were collapsed by their conferred antibiotic resistance. 957 

 958 

Supplementary Figure 1 shows a summary of depth achieved with the parallel WGS 959 

and metatranscriptome approach across sample types and the number of reads 960 

assigned to different microbial subfractions (bacteria, fungi, DNA viruses, RNA viruses 961 
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and phages). Further analysis was also done to identify possible contaminants in the 962 

metatranscriptome and metagenome datasets.  To this end, we compared the relative 963 

abundance of taxa between background bronchoscope control and BAL samples. Taxa 964 

with median relative abundance greater in background than in BAL were identified as 965 

probably contaminant and listed in Supplementary Table 4). None of the taxa identified 966 

as possible contaminants were removed from the analyzed data but are shown for 967 

comparison with signatures identified in the rest of the analyses. 968 

 969 

 970 

Anti-Spike SARS-CoV-2 antibody profiling in BAL 971 

BAL samples were heat-treated at 56°C for one hour, and centrifuged at 14000g for 5 972 

min. The supernatant was collected and diluted 50-fold in PBST containing 1% skim 973 

milk. The diluted samples were incubated at room temperature (R.T.) for 30 min with 974 

QBeads DevScreen: SAv (Streptavidin) (Sartorius 90792) that had been loaded with 975 

biotinylated Spike, biotinylated RBD or biotin (negative control) in wells of a 96 well HTS 976 

filter plate (MSHVN4550). As positive controls, we used CR3022 antibody, that 977 

recognizes SARS-CoV-2 Spike and RBD, in human IgG, IgA and IgM formats (Absolute 978 

Antibody). After washing the beads, bound antibodies were labeled with anti IgG-979 

DyLight488, anti IgA-PE and anti IgM-PECy7, and the fluorescence intensities were 980 

measured in Intellicyt IQue3 (Sartorius). The acquired data [median fluorescence 981 

intensity (MFI)] were normalized using the MFI values of the CR3022 antibodies to 982 

compensate for variations across plates. Supplementary Figure 10 shows that the 983 

levels of these antibodies were higher in BAL samples of patients with SARS-CoV-2 984 

than in BAL samples from 10 uninfected healthy smokers recruited for research 985 
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bronchoscopy. Details of method development and validation will be described 986 

elsewhere (Koide et al. in preparation). 987 

 988 

SARS-CoV-2 preparation and neutralization assay  989 

icSARS-CoV-2-mNG (isolate USA/WA/1/2020, obtained from the UTMB World 990 

Reference Center for Emerging Viruses and Arboviruses) was amplified once in Vero E6 991 

cells (P1 from the original stock). Briefly, 90-95% confluent T175 flask (Thomas 992 

Scientific) of Vero E6 (1x107 cells) was inoculated with 50 µL of icSARS-CoV-2-mNG in 993 

5 mL of infection media (DMEM, 2% FBS, 1% NEAA, and 10 mM HEPES) for 1 hour. 994 

After 1 hour, 20 mL of infection media was added to the inoculum and cells were 995 

incubated 72 hours at 37 °C and 5% CO2. After 72 hours, the supernatant was collected 996 

and the monolayer was frozen and thawed once. Both supernatant and cellular fractions 997 

were combined, centrifuged for 5 min at 1200 rpm, and filtered using a 0.22 µm Steriflip 998 

(Millipore). Viral titers were determined by plaque assay in Vero E6 cells. In brief, 999 

220,000 Vero E6 cells/well were seeded in a 24 well plate, 24 hours before inoculation. 1000 

Ten-fold dilutions of the virus in DMEM (Corning) were added to the Vero E6 1001 

monolayers for 1 hour at 37 °C. Following incubation, cells were overlaid with 0.8% 1002 

agarose in DMEM containing 2% FBS (Atlanta biologicals) and incubated at 37 °C for 1003 

72 h. The cells were fixed with 10% formalin, the agarose plug removed, and plaques 1004 

visualized by crystal violet staining. All procedures including icSARS-CoV-2-mNG virus 1005 

were performed using Biosafety Level 3 laboratory conditions. 1006 

 1007 

For SARS-CoV-2 neutralization assays, Vero E6 cells (30,000 cells/well) were seeded 1008 

in a 96 well plate 24 h before infection. Two-fold serial dilutions of BAL lysates were 1009 
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mixed with mixed 1:1 (vol/vol) with SARS-CoV-2 mNG virus (multiplicity of infection, 1010 

MOI 0.5), and incubated for 1 h at 37 °C. After incubation, 100 µL of the mixtures of the 1011 

antibody and SARS-CoV-2 mNG were added to the Vero E6 monolayers, and cells 1012 

were incubated at 37°C. After 20 h, cells were fixed with 4 % formaldehyde (Electron 1013 

Microscopy Sciences) at room temperature for 1 h. After fixation, cells were washed 1014 

twice with PBS and permeabilized with 0.25% triton-100, stained with DAPI (Thermo), 1015 

and quantified on a CellInsight CX7 High-content microscope (Thermo) using a cut-off 1016 

for three standard deviations from negative to be scored as an infected cell. 1017 

 1018 

Transcriptome of BAL cells 1019 

RNA-Seq was performed on bronchial epithelial cells obtained by airway brushing, as 1020 

described92-94, using the Hi-seq/Illumina platform at the NYU Langone Genomic 1021 

Technology Center (data available at Sequence Read Archive: # PRJNA592149). 1022 

KEGG95,96 annotation was summarized at levels 1 to 3. Genes with an FDR-corrected 1023 

adjusted p-value <0.25 were considered significantly differentiated, unless otherwise 1024 

specified. Pathway analysis using differentially regulated genes (FDR<0.25) was done 1025 

using Ingenuity Pathway Analysis, RRID:SCR_0- at least 1 count per million in at least 1026 

two samples were retained. For digital cytometry with CIBERSORTx, a signature matrix 1027 

derived from single-cell transcriptome of BAL cells collected from patients with COVID-1028 

1931 was first generated with the “Create Signature Matrix” module in the CIBERSORTx 1029 

online tool. A maximum of 10 cells per cell type per patient were initially sampled from 1030 

the original data and 20 cells per cell type were then used to build the single-cell 1031 

reference with the default parameters. Then the “Impute Cell Fractions” module was 1032 

used to estimate the absolute cell fraction score of different cell types in bulk 1033 
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transcriptomes using the single-cell signatures with “S-mode” batch correction and 100 1034 

permutations in the absolute mode. Bulk transcriptomes with a significant deconvolution 1035 

p-value (≤0.05) were retained. For xCell cell type signature enrichment analysis, the 1036 

enrichment scores were inferred with built-in signature of cell types detected in the BAL 1037 

samples as reported previously 31. The two-tailed Wilcoxon rank sum test with 1038 

Benjamini-Hochberg correction were computed between groups of samples for 1039 

comparison. 1040 

 1041 

Microbial and Host predictive modeling 1042 

Cox proportional hazards model was used for investigating the association between the 1043 

time to death and the relative abundance of each taxon quantified using 1044 

metatranscriptomic and metagenomic data separately. We first performed the univariate 1045 

screening test to identify significant features associated with the time to death using the 1046 

Cox proportion hazards regression model for the relative abundance of taxa from the 1047 

RNA and DNA data, and log-transformed count of host transcriptome data, respectively. 1048 

Within each type of data, given the p-value cutoff, the features with a p-value less than 1049 

the cutoff were selected and integrated as a sub-community. For the RNA and DNA 1050 

data, the alpha diversity (Shannon index) was calculated for each sample on the 1051 

selected sub-community and the negative of the value was defined as the microbial risk 1052 

score, because high alpha diversity indicates low risk of death.  For the host 1053 

transcriptome data, the log-transformed total count of all selected candidate 1054 

transcriptome for each sample was defined as the risk score, since most selected 1055 

candidate transcriptomes increased the risk of death. The leave-one-out cross-1056 

validation (LOOCV) was used for the predictions. The p value cutoff was set at the 1057 
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value which produces the largest AUC (area under the receiver operating characteristic 1058 

curve) in predicting the death/survival status using the risk score we constructed over 1059 

these features. The additive model was used to integrate when more than one scores 1060 

are used for the prediction.  1061 

 1062 

Multiscale and co-expression network analyses 1063 

Raw counts from the human transcriptome were normalized and converted to log2-1064 

counts per million using limma97/voom98 (v3.44.1 with R v4.0.0) with standard 1065 

parameters. Microbiome abundance information was converted to relative abundance. 1066 

Low abundance taxa were removed based on average abundance across all samples to 1067 

yield a minimum of 1000 taxa for each metatranscriptome dataset. All datasets were 1068 

batch adjusted. Differentially expressed genes (DEGs) and differentially abundant taxa 1069 

were called using the DESeq2 package86 (v1.28.1), based on the negative binomial (i.e. 1070 

Gamma-Poisson) distribution. According to the recommendation by the authors, we 1071 

used non-normalized data (i.e. raw gene counts and abundance data), as DESeq2 1072 

internally corrects data and performs normalization steps. For this purpose, raw 1073 

microbiome abundance data were converted to DESeq2 dds objects using the phyloseq 1074 

R library (V1.32.0). Contrasts are based on outcome groups (≤ 28 days MV, > 28 days 1075 

MV or death). Differentially expressed genes and differentially abundant tax with FDR of 1076 

0.2 or less are considered significant. 1077 

Multiscale Embedded Gene Co-Expression Network Analysis (MEGENA) 32 was 1078 

performed to identify host modules of highly co-expressed genes in SARS-CoV-2 1079 

infection. The MEGENA workflow comprises four major steps: 1) Fast Planar Filtered 1080 

Network construction (FPFNC), 2) Multiscale Clustering Analysis (MCA), 3) Multiscale 1081 
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Hub Analysis (MHA), 4) and Cluster-Trait Association Analysis (CTA). The total 1082 

relevance of each module to SARS-CoV-2 infection was calculated by using the Product 1083 

of Rank method with the combined enrichment of the differentially expressed gene 1084 

(DEG) signatures as implemented: �� � ∏ ���� , where, ��� is the relevance of a 1085 

consensus j to a signature i; and ��� is defined as ������	��
 � 1  	��
 ∑ 	���⁄ , where 	�� 1086 

is the ranking order of the significance level of the overlap between the module j and the 1087 

signature. 1088 

 1089 

To functionally annotate gene signatures and gene modules derived from the host 1090 

transcriptome data, we performed an enrichment analysis of the established pathways 1091 

and signaturesincluding the gene ontology (GO) categories and MSigDB. The hub 1092 

genes in each subnetwork were identified using the adopted Fisher’s inverse Chi-1093 

square approach in MEGENA; Bonferroni-corrected p-values smaller than 0.05 were set 1094 

as the threshold to identify significant hubs. The correlation between modules, modules 1095 

and clinical traits as well as modules and individual taxa were performed using 1096 

Spearman correlation. Other correlation measures, such as Pearson correlation or the 1097 

Maximal Information Coefficient (MIC)99 proved to be inferior for this task. Categorical 1098 

trait data was converted to numerical values as suitable. 1099 

 1100 

Data availability 1101 

Sequencing data are available in NCBI’s Sequence Read Archive under project 1102 

numbers PRJNA688510 and PRJNA687506 (RNA and DNA sequencing, respectively). 1103 

Codes used for the analyses presented in the current manuscript are available at 1104 

https://github.com/segalmicrobiomelab/SARS_CoV2.   1105 
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  1106 
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Figure Legends: 1107 

 1108 

Figure 1. Associations between culture positivity and clinical outcome. Odds 1109 

ratios and corresponding 95% confidence intervals for rates of culture positivity for the 1110 

whole cohort (n=589) during the length of their hospitalization (left) and during the first 2 1111 

weeks of hospitalization (right). 1112 

 1113 

Figure 2. SARS-CoV-2 viral load and virus metatranscriptome analyses.  Copies of 1114 

the SARS-CoV-2 N gene per ml, normalized by the Human RNase P gene, comparing 1115 

paired upper and lower airway samples (a) and levels in BAL comparing clinical 1116 

outcome groups (b, *= Mann–Whitney U p<0.05, **= Mann–Whitney U p<0.01). (c) 1117 

PCoA analysis based on Bray Curtis Dissimilarity index of BAL Metatranscriptome data 1118 

comparing clinical outcome (PERMANOVA p-value). Bubble plot showing DESeq 1119 

results of RNA viruses (d) and expressed DNA phages (e) enriched in each clinical 1120 

outcome comparisons (bubble size based on median relative abundance for those 1121 

found statistically significant). 1122 

 1123 

Figure 3. Bacteria load and taxonomic compositional analyses. (a) Bacterial load 1124 

measured by ddPCR targeting 16S rRNA gene (**= Mann–Whitney U p<0.01). PCoA 1125 

analysis based on Bray Curtis Dissimilarity index of BAL Metagenome (b) and 1126 

Metatranscriptome (c) data comparing clinical outcome (PERMANOVA p-value). (d) 1127 

Gene Set Enrichment Analysis (GSEA) was used to compare the taxonomic signatures 1128 

identified in BAL metagenome (diamonds) and metatranscriptome (circles) as distinctly 1129 

enriched for comparisons between clinical outcome groups (differential enrichment 1130 
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performed based on DESeq2 analysis). (e) Bubble plot showing DESeq results of 1131 

bacteria found concordantly differentially enriched between clinical outcome groups 1132 

(bubble size based on median relative abundance for those found statistically 1133 

significant). 1134 

 1135 

Figure 4. Functional microbial compositional analyses. KOs were summarized to 1136 

associated pathways and differential expression was calculated based on DESeq2 1137 

analysis. (a) Gene Set Enrichment Analysis (GSEA) was used to compare the functional 1138 

signatures identified in BAL metagenome and metatranscriptome as distinctly enriched 1139 

for comparisons between clinical outcome groups. (b) Bubble plot showing DESeq 1140 

results of microbial functions found concordantly differentially enriched between clinical 1141 

outcome groups (bubble size based on median relative abundance for those found 1142 

statistically significant). 1143 

 1144 

Figure 5. Lower airway host immune profiling in severely ill COVID-19. (a) Levels 1145 

of anti-SARS-CoV-2 Spike antibodies in BAL (*= Mann–Whitney U p<0.05). (b) Heat-1146 

map of canonical pathway analysis based on Ingenuity Pathway Analysis (IPA, 1147 

RRID:SCR_008653) using the lower airway host transcriptome comparing clinical 1148 

outcome groups. Orange shows up-regulation of pathway, blue shows down-regulation 1149 

of pathway. (c) Cell type abundance quantification plots. Comparison of abundance of 1150 

mast cells and neutrophils among outcome groups in the BAL fluids of critically ill 1151 

patients with COVID-19. Cell type abundance was estimated from the host 1152 

transcriptome with CIBERSORTx. Each dot denotes the quantification score of a 1153 

sample and boxes depict median and inter-quartile range (*= Mann–Whitney U p<0.05). 1154 
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 1155 

Figure 6. Mortality predictive power of metatranscriptome, metagenome and host 1156 

transcriptome. (a) Area under the curved median and confidence interval for receiver 1157 

operating characteristic curve analyses calculated from each sequencing datasets as 1158 

predictor and mortality as outcome. (b) Kaplan-meier survival analyses based on a 1159 

cutoff value estimated from features selected from each sequencing dataset. The “High 1160 

risk” and “Low risk” groups is the mean of predicted risk scores in all samples.  (c) 1161 

Scatterplot among risk scores from metatranscriptome, metagenome, and host 1162 

transcriptome. Dotted line denotes the mean of the risk scores across all subjects, 1163 

which is also the threshold for dividing the samples into “High risk” and “Low risk” 1164 

groups. (d) IPA analyses of host transcriptomic signatures identified as most predictive 1165 

of mortality.  1166 

 1167 

 1168 

  1169 
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Supplementary Figure Legends: 1170 

 1171 

Supplementary Figure 1. Description of patient cohort, samples obtained, 1172 

analyses performed and sequencing depth. 1173 

 1174 

Supplementary Figure 2. SARS-CoV-2 viral load in upper airway samples.  Copies 1175 

of the SARS-CoV-2 N gene per ml, normalized by the Human RNase P gene, in upper 1176 

airways comparing clinical outcome groups (Mann–Whitney U p-value). 1177 

 1178 

Supplementary Figure 3. Identification of top taxa found in background samples 1179 

as compared with BAL and upper airway samples. Boxplots showing the relative 1180 

abundance values in log10 relative abundance of taxa ranked ordered based on 1181 

dominance of Background bronchoscope control samples and compared to abundances 1182 

in BAL and Upper Airway samples within metatranscriptome (a) and metagenome (b) 1183 

data.  Red labels indicate taxa where relative abundance is higher in background 1184 

samples than in BAL and therefore considered possible contaminant. 1185 

 1186 

Supplementary Figure 4. Topographical analyses of Metatranscriptome data. 1187 

Comparison of alpha diversity (Shannon Index, a) and beta diversity (Bray Curtis 1188 

Dissimilarity index, b) across background negative controls (bronchoscope), 1189 

bronchoalveolar lavage (BAL) and upper airway (UA) samples (Kruskal-Wallis and 1190 

PERMANOVA p-values, respectively). (c) Boxplots showing the relative abundance 1191 

values in log10 across all metatranscriptome samples for the BAL and Upper Airway 1192 

samples. The 50 taxa with the highest relative abundance values in the BAL 1193 

metatranscriptome data are displayed; the top 10 in the BAL are highlighted in bold. 1194 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.23.21252221doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.23.21252221


 50

Each column consists of four plots displaying in order from top to bottom, the most 1195 

abundant RNA vertebrate viruses, DNA phages, bacteria, and fungi identified (from top 1196 

to bottom). Numbers in parentheses next to the taxa labels display the ranking in 1197 

relative abundance for either the BAL or UA metatranscriptome samples, respectively. 1198 

 1199 

Supplementary Figure 5. Topographical analyses of Metagenome Data. 1200 

Comparison of alpha diversity (Shannon Index, a) and beta diversity (Bray Curtis 1201 

Dissimilarity index, b) across background negative controls (bronchoscope), 1202 

bronchoalveolar lavage (BAL) and upper airway (UA) samples (Kruskal-Wallis and 1203 

PERMANOVA p-values, respectively). (c) Boxplots showing the relative abundance 1204 

values in log10 across all metagenome samples for the BAL and Upper Airways. The 50 1205 

taxa with the highest relative abundance values in the BAL metagenome are displayed; 1206 

the top 10 in the BAL are highlighted in bold. Each column consists of two plots 1207 

displaying the most abundant bacteria and fungi identified. Numbers in parentheses 1208 

next to the taxa labels displays its ranking in relative abundance for either the BAL or 1209 

UA metagenome samples, respectively.  1210 

 1211 

Supplementary Figure 6. Evaluation of associations between the lower airway 1212 

RNA virome and clinical outcome. Comparisons between the three clinical outcome 1213 

groups was performed for α diversity (Shannon Index, Kruskal-Wallis p-value, left 1214 

panel), β diversity (based on Bray Curtis Dissimilarity Index, PERMANOVA p-value, 1215 

right panel).  1216 

 1217 
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Supplementary Figure 7. Topographical analyses of the bacterial load. Bacterial 1218 

load measured by ddPCR targeting 16S rRNA gene in background bronchoscope 1219 

controls (BKG), lower airway (BAL) and upper airway (UA) samples. 1220 

 1221 

Supplementary Figure 8. Evaluation of associations between the lower airway 1222 

mycobiome and clinical outcome. Fungal taxonomic data was subtracted from 1223 

metagenome and metatranscriptome data from lower airway samples. (a) Comparisons 1224 

between the three clinical outcome groups was performed for α diversity (Shannon 1225 

Index, Kruskal-Wallis p-value, left panel), β diversity (based on Bray Curtis Dissimilarity 1226 

Index, PERMANOVA p-value, right panel) on metagenome data. (b) Bubble plot 1227 

showing DESeq results of fungi enriched in each clinical outcome comparisons based 1228 

on metagenome data (bubble size based on median relative abundance for those found 1229 

statistically significant). (c) Comparisons between the three clinical outcome groups was 1230 

performed for α diversity (Shannon Index, Kruskal-Wallis p-value, left panel), β diversity 1231 

(based on Bray Curtis Dissimilarity Index, PERMANOVA p-value, right panel) on 1232 

metatranscriptome data. (d) Bubble plot showing DESeq results of fungi enriched in 1233 

each clinical outcome comparisons based on metatranscriptome data (bubble size 1234 

based on median relative abundance for those found statistically significant). 1235 

 1236 

Supplementary Figure 9. Evaluation of associations between the lower airway 1237 

antibiotic resistance genes and clinical outcome. Bubble plot showing DESeq 1238 

results of summarized categories of antibiotic resistant microbial genes taken from 1239 

MEGARes for the metagenome (top) and metatranscriptome (bottom) data sets for 1240 

each clinical outcome comparison (bubble size based on median relative abundance for 1241 
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those found to be statistically significant). Colored bubbles indicate significantly 1242 

enriched antibiotic resistance groups. 1243 

 1244 

Supplementary Figure 10. Measurement of anti-SARS-CoV-2 Immunoglobulin 1245 

levels and neutralization activity. Levels of anti-SARS-CoV-2 Spike (a) and anti-1246 

SARS-CoV-2 receptor binding domain (RBD, b) antibodies in BAL from non SARS-1247 

CoV-2 infected smoker controls and severely ill COVID-19 intubated patients. Note that 1248 

the signals for different isotypes cannot be compared because they are detected with 1249 

different reagents. (c) Comparisons of levels of anti-SARS-CoV-2 RBD antibodies in 1250 

BAL across subjects in different clinical outcome groups (*= Mann–Whitney U p<0.05). 1251 

(d) Neutralizing activity in BAL samples across subjects in different clinical outcome 1252 

groups. 1253 

 1254 

Supplementary Figure 11. Evaluation for associations between the lower airway 1255 

host tanscriptome and clinical outcome. (a) PCoA (based on Bray Curtis 1256 

Dissimilarity Index, PERMANOVA p-value) comparing the three clinical outcome 1257 

groups. (b, c, d) Volcano plot comparing lower airway host transcriptome between the 1258 

three clinical outcome groups. 1259 

 1260 

Supplementary Figure 12. Multi-scale cross-kingdom and co-expression 1261 

networks. (a) The neighborhood 5 cross-kingdom metatranscriptome network centered 1262 

around SARS-CoV-2 is shown. Nodes refer to taxa, edges denote co-abundance after 1263 

MEGENA. The size of the nodes indicates abundance. Taxa with large nodes are highly 1264 

abundant. Node-shapes are according to the legend and refer to different microbial 1265 
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kingdoms. The differential abundance of taxa in log2(fold change) between the 1266 

deceased group and the ≤28-day MV groups is shown by node color - red nodes are 1267 

taxa abundant in the deceased group compared to the ≤28-day MV group, blue colored 1268 

nodes denote the opposite. (b) Modules M175 and M718 of the host transcriptome are 1269 

shown. The node size refers to the absolute gene expression value. Nodes with wide 1270 

node border refer to key regulators/hub genes (see Methods). The differential gene 1271 

expression of taxa in log2(fold change) between the deceased group and the ≤28-day 1272 

MV groups is shown by node color - red nodes are up-regulated in the deceased group 1273 

compared to the ≤28-day MV group, blue colored nodes denote the opposite.  1274 
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Figure 1. Associations between culture positivity and 

clinical outcome. Odds ratios and corresponding 95% 

confidence intervals for rates of culture positivity for the 

whole cohort (n=589) during the length of their 

hospitalization (left) and during the first 2 weeks of 

hospitalization (right).
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Figure 2. SARS-CoV-2 viral load and virus 

metatranscriptome analyses.  Copies of the SARS-CoV-

2 N gene per ml, normalized by the Human RNase P 

gene, comparing paired upper and lower airway 

samples (a) and levels in BAL comparing clinical 

outcome groups (b, *= Mann–Whitney U p<0.05, 

**= Mann–Whitney U p<0.01). (c) PCoA analysis based 

on Bray Curtis Dissimilarity index of BAL 

Metatranscriptome data comparing clinical outcome 

(PERMANOVA p-value). Bubble plot showing DESeq

results of RNA viruses (d) and expressed DNA phages (e) 

enriched in each clinical outcome comparisons (bubble 

size based on median relative abundance for those 

found statistically significant).
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Figure 3. Bacteria load and taxonomic compositional analyses. (a) 

Bacterial load measured by ddPCR targeting 16S rRNA gene (**= Mann–

Whitney U p<0.01). PCoA analysis based on Bray Curtis Dissimilarity index 

of BAL Metagenome (b) and Metatranscriptome (c) data comparing clinical 

outcome (PERMANOVA p-value). (d) Gene Set Enrichment Analysis (GSEA) 

was used to compare the taxonomic signatures identified in BAL 

metagenome (diamonds) and metatranscriptome (circles) as distinctly 

enriched for comparisons between clinical outcome groups (differential 

enrichment performed based on DESeq2 analysis). (e) Bubble plot showing 

DESeq results of bacteria found concordantly differentially enriched 

between clinical outcome groups (bubble size based on median relative 

abundance for those found statistically significant).
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Figure 4. Functional microbial compositional analyses. KOs were summarized to associated pathways and differential expression 

was calculated based on DESeq2 analysis. (a) Gene Set Enrichment Analysis (GSEA) was used to compare the functional signatures 

identified in BAL metagenome and metatranscriptome as distinctly enriched for comparisons between clinical outcome groups. (b) 

Bubble plot showing DESeq results of microbial functions found concordantly differentially enriched between clinical outcome 

groups (bubble size based on median relative abundance for those found statistically significant).
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Figure 5. Lower airway host immune profiling in severely ill 

COVID-19. (a) Levels of anti-SARS-CoV-2 Spike antibodies in BAL 

(*= Mann–Whitney U p<0.05). (b) Heat-map of canonical 

pathway analysis based on Ingenuity Pathway Analysis (IPA, 

RRID:SCR_008653) using the lower airway host transcriptome 

comparing clinical outcome groups. Orange shows up-regulation 

of pathway, blue shows down-regulation of pathway. (c) Cell 

type abundance quantification plots. Comparison of abundance 

of mast cells and neutrophils among outcome groups in the BAL 

fluids of critically ill patients with COVID-19. Cell type abundance 

was estimated from the host transcriptome with CIBERSORTx. 

Each dot denotes the quantification score of a sample and boxes 

depict median and inter-quartile range (*= Mann–Whitney U 

p<0.05).
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Figure 6. Mortality predictive power of metatranscriptome, 

metagenome and host transcriptome. (a) Area under the curved 

median and confidence interval for receiver operating characteristic 

curve analyses calculated from each sequencing datasets as predictor 

and mortality as outcome. (b) Kaplan-meier survival analyses based 

on a cutoff value estimated from features selected from each 

sequencing dataset. The “High risk” and “Low risk” groups is the 

mean of predicted risk scores in all samples.  (c) Scatterplot among 

risk scores from metatranscriptome, metagenome, and host 

transcriptome. Dotted line denotes the mean of the risk scores across 

all subjects, which is also the threshold for dividing the samples into 

“High risk” and “Low risk” groups. (d) IPA analyses of host 

transcriptomic signatures identified as most predictive of mortality. 
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