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Abstract
The lumen of the gastrointestinal (GI) tract is home to an enormous quantity of different bacterial
species, our microbiota, that thrive in an often symbiotic relationship with the host. Given that the
healthy host must regulate contact between the microbiota and its immune system to avoid
overwhelming systemic immune activation, humans have evolved several mechanisms to attenuate
systemic microbial translocation (MT) and its consequences. However, several diseases are
associated with the failure of one or more of these mechanisms, with consequent immune
activation and deleterious effects on health. Here, we discuss the mechanisms underlying MT,
diseases associated with MT, and therapeutic interventions that aim to decrease it.
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INTRODUCTION
The microbiota of the gastrointestinal (GI) tract comprises a large population of diverse
bacterial species. The colon alone contains approximately 1014 microorganisms with
approximately 1012 microorganisms per gram of colonic content. Thus, within an adult
human the bacteria within the colon outnumber host cell numbers by up to two orders of
magnitude, with a frequency of bacterial genes at least 100 times greater compared with
those within the human genome. This microbiota is composed of approximately 1,000
species of predominantly unculturable bacteria that belong to two main phyla: the
Firmicutes and the Bacteroidetes. Although the mechanistic details of the relationships
between the microbiota and the host remain unclear, this relationship is undoubtedly
complex and involves interactions among the individual members of the microbiota itself,
the mucus layer of the GI tract, the local and systemic innate and adaptive immune systems,
and the enterocytes.

Here, we discuss both beneficial and pathological interactions between the host and its
microbiota, diseases that are characterized by unphysiological translocation of microbial
products into peripheral circulation (microbial translocation, MT), mechanisms underlying
MT, and therapeutic interventions that have been proposed to decrease pathologic MT.
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INFLUENCES OF THE GI TRACT MICROBIOTA ON THE HOST
Local Relationships

Humans and the normal microbiota of the GI tract have evolved a symbiotic relationship.
These beneficial interactions are highlighted by the finding that germ-free animals are more
susceptible to infections and have reduced vascularity, digestive enzyme activity, muscle
wall thickness, and serum immunoglobulin levels as well as smaller Peyer’s patches and
fewer intraepithelial lymphocytes (reviewed in 1). Furthermore, these abnormalities appear
to be enhanced in germ-free mice that were fed elemental diets containing no complex food
antigens or bacterial products, and such animals also have lower numbers of circulating
lymphocytes (2). The critical role of the microbiota is revealed by the finding that
colonization of germ-free mice with a single species of bacterium is sufficient to enhance
the mucosal immune system, including increased numbers of intraepithelial lymphocytes
and increased activity of local antigen-presenting cells (APCs) (3). The beneficial roles that
the GI microbiota play are multifactorial and may be separated into immunological,
structural, and metabolic functions (4).

Being present in such high numbers, the organisms of the microbiota serve as competitors
for potentially pathogenic bacterial species. This likely involves competition for limited
sources of nutrition and limited sites of adherence to the epithelial barrier. The microbiota
also protects against pathogenic infection by producing antimicrobial factors such as lactic
acid, short chain fatty acids, and bacteriocins. Finally, the microbiota is capable of
attenuating mucosal immune responses to pathogenic bacterial species. Indeed, certain
microbiota species can promote nuclear export of the p65 segment of nuclear factor κB (NF-
κB) through the peroxisome proliferator-activated receptor, thus limiting NF-κB-mediated
transcription (5, 6).

The microbiota also leads to enhanced integrity of the structural barrier of the GI tract by
metabolizing dietary carbohydrates into short-chain fatty acids, which are a major nutritional
source for the colonic epithelia (7). Enterocytes also express Toll-like receptors (TLRs)
through which signaling is thought to contribute to epithelial cell homeostasis (reviewed in
8). Consistent with this premise, decreased epithelial cell proliferation is observed in TLR-
deficient mice (9). In addition to aiding in epithelial cell turnover, the microbiota is also
involved in maintenance of the mucus layer. Indeed, the absence of the intestinal microbiota
in germ-free mice is associated with a decrease in goblet cells, which are also smaller in
size, and the thickness of the mucus layer is decreased (10).

In addition to the important role of the microbiota in maintaining the epithelial barrier and
mucus layer, it also has a significant impact on production of luminal IgA. In the intestinal
tract and other mucosal sites, most plasma cells secrete dimeric or oligomeric IgA that can
transcytose directly into the lumen. That these antibodies are specific for luminal bacteria
and viruses suggests that the microbiota shapes the specificity of luminal IgA (11). The
corollary of this is exemplified in AID−/− mice, which do not produce sIgA and have a 100-
fold increase in the number of small intestinal anaerobic bacteria (12). Secretory IgA thus
serves as a line of defense against MT by limiting adhesion and entry into the epithelium,
thereby facilitating clearance via the fecal stream (13, 14). Taken together, it is clear that the
microbiota provides invaluable functions to the host locally within the GI tract.

Distal Relationships
In addition to the local effects that the microbiota has on the GI tract of the host, the
microbiota also provides significant and beneficial functions for the host systems distal to
the GI tract. Specifically, the microbiota metabolizes toxic and potentially carcinogenic
compounds such as pyrolysates (15), thus reducing their bioavailability to the host. The
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microbiota also produces biotin, folate, and vitamin K from dietary precursors, which are
then absorbed by the GI tract and circulated. That germ-free animals fed elemental diets
have fewer systemic lymphocytes compared with conventional mice suggests a tonic
stimulation of the systemic immune system by gut-derived microbial antigens (2).

Dysbiosis
Although the microbiota provides metabolites and beneficial immunological stimuli to the
host, the actual composition of the microbiota also appears to have a significant impact on
the host. Previous studies have implicated an altered balance in the composition of the
microbiota (dysbiosis) in many diseases, such as obesity (16, 17), celiac disease (18), type 2
diabetes (19), atopic eczema (20, 21), asthma (22), inflammatory bowel disease (IBD) (23,
24), and chronic diarrhea (25).

Given the specific roles that the microbiota fulfills, it is reasonable to propose that its
specific composition influences the capacity of the host to regulate its many functions.
Indeed, only certain species of the microbiota, predominantly those belonging to a small
subset of the Firmicutes, can metabolize complex carbohydrates into short-chain fatty acids
(butyrate in particular) that can serve as growth factors for enterocytes (7). Along these
lines, one study compared the composition of the microbiota in inflamed tissue and
uninflamed tissue of individuals with IBD and tissue from healthy individuals and found
fewer Firmicutes present in inflamed tissue from IBD patients (24). The same reduction in
levels of Firmicutes was also observed within individuals diagnosed with type 2 diabetes,
and the degree to which the microbiota was abnormal was correlated with plasma levels of
glucose, suggesting that the dysbiotic microbiota may have a direct role in the pathogenesis
of type 2 diabetes (19).

Additionally, in children diagnosed with atopic eczema and in non-breast-fed children, the
microorganism Bifidobacterium pseudocatenulatum is more commonly identified than in
healthy, breast-fed children, even though there are no correlations between severity of atopic
eczema and levels of B. pseudocatenulatum (20).

Although low levels of Firmicutes can be associated with inflammatory conditions, their
overgrowth is also associated with detrimental consequences. Increased levels of Firmicutes
appear to alter the metabolic capacity of the microbiota, resulting in an increased ability to
transfer carbohydrates, which results in host obesity (17).

In such correlative types of studies, it is difficult to conclude that an altered microbiota is
causing disease rather than that the disease is affecting the composition of the microbiota.
Indeed, among infants, factors such as geographical location, breast-feeding, mode of
delivery, and antibiotic use can clearly alter the composition of the microbiota (26). Hence,
alterations of the microbiota observed in disease states may be the result rather than the
cause of disease. Comparative studies of culturable microbiota in human immunodeficiency
virus (HIV)-infected and uninfected individuals have shown significant differences between
the two, suggesting that the altered microbiota may contribute to HIV disease progression
(27). Yet this finding could certainly be attributed to demographic differences between the
two groups of individuals.

However, certain experimental approaches may distinguish between the two scenarios. For
example, germ-free mice can be colonized with microbiota from diseased tissues or with
microbiota of individuals suffering from diseases associated with altered microbiota. This
approach has shown, for example, that microbiota from obese mice, transferred to germ-free
animals, appears to cause the germ-free animals to gain significant weight (28).
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Alternatively, alterations in disease-associated microbiota through the use of probiotics and/
or prebiotics could ameliorate symptoms of disease, as discussed in more detail below.

HOW THE MICROBIOTA IS EXCLUDED FROM SYSTEMIC CIRCULATION
The health of the host depends on the tight regulation of interactions between the host and
microbiota. Translocation of microorganisms, or microorganism components, from the
lumen of the GI tract into the systemic circulation can certainly have detrimental
consequences, including activation of the immune system. In extreme cases of MT, septic
shock ensues, where patient mortality can approach 70% (29) and is characterized by
clinical manifestations including thermal dysregulation (hypothermia or hyperthermia),
tachycardia, tachypnea, and altered white blood cell count (leukocytopenia or leukocytosis).
Underlying these phenomena is an overwhelming production of inflammatory cytokines
including tumor necrosis factor (TNF) and interleukin (IL)-1, and high motility group 1
protein (HMGB1) and nitric oxide. Although these trigger beneficial inflammatory
responses to confine the infection and tissue damage, their excessive production results in
elevated systemic inflammatory responses that may be more lethal than the bacterial
infection itself (30). The importance of this phenomenon is of particular relevance in severe
sepsis, where excessive production of proinflammatory mediators causes capillary leakage,
tissue injury, and multiple organ failure (30). These proinflammatory mediators are
predominantly produced by innate immune cells after stimulation through pattern-
recognition receptors specific for bacterial products. Indeed, administration of bacterial
lipopolysaccharide (LPS) in high doses is sufficient to recapitulate the physiologic
abnormalities of septic shock (31). Thus, given the tremendous luminal bacterial burden,
protecting against excessive MT may be regarded as essential to life.

Defense Against MT at the Gastrointestinal Surface
The first line of defense against MT is mediated by macromolecules within the lumen of the
GI tract, including the constituents of the mucus layer: proteins, phospholipids, electrolytes,
and water. The unique capacity of the mucus to protect the underlying epithelial surfaces is
due primarily to the gel-forming properties of its glycoprotein mucins. Furthermore, luminal
IgA and antimicrobial defensins can bind to and kill bacteria, thus limiting their ability to
translocate.

Secondly, the epithelial barrier of the GI tract itself represents a significant obstacle against
MT. There are four major types of GI tract epithelial cells (32): absorptive enterocytes;
mucin-producing goblet cells; enteroendocrine cells, which produce peptide hormones (33);
and Paneth cells, which secrete antimicrobial defensins, digestive enzymes, and growth
factors (34). Enterocytes are short-lived cells, and the entire mouse GI epithelium is renewed
every 3–4 days (35). Enterocytes are adjoined to one another via a complex of
transmembrane and peripheral proteins that are tethered to the cytoskeleton of the adjacent
enterocytes. These intercellular tight junctions are formed by interactions with claudin
proteins, which form selective pores between enterocytes to promote specific ion
permeability.

Should microbial products traverse the mucus and epithelial barriers, they are met by a large
number of specialized resident macrophages that prevent such products from accessing the
systemic circulation (36). The GI tract is a major reservoir of macrophages in the body (37)
and have a very distinct phenotype and functional capacity. Although intestinal
macrophages express high levels of HLA-DR and the myeloid marker aminopeptidase
(CD13), similar to blood monocytes and other tissue macrophages (38), these cells are
distinct in that they do not express the LPS coreceptor (CD14), the Fc receptors (CD89,
CD16, CD32, and CD64), or receptors for IL-2 (CD25) and IL-3 (CD123) (39). The
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functional consequence of the absence of such receptors on intestinal macrophages is an
inability to respond to many ligands that directly stimulate blood monocytes and other tissue
macrophages. Indeed, GI macrophages do not produce proinflammatory cytokines such as
IL-1 and TNF after stimulation with LPS (39). However, these cells can express various
other pattern-recognition receptors including TLR4, TLR2, TLR5, and TLR9 and are
capable of recognizing and phagocytosing bacterial antigens (38, 39). Hence, intestinal
macrophages are specialized in their ability to clear antigens from the lamina propria
without production of an inflammatory response to those antigens. This specialized role of
intestinal macrophages is likely critically important to the maintenance of a
noninflammatory state within the lamina propria of the GI tract.

Defense Against MT in the Liver
GI tract macrophages represent the first line of defense against translocated microbial
products. However, should the GI tract macrophages fail to contain all such products, these
are then drained by the portal vein into the liver. Thus, one of the many functions performed
by the liver is the clearance of foreign and potentially harmful substances that drain from the
GI tract. Indeed, concentrations of LPS in the portal vein are higher than in either the hepatic
or peripheral veins (40), and bacteria can be cultured from healthy liver explants (41).

Besides the parenchymal hepatocytes, the liver contains other cell populations including
liver sinusoidal endothelial cells (LSECs), tissue macrophages (Kupffer cells) and liver-
associated lymphocytes. LSECs constitute the wall of the liver sinusoids, whereas Kupffer
cells are located predominantly in the periportal area (42). Kupffer cells are therefore well
situated for the phagocytosis of particulate antigens and organisms within the portal venous
circulation. Both Kupffer cells and LSECs are responsive to direct stimulation with bacterial
products (43), with measurably distinct responses compared with those of other tissue
macrophages or monocytes in peripheral blood. Kupffer cells and LSECs constitutively
express prostranoids and upregulate their expression concomitant with upregulation of IL-10
following LPS stimulation, which results in downregulation of antigen presentation by the
APC within the liver (44, 45). Thus LPS-mediated stimulation of LSECs and Kupffer cells
does not result in the release of proinflammatory mediators, and, similar to the response of
GI tract macrophages, these cells are specialized in their ability to clear but not to respond
immunologically to microbial antigens.

Defense Against MT in the Systemic Circulation
As discussed above, in order to access the systemic circulation, microbial antigens that
originate in the GI tract must pass through the luminal mucus and IgA, traverse the tight
epithelial barrier, escape uptake by GI tract lamina propria macrophages, and then avoid
liver-mediated clearance by LSECs and Kupffer cells. Once in the circulation, microbial
products are met with a further host-mediated response regulated by cell-surface receptors
that sense and circulating factors that bind to and clear these products.

For example, healthy humans have high titers of circulating IgM, IgA, and IgG antibodies
directed against the LPS core antigen that neutralize LPS activity (46, 47). When microbial
products gain access to the circulation, such as during sepsis, these antibodies, termed
EndoCAb, bind to and clear LPS from the circulation, and as a result their titers decrease
(46). In contrast, in conditions when microbial products are found in the systemic circulation
chronically, such as in IBD (discussed below), EndoCAb levels are increased (48),
presumably as part of the normal humoral response to antigenic stimulation.

Additionally, the innate immune system produces soluble factors such as soluble CD14
(sCD14) and LPS-binding protein (LBP). CD14 is an LPS coreceptor expressed by
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peripheral blood monocytes and tissue macrophages. Following LPS stimulation, CD14+

monocytes/macrophages secrete sCD14 and shed surface CD14, which binds to LPS (49,
50). LBP, in contrast, is an acute phase reactant produced by hepatocytes (51). In healthy
humans these proteins circulate at high concentrations in plasma, reaching the milligram/
liter levels (50, 52). sCD14 and LBP both bind LPS and can, at given relative concentrations
to one another and LPS, transfer LPS either to high-density lipoproteins (HDLs) to decrease
the bioactivity of LPS or to the TLR4/MD-2/CD14 complex on monocytes/macrophages,
leading to LPS-mediated stimulation (50). Indeed, the biological activities of different levels
of sCD14 and LBP vis-à-vis LPS activity in vitro and in vivo are not completely understood,
with experimental observations and interpretations varying considerably (50, 53). However,
therapeutically increased levels of circulating LBP can be protective against gram-negative
septicemia (54). Taken together, it is clear that several circulating factors, including
EndoCAb, sCD14, LBP, and HDL, act as fundamental lines of defense against systemic
stimulation of the immune system by translocated microbial antigens.

With approximately 1014 potential microorganisms residing within the GI tract at any given
time, it is no surprise that humans allocate tremendous resources in corralling the microbes
within the lumen of the GI tract and in controlling them should they enter the systemic
circulation. Despite having these multiple mechanisms in place, the system could fail at any
one of these checkpoints, and increased systemic MT would ensue.

MECHANISMS UNDERLYING MT
Low Levels of IgA

IgA is the most abundant antibody isotype in the body and is the second most dominant
isotype in the peripheral circulation after IgG (55). IgA deficiency is the most common
primary immunodeficiency (affecting between 1:300 and 1:3000 individuals) and has many
genetic causes, including heavy chain gene deletions, T cell dysfunction, and alterations in
cytokine signaling (56). Although many individuals with selective IgA deficiency are
apparently asymptomatic, IgA-deficient individuals have a tendency to develop infections
and disorders of the GI tract (57). Giardiasis, mal-absorption, lactose intolerance, celiac
disease, ulcerative colitis (UC), nodular lymphoid hyperplasia, and increased epithelial cell
proliferation are among the associated diseases (57, 58). Because the protective barrier of
the GI system is impaired in IgA deficiency, protozoa such as Giardia lamblia can adhere to
the epithelium, proliferate, and more easily cause infection (59). Even in the absence of
infection, some GI tract luminal contents may enter the lamina propria and submucosal
tissue. Indeed, individuals with IgA deficiency tend to mount large systemic IgG and IgM
antibody responses to GI tract luminal antigens, including food and bacteria (60). Hence,
low levels of IgA, with or without GI tract symptoms, can lead to increased MT; however,
the degree to which MT occurs in IgA deficiency with subsequent systemic immune
activation is unclear and warrants further study.

Alterations of the Structural Integrity of the GI Barrier
Pathogens—The tight epithelial barrier of the GI tract is clearly a major hurdle that must
be breached in order for microbial antigens to traverse from the lumen of the intestine to the
lamina propria of the GI tract. Consistent with this, many enterotoxins, which are expressed
by pathogenic bacteria, target tight junction proteins of the GI tract. Enteropathogenic
species of Vibrio, Escherichia, Salmonella, Helicobacter, and Clostridia all express such
enterotoxins (61–63). Moreover, it is thought that the ability of these bacteria to cause
systemic infections is entirely dependent on enterotoxin expression. Thus, one could
conclude that the disruption of tight junctions alone may cause increased MT. The
importance of the tight epithelial barrier in protecting against MT is also highlighted by viral
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infections, which are associated with diarrheal diseases and subsequent increased intestinal
permeability. Rotavirus, reovirus, norovirus, adenovirus, and coxsackievirus infections are
all associated with disruption of the structural barrier of the GI tract and subsequent
increased MT (64, 65).

Inflammation—In addition, alteration to the regulation of tight junction protein expression
can lead to increased MT. Interferon (IFN)-γ expression increases claudin endocytosis with
subsequent increase in paracellular permeability, whereas TNF and IL-13 lead to decreased
expression of claudins (66, 67). Moreover, inflammatory conditions can be associated with
upregulation of specific channel-forming claudins such as claudin 2 (66, 68). Indeed, it has
been suggested that the ability of inflammatory cytokines to increase paracellular
permeability allows neutrophil migration across epithelial barriers to combat invasive
pathogens directly (69).

Not only can inflammatory cytokine production modulate claudin expression, but it can also
influence the turnover of epithelial cells. Indeed, exposure to TNF or IL-1 can induce
apoptosis in epithelial cells in vitro (70). Moreover, in vivo studies also suggest that excess
production of TNF plays a deleterious role in perturbing the tight epithelial barrier, in part
by induction of enterocyte apoptosis (reviewed in 71). Although inflammation may have
multiple deleterious effects on GI tract integrity, it is important to note that therapeutic
interventions aimed solely at decreasing TNF levels in vivo result in improved integrity of
the structural barrier of the GI tract in individuals with CD (discussed below) (72).

TNF stimulation of enterocytes also leads to phosphorylation of the myosin light chain by
myosin light chain kinase (MLCK) (73), which in turn leads to intestinal permeability via
cytoskeleton rearrangement and modulation of tight junction protein expression. Consistent
with this observation, inhibition of MLCK restores barrier function after TNF treatment and
suggests that therapeutic interventions aimed at decreasing MLCK activity may be a
promising approach in the treatment of TNF-mediated dysfunction of the structural barrier,
as discussed below (74).

The propensity for chronic TNF signaling to induce GI tract structural damage via the
mechanisms described above is highlighted by the finding that GI epithelial cells
constitutively produce factors to extinguish TNF signaling. One such factor is A20, an NF-
κB target gene that encodes a ubiquitin-editing enzyme essential for the termination of NF-
κB activation after TNF or microbial product stimulation. Mice lacking A20 succumb to
inflammation in several organs including the GI tract, and A20 mutations have been
associated with CD (75). Moreover, tissue-specific disruption of A20 expression within GI
tract enterocytes renders them exquisitely sensitive to TNF-induced toxicity and
experimental colitis (75). Taken together, it is clear that inflammation may cause increased
intestinal permeability and consequent MT.

Modulation of RORγt+ cells—Repair of the structural barrier of the GI tract after
damage is also critically dependent on the local immune system. Certain lymphoid cells
within the GI tract express the nuclear hormone receptor retinoic acid orphan receptor
(ROR)γt and are involved in maintenance of the structural barrier of the GI tract and in
defense against pathogens through the production of cytokines such as IL-17 and IL-22.
IL-17 and IL-22 function in vivo to promote recruitment of neutrophils to areas of bacterial
infection, to induce proliferation of enterocytes, and to produce defensins (76–80). Although
most data regarding IL-17-producing cells are derived from experiments in mice, several
studies have shown that IL-17-producing cells can be identified in the blood of humans, can
be characterized phenotypically based on expression patterns of certain chemokine and
cytokine receptors, and appear to have specificity for bacterial and fungal antigens (81–84).
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RORγt+ cells that produce IL-17 and IL-22 include CD4+ and CD8+ T cells and innate
lymphoid cells (iLCs) such as lymphoid tissue–inducer cells and IL-22-producing NKp46+

cells (85).

Consistent with the notion that RORγt+ cells are important for maintenance of the structural
barrier of the GI tract, mice lacking the transcription factor RORγt are significantly more
prone to MT than wild-type mice (86). In these mice, containment of the luminal microbiota
requires the generation of abnormally large numbers of tertiary lymphoid tissues (86).
Although at steady state these animals tend to maintain the integrity of their GI tract, upon
epithelial damage these mice have decreased regeneration of enterocytes and develop severe
intestinal inflammation due to MT.

IL-17 production is also thought to play an important role in maintaining the appropriate
immunological environment within the GI tract. A recent study described an accelerated
wasting disease following induced colitis in mice incapable of IL-17 production (87).
Moreover, in this model lack of IL-17 among responding T cells was sufficient to cause the
effect. The mechanisms underlying this protective effect are likely multifaceted and include
decreased neutrophil recruitment, decreased antibacterial defensin production, decreased
regeneration of GI tract enterocytes, and increased frequencies of Th1-type CD4+ T cells,
which produce high levels of tissue-damaging cytokines such as IFN-γ.

IL-22 is also thought to be critical for repair of the GI tract barrier. IL-22 belongs to the
IL-10 family of cytokines (88), and its receptor is expressed on various epithelial tissues
(89) and is believed to mediate epithelial innate immunity (90). The importance of IL-22 in
repairing damage to the structural barrier of the GI tract is highlighted by studies of IL-22
knockout mice and by administration of IL-22-depleting antibodies. In these studies, mice
that lack IL-22 are significantly more susceptible to chemically induced colitis (91).

IL-22 is clearly of lymphocyte origin with specific subsets of T cells (especially CD4 T
cells) and iLCs capable of its production (92). However, the timing of IL-22 production may
play an important role in the repair of the GI tract structural barrier, as is highlighted by
experimental mouse infections with Citrobacter rodentium, which is characterized by
damage to the structural barrier of the GI tract and MT. It was recently observed that rapid
IL-22 production is critical for survival in this model, and it was suggested that IL-22 was
produced by iLCs (93) in an IL-23-dependent manner. Therefore, though such studies
suggest that IL-22 production by iLCs is critical for innate immunity in the intestine, the role
of these cells in maintenance of the GI tract in the absence of infections is unclear given the
relatively healthy structural barrier observed in IL-22-deficient mice (91) and the apparent
overall GI tract health of uninfected mice selectively depleted of iLCs (93).

Decreased Microbial Clearance
In addition to mechanisms related to decreased ability to maintain the microbiota within the
lumen of the GI tract leading to systemic MT, the inability to clear microbial products that
cross the GI tract at steady state can also lead to systemic MT. The best studied mechanism
related to decreased microbial product clearance is liver failure (discussed below).
Consistent with this, there are several liver-associated diseases that are characterized by
increased levels of microbial products in the peripheral circulation. Additionally, given that
HDLs can clear LPS from the circulation, recent data suggest that the protective nature of
high HDL levels against cardiovascular disease can be, at least partially, attributed to HDL’s
ability to clear LPS from circulation, thus decreasing LPS-induced inflammation, which can
accelerate atherogenesis (94). Consistent with a role for inflammation and decreased LPS
clearance in cardiovascular disease, polymorphisms in the CD14 gene are associated with
altered expression of sCD14 (95) and increased incidence of myocardial infarction (96).
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Although the levels of MT occurring at any given time in individuals without overt disease,
but harboring mutations in CD14, LBP, and IgA or having low HDL levels, are currently
unknown, the data clearly demonstrate that decreased clearance of microbial products from
systemic circulation is associated with disease states.

DISEASES ASSOCIATED WITH SYSTEMIC MT
Given the numerous mechanisms that underlie the inability to restrict the microbiota to the
GI lumen and the evidence suggesting that microbial products translocate frequently even at
steady state, it comes as no surprise that there are multiple disease states that can be
associated with translocation of microbial products into the peripheral circulation with
consequent host responses.

Inflammatory Bowel Disease
MT has been most widely recognized as playing a major role in the pathogenesis of IBD.
UC involves inflammation of the large bowel, whereas CD may involve inflammation of the
entire GI tract. The etiology of IBD remains largely unknown, although mutations in genes
encoding proteins involved in immunological responses through pattern-recognition
receptors, genes involved in IL-17 production, and tight junction proteins are associated
with IBD (97, 98). Additionally, altered composition of the GI tract microbiota has also been
suggested to play a role in IBD pathogenesis (99, 100), as revealed by mouse models of IBD
in which inflammation is significantly reduced when the mice are housed in germ-free
conditions (101, 102).

Individuals with IBD also have elevated levels of circulating proinflammatory mediators
(103–105), and this systemic inflammation has been suggested to be due to MT (106–108)
because elevated serum levels of LPS (108–113), bacterial DNA (114), EndoCAb (108,
112), and LBP (109, 112, 115) can be detected. In individuals with active disease, high
levels of circulating bacterial products are associated with increased levels of
proinflammatory cytokines (108, 112–114), and granulocyte phagocytic activity is
decreased, presumably due to recent bacterial phagocytosis in vivo (111). Finally, increased
proinflammatory cytokine production by B cells has been suggested to be due to increased
MT in individuals with IBD (113). That individuals with IBD have significantly higher
intestinal permeability compared with healthy controls suggests that one of the mechanisms
underlying disease pathogenesis in IBD is damage to the structural barrier of the GI tract
(107). Taken together, it is clear that systemic MT occurs in IBD, and it follows that MT-
induced immune activation may be at the heart of disease pathogenesis.

Human Immunodeficiency Virus Infection
During the acute phase of HIV infection, there is a significant insult to the immunological
and structural components of the GI tract. Massive depletion of GI tract CD4 T cells (116–
120), low frequencies of IL-17-producing CD4 T cells (121–123) and CD8 T cells (124),
apoptosis of enterocytes (125), with subsequent damage to the structural barrier of the GI
tract (126) and increased intestinal permeability (127–130), are all manifestations of
progressive HIV infection in humans and simian immunodeficiency virus (SIV) infection in
Asian macaques. Moreover, generalized systemic activation of the immune system is a
hallmark of the chronic phase of progressive HIV/SIV infection, and the degree to which the
immune system is activated is the best predictor of the rate of disease progression (131–
135). Indeed, one cause of immune activation is increased MT due to damage to the GI tract,
as elevated levels of LPS were found in the plasma of chronically HIV-infected individuals
compared with either acutely HIV-infected or HIV-uninfected individuals (52, 136).
Consistent with a proinflammatory role for LPS in the systemic circulation, levels of plasma
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LPS were associated with markers of immune activation of both the innate and adaptive
arms of the immune system (52). Moreover, in patients with AIDS-associated dementia the
activation status of monocytes in vivo was associated with levels of plasma LPS (137). Not
only does MT occur during progressive HIV-1 infection, but increased levels of LPS are
also observed in HIV-2-infected individuals (138).

Subsequently, using immunohistochemical analysis and the rhesus macaque/SIV model of
HIV infection, investigators found that MT begins during the late acute phase of infection
(~day 21–28 post infection), that microbial products colocalize with proinflammatory
cytokines, and that one of the mechanisms underlying MT is damage to the structural barrier
of the GI tract (126). The ability of the host to prevent microbial products from reaching
circulation in the short term is highlighted by the normal plasma levels of LPS in acutely
HIV-infected individuals, even though immunohistochemical analysis clearly demonstrates
increased MT. Indeed, during the acute phase of infection EndoCAb titers decrease, sCD14
levels increase, and most microbial products found within the lamina propria of the GI tract
are within the specialized tissue macrophages described above (52, 126, 139). In chronically
infected individuals, GI tract macrophages fail to phagocytose all translocated bacterial
products (126), EndoCAb titers remain low (52, 139, 140), and the number of Kupffer cells
decreases (141). Hence, LPS clearance mechanisms are adversely affected during chronic
HIV infection.

From these studies we can conclude that MT occurs in chronically HIV-infected individuals
and that these microbial products can cause immune activation. It has also been proposed
that the virus itself is a direct cause of immune activation in HIV infection (142, 143).
However, there are certain cohorts of HIV-infected individuals in which viral replication is
reduced to a minimum, yet immune activation remains pathologically elevated: elite
controllers (ECs) and highly active antiretroviral therapy (HAART)–treated individuals. ECs
are a rare group of individuals who spontaneously control viral replication to levels below
the detection limit of conventional analyses (144, 145). Although these individuals have a
significantly improved prognosis compared with viremic HIV-infected individuals, ECs tend
to have higher levels of immune activation compared with HIV-uninfected individuals;
many of these individuals nevertheless lose peripheral blood CD4 T cells, and some even
progress to AIDS (133). In these individuals, elevated levels of LPS were detected and the
frequency of activated phenotype CD38+ HLA-DR+ CD8 T cells correlated with MT (133).
Moreover, there was a significant negative correlation between the levels of plasma LPS and
the peripheral blood CD4 T cell count (133).

Additionally, recent studies have shown clearly that even though HAART can suppress
plasma viral loads to undetectable levels, HAART-treated individuals nevertheless have
increased mortality and morbidity compared with HIV-uninfected individuals, which are
associated with inflammation and consequent cardiovascular disease (146, 147), osteopenia,
(148), and cognitive decline (149). Given the long-term HAART-mediated control of viral
replication in this group, it is unlikely that the residual inflammation is directly attributable
to ongoing viral replication. Instead, a recent study suggests that elevated plasma levels of
sCD14 independently predict increased mortality in HAART-treated, HIV-infected
individuals (147). This is consistent with reports that, although chronic immune activation
and levels of LPS in plasma decrease after initiating HAART, they remain elevated for years
(52, 150–152) and that GI tract CD4 T cells do not return to healthy levels even after long-
term HAART (153–155). In individuals with limited recovery of peripheral blood CD4 T
cells after HAART, several studies have pointed to increased MT and immune activation as
playing a causative role (52, 150–152, 156–158). Given recent data demonstrating increased
mortality of HIV-infected individuals despite suppressed viral replication in HAART-treated
individuals, and given the clear associations between mortality and inflammation and the
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associations with persistent MT, investigators have proposed (147) that adjunctive therapies
aimed at reducing MT and/or its inflammatory consequences could improve the long-term
prognosis of HIV-infected individuals.

Hepatitis B and C Virus Infection
Infection with hepatitis B (HBV) or C (HCV) virus can also be associated with increased
systemic MT and immune activation. Infection with these hepatocytetropic viruses often
leads to significant liver damage, increased systemic inflammation, and ultimately, liver
fibrosis (159, 160). Consistent with decreased clearing of microbial products, Caradonna et
al. (159) described increased plasma LPS levels in HCV-infected individuals that decreased
after IFN-α treatment. That IFN-α treatment is associated with decreased MT and
inflammation in chronically HCV-infected individuals suggests that IFN-α itself is unlikely
to lead to damage to the structural barrier of the GI tract. Moreover, in patients with late-
stage HCV-related cirrhosis, investigators found a concomitant increase in intestinal
permeability and bacterial DNA within plasma (161). Finally, another study showed
increased levels of plasma LPS, damage to the GI tract epithelial barrier, and increased
sCD14 in patients with HBV or HCV infection (162). The levels of sCD14 in these patients
correlated with markers of hepatic inflammation and fibrosis and predicted clinical outcome
(162). The precise interplay between decreased microbial product clearing, systemic
inflammation, intestinal permeability, and liver fibrosis in HCV-infected individuals is
unclear, and further studies are certainly warranted.

Alcohol Use
Chronic alcohol use is also associated with significant inflammation and MT. There are two
broad sources of alcohol-related inducers of inflammation: those derived from alcohol-
damaged cells and those derived from the microbiota. Hypoxia, which results from alcohol
metabolism, is known to induce an inflammatory response, but the underlying mechanisms
remain unclear (163). However, MT has been extensively studied as a key inducer of
inflammation in alcohol-related conditions. Alcoholics are known to have significantly
elevated plasma LPS levels compared with healthy controls (164, 165). Indeed, heavy
alcohol consumption is associated with an increase in gut permeability and MT independent
of liver disease, and these effects are long lasting, with a two-week period of abstinence
required for intestinal permeability to return to healthy levels (166). Moreover, acute heavy
alcohol consumption is associated with a transient increase in plasma LPS in otherwise
healthy human subjects (167), and animal models show that acute enteral alcohol
administration to mice increases MT approximately fivefold within 30–90 min (168),
whereas daily binge feeding of alcohol in rats for four weeks induces MT 15-fold compared
with control animals (169).

The mechanisms underlying alcohol-induced MT are likely multifactorial. Recent studies
have demonstrated that alcohol and/or acetaldehyde can directly increase gut permeability
by induction of inducible nitric oxide synthase and NF-κB signaling, which, in turn,
modulates a differential expression of tight junction proteins (170). Furthermore, damage to
the liver could lead to decreased clearance of microbial products that translocate at steady
state. Finally, chronic alcohol exposure also alters the composition of the microbiota, which
results in bacterial overgrowth (171, 172). Consistent with MT playing a deleterious role in
inflammation associated with chronic alcoholism, treatment with probiotics in alcoholic
patients and animals with alcoholic liver disease resulted in decreased intestinal permeability
and reduced liver tissue injury (173).
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Fatty Liver Disease
A third liver-associated disease in which MT has been suggested to have a role is fatty liver
disease (FLD) (174). Nonalcoholic FLD develops in the setting of obesity, insulin
resistance, and high dietary carbohydrate intake (175). Although the specific etiology of
FLD remains somewhat obscure, some have suggested that fatty livers are less capable of
performing their normal functions (176). The decreased ability of the fatty liver to clear
antigens and harmful substances from the circulation eventually leads to the death of
hepatocytes, increased liver fibrosis, the accumulation of inflammatory cells within the liver,
and systemic MT (177). Subsequently, MT then leads to increased inflammation and further
liver damage, which perpetuates the cycle. Consistent with MT playing an important role in
FLD, treatment of ob−/ob− mice (a model of FLD) with the nonorally absorbed antibiotic
neomycin improves biological outcome (178).

Given the increased incidence of FLD in the setting of high dietary carbohydrate intake, it
follows that the microbiota might be altered in individuals with FLD. Indeed, in a rat model
of FLD, associated with total parenteral nutrition, the proliferation and overgrowth of certain
gram-negative enteric organisms ensues (179). Hence, dysbiosis may play a role in MT,
inflammation, decreased hepatic clearance, and increased liver fibrosis, which are associated
with FLD. Consistent with MT and dysbiosis playing a role in FLD, treatment of a mouse
model of FLD with probiotics leads to reduced hepatic fatty acid oxidation (180).

Pancreatitis
Acute pancreatitis has a mortality rate of approximately 10% with between 40% and 80% of
the mortality due to sepsis (181, 182). Given that most bacteria associated with sepsis in
pancreatitis are gram-negative enteric bacteria, it has been proposed that a series of events
occurs in which, due to the proximity of the pancreas to the GI tract, local inflammation
associated with acute pancreatitis results in damage to the structural barrier of the GI tract,
increased intestinal permeability, and MT (182). Increased intestinal permeability as soon as
72 h after the onset of symptoms and the degree of intestinal permeability is directly
associated with levels of LPS in the circulation (182). Moreover, increased MT has been
observed in mouse models of acute pancreatitis (183). A subsequent study described
increased intestinal permeability in individuals with severe compared with mild pancreatitis
(184). In those individuals with severe pancreatitis, increased damage to the structural
barrier of the GI tract is associated with increased plasma LPS and increased levels of
circulating proinflammatory cytokines (184). Thus, many have suggested that therapeutic
interventions for acute pancreatitis should also aim to decrease MT in affected individuals
(181–185).

Graft-versus-Host Disease
Given the rapid turnover of GI tract enterocytes, therapeutic interventions that aim to
decrease proliferation of rapidly dividing cells result in damage to the structural barrier of
the GI tract and systemic MT. Such is the case during the treatment of cancer with
chemotherapeutic agents. Indeed, the MT that results from the conditioning regimen used
for myeloablation before allogenic hematopoetic stem cell transplantation is thought to
contribute to graft-versus-host disease (GVHD) (186). A role for LPS in the graft-versus-
host response has been suggested by clinical studies aimed at decontamination of gram-
negative bacteria from the GI tract during allogeneic stem cell transplantation, which has
been shown to reduce GVHD (187), and the extent of such decontamination has been
demonstrated to be an important predictor of GVHD severity (188). Notably, mutations in
TLR4, which are associated with macrophage hyporesponsiveness to LPS within either the
host or the donor, are associated with decreased incidence of GVHD (189). Similar results
were seen in mouse models of GVHD when lymphocyte-depleted mice were reconstituted
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with allogenic stem cells from mice with mutations in TLR4 (190) or from CD14 knockout
mice (191). Given the transient nature of damage to the GI tract after myeloablative
chemotherapy, the role for MT in driving GVHD may be circumvented therapeutically, and
antibiotics are one of several options. An alternative approach to limiting MT-induced
immune activation is the administration of antibodies directed against microbial products.
Indeed, infusion of a polyclonal antiserum against Escherichia coli as prophylaxis for acute
GVHD in a prospective, placebo-controlled trial reduced overall GVHD from 63% to 42%
and was found to be particularly efficacious in the subset of patients with severe GVHD
(192).

THERAPEUTIC INTERVENTIONS TO DECREASE MT
As discussed, there are many levels at which both the host and microbiota minimize
systemic immune activation from MT. Therefore, therapeutic interventions can be targeted
against individual mechanisms underlying systemic MT. Such therapeutic interventions can
be divided into four general classes: alteration of the composition of the microbiota,
enhanced clearance of translocated microbial products, repair of the enterocyte barrier, and
reduction of local inflammation.

Antibiotics
Possibly the most obvious therapeutic approach that might curb the deleterious effects of
MT is nonabsorbed oral antibiotics. Indeed, use of a gut-sterilizing antibiotic regimen prior
to abdominal surgery significantly decreases the incidence of subsequent wound infection
and septicemia (193). The unique properties of rifaximin, a broad spectrum antibiotic that
has low systemic absorption and high fecal concentrations, might, therefore, make it an ideal
agent for the treatment of diseases associated with MT. Indeed, although rifaximin appears
promising as a treatment for IBD, clinical trials to date have lacked sufficient power to
assess its efficacy. In one multicenter, randomized, double-blind, placebo-controlled clinical
trial, fewer treatment failures were seen in patients treated with rifaximin (n = 83). However,
in a separate study there were no significant differences in clinical remission or
improvement in active CD in patients receiving rifaximin compared with placebo (194).

Additionally, rifaximin may serve as a steroid-sparing agent for UC. In an open-label study
of 30 patients receiving maintenance mesalamine in which rifaximin was used in lieu of
steroids, approximately 77% of patients experienced clinical resolution (195). However, in
another trial no significant clinical improvement with rifaximin compared with placebo was
shown for patients with moderate-to-severe steroid-refractory UC (196). The disparate
results from these clinical trials may have several explanations: nonoptimal rifaximin doses
were used, the GI tract was unable to be sterilized for long periods of time, or there were
differences in rifaximin-mediated alterations in the composition of the microbiota.

However, although decreasing the GI tract bacterial burden may improve the prognosis of
individuals suffering from diseases associated with MT, as discussed above, the microbiota
generally survives in a symbiotic relationship with the host. Although antibiotic use may
decrease immune activation and improve some of the symptoms associated with MT-related
diseases, long-term antibiotic use may not be the best therapeutic approach, as it results in
outgrowth of antibiotic-resistant bacteria, decreased integrity of the structural barrier of the
GI tract, and decreased bioavailability of microbiota-derived nutrients.

Probiotics
Given the ample data demonstrating that alterations to the composition of the microbiota
often accompany diseases that are characterized by systemic MT and the described effects of
probiotic organisms in maintaining the structural barrier of the GI tract, several studies have
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investigated the potential therapeutic benefit of promoting the growth of probiotic
organisms. This goal has been pursued via direct oral administration of live probiotic
organisms. Initially, studies were aimed at demonstrating proof of concept that orally
administered live bacteria could survive transit through the length of the GI tract (197, 198).
Although many bacterial species have been classified as probiotic, clinical trials showing
any benefit to patients have been restricted to two mixtures of probiotic bacterial species:
VSL#3 and Lactobacillus rhamnosus GG (207–210). VSL#3—a combination of four strains
of Lactobacilli, three strains of Bifidobacteria, and one strain of Streptococcus thermophillus
—was shown to induce remission in 53% of treated individuals with UC (199). Moreover, a
recent study demonstrated the safety and efficacy of VSL#3 in reducing symptoms of mild
to moderate colitis with improved integrity of the structural barrier of the GI tract (200). The
administration of Lactobacillus rhamnosus GG has shown clinical benefit in individuals with
IBD (201, 202). Furthermore, a recent study described significantly increased reconstitution
of peripheral blood CD4 T cells in chronically HIV-infected individuals treated with
conventional antiretroviral therapy and L. rhamnosus (203). However, the potential effects
of probiotics on improvement of the GI tract or on decreased immune activation were not
studied. Finally, in animal models of FLD, probiotic supplementation reduced hepatic fatty
acid oxidation (180). However, though large-scale placebo-controlled human trials are
lacking, two small-scale human trials of probiotics for liver disease have been completed,
and levels of liver enzymes were decreased among patients receiving probiotics (173, 204).

Antibodies Against Microbial Products
A second therapeutic approach to decreasing systemic MT is the administration of agents
that clear microbial products from the circulation. Such compounds are generally
monoclonal or polyclonal antibodies directed against microbial products. Historically,
design of antimicrobial antigen immunoglobulin therapy was based upon preliminary data
suggesting that mortality associated with sepsis was reduced by passive immunization with
sera from individuals vaccinated with a mutant strain of Escherichia coli (205). Based on
these findings, researchers developed several monoclonal antibodies directed against LPS
for clinical trials of sepsis. The first were HA-1A and E5. These monoclonal antibodies and
subsequently developed anti-LPS monoclonals have had only limited success in reducing
mortality (reviewed in 206, 207). Because of the limited benefit afforded to septic
individuals by administration of antibodies against microbial products, investigators have
given little effort to studying such therapeutic approaches in settings of systemic MT.
However, oral administration of a spray-dried, purified immunoglobulin protein isolate has
been shown to decrease systemic inflammatory effects associated with MT in certain animal
models (208–210).

IL-22
Several therapeutic interventions aim to improve enterocyte homeostasis by the
administration of cytokines such as IL-22, which is critical for maintenance of the structural
barrier, particularly in the event of tissue damage (77, 85, 90, 211). Using a gene therapy
approach, Sugimoto found that IL-22 administration could ameliorate intestinal
inflammation in a mouse model of UC (212). This improvement was thought to be
secondary to IL-22-enhanced mucus production and goblet cell replacement and restitution
of the epithelial surface (212). Importantly, IL-22 receptor is also expressed by other
epithelial cells, including those in the liver, and recombinant IL-22 administration resulted
in decreased liver damage in a mouse model of hepatitis (213).

Glucagon-Like Peptide
Another epithelial cell growth factor which has been suggested as a therapeutic intervention
to improve the structural integrity of the GI tract is glucagon-like peptide (GLP). GLP-2 is a
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33 amino acid peptide produced with GLP-1 from the proglucagon gene, which encodes
glucagon in the pancreas but undergoes specific posttranslational processing in the
enteroendocrine L cells of the small intestine to produce the small GLP molecules. GLP-1
and -2 are released by L cells primarily in response to direct contact with luminal nutrients,
especially long-chain fatty acids in the terminal ileum (214). Therapeutically, GLP-2 has
been used extensively for treatment of short bowel syndrome with some success (reviewed
in 215). Subsequently, certain GLP-2 analogs were developed and have been used to
enhance the structural barrier of the GI tract in individuals with severe UC who were more
likely to enter remission compared with placebo-treated individuals (216). Finally, GLP-2-
treated individuals with CD had significantly improved enterocyte function compared with
placebo-treated individuals (216).

CONCLUDING REMARKS
When considering the possible ramifications of harboring such an enormous bacterial
burden within the GI tract, it seems reasonable to propose a few conclusions: (a) the
interactions between the microbiota and host are generally symbiotic; (b) dysbiosis can both
cause and result from systemic disease; (c) although humans have evolved multiple
mechanisms to restrict the microbiota to the lumen of the GI tract, varying degrees of MT
are a consistent feature in healthy humans; and (d ) chronic MT and consequent immune
activation are a feature of many diseases. Indeed, multiple lines of evidence are consistent
with each of these conclusions. Given the increasingly large number of studies that have
demonstrated or proposed a role for MT in many pathologic processes in humans, it is clear
that therapeutic interventions that mitigate MT and its effects on systemic immune
activation could be of great clinical benefit to many individuals. However, it is also clear
that multiple mechanisms can underlie an inability to contain microbial products completely
within the lumen of the GI tract. Thus, the development of novel interventions that target
MT will require a more detailed understanding of the molecular mechanisms that damage
the integrity of the GI tract barrier, activate local immune responses, decrease clearance of
translocated microbial products, activate systemic MT and immune responses, and perturb
the composition of the microbiota.
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