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Abstract  21 

During the last decades research on the function of volatile organic compounds focused 22 

primarily on the interactions between plants and insects. However, microorganisms can also 23 

release a plethora of volatiles and it appears that microbial volatile organic compounds 24 

(mVOCs) can play an important role in intra- and inter-kingdom interactions. So far, most 25 

studies are focused on aboveground volatile-mediated interactions and much less information 26 

is available about the function of volatiles belowground. This minireview summarizes the 27 

current knowledge on the biological functions of mVOCs with the focus on mVOCs-mediated 28 

interactions belowground. We pinpointed mVOCs involved in microbe-microbe and microbe-29 

plant interactions, and highlighted the ecological importance of microbial terpenes as a largely 30 

underexplored group of mVOCs. We indicated challenges in studying belowground mVOCs-31 

mediated interactions and opportunities for further studies and practical applications.  32 
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Introduction  1 

Many secondary metabolites have been reported to be involved in microbial interactions. One 2 

group of secondary metabolites produced by soil and plant-associated microorganisms, but 3 

largely unexplored to date, are the volatile organic compounds (VOCs). VOCs are typically 4 

small, odorous compounds (< C15) with low molecular mass (< 300 Da), high vapour pressure, 5 

low boiling point, and a lipophilic moiety. These properties facilitate evaporation and diffusion 6 

aboveground and belowground through gas- and water- filled pores in soil and rhizosphere 7 

environments (Vespermann et al., 2007, Insam and Seewald 2010, Effmert et al., 2012). 8 

Microbial VOCs (mVOCs) belong to different chemical classes including alkenes, alcohols, 9 

ketones, benzenoids, pyrazines, sulfides and terpenes (Schulz and Dickschat 2007, Lemfack et 10 

al., 2014, Kanchiswamy et al., 2015, Schmidt et al., 2015, Lemfack et al., 2017). A recent meta-11 

analysis by Schenkel et al., (2015) provided a comprehensive overview of VOCs derived from 12 

soil-borne microbes.  13 

The production of mVOCs in soil is influenced by various factors including the growth stage 14 

of the microbes, nutrient availability, temperature, oxygen availability, pH, and soil moisture 15 

content (Wheatley 2002, Insam and Seewald 2010). Several recent studies reported that the 16 

production of certain mVOCs can be induced or suppressed during inter-specific microbial 17 

interactions (Garbeva et al., 2014a, Schulz-Bohm et al., 2015, Tyc et al., 2015, Piechulla et al., 18 

2017). mVOCs were often considered to be by-products of primary metabolism, but recent 19 

findings revealed that many mVOCs demonstrate biological activity (Schmidt et al., 2015, Tyc 20 

et al., 2017a). Furthermore, in bacteria, the production of certain mVOCs is dependent on the 21 

GacS/GacA two-component regulatory system (Cheng et al., 2016, Ossowicki et al., 2017). 22 

These findings clearly disagree with the opinion that mVOCs are just waste products. 23 

While soluble metabolites are often responsible for short distance interactions, VOCs are 24 

considered to be long-distance messengers (Tyc et al., 2017b, Westhoff et al., 2017). There are 25 

many types of microbial interactions occurring belowground such as bacteria–bacteria, fungi–26 

fungi, fungi-bacteria, bacteria-protists, fungi–plant, bacteria–plant, and bacteria–fungi–plant 27 

interactions. However, most studies addressing belowground VOCs-mediated interactions are 28 

focused mainly on the root-emitted volatiles (recently reviewed by Delory et al., 2016). 29 

The knowledge we have gained from research conducted over the last few years reveals that 30 

mVOCs can have both beneficial and harmful effects on other organisms (Effmert et al., 2012, 31 

Schmidt et al., 2015). mVOCs can provide organisms with rapid and precise ways to recognize 32 

neighbouring organisms (both friends and foe) and to launch proper responses. 33 
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The aim of this review is to summarize the current knowledge concerning the role of mVOCs 1 

in intra- and inter-kingdom interactions, to pinpoint mVOCs (e.g. terpenes) involved in 2 

microbe-microbe and microbe-plant interactions, to indicate challenges in studying 3 

belowground mVOCs-mediated interactions and opportunities for further studies and practical 4 

applications.  5 

 6 

VOCs in microbe-microbe interaction  7 

 Bacteria-bacteria  8 

Bacterial VOCs can have direct antagonistic effects against other bacteria. For instance, the 9 

sesquiterpene albaflavenone produced by Streptomyces albidoflavus revealed activity against 10 

Bacillus subtilis (Gürtler et al., 1994) and the emission of dimethyl disulphide by two 11 

rhizospheric bacteria, Pseudomonas fluorescens and Serratia plymuthica, showed 12 

bacteriostatic effects against two plant bacterial pathogens Agrobacterium tumefaciens and 13 

Agrobacterium vitis (Dandurishvili et al., 2011). Pseudomonas fluorescens WR-1 produces 14 

volatiles such as benzothiazole and 1-methyl naphthalene with bacteriostatic effects against the 15 

tomato pathogen Ralstonia solanacearum (Raza et al., 2016a). In fact, many species of 16 

Pseudomonas and Bacillus that are used as biocontrol agents against plant pathogens, have 17 

been reported to produce VOCs with antibacterial activity (Raza et al., 2016a, Raza et al., 18 

2016b, Raza et al., 2016c, Xie et al., 2016, Rajer et al., 2017, Tahir et al., 2017a, Tahir et al., 19 

2017b). For instance, a recent study revealed that VOCs produced by Bacillus spp., including 20 

benzaldehyde, 1,2-benzisothiazol-3(2 H)-one and 1,3-butadiene, had strong inhibitory activity 21 

against R. solanacearum, the causal agent of bacterial wilt disease (Tahir et al., 2017a). The 22 

mVOCs altered the transcriptional expression levels of several genes involved in motility and 23 

pathogenicity (e.g. global virulence regulator PhcA, type III secretion system, and extracellular 24 

polysaccharide [EPS] production) and induced systemic resistance by plants, which resulted in 25 

a decrease of wilt disease.  26 

Several reports describe the effect of VOCs in bacterial virulence. For instance, 2,3 butanediol 27 

and acetoin are required for full virulence in Pectobacterium carotovorum. The same 28 

compounds can increase the production of virulence factors in Pseudomonas aeruginosa 29 

(Audrain et al., 2015).  30 

In contrast, VOCs produced by some bacteria can also have positive effects on the growth of 31 

other neighbouring bacteria in the rhizosphere. For instance, VOCs from Collimonas pratensis 32 

and S. plymuthica are able to induce the growth of P. fluorescens Pf0-1 (Garbeva et al., 2014a). 33 

These VOCs induced expression of genes involved in motility in P. fluorescens Pf0-1 and 34 
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provoked an increase in the production of secondary metabolites with antibacterial activity 1 

against Bacillus (Garbeva et al., 2014a). This suggests that C. pratensis and S. plymuthica may 2 

be attracting and promoting the growth of P. fluorescens in a collaborative attempt to increase 3 

their chances against different bacterial competitors or soil fungal pathogens. Another example 4 

of the growth-promoting effect of VOCs was reported recently by Schulz-Bohm et al. (2015) 5 

which showed that VOCs released by mixtures of root exudate-consuming bacteria stimulated 6 

the activity and growth of distant nutrient-limited bacteria. 7 

In addition to exerting antagonistic effects towards other bacteria, VOCs can also modify the 8 

behaviour of other bacteria and modulate their resistance to antibiotics. Bacterial volatiles such 9 

as ammonia, trimethylamine, hydrogen sulfide, nitric oxide, and 2-amino-acetophenone can 10 

alter biofilm formation or dispersal or affect motility of bacteria (Audrain et al., 2015, Raza et 11 

al., 2016a). Bacteria often make use of their motility to move to other areas with more resources 12 

and/or less competitors. In Streptomyces venezuelae, a new mode of development, so-called 13 

exploration, has been recently discovered that allows non-motile bacteria to access regions with 14 

more nutrients (Jones et al., 2017). S. venezuelae is able to produce hydrophilic fast growing 15 

non-branching vegetative hyphae, triggered by glucose depletion and a rise in pH, to 16 

presumably escape from poor nutrient areas. Interestingly, explorer cells can release signals for 17 

long distance communication with other members of the species to induce their exploratory 18 

growth. One of these signals is trimethylamine, which works not only as a signal to 19 

communicate with distantly located Streptomyces and induce exploratory growth but also 20 

displays antibacterial activity against B. subtilis and Micrococcus luteus, probably by rising the 21 

pH of the medium (Jones et al., 2017). 22 

 23 

 Fungi-bacteria  24 

Fungal VOCs can play an important role in long distance fungal-bacterial interactions and can 25 

lead to different phenotypical responses in the interacting partners. For example, VOCs emitted 26 

by Trichoderma atroviride increased the expression of a biocontrol gene (phlA) in 27 

P. fluorescens that encodes the biosynthesis of 2,4-diacetylphloroglucinol (Lutz et al., 2004). 28 

A few recent studies demonstrated that the growth of some bacterial species can be suppressed 29 

by fungal VOCs (Werner et al., 2016) such as the VOCs that exhibit inhibitory effects on 30 

Bacillus cereus and Bacillus subtilis produced by the oyster mushroom Pleurotus ostreatus 31 

(Pauliuc and Botău 2013).  32 

Recently, Schmidt et al., (2015) screened the phenotypic responses of soil bacterial strains to 33 

volatiles emitted by several fungal and oomycetal soil strains under different nutrient 34 
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conditions during different growth stages. Out of the phenotypical responses tested such as 1 

growth alteration, antimicrobial activity, biofilm formation or motility, motility of bacteria 2 

(both swimming and swarming) was significantly positively or negatively affected by fungal 3 

and oomycetal VOCs. This finding could, therefore, reflect a potential strategy employed by 4 

the fungus to attract mutualistic bacteria towards itself and to repel competitors by 5 

manipulating their motility through the use of VOCs (Piechulla et al., 2017). Transcriptomics 6 

and proteomics analyses of Serratia plymuthica PRI-2C exposed to VOCs emitted by the 7 

fungal pathogen Fusarium culmorum, showed that S. plymuthica PRI-2C responded to the 8 

fungal VOCs with changes in gene and protein expression related to motility, signal 9 

transduction, energy metabolism, cell envelope biogenesis, and secondary metabolite 10 

production (Schmidt et al., 2017). The metabolomic analyses of S. plymuthica PRI-2C exposed 11 

to the fungal VOCs, the gene cluster comparison, and the heterologous co-expression of a 12 

terpene synthase and a methyltransferase revealed the production of the unusual terpene named 13 

sodorifen (Kai et al., 2010, Von Reuß et al., 2010) in response to fungal VOCs. These findings 14 

support the suggested importance of VOCs (and in particular terpenes) as signalling molecules 15 

in fungal–bacterial interactions. 16 

Many soil bacteria can produce VOCs with antifungal effects and thus contribute to the 17 

phenomenon known as soil fungistasis where fungal propagules are restricted in their ability to 18 

grow or germinate (Garbeva et al., 2011). Recently, Cordovez et al. (2015) revealed that VOCs 19 

produced by Streptomyces spp. exhibit antifungal properties against Rhizoctonia solani and 20 

may contribute to plant disease suppressiveness. Ossowicki et al. (2017) showed that VOCs 21 

from the tomato rhizosphere isolate Pseudomonas donghuensis P482 have strong antifungal 22 

and anti-oomycete activity which suggests that the antagonistic capabilities of this strain 23 

against plant pathogens are due to their volatile potential (Ossowicki et al., 2017). This effect 24 

of bacterial VOCs against oomycetes is not an isolated case and other Pseudomonas strains 25 

have been reported to have anti-oomycete activities (De Vrieze et al., 2015, Hunziker et al., 26 

2015). In a recent report, VOCs produced by several Lysobacter strains growing in a protein-27 

rich medium showed anti-oomycete activity whereas non-antagonistic VOCs were produced 28 

by these strains when grown on a sugar-rich medium. This indicates that the production of 29 

volatiles is highly dependent on growth conditions and nutrient availability (Lazazzara et al., 30 

2017).  31 

 32 

 Fungi-fungi 33 
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The 1-octen-3-ol, one of the most prominent fungal VOC, known as the mushroom smell, is 1 

produced by a wide range of filamentous fungi and can function as a development signal among 2 

fungi (Miyamoto et al., 2014). The same compound was described to function in Penibacillum 3 

paneum as a self-inhibitor signal in spore germination (Chitarra et al., 2004). As developmental 4 

signals during population establishment, certain fungal VOCs act in a concentration-dependent 5 

manner to regulate conspecific mycelial growth and spore germination (Nemčovič et al., 2008, 6 

Stoppacher et al., 2010). 7 

Fungal VOCs can have inhibitory effects and drive antagonistic interactions among fungi. For 8 

example, the endophytic fungi Muscodor albus and Oxysporus latemarginatus can strongly 9 

inhibit the growth of several plant pathogenic fungi, including Botrytis cinerea and Rhizoctonia 10 

solani (Strobel et al., 2001). VOCs emitted by Trichoderma spp. have a strong effect against 11 

plant pathogenic fungi such as Fusarium oxysporum, Rhizoctonia solani, Sclerotium rolfsii, 12 

Sclerotinia sclerotiorum, and Alternaria brassicicola (Amin et al., 2010). Similarly, VOCs 13 

such as 5-hexenoic acid, limonene, octanoic acid and 3,4-2H-dihydropyran produced by the 14 

non-pathogenic fungus F. oxysporum CanR-46 could inhibit mycelial growth of 14 fungal 15 

species including the pathogenic Verticillium dahlia (Zhang et al., 2015). Recently, a proteomic 16 

study demonstrated that fungal VOCs can interfere with essential metabolic pathways to 17 

prevent fungal growth (Fialho et al., 2016).  18 

Some fungal species can detoxify the antifungal compounds produced by their microbial 19 

competitors. For example, Fusarium graminearum can detoxify the toxic compound 6-pentyl-20 

alpha-pyrone, emitted by Trichoderma harzianum (Cooney et al., 2001). Fungal VOCs can be 21 

important carbon sources for fungi colonizing carbon-limited environments (Cale et al., 2016). 22 

Conversely, for fungi colonizing a more carbon-rich environment, VOCs may act, in a 23 

concentration-dependent manner, as semio-chemicals to mediate antagonistic and beneficial 24 

interactions between fungi. 25 

 26 

 Protists-bacteria 27 

A very diverse and abundant group of soil microorganisms are protists (Protozoa) (Fierer and 28 

Jackson 2006, Geisen et al., 2015). Due to their grazing activities, protists play an important 29 

role in the soil food web and significantly affect carbon allocation and nutrient-cycling in the 30 

soil-plant-interphase (Geisen et al., 2016). Most soil protists are known to be key predators of 31 

bacteria and can shape bacterial communities by selective feeding (Griffiths et al., 1999, 32 

Bonkowski and Brandt 2002, Rosenberg et al., 2009, Glücksman et al., 2010). Reaching 33 

suitable prey is very energy consuming (Jousset 2012). Thus, sensing their prey over long 34 
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distances in the porous soil matrix would be very beneficial for protists. A recent study by 1 

Schulz-Bohm et al. (2017) revealed that volatile organic compounds can play a key role in 2 

long-distance bacterial-protists interactions. By testing various volatile-mediated interactions 3 

between phylogenetically different soil bacteria and protists and comparing those with direct 4 

trophic interactions, they demonstrated that specific bacterial volatiles can provide early 5 

information about suitable prey. In particular, it was shown that terpenes such as β-linalool, β-6 

pinene, germacrene D-4-ol or δ-cadinene produced by Collimonas pratensis Ter91 (Song et 7 

al., 2015b) can stimulate protist activity and motility suggesting that terpenes can be key 8 

components in VOCs-mediated communication between protists and bacteria (Schulz-Bohm 9 

et al., 2017). Interestingly, soil protists such as Dictyostelium discoideum (Chen et al., 2016) 10 

produce volatile terpenes. These terpenes might be involved in defence mechanisms, for 11 

example, to repel nematode predators. Similarly, it was shown that soil bacteria can produce 12 

specific volatiles to repel protist predators (Kai et al., 2009, Schulz-Bohm et al., 2017).  13 

Besides bacterivorous protists, obligate and facultative mycophageous (fungus grazing) 14 

protists are common soil inhabitants (Geisen 2016). Mycophageous protists feed mostly on 15 

yeast and fungal spores while some specialists are able to graze directly on the hyphae of 16 

filamentous fungi (Geisen et al., 2016). It is well known that soil fungi such as yeast produce 17 

a wide set of volatile compounds involved in various belowground interactions (Effmert et al., 18 

2012, Werner et al., 2016). Thus, although not demonstrated yet, it is plausible that fungal 19 

volatiles might play an important role in below-ground communication between soil fungi and 20 

protists, as well. 21 

 22 

VOCs in microbe-plant interactions  23 

In recent years, evidence supporting the idea that plants respond strongly to mVOCs has grown. 24 

Most of the research carried out so far has investigated the impact of microbial VOCs on the 25 

model plant Arabidopsis thaliana. This has revealed that, without physical contact, 26 

microorganisms are able to drastically alter plant root system development, plant physiology, 27 

hormonal pathways and biomass production (Ryu et al., 2004, Blom et al., 2011, Wenke et al., 28 

2012, Bailly et al., 2014, Bitas et al., 2015, Ditengou et al., 2015, Li et al., 2016, Piechulla et 29 

al., 2017). mVOCs can also function as a direct source of nutrients for plants (Meldau et al., 30 

2013), induce resistance to pathogens in plants (D’Alessandro et al., 2014, Kottb et al., 2015, 31 

Song et al., 2015b, Wintermans et al., 2016), affect plant secondary metabolite production 32 

(Santoro et al., 2011), directly inhibit plant pathogens (Kai et al., 2009, Garbeva et al., 2014b, 33 

De Vrieze et al., 2015, Kottb et al., 2015) and induce soil fungistasis and suppressiveness 34 
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(Garbeva et al., 2011, Van Agtmaal et al., 2015). Moreover, one single mVOC can show 1 

various functions, such as dimethyl disulfide, which improves plant growth by enhancing the 2 

availability of reduced sulphur (Meldau et al., 2013). It also protects tobacco and corn plants 3 

against Botrytis cinerea and Cochliobolus heterostrophus by directly inhibiting pathogens and 4 

inducing systemic resistance in plants (Huang et al., 2012a). Likewise, a characteristic 5 

compound of Trichoderma asperellum, 6-pentyl-pyrone, can increase plant defence reactions 6 

and at the same time decrease B. cinerea and Alternaria alternata sporulation (Kottb et al., 7 

2015).  8 

Many independent studies revealed that mVOCs emitted by beneficial soil microorganisms can 9 

affect plant growth but only few studies focused on how VOCs produced by soil-borne plant 10 

pathogens affect plant growth and development. These studies suggest that mVOCs from plant 11 

pathogens may modulate the trade-off between plant growth, development and defence. Bitas 12 

et al., (2015) showed that VOCs emitted by pathogenic F. oxysporum promoted the growth of 13 

A. thaliana and Nicotiana tabacum and affected auxin transport and signalling. VOCs emitted 14 

by the pathogen Alternaria alternaria enhanced growth, early flowering and photosynthesis 15 

rates of Arabidopsis, maize and pepper by affecting the levels of plastidic cytocinin (Sanchez-16 

Lopez et al., 2016). A more recent study showed that the soil-borne pathogen Rhizoctonia 17 

solani produced an array of mVOCs that promote plant growth, accelerate development, 18 

change plant VOCs emission and reduce insect resistance (Cordovez et al., 2017). This must 19 

be a successful strategy for the pathogenic fungi since with increased root biomass and 20 

stimulation of lateral root formation there is a greater surface area for fungal colonization and 21 

infection.  22 

When analysing mVOCs effects on plant growth, it is important to take into account, that 23 

microorganisms can produce high amounts of CO2 that can promote plant growth (Kai and 24 

Piechulla 2009, Piechulla 2017). Hence, a good experimental setup with appropriate controls 25 

are required to avoid artefacts in the results (Kai et al., 2016, Piechulla 2017). 26 

Alternatively, plants are able to mediate the belowground plant-microbe interactions via root-27 

emitted VOCs (Wenke et al., 2010). Root-derived VOCs may serve multiple roles such as 28 

carbon sources, defence metabolites and chemo-attractants (Van Dam et al., 2016). 29 

Rhizobacteria such as Pseudomonas fluorescens and Alcaligenes xylosoxidans have been 30 

shown to metabolize α- pinene as their sole carbon source (Kleinheinz et al., 1999). Del Giudice 31 

et al. (2008) also reported that bacteria associated with the roots of vetiver grass (Vetiveria 32 

zizanioides) use sesquiterpenes as a carbon source. Undoubtedly, plants and soil 33 

microorganisms are engaged via VOCs in long-distance interactions (Van Dam et al., 2016). 34 
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However, so far, limited knowledge exists concerning the role of plant VOCs in attracting 1 

beneficial organisms and how plant-associated microorganisms affect the quantity and quality 2 

of plant volatile emission. Only recently, using a glass olfactometer system, the attraction of 3 

distant soil bacteria by VOCs emitted by plant roots was revealed (Schulz-Bohm et al., 4 

accepted). Olfactometer systems have been used successfully to study aboveground plant-5 

herbivores interactions (Ballhorn and Kautz 2013) or belowground plant-nematode interactions 6 

(Rasmann et al., 2005). However, this is the first case to apply an olfactometer to study plant-7 

microbe interactions. Moreover, the same study revealed that upon fungal infection, the blend 8 

of root VOCs changed and specific bacteria with antifungal properties were attracted (Schulz-9 

Bohm et al., accepted). 10 

 11 

mVOCs-mediated dialogue 12 

Several reports describe the chemical dialogue between microbes, plants and other organisms 13 

by the exchange of soluble compounds (Badri et al., 2009, Lira et al., 2015, Song et al., 2015a, 14 

Liu et al., 2016). Most of the studies reporting mVOCs-mediated communication belowground 15 

focus on the uni-directional responses and only a few studies reported on bi-directional  16 

mVOCs-mediated interactions. For instance, the importance of mVOCs in the dialogue 17 

between the fungal plant pathogen Verticillium longisporum and its bacterial antagonist 18 

Paenibacillus polymyxa was recently revealed in both in vitro and in planta experiments 19 

(Rybakova et al., 2017). Both microorganisms responded to one another’s VOCs and this 20 

specific mVOCs-mediated interaction resulted in the inhibition of cellular metabolism and 21 

growth reduction of the fungal pathogen.  22 

A VOCs-mediated dialogue between bacteria and fungi was also reported by Spraker et al. 23 

(2014) where VOCs of the fungal plant pathogen Aspergillus flavus reduced the production of 24 

the major virulence factor EPS of the bacterial plant pathogen Ralstonia solanacearum. In 25 

parallel, A. flavus responded to VOCs of R. solanacearum by reducing conidia production and 26 

increasing aflatoxin production. 27 

 28 

Conclusions and outlook  29 

Over the last decade, our understanding of the chemical complexity of mVOCs produced by 30 

many different soil microorganisms has grown. It is clear that these small and odorous 31 

molecules can modify the behaviour and promote or inhibit growth of neighbouring organisms 32 

(Figure 1).  33 
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Most existing studies on mVOCs are focused on describing the uni-directional effect of 1 

mVOCs produced by a single organism and the responses of the organisms perceiving them 2 

without considering mVOCs-mediated dialogue and the bi-directional responses to one 3 

another. Furthermore, microbial interactions taking place belowground are far more complex 4 

than single one-to one interactions and involve more organisms, which can significantly affect 5 

mVOCs emission. For example, fungal-associated bacteria have been shown to affect the 6 

production of VOCs in fungi (Schulz-Bohm et al., 2015, Splivallo et al., 2015) and in addition, 7 

they can affect the fungal plant-pathogenicity and repress the expression of fungal virulence 8 

genes (Minerdi et al., 2009). Therefore, a holistic approach considering the effect of mVOCs 9 

on belowground soil community is needed. For instance, using a metagenomics approach Yuan 10 

et al., (2017) revealed that mVOCs could alter the composition of soil bacterial and fungal 11 

communities and significantly increased the relative abundance of Proteobacteria, 12 

Bacterioidetes, Firmicutes and Ascomycota. Furthermore, mVOCs influenced genes involved 13 

in important soil functions such as N-fixation (nifH), nitrification (amoA), denitrification (nirS) 14 

and antibiotic production (NRPS) (Yuan et al., 2017). 15 

From the current scientific literature, it is clear that the most studied belowground mVOCs-16 

mediated interactions are the interactions between bacteria, fungi and plants (Figure 1). There 17 

is a lack of knowledge relating to the emission of VOCs by protists, archaea or other 18 

rhizosphere organisms, such as nematodes or earthworms, indicating that these groups are 19 

currently understudied with regards to this aspect.  20 

Several VOCs are commonly produced and emitted by both plant roots, fungi, bacteria and 21 

protists and it is possible that these compounds act as a ‘lingua franca’ for intra- and inter-22 

kingdom communication between these organisms. Let us take as an example only one 23 

chemical class, the terpenes. Terpenes are the largest and most diverse class of metabolites 24 

known to date. They are best known to humans as plants metabolites. However, recent studies 25 

revealed that terpenes can be produced by all kingdoms of life including prokaryotes 26 

(Takamatsu et al., 2011, Yamada et al., 2012, Song et al., 2015b, Yamada et al., 2015, Chen et 27 

al., 2016).  Recently, Yamada et al., (2015) described a powerful bioinformatics method based 28 

on the use of Hidden Markov Models (HMMs) and Protein Families Database (PFAM) search 29 

that has allowed the discovery of terpene synthases of bacterial origin and showed that 30 

phylogenetically different bacteria can be a rich source of terpenes. Both the number, the wide 31 

distribution, and the structural diversity of terpenes provide enormous potential for mediating 32 

significant chemical interactions and communication belowground. Examples of terpene- 33 

mediated microbial interactions are presented in Figure 2 and Table 1, indicating the ecological 34 
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importance of terpenes in interactions between soil micro- and macro-organisms, including 1 

plant roots.  2 

Despite the rapid increasing numbers of studies showing the importance of mVOCs in the long-3 

distance belowground chemical interactions, we still do not know exactly how VOCs are 4 

recognized and perceived. VOCs receptors or other perception mechanisms have not been 5 

identified in any of the described cases. The big challenge is to determine whether VOCs are 6 

internalized and transduced by receptor-mediated processes, whether they interact with the cell 7 

membrane to initiate signal transduction cascades or whether they are simply taken up by the 8 

cell and metabolized (Widhalm et al., 2015, Adebesin et al., 2017, Tissier et al., 2017). For 9 

plants, the current view is that due to their lipophilic nature, VOCs such as mono- and 10 

sesquiterpenes may interfere with membrane structures, thereby causing depolarization of the 11 

membranes and triggering Ca2+-signalling in plants (Maffei et al., 2001, Heil and Land 2014). 12 

For further deciphering of mVOC-mediated microbe-microbe interactions, the mVOCs 13 

microbial perception mechanism needs to be elucidated. The application of methods for 14 

screening of mutant strains may be useful for that purpose, to identify microbial genes and 15 

proteins that are required for VOCs perception.  16 

Another big challenge is to determine what concentrations of mVOCs are produced in soil and 17 

at what distances these mVOCs are eliciting a biological response in other organisms. There is 18 

the possibility that, similar to the roles of antibiotics in nature (Davies et al., 2006, Yim et al., 19 

2006, Romero et al., 2011), mVOCs could have concentration-dependent function either as 20 

weapons in intercellular chemical warfare or as signalling compounds when they are present 21 

in low concentrations. 22 

Concerning the implementations of mVOCs, our knowledge on the potential use of those 23 

compounds in large-scale agriculture and horticulture is still limited. In agriculture systems, 24 

mVOCs have to be applied under open-field conditions, which are very different from the in 25 

vitro conditions currently used in most studies. There are very few studies assessing the effects 26 

of mVOCs application under open conditions and they have been summarized in a recent 27 

review from Chung et al., (2016). Since it was discovered that the 2,3-butanediol elicited plant 28 

growth and induced systemic resistance (Ryu et al., 2003, Ryu et al., 2004), several studies 29 

have applied this compound or the producing strains to the soil of open fields to test its effects 30 

under agricultural conditions and have revealed promising results (Velivelli et al., 2015). 31 

Dimethyl disulfide, frequently emitted by many bacteria, is another compound used in recent 32 

years in the novel soil fumigant PALADIN® that targets nematodes and soil-borne pathogens. 33 

However, the research concerning the application of other mVOCs in agriculture is still in its 34 
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infancy. We now live in a time in which the old methods of using chemicals to protect crops 1 

need to be replaced with and, in some cases, complemented by green solutions. The traditional 2 

harmful synthetic fungicides currently used could be replaced with the so far under-explored 3 

and unique mVOCs for which significant proof of plant growth promoting effects and plant 4 

protection ability already exists. In spite of the obvious potential of mVOCs in agriculture, the 5 

field suffers from the common 'translational gap' because of a lack of studies evaluating other 6 

unexpected effects of those bioactive molecules on non-target beneficial soil organisms. 7 
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Figure 1.  Responses in bacteria, fungi, protists and plants caused by mVOCs 15 

The figure shows examples of responses caused my mVOCs in bacteria, fungi, protists and 16 

plants. 17 
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 1 

Figure 2. Terpenes-mediated belowground interactions  2 

The figure shows examples of interactions between different organisms in the rhizosphere that 3 

are mediated by microbial terpenes. Blue arrows indicate intra-kingdom interactions while 4 

black arrows indicate inter-kingdom interactions. The numbers in the figure correspond with 5 

the numbers in Table 1.  6 

 7 

 8 

 9 

Table 1. Examples of terpenes involved in belowground microbial interactions 10 

Origin Nr Compound Biological activity Ref. 

Fungal 1 α –Humulene 

 

Antimicrobial 

(antifungal) 

(Minerdi et al., 2009) 

2 β -Caryophyllene Antimicrobial 

(antibacterial) 

Plant growth promotion 

(Huang et al., 2012b) 

(Minerdi et al., 2011) 

3 Farnesol Infochemical  (Hornby et al., 2001, Martins 

et al., 2007) 

4 β-Phellandrene Affects motility (Schmidt et al., 2017) 

Bacterial 5 Albaflavenone Antimicrobial 

(antibacterial) 

(Gürtler et al., 1994) 

6 β-Pinene  Antimicrobial 

(antifungal, 

antibacterial) 

(Garbeva et al., 2014b, Song 

et al., 2015b) 

7 Volatile terpenes 

from Collimonas 

Stimulation of protists 

activity 

(Schulz-Bohm et al., 2017) 

Protist 8 (E,E)- α-

farnesene 

β-barbatene 

Unknown  (Chen et al., 2016) 
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