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Among the human health conditions linked to microbial communities, phenotypes are often associated with only a subset

of strains within causal microbial groups. Although it has been critical for decades in microbial physiology to characterize

individual strains, this has been challenging when using culture-independent high-throughput metagenomics. We introduce

StrainPhlAn, a novel metagenomic strain identification approach, and apply it to characterize the genetic structure of thou-

sands of strains from more than 125 species in more than 1500 gut metagenomes drawn from populations spanning North

and South American, European, Asian, and African countries. The method relies on per-sample dominant sequence variant

reconstruction within species-specific marker genes. It identified primarily subject-specific strain variants (<5% inter-subject

strain sharing), and we determined that a single strain typically dominated each species and was retained over time (for

>70% of species). Microbial population structure was correlated in several distinct ways with the geographic structure

of the host population. In some cases, discrete subspecies (e.g., for Eubacterium rectale and Prevotella copri) or continuous mi-

crobial genetic variations (e.g., for Faecalibacterium prausnitzii) were associated with geographically distinct human populations,

whereas few strains occurred in multiple unrelated cohorts. We further estimated the genetic variability of gut microbes,

with Bacteroides species appearing remarkably consistent (0.45% median number of nucleotide variants between strains),

whereas P. copri was among the most plastic gut colonizers. We thus characterize here the population genetics of previously

inaccessible intestinal microbes, providing a comprehensive strain-level genetic overview of the gut microbial diversity.

[Supplemental material is available for this article.]

Strain-level variants within microbial species are crucial in deter-

mining their functional capacities within the humanmicrobiome,

including interaction with host tissues (Bron et al. 2012), modu-

lation of immune homeostasis (Needham et al. 2013), and xeno-

biotic metabolism (Spanogiannopoulos et al. 2016). Pathogenic

potential is also strain-specific in many species, including

Escherichia coli, which is prevalent in the healthy human gut

despite some strains causing life-threatening infections (Bielas-

zewska et al. 2011; Loman et al. 2013) or mucosal necrosis in pre-

mature infants (Ward et al. 2016). Strain-level microbial genomic

variation typically consists of single-nucleotide variants (SNVs)

as well as acquisition/loss of genomic elements including genes,

operons, or plasmids (Tettelin et al. 2005). Although these geno-

mic features can be accurately characterized in microbial isolates,

they have been difficult to study using culture-independent ap-

proaches, despite thousands of human-associated metagenomes

being available. Translational applications of the human micro-

biome will require analysis of each community’s microbial strain

population, ideally in high-throughput from culture-independent

sequencing.

Advances inmetagenome bioinformatics over the last decade

have refined the resolution of microbial community taxonomic

profiling from the phylum to the species, but it is still difficult

to characterize microbes in communities at the strain level.

Metagenomic assembly (Nagarajan and Pop 2013) provides one

solution and has been successful in identifying strains of unchar-

acterized species (Narasingarao et al. 2012; Brown et al. 2015).

However, compared to assembling single isolates, metagenomic

assembly is computationally challenging, both in efficiency and

methodologically in addressing fragmentary contigs, binning,

and avoiding chimeric assemblies that combine multiple related

strains. To improve metagenomic assembly, extensions that coas-

semble multiple metagenomes are also available (Alneberg et al.

2014; Imelfort et al. 2014), but accurate assemblies can require

time-consuming manual curation (Sharon et al. 2013; Raveh-

Sadka et al. 2015), and it is difficult to generalize the approach to

large sets of metagenomes and low abundance microbes.

For microbial communities such as the human microbiome

supported by sufficient isolate reference sequences, it is alterna-

tively possible tomap the reads of ametagenome against reference

genomes and obtain a survey of the single-nucleotide variant

(SNV) patterns across samples (Schloissnig et al. 2013). Recent sig-

nature-based approaches based on marker genes (Franzosa et al.

2015; Luo et al. 2015; Truong et al. 2015) or pan-genes (Scholz

et al. 2016) are also able to identify and track strains across samples,

but they do not typically allow comprehensive strain cataloging

among metagenomes or the reconstruction of microbial phylo-

genetic relationships in a manner comparable to studies of isolate

genomes. As such, it has remained difficult, or in many cases, im-

possible, to profile strains from metagenomes and compare them

across a large set of microbiome samples with the same level of

resolution attainable by isolate comparative genomics.
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In this work, we present StrainPhlAn, a novel method and

implementation to profile microbial strains from metagenomes

at a resolution comparable with that of isolate sequencing and

apply it to thousands of gut samples spanning multiple host

populations. The method is based on reconstructing consensus

sequence variants within species-specific marker genes and using

them to estimate strain-level phylogenies. StrainPhlAn allowed

us to process >7 TB of sequencing data from the largest avail-

able metagenomic investigations (Qin et al. 2010, 2012; Human

Microbiome Consortium 2012; Karlsson et al. 2013; Le Chatelier

et al. 2013; Nielsen et al. 2014; Zeller et al. 2014; Obregon-Tito

et al. 2015; Rampelli et al. 2015), yielding large-scale strain-level

phylogenies that are used to study the population genomics,

biogeography, genetic diversity, and strain retention for 125 intes-

tinal species, most of which are sparsely represented in current

culture-based investigations.

Results

Enabling strain-level meta-analytic epidemiology of microbial

communities and the human microbiome

Wedeveloped a novel computational approach to study the strain-

level genetics of microbes directly frommetagenomic samples and

to infer the phylogenetic structure of species across samples.

Strains are profiled in each sample by reconstructing a sufficient

subset of their genomes for variant calling, which provides a nucle-

otide-level consensus sequence for each strain. This is carried out

by mapping metagenomic reads against species-specific marker

sequences (up to 200 per species from a total set of ∼1 million

markers) that are broadly conserved within each species and do

not have substantial sequence similarity with genomic regions in

other species (Truong et al. 2015). This approach allows strain-spe-

cific consensus sequence identifications from as few as a single ref-

erence genome (Methods; Supplemental Fig. S1), and we have

verified that variants in these marker genes are representative of

whole-genome variability (Supplemental Figs. S2, S3). The recon-

structed strain-specific consensus is independent from the se-

quence of the marker used as a backbone for the mapping and

can be used for standard phylogenetic analysis, typically multiple

sequence alignment (Maiden et al. 1998), followed by phylogenet-

ic reconstruction (Stamatakis 2014). They can also be used to infer

the population structure of strains directly from sets of metage-

nomes, similarly to the analysis of isolate genomes using shared

(core) genes for phylogenetic, population biology, and com-

parative genomics (Budroni et al. 2011; Segata et al. 2013; Page

et al. 2015).

Prevotella copri is a key example of a human commensal for

which strain-level comparative genomics from metagenomes is

particularly important, because only one cultured isolate refer-

ence genome is currently available (Hayashi et al. 2007). It is a

frequent colonizer of the human gut (Qin et al. 2010; Human

Microbiome Consortium 2012) that, unusually, occurs abun-

dantly (Arumugam et al. 2011) in only a fraction of the popula-

tion (from 10% to 25%) (Koren et al. 2013) and has been

strongly associated with the onset of rheumatoid arthritis

(Scher et al. 2013; Zhang et al. 2015). It is also difficult to culture

ex vivo, leading to very limited phenotypic and genotypic char-

acterization (Hayashi et al. 2007). By applying StrainPhlAn on P.

copri directly from gut metagenomes (Fig. 1), we can provide the

first characterization of its population genomics in three comple-

mentary ways.

First, StrainPhlAn provides a strain-level phylogeny of each

analyzed species (in this instance, P. copri) from the concatenated

alignment of the markers (Fig. 1B,C). When metagenomes are

accompanied by phenotypic, environmental, or other metadata

annotations, these can be tested for significant association rela-

tively to the population genomic structure of P. copri within one

or more subclades of the phylogeny (Fig. 1D). Finally, the popu-

lation structure can be visualized by ordination to further iden-

tify substructures (e.g., subspecies) in the genetic diversity of the

strains (Fig. 1E). Strain-specific consensus sequences from avail-

able reference genomes (again, notably only one for P. copri) can

be included in any of these analyses to compare culture-based ge-

nomic information with that extracted from the metagenomes.

Even using this limited set of samples, one can already iden-

tify several key new features of P. copri population biology.

Essentially identical strains are carried in the two longitudinal

samples from the same subject (Fig. 1D), and a diverged subspecies

clade is also carried almost exclusively within the Chinese popula-

tion, which is one of roughly four subspecies-level clades of related

strains. Even with the reduced set of samples shown here for

illustration (for the complete analysis, see Fig. 4C below), this anal-

ysis highlights the use of StrainPhlAn for population genomics of

phenotype-relevantmicrobial communitymemberswho are recal-

citrant to culture-based approaches.

StrainPhlAn achieves per-nucleotide error rates <0.1%

We first validated themethod’s precision at the per-nucleotide lev-

el using two metagenomes from the HMP mock community

(Human Microbiome Consortium 2012) comprising 21 known

organisms (Methods). This resulted in an error rate (fraction of

incorrect nucleotides) <0.05% overall (Supplemental Table S1).

This performance was confirmed on 36 synthetic data sets con-

tainingmultiple strains from the same species (Methods) in which

we achieved even lower error rates (<0.03%) for species with cover-

age greater than 2× (Supplemental Fig. S4), and when considering

36 additional semisynthetic data comprising gut metagenomes

spikedwith in silico strain-specific reads (<0.2%error rate) (Supple-

mental Fig. S4). When compared to other recent strain-level

metagenomic profilers, StrainPhlAn achieved substantially better

results than MIDAS (Nayfach et al. 2016) and ConStrains (Luo

et al. 2015), based on per-nucleotide and overall strain-tracking ac-

curacies, respectively (Supplemental Tables S1–S5; Supplemental

Figs. S5, S6). In this evaluation, StrainPhlAn was the only method

to achieve a resolution in culture-independent strain recon-

struction that is comparable with that of isolate genome analysis,

which is necessary for accurate phylogenetic reconstruction

(Supplemental Figs. S5, S6).

We further validated the accuracy of strain identification in

vivo by using previously sequenced stool samples (Nielsen et al.

2014) from subjects sampled after the intake of a known commer-

cial probiotic bacteria, specifically Bifidobacterium animalis subsp.

lactis (strain CNCM I-2494). In the original work (Nielsen et al.

2014), reconstruction of the B. animalis strain was performed by

merging together 19 metagenomes from subjects challenged

with the probiotic and analyzing the pooled reads. Importantly,

this is only possible in cases in which it is known a priori that

the same strain will appear in multiple samples; so the method

does not generalize well to most microbes and samples. In con-

trast, StrainPhlAn allows the analysis of any strain with sufficient

sequencing depth per sample, and herewe targeted the seven sam-

ples in which the markers of the B. animalis species recruited at
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least 2× coverage. Comparison of our inferred strain consensus

profiles to the reference genome achieved <0.01% single nucleo-

tide errors, which is two orders of magnitude lower than the aver-

age nucleotide variation (1.3%) between strains from isolate

sequencing in the B. animalis species and again one or more orders

of magnitude lower than the error rate produced by MIDAS

(Supplemental Table S6). The phylogeny built by StrainPhlAn us-

ing these sequences further placed the B. animalis found in these

samples among the cluster of reference genomes for this probiotic

organism that has been sequenced and assembled several times in-

dependently (Supplemental Figs. S7, S8; Supplemental Table S7).

Our approach is also computationally efficient; this example on

real gut metagenomes required ∼20 min per sample and can be

further accelerated by parallelization or distributed computing

(Methods),making it appropriate for hundreds of species spanning

thousands of metagenomes.

Integrated strain-level population genomics using more than

1500 human gut metagenomes

We next applied StrainPhlAn to a set of 1590 gut metagenomes

from adult subjects retrieved from nine public data sets (Table 1)

that we preprocessed using uniform quality control criteria

(Methods) as in Pasolli et al. (2016). The resulting population

spanned all continents except Australia andAntarctica, with curat-

ed common metadata including country of origin, health or dis-

ease state, age, and BMI (other metadata was either not provided

or not common among data sets). It is important to consider

that for strain-level population epidemiology, batch effects result-

ing fromdifferences in sample collection, storage, DNA extraction,

or library preparation are known to affect quantitative profiling,

but they are unlikely to influence strain consensus sequence recon-

struction from markers. All further subsequent analyses are thus

performed on this large set of metagenomes that is diverse in its

geographical location, human population of origin, andmicrobial

genetic structure.

We note that despite a large body of work on strain-level phe-

notypic characterization and genetic comparisons from microbial

isolates, a clear definition of the concept of “strain” is still lacking

(Dijkshoorn et al. 2000; Konstantinidis et al. 2006). Genomes

differing by just one or a fewnucleotides could be defined as differ-

ent strains, but such limited genetic differences may not result

in any phenotypic changes (e.g., synonymous mutations) and

would lead to the differentiation of strains in just a few microbial

generations. Defining a broader genetic variation threshold can

be effective in specific investigations, which is the approach

taken by Operational Taxonomic Unit (OTU) definitions in

amplicon profiling (Hamady and Knight 2009). However, such

Figure 1. StrainPhlAn for strain identification and tracking in shotgun metagenomes and its application to Prevotella copri in the human gut. StrainPhlAn
provides a method to identify strains from shotgun metagenomes and provides tracking, comparative, and phylogenetic analyses across samples. Here,
we illustrate results using Prevotella copri as an example species in a demonstration subset of this study’s human gut metagenomes. (A) In this overview of
the method, for each species for which strains are to be analyzed across a metagenome collection, sample-specific and strain-specific markers are con-
structed by mapping reads against the MetaPhlAn2 (Truong et al. 2015) database of species-specific reference sequences. (B) In each sample, species
are identified and quantified if sufficient coverage for the species markers is detected. Here, 100 samples with sufficiently abundant P. copri are shown
(seven other abundant species are also displayed). (C) The preselected species-specific markers are concatenated, aligned, and variants identified using
the consensus sequence of mapped metagenomic reads. (D) From the resulting set of the most abundant strains per sample, a phylogenetic tree can
be built. This allows, for example, retained or minimally divergent strains within a particular environment (e.g., human host) to be easily identified
when they appear within the same subtrees. (E) Strains or subtrees can also be statistically associated with sample metadata (e.g., human or environmental
phenotypes). (F) Each species’ genetic diversity and divergence can be easily visualized as an ordination comparable to those used for isolate or human
population genetics.
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hard-limited sequence identity thresholds may be an oversimpli-

fication, because they are difficult to set universally and are

both locus- and organism-specific. Phylogenetic modeling over-

comes the need of defining hard cutoffs for strain or other clade

boundaries, and we use this approach to estimate strain related-

ness. However, when checking for strain identity is necessary, it

is possible to set the threshold considering the intra-individual

similarity of retained strains as compared to intra-individual strain

heterogeneity.

Single strains dominate most species in the gut microbiome

Analysis of microbial population structures was previously only

possible using relatively laborious sequencing of isolate collec-

tions; here, we perform high-throughput strain-level profiling

directly from a large set of metagenomes spanning multiple geo-

graphical locations. In contrast to the 73 prevalent species present

in >50% of our more than 1500 samples, only 10 human-associat-

ed species can comparably take advantage of more than 750

sequenced isolates for comparative genetics, and of these, only

E. coli is typically found in the gut. Moreover, sequencing isolates

relies on cultivability, whereas our method can investigate mem-

bers of the human microbiome (or other microbial communities)

with fewer biases and no cultivation efforts.

StrainPhlAn reconstructs each species’ most abundant strain

per sample, and it can assesswhether nondominant strains are pre-

sent by identifying single nucleotide polymorphisms. We thus

first validated the assumption that reconstructing each species’

most abundant strain per sample captures most strain-level diver-

sity by assessing how frequently multiple strains per species are

detectable in this sample set. In the human gut, most species

were represented by a single dominant strain because they show

<0.1% of nucleotides on the species-specific markers that are

polymorphic. At this conservative threshold, for 35.7% of cases,

no evidence of multiple strains was found at the given depth of

sequencing (average 5.8 × 109 nt/sample). Moreover, when the

presence of more than one strain was detected, a single strain ac-

counted for at least 80% of each species in another 44.4% of cases.

This was determined by identifying, for all samples and markers,

the polymorphic and nonpolymorphic sites (accounting for se-

quencing errors) (Methods) and by further estimating the allelic

frequency of the dominant variant in polymorphic sites. In order

to filter out potentially overestimated frequencies for the cases

in which an allele is shared by more than one nondominant

strain of a species in the sample, we consider themedian of the fre-

quencies of the dominant allele across polymorphic sites as the

frequency of the dominant strain relative to the nondominant

ones. The large majority (>97.8%) of marker nucleotides were

not polymorphic at all (Fig. 2A), whereas the remaining nucleo-

tides were largely dominated by a single variant.

Considering all cases in which a species is found in a sample

(species-sample combinations), multiple strains were detectable

in 14,698 cases (64.3% of species-sample combinations), but it

was still rare to find two or more strains at comparable abundance

(Fig. 2B). The dominant consensus sequence was less than twice

as abundant as all others combined in only 5% of multistrain

cases (Fig. 2B); in half of the cases, one strain dominated the others

by at least 7:1 or more. Importantly, all these considerations are

independent from the abundance of the species in the samples

(Supplemental Fig. S10). When multiple strains were detectable,

the fraction of samples in which they were detected varied con-

siderably among species. Butyrivibrio crossotus, for example, did

not show evidence of strain mixtures in 75% of the 156 samples

in which it was detected, whereas more than one strain of

Table 1. Sizes and characteristics of the nine large-scale metagenomic data sets used in this study

Data
set

Number of
samples

Number of
reads (×109)

Minimum read
length

Diseases or
conditions Country References

HMP 196 20.70 90 Healthy (196) United States (196) Human Microbiome
Consortium (2012)

WT2D 145 4.53 90 Impaired glucose tolerance (49);
Type 2 diabetes (53);
healthy (43)

Sweden (130);
other EU
countries (15)

Karlsson et al. (2013)

Cirrhosis 232 11.91 90 Liver cirrhosis (118);
healthy (114)

China (232) Qin et al. (2014)

T2D 290 12.36 90 Type 2 diabetes (137);
healthy (153)

China (290) Qin et al. (2012)

CRC 134 7.78 90 Colorectal cancer (48);
large adenoma (13);
small adenoma (26);
healthy (47)

France (134) Zeller et al. (2014)

Obesity 115 10.35 75 Underweight (41);
obese (70);
healthy (4)

Denmark (115) Le Chatelier et al. (2013)

PAG 58 2.73 70 Underweight (1);
overweight (10);
obese (5);
healthy (42)

Peru (36); United
States (22)

Obregon-Tito et al.
(2015)

MetaHIT 382 20.84 70 Crohn disease (21);
healthy relatively (47);
ulcerative colitis (127);
healthy (187)

Denmark (163);
Spain (219)

Nielsen et al. (2014)

AIG 38 0.85 90 Healthy (38) Tanzania (27);
Italy (11)

Rampelli et al. (2015)

Total 1590 92.05 70 Diseased (719);
healthy (871)

Four continents
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Faecalibacterium prausnitzii were present in 100% of its 1052 sam-

ples (Fig. 2C). Even in these mixed species, a single strain typically

dominated: Themain strain of P. copri reached on average 86% rel-

ative abundance within the species, and similarly for Butyrivibrio

crossotus (91%), Faecalibacterium prausnitzii (78%), Bacteroides uni-

formis (87%), Bacteroides vulgatus (91%), and Ruminococcus bromii

(87%) (for a full list of species, see Supplemental Table S3).

Our analysis suggests that the ecology of multiple closely re-

lated strains in the human gut is characterized by the quantita-

tive dominance of one strain. Given the roughly log-normal

distribution of species abundances in microbiomes (Li et al.

2012) and the consequent long tail of low-abundance species,

nondominant strains of a species are likely close to or below

the limit of detection at typical sequencing depths. Even in

an idealized case, a strain making up 5% of a species that itself

represents 5% of the overall community, for example, requires

a sequencing depth of ∼2 × 109 nt to be detected reliably; any

strains or species less abundant than this will not be detectable

in a typical gut metagenome. Modeling these low-abundance,

nondominant strains would thus largely result in low-quality

phylogenetic information and would weaken the advantage of

using species-specific marker genes. At the same time, this prop-

erty makes it very accurate to rely on the frequency of the dom-

inant allele, because potential alleles shared by nondominant

strains can have only a minimal impact on the dominant-allele

frequency. In our cross-sectional population genomic analysis,

we thus focus on the dominant strain of each detected species,

and StrainPhlAn also labels as potentially noisy the rare cases

in which two strains from the same species are present at compa-

rable abundances (Methods).

Gut microbial stability and uniqueness are explained by

subject-specific strain retention

With StrainPhlAn, we were able to explain previously observed

community-level gut microbiome stability and individuality

(Schloissnig et al. 2013; Franzosa et al. 2015) through a mecha-

nism of within-subject strain retention. This parallels the assess-

ment of within-subject strain retention that has been carried out

previously for targeted pathogen isolates (Covacci et al. 1999;

Nowrouzian et al. 2005; Bidmos et al. 2011). We estimated reten-

tion of strains in the gut microbiome by looking at multiple

samples from the same participants available from the HMP

(HumanMicrobiome Consortium 2012) in the absence of disease,

and fromMetaHIT (Qin et al. 2010; Nielsen et al. 2014), which in-

cludes 66 longitudinally sampled patients with inflammatory

bowel disease (IBD). To this end, we defined ourmeasure of genetic

distance between strains as the length-normalized rate of single-

nucleotide variants (SNVs) between the full set of markers consid-

ered in each species.

We found that when looking at the same species in two sam-

ples from the same individual, the dominant strain of that species

Figure 2. Most species are dominated by a single strain in the human gut. (A) Distribution of dominant allele frequency for all nucleotide positions in
concatenated species-specific markers across all analyzed samples (>482 million total nucleotides). (B) Distribution of the dominant allele frequency for
polymorphic positions. We report the median frequencies for each species/sample pair. (C) Distribution of nonpolymorphic site prevalence in samples
for the 10most prevalent gut bacterial species (for the full set of species, see Supplemental Fig. S9). The fraction of nonpolymorphic sites varies from sample
to sample and from species to species. In parentheses, we quantify the percentage of strains with >99.9% of nonpolymorphic sites.

Figure 3. Most strains are retained over time within the human gut, but
few strains are carried by multiple subjects. The distribution of the all-
versus-all normalized genetic distance between strains is reported for in-
creasingly large metagenome collections (only MetaHIT, only the HMP,
or all 1590 samples). For MetaHIT and the HMP, we also computed the
intra-subject distances (temporal separation between samplings averaging
163 SD 125 d and 219 SD 69 d, respectively) normalized based on the
median of the all-versus-all comparisons.

Truong et al.
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was exactly the same in 69% of the longitudinally sampled sub-

jects in MetaHIT and 79% in those from the HMP (Fig. 3) with a

percentage of 3.4% and 10.4% of strains that are lost or replaced,

on average, each month in the two data sets (Supplemental Fig.

S11). The fraction of shared species along longitudinal time points

was lower (62.2% in the HMP and 61.1% in MetaHIT), suggesting

that detectable species composition is slightly more dynamic

than long-term strain retention. This could be explained, for ex-

ample, by the hypothesis that species are rarely displaced by close-

ly related competitors, or that when a strain of a species varies

in abundance below the limit of detection, it may still be detected

later as the same strain. These results help to explain why a strain-

level signature of a subject’s microbiome is constant in time, par-

ticularly in the absence of perturbations from the environment

or disease (Franzosa et al. 2015).

In contrast with intra-subject strain retention, strains were

rarely shared among individuals: We found evidence of the same

strain shared between multiple individuals colonized by a com-

mon species in only 3.67% of cases (Fig. 3). A larger fraction of

the population shared the same species (35.31% species in com-

mon, on average, between two different individuals). Shared

geography did not increase the fraction of strains shared by differ-

ent subjects, as it did not differ significantlywithin Europe (3.62%)

versus worldwide (3.67%). Strains were slightly more commonly

shared in the American samples of the HMP (5.13%), but species

were less likely to be shared within the HMP (36.0%) compared

with MetaHIT (40.5%). Both of these properties might vary on

a less coarse geographical scale, however, and the population

enrolled in the HMP was healthy as compared to MetaHIT’s

longitudinally sampled IBD patients, perhaps leading to greater

strain diversity in the latter. Altogether, our analysis highlights

the substantial longitudinal strain retention within the same

microbial community and the relatively low proportion of strains

shared between multiple individuals.

Strain-level microbial genetics strongly correlate

with geographically separated host populations

The evolution of specific host-associated microbes is closely

linked to factors such as host migrations and transmission

mechanisms (vertical, horizontal, environmental); for example,

Helicobacter pylori is largely vertically transmitted (Delahay and

Rugge 2012); as a result, its population genetics is closely linked

to the ancestry and geography of its human hosts (Covacci et al.

1999; Suzuki et al. 2012). In this multicontinent meta-analysis,

StrainPhlAn permitted the population structure of dominant

strains of all species above the limit of detection to be determined

in high-throughput. This enabled us to first assess which species

comprised strains forming a continuumwithin the overall species

diversity versus those with discrete clusters of strains forming

subspecies clades (SCs). The former may be reflective of primarily

horizontal transmission between hosts enabling freer gene flow,

whereas the latter may reflect subspeciation due to primarily

vertical transmission. In either case, the resulting microbial

population structure can be further categorized as randomly or

nonrandomly assorted geographically and with respect to host

populations.

For Faecalibacterium prausnitzii (Sokol et al. 2008;Miquel et al.

2015), 802 distinct strains were detectable in the analyzed

samples (Fig. 4A), with only six subjects harboring a strain relative-

ly close (3% SNV rate) to one of the three current isolate genomes.

Its genetics were continuously variable and correlated with

geography (Fig. 4A); intriguingly, a well-defined subtree of the

phylogeny is uniquely composed of strains from the only two

non-Westernized populations in this meta-analysis (Peru and

Tanzania). P. copri showed, conversely, a more discrete population

structure, but the resulting SCs were likewise geographically

distinct (Fig. 4C). Few strains of F. prausnitzii were detected in

multiple subjects (13 cases with <1% SNV rate), calling out the

degree to which this immune-relevant species is undercharacter-

ized by current isolate sequencing, which has likewise been con-

firmed by the few isolates’ microbial physiology studies available

for this species (Lopez-Siles et al. 2012).

Like P. copri, Eubacterium rectale strains occurred in distinct

SCs forming three genetically distinct groups (Fig. 4B,C).

E. rectale’s discrete population structure was also confirmed by

analysis of the strains’ gene repertoires (Scholz et al. 2016), fur-

ther strengthening the finding that this species has three dis-

tinct subspecies. Interestingly, one of these was specific to the

Chinese population, with 71 of its 74 strains derived from the

two Chinese sample sets (Qin et al. 2012, 2014). These two studies

were independent and carried out using different protocols and

commercial kits for sample collection and DNA extraction; there-

fore, this shows how strain-level analysis is not sensitive to the

biases in the same way as quantitative analyses. Likewise, few

Chinese samples carried E. rectale strains from the other two SCs

(1 of the 82 strains in one cluster, and 20 of the 383 strains in

the second cluster).

Other strong geographical associations included the three

main SCs of Bacteroides coprocola (Supplemental Fig. S12) with

Spain (72%prevalence in a 68-strain cluster) andChina (80%prev-

alence in a 49-strain cluster), and the structure of Ruminococcus

bromii (Supplemental Fig. S13). The striking biogeographical

patterns of Eubacterium species (Supplemental Figs. S14–S16),

and especially of Eubacterium eligens (a large Chinese subspecies),

Eubacterium hallii (Spain), and Eubacterium siraeum (Denmark

and the United States), also suggest that this genus may be partic-

ularly prone to population-specific selective pressures. SCs were

detected for all prevalentmicrobial species, andwithin SCs, strains

have very limited genetic diversity (well below 0.1% SNV rate

with only very few exceptions) (Supplemental Fig. S17); as expect-

ed, inter-SC sequence divergence was instead at least on order of

magnitude larger (Supplemental Fig. S17). Like population-specific

human genetic alleles, it appears crucial to consider thesemicrobi-

al population structures in future studies of the gut microbiome

and its association with host conditions.

Sets of related strains associate with geography even

in otherwise cosmopolitan species

Even in species lacking strong, geographically discrete SCs, groups

of related strains often evidenced significant geographic assort-

ment. The 10most prevalent species were present in a comparable

fraction of subjects in all cohorts and countries, but single

phylogenetic subtrees (of at least five strains) were frequently geo-

graphically specific (Fig. 5A). Bacteroides uniformis (59% overall

prevalence) evidenced China-, Spain- and US-specific subtrees

among the 11 largest groups (Fig. 5A). Other species have subtrees

completely associated with subjects from Denmark (e.g., Alistipes

putredinis, and partially E. rectale and Bacteroides dorei), Spain

(all the 10 most prevalent species), Peru (F. prausnitzii and

Ruminococcus bromii), France (Bacteroides vulgatus), and again

China and the United States, for which the number and size of

SCs is influenced by the higher number of subjects available for
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such nations. These country-specific SCsmight reflect selection by

host genetics or population history, but the tight coclustering of

strains of Butyrivibrio crossotus (Supplemental Fig. S20) and

F. prausnitzii (Fig. 4A) in the only two cohorts of non-

Westernized population from Peru (Obregon-Tito et al. 2015)

and Tanzania (Rampelli et al. 2015) suggests a potentially domi-

nant role of environmental factors such as diet.

Other SCs instead comprised groups of strains with very little

genetic diversity (<0.1% of the total species diversity) (Methods)

carried by subjects from different continents. For example, SC66

of Bacteroides caccae (Supplemental Fig. S25) includes 59 strains

with a median of 0.0169% intra-SC SNV rate from the American

(24 subjects), Spanish (seven subjects), Chinese (three subjects),

Danish (three subjects), and French (four subjects) populations.

Their intra-SC SNV rate is much smaller than the minimum

(0.045%) andmedian (0.344%) diversity of SC66 strains compared

to other strains in B. caccae. Other SCswithin this species were like-

wise shared across populations (e.g., SC61 or SC71), but B. caccae

also included country-specific clades such as SC41 (12 Chinese

strains), SC60 (six Spanish strains), and SC35 (five Danish strains).

Bacteroides eggerthii also showed similarly genetically related SCs

that were geographically diverse (Fig. 5B). The genetic consistency

of B. eggerthii SCs is striking: For the three largest SCs (SC0, SC6,

SC7), the intra-SC median genetic diversities (0.026%, 0.014%,

and 0.012%, respectively) were much smaller than the minimum

(0.37%, 0.067%, 0.16%) and median genetic distances (0.50%,

0.46%, 0.46%) between the SCs and the other strains. The set of

broadly distributed SCs (for additional examples, see Supplemen-

tal Figs. S26–S41) thus likely represents key intestinal subspecies

that may be important to further characterize by targeted experi-

ments and isolation.

Genetic diversity of strains in the same species varies significantly

for different microbes

It is difficult to define microbial species systematically and to cap-

ture each species’ diversity appropriately with reference isolates

(Achtman andWagner 2008; Cordero and Polz 2014); for example,

Streptococcus pneumoniae universalmarkers differ by up to 5.0%nu-

cleotide identity across 49 strains, compared to only 1.2% among

15 Streptococcus mitis strains (Fraser et al. 2009). StrainPhlAn and

the large metagenomic data set we analyzed allowed the assess-

ment of all 125 microbial species’ genetic diversities simultane-

ously as they occurred in a broad population of human guts,

regardless of whether an extensive set of reference genomes was

available.

For each species containing at least four strains, we calculated

pairwise genetic distances between strains in the same species. The

least variable organism was B. animalis (0.018% SNV rate), with

markers closely matching those of the commercially available

probiotic strain. Given this organism’s low prevalence and its

Figure 4. Population genetic structure of three common intestinal species and its association with sampling geography. Strain population structures for
three representative human gut species, reported both as phylogenies built on the concatenated alignments of each species-specific reconstructedmarker
set (bottom). To highlight the presence of discrete clusters of related strains, we also report the genetic distances measured on the alignments as principal
coordinate ordinations (top). We report the population structure of Faecalibacterium prausnitzii (A), Eubacterium rectale (B), and Prevotella copri (C). Results
for additional species are reported in Supplemental Figures S12–S16, S18–S24.
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identitywith the sequence of the commercial strain, it is likely that

its presence in the human gut typically results from recent probi-

otic consumption. The most common intestinal genus,

Bacteroides, comprises species that are generally genetically consis-

tent (Fig. 6A), with diversity indexes as low as 0.36%, 0.37%, and

0.38% for B. caccae, B. intestinalis, and B. massiliensis, respectively.

Other Bacteroides species are slightly more diverse (B. coprocola

0.73%, B. coprophilus 0.75%, B. stercoris 0.96%) but are still

less genetically variable than other prevalent gutmicrobes, includ-

ing Prevotella species (P. copri 2.44%), F. prausnitzii (2.94%), Lacto-

bacillus (L. reuteri 2.74%), Eubacterium (E. siraeum 1.85%), and

some Ruminococci (R. bromii 1.41%). Bifidobacteria, Parabacteroides,

and Alistipes all showed genetic variability in line with that of Bac-

teroides, and all their species have genetic diversities consistent

within the corresponding genus (for a full set of diversity indexes,

see Supplemental Table S8).

This analysis also revealed many prevalent and/or abundant

human gut microbes for which there is a paucity of reference

(draft) genomes. Particularly for anaerobic species, we observed

genetic diversities between strains more than 10-fold larger than

what was previously available (Fig. 6B). These included

Faecalibacterium, Roseburia intestinalis, E. rectale, E. siraeum, several

Bacteroides (B. massiliensis, B. ovatus, B. salyersiae, B. uniformis, B.

vulgatus) and Bifidobacteria (B. adolescentis, B. bifidum, B. pseudoca-

tenulatum), and they constituted, on average, 63% (SD 18%) of

the gut microbiome. In contrast, some species that are more con-

veniently cultured showed a higher diversity than what we sam-

pled from the gut (e.g., Enterococcus faecium, Enterococcus faecalis,

Bacteroides fragilis, and some Clostridia). This may occur because

pathogenic strains (which are arguably more likely to be isolated)

are unlikely to be found in healthy conditions or in diseases not

associated with single pathogens. Other species with reduced

diversity in the gut microbiome included those that are also

used for commercial fermentation (bifidobacteria, lactobacilli,

Lactococcus lactis, B. fragilis) and organisms that are more typically

found in other environments (e.g., Lactobacillus saliviarius

and Streptococcus thermophilus that are characteristic of the oral

microbiome) or nonadult guts (e.g., Bifidobacterium breve and

Bifidobacterium dentium enriched in infants). Overall, the genetic

diversity we uncovered here for many common colonizers of

the human gut suggests that strain specificity is a crucial compo-

nent of host and microbial phenotype that has, using previous

methods, been difficult to analyze directly.

Discussion

Here, we have developed a new computational method that en-

ables strain-resolved microbial studies directly frommetagenomes

and applied it to characterize the population structure of the hu-

man gut microbiome across the globe by combining cohorts total-

ing more than 1500 samples. This approach enables strain-level

comparative genetics even formicrobes not easily amenable to cul-

tivation, including those constituting a large portion of the typical

human microbiome. The method exploits the concept of species-

specific marker genes (Segata et al. 2012) that are used as genetic

proxies of species to efficiently profile strains within species

from metagenomes. By comparing the consensus sequences of

such markers across samples, StrainPhlAn reconstructs both phy-

logenetic and ecological relationships between strains populating

distinct microbial communities. The method proved superior to

other availablemethods and can accurately reconstruct strain-level

phylogenies as evaluated on a number of semisynthetic and real

spike-in samples, although assembly or pangenome-based meth-

ods (Sharon et al. 2013; Alneberg et al. 2014; Raveh-Sadka et al.

2015; Scholz et al. 2016) are still required to identify strain-specific

gene repertoires. In this study specifically, we phylogenetically

profiled thousands of strains from 125 undercharacterized intesti-

nal species.

Figure 5. Associations between subspecies clades and geographical location in the 10most prevalent gut species and Bacteroides eggerthii. (A) For each of
the 10most prevalent species and Bacteroides eggerthii in this sample set, we show the prevalence of each country in the 11 largest subtrees, ordered by size.
Subtrees containing reference isolate genomes are marked with a black border. Information regarding subtrees for all species is available as Supplemental
Figures S42–S44. (B) Example phylogenetic tree of Bacteroides eggerthii with the identified subclades.
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One of the key biological observations of this study is that

only one strain typically dominates each species in the human

gut, and retention of this individualized dominant strain over

time helps to explain the previously reported stability of the

gut microbiome (Schloissnig et al. 2013; Franzosa et al. 2015).

Strains from the same species in different subjects were generally

genetically distinct and associated with host population structure

atmultiple levels, with different adaptive histories that shaped dif-

ferent species. Even in microbial species defined taxonomically to

span roughly the same degree of phylogenetic divergence, some

comprised large, discretely differentiated subspecies clades (e.g.,

E. rectale, P. copri), whereas others displayed a genetic continuum

with smaller geography-specific subclades (e.g., subclades of

F. prausnitzii or cosmopolitan strains of B. eggerthii). Both of these

genetic strategies are in contrast to the tighter genetic control and

generally reduced diversity often seen in pathogens, for example,

the very low divergence rates of Mycobacterium tuberculosis (Ford

et al. 2011) or infectious (as opposed to more benign) strains of

Streptococcus pneumoniae (Kilian et al. 2008) or Staphylococcus aure-

us (Holden et al. 2013).

More broadly, the ability to profile strains directly frommeta-

genomes is a key step toward a systems-level understanding of how

members of the human microbiome interact with host physio-

logy. Epidemiology and comparative genomics of pathogen popu-

lations from isolates has clearly associated specific strains and

geography-specific lineages with enhanced virulence potential

(Covacci et al. 1999; Suzuki et al. 2012). It will be similarly crucial

to associate the presence of strains or subclades ofmicrobial species

with immune or chronic disease phenotypes even in the absence

of acute infection. The same types of approaches can also start to

unravel how members of the microbiome without overt pheno-

types are transmitted among hosts, e.g., in vertical mother-to-in-

fant transmission (Milani et al. 2015; Asnicar et al. 2017) or

horizontal orofecal routes (Parsonnet et al. 1999). This is of partic-

ular interest in the context of interventions such as probiotics or

fecal microbiome transplants, in which strain tracking is necessary

to identify successful receipt or engraftment of the intended

microbes (Li et al. 2016).

Culture-independent strain identification and tracking will

also support increasingly high-throughput analyses in microbial

ecology. Our finding that a single strain usually dominates per

species in the human gut suggests fine-grainedmicrobial competi-

tion that might be modifiable by pharmaceutical, nutritional, or

environmental interventions. We have investigated only the hu-

man gut environment in this study, making it possible that this

is a property specific to that or other host-associated environ-

ments, and it would be of interest to test the same hypothesis in

other microbial communities. The species-specific genetic struc-

tures we characterized also imply multiple evolutionary strategies

by which individual microbes adapt and incorporate into com-

munities. Discrete subspecies may result from vertical convergent

evolution with low horizontal gene flow, whereas species without

distinct subclade boundaries (e.g., F. prausnitzii) are likely the

results of more plastic genomes subject to recombination and lat-

eral gene exchange. This has been described in a few specific cases

such as oral neisseriae (Donati et al. 2016), but the relative ease

withwhich thousands ofmetagenomes can nowbe obtained com-

pared to isolate (Browne et al. 2016) or single-cell (Gawad et al.

Figure 6. Overall species diversity evaluated across intestinal samples and compared with the diversity available from reference genomes. (A) For the 112
species with concatenatedmarker length >10,000 nt, we built a phylogenetic tree using PhyloPhlAn (Segata et al. 2013) and GraPhlAn (Asnicar et al. 2015)
and here report their median SNV rate computed on all pairwise comparisons in this sample set. Themedian SNV of each genus is reported in parenthesis in
the legend. Species diversity ranges between 0.018% (B. animalis) and 3.9% (Phascolarctobacterium succinatutens) and is partially correlated with phylog-
eny (Bacteroides, Parabacteroides, Bifidobacterium, and Alistipes species show consistently lower diversity than Prevotella, Lactobacillus, and Streptococcus spe-
cies). No significant correlation between diversity and total prevalence or average abundance was observed (Supplemental Fig. S45). Detailed information
for each species is reported in Supplemental Table S9. (B) Fraction of total branch length spanned by strains sequenced as isolate reference genomes versus
branch length spanned by strains from metagenomes. This figure includes species with at least 10 samples, three reference genomes, and concatenated
marker length >10,000 nt. The complete set of species is provided in Supplemental Figure S46.
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2016) sequencing makes StrainPhlAn profiling of large metage-

nomes collections a key tool for the understanding of the ecology

of the human gut and other microbial communities.

Methods

StrainPhlAn infers the strain-level phylogenetic structure ofmicro-
bial species across metagenomic samples by reconstructing the
consensus sequences of the dominant strain for each detected spe-
cies in a sample and then comparing the consensus sequences in
different samples (Supplemental Fig. S1). As input, the method
takes metagenomic samples and a species-specific marker set, in
this case using the markers calculated for MetaPhlAn2 (Truong
et al. 2015). Metagenomic reads are aligned to the marker genes,
and a consensus sequence is built for each marker. Then, for
each species, the consensus sequences in each sample are aligned
and concatenated. The concatenated alignments are then used
to produce phylogenetic trees using the maximum-likelihood
reconstruction principle. Downstream visualization and ordina-
tion plots provided directly in the StrainPhlAn package include
ordination and subphylogeny analysis and allow cross referencing
the inferred phylogenies with available sample metadata. The
user can also choose to include in the phylogenies available refer-
ence genomes that are useful for providing context for the strains
found in the metagenomic samples.

The StrainPhlAn algorithm

To execute the overall workflow described above, metagenomic
reads in each sample are first mapped against the species-specific
MetaPlAn2 markers using Bowtie 2 (Langmead and Salzberg
2012). The resulting alignments are processed with BAMtools (Li
et al. 2009) to estimate the consensus sequence of each detected
species-specific marker. This is performed using a simple majority
rule to infer each nucleotide of themarkers. Strain-specificmarkers
can also be extracted from available reference genomes (using
BLASTN) (Altschul et al. 1990) to include them in the downstream
analysis, if chosen by the user.

A number of post-processing operations are then applied in
order to perform multiple sequence alignment on high-quality
consensus sequences and concatenate them in consistent larger
alignments for each species. Specifically, reconstructed markers
with a percentage of ambiguous bases (resulting from low-con-
fidence majority rule application or lack of coverage for some
regions of the maker) >20% are discarded. Consensus sequences
are then trimmed by removing the first and last n bases (parameter
“–marker_strip_length”, default 50), because the terminal posi-
tions are affected by lower coverages due to the limitations in
mapping reads against truncated sequences. Strain profiling in a
sample, by default, is only provided for species in which the
number of reconstructed markers exceeds 80% of the total
number of markers available for that species in the MetaPhlAn2
database (this threshold can be defined by the userwith the “–mar-
ker_in_clade” parameter). After these steps, the reconstructed
markers from each metagenomic sample, and if chosen by the
user those from the reference genomes, are aligned using
MUSCLE (Edgar 2004).

For each marker, the resulting multiple sequence alignments
are then processed to remove poorly covered regions. First, both
ends of the alignment are trimmed until the fraction of gaps in
each position is <20% (parameter “–-gap_in_trailing_col”, default
20%). Second, regions across the remaining alignment that are pre-
sent in only a small fraction of samples, <30%, are also removed
(parameter “–gap_in_internal_col”, default 30%). Third, if the
number of the alignment columns with at least one ambiguous

nucleotide (i.e., “Ns”) is <80% of the total number of columns
(parameter “–N_col”, default 80%), the columns with ambiguous
nucleotides are removed. After these steps, the remaining ambigu-
ous nucleotides (“Ns”) in the alignment are replaced with gaps to
meet the requirements of the phylogeny reconstruction software.

Next, the processed multiple sequence alignments, for each
of the target species, are concatenated. Comparing the concatenat-
ed alignment across samples, if the number of long-gap positions
(i.e., at least three continuous gap positions) in the concatenated
alignment is <80%of the total length (parameter “–-long_gap_per-
centage”, default 80%), we remove the corresponding columns.
Finally, strains that have gaps in >20% of the alignment (parame-
ter “–gap_in_sample”, default 20%) are also removed from the
alignment. The edited concatenated alignment is then processed
with the maximum-likelihood phylogenetic inference software
RAXML (Ott et al. 2007) to produce the phylogenetic trees.
Custom scripts are available in our package to build the ordination
plots and the heatmaps of genetic-distancematrices. Themetadata
information is then added to these plots for supporting the discov-
ery of newassociationswith the population structure of the species
(using the script add_metadata.py).

StrainPhlAn required an average of 20min on a singleCPU for
profiling all strains in a single high-depth metagenomic sample
(averages computed across all the more than 1590 samples ana-
lyzed that comprise, on average, ∼5.8 Gb). This is in addition to
the prerequisite MetaPhlAn2 step (111 min per CPU). In our anal-
ysis, a total of 10 h (single CPU) was required to reconstruct the
strain-level phylogeny (including sequence merging, multiple-
sequence alignment, andmaximum-likelihood-based phylogenet-
ic inference) for each of the 125 species analyzed across the entire
1590 gut metagenomic data set.

Polymorphic site identification

To identify and study the presence of multiple strains from the
same species in a single sample, we investigated the reads-to-mark-
ers mapping and sought evidence of polymorphic sites on the
alignments suggestive of multiple alleles. To this end, we defined,
for each position s on the alignment of the reads against the Ns as
the total number of reads covering it and Ts as the number of reads
supporting the dominant (i.e., most abundant) allele. Given the
sequencing error rate E, we reject the nonpolymorphic null hy-
pothesis if the probability that the numberNs− Ts of reads coming
from the nondominant allele is <α = 0.05. This is estimated with
PXB̃(Ns,1−E)(X ≤ Ts), where B(Ns,1− E) is the probability mass
function of a binomial distribution with Ns trials and the success-
ful rate 1− E. We set the error rate E to 0.01 (i.e., 1%) for Illumina
sequencing. Failing to reject the null hypothesis reflects the ab-
sence of alternative alleles or inability of distinguishing between
low-coverage potential alternative alleles and sequencing noise.
To further minimize the impact of noise, we remove the bases
with quality below 30 before applying the statistical test. To sum-
marize the polymorphic site probabilities at the species level
(thus marking the probabilities of multiple sites and markers),
we define a polymorphic species as a species having a poly-
morphic rate greater than µpolymorphic_rate + σpolymorphic_rate where
µpolymorphic_rate and σpolymorphic_rate are the median and standard
deviation of the polymorphic site across samples, respectively.

Retention rate and subclade computation

For each species, we computed the rate of single-nucleotide vari-
ants (SNVs) between the dominant strains in different samples.
The intra-individual SNV rate was calculated for the HMP and
MetaHIT data sets, because they are the only considered data sets
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with multiple samples from the same subjects. The SNV rates for
each species was normalized by the median of the inter-everyone
comparisons for that species. The resulting distribution is
bimodal and represents the distribution of variations between
same strains in different samples (values close to zero) and differ-
ent strains (values centered in the normalized median, i.e., 1.0).
For identifying the bimodal distributions, we fitted a two-compo-
nent Gaussian mixture model and separated the dominant com-
ponent in the ranges [−∞, µ + 3σ] or [µ− 3σ, +∞].

Country-specific subtrees for Supplemental Figures S9–S20
are computed as the largest subtrees with at least 80% of samples
coming from a single country. For identifying the clusters in the
principal coordinate plots (Fig. 4), we used the SpectralClustering
algorithm implemented in Scikit-learn (Pedregosa et al. 2011)
applied on the first two principal coordinates. Subclades for
Figure 5B and Supplemental Figures S21–S37 are the largest sub-
trees in each phylogeny with the largest intra-SNVs rate <0.1%.
In addition, a subclademust have strains from at least two subjects
or contain at least one reference genome and one strain in a
sample.

Data collection and preprocessing

In total, 1590 publicly available gut metagenomics samples
comprising nine human-associated data sets were considered in
this work (Table 1). Of these studies, seven were associated with
human disease and two from healthy cohorts. The cohort data
sets spanned geographic locations from all continents (except
Australia and Antarctica), and two included non-Westernized pop-
ulations from Peru and Tanzania. All data sets are cross sectional,
with the exception of two cohorts (MetaHIT and HMP), which in-
cluded longitudinal sampling of the same individuals over a period
of 163 SD 125 d and 219 SD 69 d, respectively. When the same
sequenced samples were originally included in more than one
study, i.e., some samples from the Obesity data set (Le Chatelier
et al. 2013) are present also in the MetaHIT data set (Nielsen
et al. 2014), we considered them only once in our combined
data set.

All samples were preprocessed by the standard HMP quality
control procedure (Human Microbiome Consortium 2012),
and reads shorter than the thresholds reported in Table 1 were re-
moved. Taxonomic profiling to identify which microbial species
are present and at what abundance in each sample, was performed
with MetaPhlAn2 (Truong et al. 2015).

Method validation and evaluation

For validation, StrainPhlAn was applied to a combination of
synthetic and semisynthetic data sets. StrainPhlAn was first tested
on two HMP Mock samples (Human Microbiome Consortium
2012) containing strains from 21 known reference genomes,
in which their abundances were either staggered or evenly dis-
tributed. StrainPhlAn reconstructed the strains for the 11 species
with sufficient coverage (Supplemental Table S1). Except for
Staphylococcus aureus and Clostridium beijerinckii (whose genomes
are discordant also based onmetagenomic assembly) (Supplemen-
tal Table S1), our method can reconstruct the other species strains
with SNV rates less than 0.0001.

In addition, we also validated StrainPhlAn on 36 synthetic
data sets of four species (Bacteroides dorei, Bacteroides fragilis,

Bacteroides ovatus, Bifidobacterium longum). For each species, we
generated synthetic data by sampling reads from its genomes
with an Illumina-based error model (McElroy et al. 2012) with
coverages ranging from 2× to 10× using custom scripts available
at https://bitbucket.org/CibioCM/synmetap/overview. These syn-

thetic samples were then also added to real HMP stool metage-
nomes (in which the four synthetic species was absent) to create
36 additional semisynthetic samples. StrainPhlAn was applied
on both synthetic and semisynthetic samples, and the accuracy
was evaluated by detecting the number of SNVs of the recon-
structed markers compared to the original reference genomes.
The evaluation was repeated at increasing coverages of the target
strains as reported in Supplemental Figure S2. An additional vali-
dation was performed by reconstructing strain markers from syn-
thetic metagenomes and including them in the phylogeny built
with the reference genomes (Supplemental Figs. S3, S4). On the
combined phylogeny, the accuracy of the reconstruction can be
evaluated bymeasuring the phylogenetic distance between the re-
constructed strains and the corresponding reference genome
(Supplemental Figs. S3, S4). ConStrains (Luo et al. 2015) was ap-
plied on the same data (Supplemental Figs. S3, S4). For the valida-
tion on real samples (Supplemental Fig. S5; Supplemental Table
S2), we used 19 metagenomes in the MetaHIT (Nielsen et al.
2014) data set from subjects that consumed a fermentedmilk prod-
uct containing the previously sequenced Bifidobacterium animalis

subsp. lactis CNCM I-2494.

Software availability

StrainPhlAn (version 1.0) is implemented in Python within the
MetaPhlAn2 package (version 2.5.0) and is available with source
code, manual, tutorials, and a support user group at http://
segatalab.cibio.unitn.it/tools/strainphlan and in the updated
MetaPhlAn2 repository at http://segatalab.cibio.unitn.it/tools/
metaphlan2/. The code and necessary supporting databases are
maintained in a Bitbucket repository at https://bitbucket.org/
biobakery/metaphlan2. A snapshot of the implementation used
in this work is also available as Supplementary Code, without,
however, the large database files that are maintained at https
://bitbucket.org/biobakery/metaphlan2.
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