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Abstract: In the proposed review, the pharmacological profile of unique, rare, and unusual fatty acids
derived from natural amides is considered. These amides are produced by various microorganisms,
lichens, and fungi. The biological activity of some natural fatty acid amides has been determined by
their isolation from natural sources, but the biological activity of fatty acids has not been practically
studied. According to QSAR data, the biological activity of fatty acids is shown, which demonstrated
strong antifungal, antibacterial, antiviral, antineoplastic, anti-inflammatory activities. Moreover,
some fatty acids have shown rare activities such as antidiabetic, anti-infective, anti-eczematic, an-
timutagenic, and anti-psoriatic activities. For some fatty acids that have pronounced biological
properties, 3D graphs are shown that show a graphical representation of unique activities. These data
are undoubtedly of both theoretical and practical interest for chemists, pharmacologists, as well as
for the pharmaceutical industry, which is engaged in the synthesis of biologically active drugs.
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1. Introduction

The amide bond is one of the most prevalent and widespread linkages in nature [1].
Natural fatty acid amides (R-COO-NR1R2) have many potential pharmacological uses
because they have different biological activities or enzyme inhibitors [2–4]. Fatty acid
amides are a diverse family of underappreciated biologically active lipids [1–6].

This article is a review of rare and unusual fatty acids (FA) derived from naturally
occurring amides that are produced by fungal endophytes, lichenized ascomycetes, basid-
iomycetes, actinomycetes, and related microorganisms. The natural compounds presented
in this review are of great scientific interest, and many of them demonstrate a wide range of
biological activities and have strong antimicrobial, antifungal, phototoxic, HIV-inhibiting,
antitumor, immunosuppressive, and other pharmacologically useful properties [7–13],
which is of great interest, especially for medicinal chemistry, pharmacology, and the phar-
maceutical industry [14–17]. This review is devoted to the biological activity of fatty acids
included in amides.

2. Fatty Acids Derived from Microorganisms and Fungi

Two polycyclopropane FA amides—U-106305 and FR-900848 (1, structure FA see
Figure 1)—were isolated from microbiological sources. Thus, antibiotic U-106305 was
produced by Actinomycete Streptomyces sp. [18], and Streptoverticillium fervens (syn: Strepto-
myces fervens) produced antibiotic, FR-900848, which has strong antifungal activity against
filamentous fungi: Aspergillus niger, Mucor rouxianus, Aureobasidium pullulans, Penicillium
chrysogenum, Trichophyton metagrophytes, T. astervides, T. rubrum, Fusarium oxysporum, and
Sclerotinia arachidis [19].
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Figure 1. Examples of FA amides derived from Actinomycetes: Streptomyces and Penicillium. 

Perinadine A (for structure, see Figure 1), a tetracyclic alkaloid isolated from from 
marine-derived fungus Penicillium citrinum (see Figure 2), contains FA (2). Perinadine A 
demonstrated insignificant cytotoxicity against murine leukemia L1210 cells, and 
antibacterial activity against Micrococcus luteus and Bacilius subtilis [20]. The 3D graph that 
shows the predicted and calculated antifungal, antiviral, and antineoplastic activity of FR-
900848 and FA (1) is shown in Figure 3. FA (2) was found in scalusamide A, and 
scalusamide B and C contain a similly FA (3, for structure see Figure 4) and (4), 
respectively. The fungus Penicillium citrinum produces scalusamides that have been 
isolated from the broth during mycelium cultivation [21]. Two epimeric alkaloids, namely 
tumonoic acids K (with (S,E)-2-methyl-3-oxodec-8-enoic acid (5) and L (with (R,E)-2-me-
thyl-3-oxodec-8-enoic acid (6), were isolated from the marine-derived fungus Penicillium 
citrinum and showed cytotoxic activity against A-375 cell lines. [22]. 

Figure 1. Examples of FA amides derived from Actinomycetes: Streptomyces and Penicillium.

Perinadine A (for structure, see Figure 1), a tetracyclic alkaloid isolated from from
marine-derived fungus Penicillium citrinum (see Figure 2), contains FA (2). Perinadine
A demonstrated insignificant cytotoxicity against murine leukemia L1210 cells, and antibac-
terial activity against Micrococcus luteus and Bacilius subtilis [20]. The 3D graph that shows
the predicted and calculated antifungal, antiviral, and antineoplastic activity of FR-900848
and FA (1) is shown in Figure 3. FA (2) was found in scalusamide A, and scalusamide B
and C contain a similly FA (3, for structure see Figure 4) and (4), respectively. The fungus
Penicillium citrinum produces scalusamides that have been isolated from the broth during
mycelium cultivation [21]. Two epimeric alkaloids, namely tumonoic acids K (with (S,E)-
2-methyl-3-oxodec-8-enoic acid (5) and L (with (R,E)-2-methyl-3-oxodec-8-enoic acid (6),
were isolated from the marine-derived fungus Penicillium citrinum and showed cytotoxic
activity against A-375 cell lines [22].

Antibiotic viridenomycin (for structure, see Figure 1) with fatty acid (FA V) was
isolated from the culture broth of Streptomyces viridochromogenes strain No T-24146 and
shows strong activity against Trichomonas vaginalis and gram-positive bacteria [23].

Figure 1 shows samples of natural FA amides isolated from actinomycetes Streptomyces
and Penicillium and shows fatty acid amide bonds. Table 1 demonstrates the biological
activity of both whole molecules of FA amides.
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Figure 2. Examples of some fungal endophytes and fungi that synthesize the FA amides presented 
in this article. See text for details on their metabolites. In the pictures: (a)—Penicillium citrinum, (b)—
Streptomyces viridochromogenes, (c)—Pestalotiopsis theae, and (d)—Isaria tenuipes. Pictures of fungal 
endophytes, lichenized ascomycetes, and fungi are from sites that allow the use of pictures for non-
commercial use. In addition, all pictures are adapted by the author. 

 
Figure 3. The 3D graph ((a), X and (b), Y views) shows the predicted and calculated antifungal, 
antiviral, and antineoplastic activities of FR-900848 and FA (1) showing the highest degree of confi-
dence. The presented 3D graph demonstrates the comparative characteristics of the biological activ-
ities and the pharmacological profile of the individual fragments of the pseudopeptide referred to 
as FR-900848. In particular, the red zone of the 3D graph indicates the strong biological properties 
of both FR-900848 and its fatty acid. To build 3D graphs of the biological activity of fatty acids from 
natural amides, a proprietary computer program OriginPro 2021 was used, into which data were 
entered from another computer program PASS, which calculates the degree of reliability of biolog-
ical activity. 

Figure 2. Examples of some fungal endophytes and fungi that synthesize the FA amides presented
in this article. See text for details on their metabolites. In the pictures: (a)—Penicillium citrinum,
(b)—Streptomyces viridochromogenes, (c)—Pestalotiopsis theae, and (d)—Isaria tenuipes. Pictures of fungal
endophytes, lichenized ascomycetes, and fungi are from sites that allow the use of pictures for
non-commercial use. In addition, all pictures are adapted by the author.
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Figure 3. The 3D graph ((a), X and (b), Y views) shows the predicted and calculated antifungal, an-
tiviral, and antineoplastic activities of FR-900848 and FA (1) showing the highest degree of confidence.
The presented 3D graph demonstrates the comparative characteristics of the biological activities and
the pharmacological profile of the individual fragments of the pseudopeptide referred to as FR-900848.
In particular, the red zone of the 3D graph indicates the strong biological properties of both FR-900848
and its fatty acid. To build 3D graphs of the biological activity of fatty acids from natural amides, a
proprietary computer program OriginPro 2021 was used, into which data were entered from another
computer program PASS, which calculates the degree of reliability of biological activity.
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Figure 4. Rare and unusual FA derived from marine and soil microorganisms. 

Antibiotic viridenomycin (for structure, see Figure 1) with fatty acid (FA V) was iso-
lated from the culture broth of Streptomyces viridochromogenes strain No T-24146 and shows 
strong activity against Trichomonas vaginalis and gram-positive bacteria [23]. 

Figure 1 shows samples of natural FA amides isolated from actinomycetes Strepto-
myces and Penicillium and shows fatty acid amide bonds. Table 1 demonstrates the biolog-
ical activity of both whole molecules of FA amides. 

  

Figure 4. Rare and unusual FA derived from marine and soil microorganisms.

A unique nucleoside polycyclopropane antibiotic named FR-900848 is known to
exhibit strong antifungal activity as shown in numerous experimental studies [24–26]. The
software PASS has also shown that this antibiotic exhibits strong antifungal activity with
92% confidence (see Table 1). Another interesting property of this antibiotic is the anticancer
activity, which was also found in experimental work [27–29], and PASS confirms these
data. However, unique (2E,4E)-5-((1R,1′R,1′′R,1′′′R,2S,2′R,2′′R,2′′′S)-2′′′-((E)-2-((1R,2R)-2-
methylcyclopropyl)vinyl)-[1,1′:2′,1′′:2′′,1′′′-quartercyclopropan]-2-yl)penta-2,4-dienoic acid
(1) exhibits antiviral, antifungal, and anti-inflammatory properties to a greater extent.
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Table 1. Pharmacological profile of some amides and their FA derived from microorganisms.

Amides
and Their FA Predicted Biological Activity, Pa *

FR-900848 Antifungal (0.924); Antineoplastic (0.831); Antibacterial (0.782)
Antineoplastic (lymphocytic leukemia) (0.677)

1 FA Antiviral (Arbovirus) (0.874); Anti-inflammatory (0.857); Antifungal (0.836)
Antiviral (Picornavirus) (0.735); Alzheimer’s disease treatment (0.726)

Perinadine A Antineoplastic (0.926); Antifungal (0.709); Antibacterial (0.626)

2 FA Preneoplastic conditions treatment (0.898); Antiviral (Arbovirus) (0.706);
Antifungal (0.702); Antineoplastic (0.685); Antibacterial (0.568)

Viridenomycin Antineoplastic (0.872); Antineoplastic (sarcoma) (0.766); Antibacterial (0.733)
Prostate disorders treatment (0.672); Antifungal (0.528)

FA V
Antineoplastic (0.859); Antiviral (Arbovirus) (0.774); Cytoprotectant (0.744)
Antiparasitic (0.724); Antibacterial (0.655); Antiviral (Picornavirus) (0.636)
Antifungal (0.635); Preneoplastic conditions treatment (0.532)

Amino-alcohol Antiviral (Arbovirus) (0.875); Leukopoiesis stimulant (0.648); Anti-inflammatory (0.574)
Cytoprotectant (0.526); Preneoplastic conditions treatment (0.522)
* Only activities with Pa > 0.5 are shown.

Another pseudopeptide named perinadine A, which is synthesized by marine-derived
fungus Penicillium citrinum (see Figure 2), showed strong cytotoxicity against murine
leukemia L1210 cells, and these data are confirmed by PASS. The (E)-2-methyl-3-oxodec-8-
enoic acid (2) of this pseudopeptide also shows antineoplastic activity.

Viridenomycin, which also belongs to the class of amides, is represented by an acid
(FA V) and an amino alcohol, demonstrates antineoplastic activity against sarcoma as well
as its FA, although the amino alcohol shows antiviral activity against Arbovirus (data are
shown in Table 1).

The phytopathogenic fungus Pestalotiopsis theae, which was isolated from branches
of Camellia sinensis, afforded amides, pestalaminde A, which contain unusual 6-benzyl-
4-oxo-4H-pyran-3-carboxylic acid (7), and both pestalamindes, A and B contain (S)-2-
methylsuccinic acid (8) [30]. Pestalaminde B inhibited HIV-1 replication in C8166 cells and
exhibited potent antifungal activity against A. fumigatus.

A marine-derived Streptomyces sp. CNQ-085 produces antitumor antibiotics desig-
nated as daryamides A, B, and C [31]. Both daryamides contain (2E,4E)-7-methylocta-2,4-
dienoic acid (9), and daryamide C contains (2E,4E)-6-methylhepta-2,4-dienoic acid (10).

The chlorine containing manumycin derivatives named chinikomycins A and B have
been found in extracts of Streptomyces sp. M045, which is obtained from sediment (Jiaozhou
Bay, China). Both compounds displayed anti-tumour activity against several human
cancer cell lines, and these metabolites contain (R,2E,4E)-2,4,6-trimethyldeca-2,4-dienoic
acid (11) [32].

Jomthonic acids A, B, and C were found in the culture fluid of actinomycetes of the
genus Streptomyces, and only jomthonic acid A induced the differentiation of preadipocytes
into mature adipocytes [33]. (2E,4E)-4-methylhexa-2,4-dienoic acid (12) was found in
jomthonic acid A and C.

Spirocyclic and bicyclic hemiacetals such as isariotins E, F, and TK-57-164A were
detected in lipid extracts in the entomopathogenic fungus Isaria tenuipes BCC 12625. It is
known from published sources that isariotin F exhibited activity against the malaria parasite
Plasmodium falciparum K1, and cytotoxic activities against cancer cell lines (KB, BC, and NCI-
H187) and non-malignant (Vero) cells. All isolated compounds contain (E)-dodec-2-enoic
acid (13) [34].

Manumycin A contain (R,2E,4E)-2,4,6-trimethyldeca-2,4-dienoic acid (11), which was
found in chinikomycin A and B. Antibiotic U-56407 was isolated from fermentations of
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Streptomyces hagronensis (strain 360) with (E)-4,6,8-trimethyl-nona-2,7-dienoic acid (14) was
active in vitro against gram-positive bacteria [35].

Asukamycins A-II, B-II, C-II, D-II, and E-II are polyketides that are members of the
manumycin family of antibiotics and exhibit potent antineoplastic, antifungal, and antibac-
terial activities that have been found and identified from lipid extracts of the actinomycete
bacterium Streptomyces nodosus subsp. asukaensis [36]. Asukamycin B and asukamycin B-II
contain (2E,4E,6E)-8-methylnona-2,4,6-trienoic acid (15). Asukamycin C and asukamycin C-
II contain (2E,4E,6E)-9-methyldeca-2,4,6-trienoic acid (16). Asukamycin D and asukamycin
D-II contain (2E,4E,6E)-8-methyldeca-2,4,6-trienoic acid (17), and asukamycin E and asukamycin
E-II contain (2E,4E,6E)-10-methylundeca-2,4,6-trienoic acid (18).

Antitumor antibiotics named TMC-1 A, B, C, and D were obtained from a fermentation
broth of Streptomyces sp. A-230. These antibiotics showed strong cytotoxic activities against
various tumor cell lines in vitro: HCT-1 16 (human colon carcinoma), SW480 (human
colon adenocarcinoma), Saos-2 (humanosteogenic sarcoma), WiDr (human colon adeno-
carcinoma), OVCAR-3 (human ovarian adenocarcinoma), HL-60 (human promyelocytic
leukemia), HeLa S3 (human epitheloid carcinoma), and P388D1 (murine lymphoid neo-
plasm), and manumycin A exhibited antibacterial activity against gram-positive bacteria:
Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis [37]. (E)-2,4-dimethyloct-2-enoic
acid (18) TMC-1A, (E)-2,6-dimethyloct-2-enoic acid (19) TMC-1B, (2E,4E)-4,6-dimethyldeca-
2,4-dienoic acid (20) TMC-1C, and (E)-4,6-dimethyldec-2-enoic acid (21) TMC-1D.

It is known that inhibitors of the enzyme, EI-1511-3, -5, EI-1625-2, U-56, 407, manumycins
A, B, and G, converting interleukin-1β were found in the culture broths of Streptomyces sp.
selectively inhibited the activity of recombinant human ICE [38]. EI-1511-5 contains FA (15),
EI-1625-3 contains (2E,4E)-7-methylocta-2,4-dienoic acid (9), and (E)-4-methyloct-2-enoic
acid (23) was found in EI-1625-2.

A halophilic strain of Streptomyces isolated from a salt pan on Shinui Island (Korea) is
a producer of salternamides A–D. Salternamide A, which is the first chlorinated compound
in the manumycin family, is an inhibitor of a human colon cancer cell line (HCT116) and a
gastric cancer cell line (SNU638). Salternamides A and D have been found to be inhibitors
of Na+/K+ ATPase [39]. Salternamides A and C contain (4S,6R,E)-4,6,8-trimethylnona-
2,7-dienoic acid (24), and salternamide E contains (4S,6S,E)-4,6,8-trimethylnon-2-enoic
acid (25).

Colabomycin A and D [40] were isolated from Streptomyces griseoflavus TU 2880 [41,42],
and antimicrobial antibiotic U-62162 was found in Streptomyces verdensis UC-8157 [43]. Co-
labomycin A and D consist of (2E,4E,6Z,8E)-deca-2,4,6,8-tetraenoic acid (26) and (2E,4E,6E,8E)-
deca-2,4,6,8-tetraenoic acid (27), respectively. It is known that colabomycin E inhibited
IL-1β release from THP-1 cells and might thus potentially act as an anti-inflammatory
agent [44], and it is produced by a strain of Streptomyces aureus (see Figure 5). Several FA
with different properties has been found in isolated antibiotics. Thus, colabomycin E has
a (2E,4E,6E,8Z,10E)-dodeca-2,4,6,8,10-pentaenoic acid (28), colabomycin F has an FA (14),
colabomycin G—FA (15), dinocolabomycin E has an FA (15), and dinocolabomycin A has
an FA (29), respectively.

From the culture solution of Streptomyces limosus was obtained a yellow crystalline, ni-
trogenous dye stuff that limocrocin was isolated [45]. Rare polyenoic (2E,4E,6E,8E,10E,12E,14E)-
hexadeca-2,4,6,8,10,12,14-heptaenedioic acid (30) is present in limocrocin. Figure 6 demon-
strates in a 3D graph the predicted and calculated antiviral activity of a rare FA (30), and
activity is presented in Table 2.

Antimycin is a mixture of closely related antibiotics produced by Streptomyces sp. [46,47].
Many known antibiotics belonging to the antimycin A family are produced by Strep-
tomyces species [48–51], and these compounds have significant antifungal activity and
act by blocking the electron transport chain through inhibition of the cytochrome bc1
complex [48,49]. Several FA were contain in antimycin derivatives: (S)-2-((1S,2R)-1,2-
dihydroxypropyl)octanoic acid (31, 3D graph see Figure 6, right side) in A1a, A1b, A2a,
A2b, A15, and A16 (S)-2-((1S,2R)-1,2-dihydroxypropyl)hexanoic acid A3a, A3b, A4a, A4b,
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A9, A11, A13 (32), (2S,3S,4R)-2-ethyl-3,4-dihydroxypentanoic acid in A5, A6 (33), and
(2S,3S,4R)-3,4-dihydroxy-2-isobutylpentanoic acid has been found in A7a, A7b, A8, A12,
and A14 (34).
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Figure 5. Examples of fungal endophyte, Streptomyces aureus (a), pathogenic fungus Bipolaris spp (b),
and discomycete Trichopeziza mollissima (c), which produce bioactive FA amides. Among the microbial
species cited, of great interest are Discomycetes, which include cup fungi, spongy fungi, and brain
fungi, as well as some club-shaped fungi. In recent years, interest in these fungi has grown as they are
a source of biologically active metabolites, including amides. Among the Discomycetes, saprobionts
predominate, which grow in conditions of high soil moisture, humus, and on dead wood. They are
typical cups or discs, but other forms such as sponges, saddles, tongues, and bells are not uncommon.
The pictures (c) show varieties of Trichopeziza mollissima.
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25 Antineoplastic (0.746); Preneoplastic conditions treatment (0.685); Cytoprotectant (0.607) 
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Figure 6. The 3D graph shows the predicted and calculated antiviral activity of FA (30, a). Limocrocin
with this rare polyenoic FA, which contains seven conjugated carbon-carbon double bonds shows max-
imum UV absorption at 260, 420, and 440 nm, and exhibits strong antiviral activity against Arbovirus,
and it is also a reverse transcriptase inhibitor. The 3D graph shows the predicted and calculated
antidiabetic activity of FA (31, b). Complex molecules of antimycin and closely related antibiotics
that contain (S)-2-((1S,2R)-1,2-dihydroxypropyl)-octanoic acid (31) exhibit antidiabetic properties.
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Table 2. Pharmacological profile of FA derived from microorganisms.

No. Predicted Biological Activity, Pa *

3 Preneoplastic conditions treatment (0.747); Antiviral (Arbovirus) (0.742); Antineoplastic (0.687)

4 Preneoplastic conditions treatment (0.794); Antiviral (Arbovirus) (0.692); Antineoplastic (0.642)

5 Preneoplastic conditions treatment (0.762); Antiviral (Arbovirus) (0.706); Antifungal (0.702)
Antineoplastic (0.685); Cytoprotectant (0.647); Antibacterial (0.568)

6 Preneoplastic conditions treatment (0.762); Antifungal (0.702); Antineoplastic (0.685)

7 Antifungal (0.891); Antibacterial (0.761); Lipid metabolism regulator (0.578)

8 Lipid metabolism regulator (0.808); Antiviral (Arbovirus) (0.699)

9 Antiviral (Arbovirus) (0.853); Antiviral (Picornavirus) (0.760); Antineoplastic (0.722)

10 Antiviral (Arbovirus) (0.819); Apoptosis agonist (0.810); Antineoplastic (0.805)

11 Antineoplastic (0.871); Apoptosis agonist (0.837); Preneoplastic conditions treatment (0.706)

12 Apoptosis agonist (0.879); Antineoplastic (0.878); Preneoplastic conditions treatment (0.618)

13 Antiviral (Arbovirus) (0.944); Preneoplastic conditions treatment (0.768)

14 Antineoplastic (0.835); Antiviral (Arbovirus) (0.801); Antiviral (Picornavirus) (0.743)

15 Antiviral (Arbovirus) (0.819); Apoptosis agonist (0.810); Antineoplastic (0.805)
Antiviral (Picornavirus) (0.780); Preneoplastic conditions treatment (0.713)

16 Antiviral (Arbovirus) (0.853); Antiviral (Picornavirus) (0.760); Antineoplastic (0.722)

17 Antiviral (Arbovirus) (0.873); Antiviral (Picornavirus) (0.735); Antineoplastic (0.718)

18 Antiviral (Arbovirus) (0.821); Antineoplastic (0.792); Antiviral (Picornavirus) (0.761)

19 Antineoplastic (0.789); Preneoplastic conditions treatment (0.757); Cytoprotectant (0.553)

20 Lipid metabolism regulator (0.932); Hypolipemic (0.805); Anti-hypercholesterolemic (0.774)
Antineoplastic (0.714); Preneoplastic conditions treatment (0.670)

21 Lipid metabolism regulator (0.859); Antineoplastic (0.854); Apoptosis agonist (0.799)

22 Anti-hypercholesterolemic (0.769); Antineoplastic (0.741);

23 Antiviral (Arbovirus) (0.853); Antiviral (Picornavirus) (0.760); Apoptosis agonist (0.731)

24 Antineoplastic (0.835); Apoptosis agonist (0.713); Preneoplastic conditions treatment (0.658)

25 Antineoplastic (0.746); Preneoplastic conditions treatment (0.685); Cytoprotectant (0.607)

26 Antiviral (Arbovirus) (0.861); Antineoplastic (0.791); Antiviral (Picornavirus) (0.776)

27 Antiviral (Arbovirus) (0.861); Antineoplastic (0.791); Antiviral (Picornavirus) (0.776)

28 Antiviral (Arbovirus) (0.861); Antineoplastic (0.791); Antiviral (Picornavirus) (0.776)

29 Anti-inflammatory (0.902); Antiviral (Picornavirus) (0.776); Antifungal (0.774)

30 Antiviral (Arbovirus) (0.938); Antiviral (Picornavirus) (0.887); Anti-inflammatory (0.815)
Antineoplastic (0.784); Preneoplastic conditions treatment (0.728); Antimutagenic (0.628)

* Only activities with Pa > 0.5 are shown.

All antibiotics belonging to the antimycin family were active against Caenorhabditis
elegans and Artemia salina. Antimycin A9 demonstrated antimicrobial activity against
Aspergillus niger KF 103, Bacillus subtilis ATCC 6633, Candida albicans KF1, Escherichia coli
NIHJ, Mucor racemosus IFO 4581, Penicillium chrysogenum KF 270, Pseudomonas aeruginosa
IFO3080, Saccharomyces cerevisiae KF26, Shizosaccharomyces pombe IFO 0347, Staphylococcus
aureus ATCC 6538P, and Trichophyton mentagrophytes KF 331 [52,53]. Moreover, antimycins
A1, A2, A3, A4, A10, A11, A12, A13, A14, A15, and A16 were obtained from the fer-
mentation broth of strains of Streptomyces spp. SPA-10191 and SPA-8893 [53]. These
compounds exhibited antifungal activity against Candida utilis [54]. (2S)-2-((1S,2R)-1,2-
dihydroxypropyl)-6-methyloctanoic acid (35) was present in antimycin antibiotics A10a
and A10b. Kitamycins A and B acted as plant growth inhibitors produced by Streptomyces
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sp. K385 [55]. Urauchimycins A and B were isolated from a fermentation broth of a Strep-
tomyces sp. Ni-80, which was detected in an unidentified sponge [56]. These antibiotics
contain (32) acid, and (S)-2-((1R,2R)-1,2-dihydroxypropyl)-6-methylheptanoic acid (36),
and kitamycin B contains fatty acid (36).

Antibiotics named splenocins A–J which are the cytokine inhibitors have been found
in extracts of marine-derived Streptomyces sp., and another strain of Streptomyces CNQ431.
Studies of these amides have shown that splenocin B is a potent inhibitor of the pro-
inflammatory cytokine, splenocins A–I display suppression of cytokine production by
OVA stimulated splenocytes at low nanomolar concentrations, and splenocin J exhibits
low micromolar activity in the splenocyte assay [52,54,57–59]. Splenocins A, B, C, I, and
J contain in molecules: (2S,3R,4R)-2-benzyl-3,4-dihydroxypentanoic acid (37), splenocin
D, (2S,3R,4R)-2-ethyl-3,4-dihydroxypentanoic acid (38), splenocin E, (S)-2-((1R,2R)-1,2-
dihydroxy-propyl)hexanoic acid (39), splenocin F, (S)-2-((1R,2R)-1,2-dihydroxy-propyl)-
heptanoic acid (40), splenocin G, (S)-2-((1R,2R)-1,2-dihydro-xypropyl)-octanoic acid (41),
splenocin H, (2S)-2-((1R,2R)-1,2-dihydroxypropyl)-4-methyloctanoic acid (42, for structure
see Figure 7, and for activity see Table 3).
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Table 3. Pharmacological profile of FA derived from microorganisms.

No. Predicted Biological Activity, Pa *

31 Antidiabetic symptomatic (0.916); Anti-infective (0.741); Antidiabetic (0.729); Antifungal (0.680)

32 Antiviral (Arbovirus) (0.761); Anti-inflammatory (0.758); Antidiabetic symptomatic (0.756)

33 Anti-inflammatory (0.752); Antiviral (Arbovirus) (0.750); Antiviral (HIV) (0.735)

34 Anti-inflammatory (0.754); Antidiabetic symptomatic (0.735); Antiviral (Arbovirus) (0.666)
Antifungal (0.647); Lipid metabolism regulator (0.634); Antiviral (HIV) (0.606)

35 Lipid metabolism regulator (0.774); Anti-inflammatory (0.752); Antidiabetic symptomatic (0.733)
Anti-infective (0.673); Antiviral (Arbovirus) (0.672); Antifungal (0.625)

36 Anti-inflammatory (0.742); Antidiabetic symptomatic (0.736); Antiviral (Arbovirus) (0.684)
Anti-infective (0.669); Antifungal (0.563)

37 Anti-hypoxic (0.711); Antiviral (Arbovirus) (0.688); Antiviral (HIV) (0.610)

38 Antidiabetic symptomatic (0.736); Antiviral (Arbovirus) (0.730); Antiviral (HIV) (0.535)

39 Antiviral (Arbovirus) (0.761); Anti-inflammatory (0.758); Antidiabetic symptomatic (0.756)
Anti-infective (0.741); Antidiabetic (0.629); Antiviral (Picornavirus) (0.623)

40 Antiviral (Arbovirus) (0.761); Anti-inflammatory (0.758); Anti-infective (0.741)
Antifungal (0.680); Antiviral (Picornavirus) (0.623)

41 Antiviral (Arbovirus) (0.761); Anti-inflammatory (0.758); Anti-infective (0.741)
Antifungal (0.680); Antiviral (Picornavirus) (0.623)

* Only activities with Pa > 0.5 are shown.

Carbapenem compounds, to which the OA-6129 group of antibiotics belong, had a rela-
tively strong antimicrobial activity against gram-positive and gram-negative bacteria [60,61].
Antibiotic OA 6129A, B1, B2, and C contains (R)-2,4-dihydroxy-3,3-dimethylbutanoic acid
(42, for structure see Figure 8, and for activity see Table 4).

An endophytic Streptomyces sp. isolated from the mangrove tree Bruguiera gymnorrhiza
is the source of biologically active compounds named divergolides A–D, which were
active against B. subtilis and Mycobacterium vaccae [62,63]. Divergolides A and B contains
(Z)-2-methylpent-2-enedioic acid (43).

Metabolites produced by endophytic fungus Bipolaris sp. MU34 from Thai medici-
nal plants, bipolamides A and B, and pathogenic fungus Pestalotiopsis oenotherae isolated
from leaves, Rhizophora mucronata, (Hainan Is., China) yielded pestalotiopamide E and D
with (E)-5-acetoxy-3-methylpent-2-enoic acid (44) [64]. Pestalotiopen A showed moderate
antimicrobial activity against Enterococcus faecalis [65]. The plant pathogen endophytic
fungus Pestalotiopsis sp. was obtained from the leaves of the Chinese mangrove Rhizophora
mucronata yielded bioactive compounds named pestalotiopamide E and D with FA (44) [64].

The fungus Gymnascella dankaliensis found in soil in the vicinity of the Giza pyramids
(Egypt) produced bioactive compounds that exhibit cytotoxicity against the murine lymphoma
cell line L5178Y [66]. 11′-Carboxy-gymnastatin N contains (R,2E,4E)-4,6-dimethyldodeca-2,4-
dienedioic acid (45), 12′-hydroxy-gymnastatin N, and dankamide—(R,2E,4E)-12-hydroxy-
4,6-dimethyldodeca-2,4-dienoic acid (46), gymnastatin S—(R,2E,4E)-4,6-dimethylocta-2,4-
dienedioic acid (47), gymnastatin A, B, and N, aranorosinol A, aranorosin, aranorosin-
2-methylether, and other metabolites contain (R,2E,4E)-4,6-dimethyldodeca-2,4-dienoic
acid (48).

Metabolites produced by endophytic fungus Bipolaris sp. MU34 from Thai medicinal
plants bipolamides A and B were discovered. Bipolamide B showed antifungal activity
against Aspergillus niger ATCC 6275, Cladosporium cladosporioides FERMS-9, C. cucumerinum
NBRC 6370, Rhisopus oryzae ATCC 10404, and Saccharomyces cerevisiae ATCC 9804 [67].
(2E,4E,6E)-6,8-dimethyldeca-2,4,6-trienoic acid (49) was present in both metabolites.
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The fungus Penicillium variabile HXQ-H-1 cultivated with the DNA methyltransferase
inhibitor 5-azacytidine is a producer of the antibiotic varitatin A. This compound with
(S,2E,4E,6E,12E)-14-methylhexadeca-2,4,6,12-tetraenoic acid (50) demonstrated cytotoxicity
against HCT-116 cells and inhibition of protein tyrosine kinase [68].
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The soil fungus Streptomyces ostreogriseus is a producer of the cyclopeptide antibiotic
ostreogrycin A with (4S,5R,E)-5-hydroxy-4,6-dimethylhept-2-enoic acid (51) and is highly
active against gram-positive bacteria, especially methicillin-resistant S. aureus [69].

Fungi belonging to the genus Isaria are known to be pathogenic for insects belonging
to Homoptera, Lepidoptera, and Coleoptera and are producers of unique compounds
called isariotins A–D, which possess a unique bicyclo [3.3.1]nonane ring. These amides
were found in lipid extracts of the insect pathogenic fungus Isaria tenuipes BCC 7831 [70].
Three FA, (E)-12-hydroxydodec-2-enoic (52), (E)-dodec-2-enedioic (53), and (E)-7-oxododec-
2-enoic (54, 3D graph see Figure 9) were found in isariotins A, B, and C, respectively.

Table 4. Pharmacological profile of FA derived from microorganisms.

No. Predicted Biological Activity, Pa *

42
Lipid metabolism regulator (0.936); Hematinic (0.923); Multiple sclerosis treatment (0.918)
Autoimmune disorders treatment (0.857); Neurodegenerative diseases treatment (0.816)
Hypolipemic (0.783); Anti-hypercholesterolemic (0.632); Atherosclerosis treatment (0.589)

43 Lipid metabolism regulator (0.812); Hypolipemic (0.787); Atherosclerosis treatment (0.638)

44 Lipid metabolism regulator (0.941); Acute neurologic disorders treatment (0.748)
Anti-hypercholesterolemic (0.735); Hypolipemic (0.699); Immunosuppressant (0.646)

45 Antineoplastic (0.904); Apoptosis agonist (0.854); Preneoplastic conditions treatment (0.676)

46 Antineoplastic (0.845); Preneoplastic conditions treatment (0.643); DNA synthesis inhibitor (0.527)

47 Antineoplastic (0.865); Apoptosis agonist (0.763); Preneoplastic conditions treatment (0.629)

48 Antineoplastic (0,854); Apoptosis agonist (0.799); Preneoplastic conditions treatment (0.706)

49 Antineoplastic (0.881); Antifungal (0.798); Preneoplastic conditions treatment (0.641)

50 Lipid metabolism regulator (0.913); Hypolipemic (0.855); Anti-hypercholesterolemic (0.786)
Apoptosis agonist (0.717); Preneoplastic conditions treatment (0.687)

51 Antibacterial (0.842); Antiviral (Arbovirus) (0.790); Antiviral (Picornavirus) (0.659)

52 Antiviral (Arbovirus) (0.902); Antimutagenic (0.782); Antiviral (Picornavirus) (0.726)

53 Anti-eczematic (0.956); Antiviral (Arbovirus) (0.893); Antimutagenic (0.838)
Anti-psoriatic (0.753); Antifungal (0.739); Antiparasitic (0.744)

54 Anti-eczematic (0.920); Antiviral (Arbovirus) (0.903); Antimutagenic (0.818)
Anti-psoriatic (0.730); Antiviral (Picornavirus) (0.680); Antifungal (0.657)

55 Hypolipemic (0.915); Lipid metabolism regulator (0.795); Apoptosis agonist (0.795)

56 Lipid metabolism regulator (0.949); Apoptosis agonist (0.861); Hypolipemic (0.791)
Anti-hypercholesterolemic (0.629); Atherosclerosis treatment (0.627)

57 Antineoplastic (0.939); Apoptosis agonist (0.910); Antimitotic (0.826)
Lipid metabolism regulator (0.783); Antifungal (0.763); Antiparasitic (0.675)

58 Antineoplastic (0.906); Antifungal (0.812); Apoptosis agonist (0.720); Antiparasitic (0.646)

59 Antineoplastic (0.883); Antifungal (0.807); Antiparasitic (0.681); Apoptosis agonist (0.665)

60 Lipid metabolism regulator (0.921); Antifungal (0.818); Antibacterial (0.761)
* Only activities with Pa > 0.5 are shown.

Scyphostatin, a neutral sphingomyelinase inhibitor, with (2E,4E,6E,8R,10S,12E,14R)-
8,10,12,14-tetramethylhexadeca-2,4,6,12-tetraenoic acid (55) was obtained from a discomycete,
Trichopeziza mollissima SANK 13,892 exhibited potent inhibitory activity [71].

Bioactive compound JBIR-66 with (3E,6E,8E)-2-hydroxy-4,8-dimethylundeca-3,6,8-
trienoic acid (56) was obtained from the culture broth of the tunicate-derived fungus
Saccharopolyspora sp. SS081219JE-28 [72]. Two β-hydroxy acetamides, BE-52211, BE-52211
B, and BE-52211 C, as structural analogues of JBIR-66, were obtained from Streptomyces sp.
They inhibited cell division of starfish embryos at a concentration of 2.5 µg/mL and contain
acid (56) [73,74].
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Antibiotic streptovaricin U with FA (57) produced by Streptontvices spectabilis [75], and
chondrochlorens A and B were obtained from Chondromyces crocatus Cmc5 [76] with FA
(58) and (59), respectively.

A microbial metabolite Sch 725,424 with (2E,4E,6E,8E,10E)-8-methyldodeca-2,4,6,8,10-
pentaenoic acid (60) was detected in the culture of Kitasatospora sp., and it demonstrated
inhibitory activity against Staphylococcus aureus and Saccharomyces cerevisiae [77].

An actinomycete Streptomyces cavourensis YY01-17 from the Antarctic area is a producer
of pseudopeptide with (E)-3-hydroxy-2,4-dimethylhept-4-enoic acid (61, for structure see
Figure 10, and activity in Table 5) [78]. Streptomyces versipellis 4083-SVS6 is a producer
of JBIR-07 and JBIR-08 with (6E,8Z)-3-hydroxy-8-(hydroxymethyl)-2,6-dimethyldeca-6,8-
dienoic acid (62), and (6Z,8E)-3-hydroxy-6-(hydroxymethyl)-2,8-dimethyldeca-6,8-dienoic
acid (63) [79].
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Figure 9. The 3D graph shows the predicted and calculated anti-eczematic activity of FA (53 and 54).
Both acids have been found in the insect pathogenic fungus Isaria tenuipes. It is known that this fungus
is one of the potent species of the Isaria genus, which is known to have many biologically active
substances of therapeutic value. In addition, the crude methanol extract showed potent antioxidant
and antiproliferative activity, which is indicative of natural antioxidant and antiproliferative agents.

An entomopathogenic fungus Metarhizium acridum is a producer of 17-membered
macrocycles named metacridamides A and B. Metacridamide A showed cytotoxicity to
three cancer lines against Caco-2 (epithelial colorectal adenocarcinoma), MCF-7 (breast
cancer), and HepG2/C3A (hepatoma) cell lines, and metacridamide B was active against
HepG2/C3A [80]. Both compounds related to FA (64) and (65), respectively.

Unusual (8E,14E)-7,13-dihydroxy-4,10,14-trimethyl-3-oxoheptadeca-8,14,16-trienoic
acid (66) was detected in macrolide antibiotic angiolam A, which was produced by Angio-
coccus disciformis [81].
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An endophytic fungus Sporormiella minimoides (Sporormiaceae) isolated from bark
Hintonia latiflora is a producer of an antibiotic with (2E,4E,6E)-3-methyloctadeca-2,4,6-
trienoic acid (67) that had antifungal properties [82].

Neutrophic agent named as farinosone C with (2E,4E)-4,6-dimethylocta-2,4-dienedioic
acid (68) produced by Paecilomyces farinosus RCEF 0101 [83]. The fungus Gymnasella
dankaliensis from the sponge Halichondria japonica has supplied the several gymnastatins
A-H, most of which are halogenated compounds. All isolated pseudo-dipeptides con-
tain the (R,2E,4E)-5,7-dimethyltrideca-2,4-dienoic acid (69). The same FA was detected in
aranochlors A and B [84].
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Figure 10. Unusual and rare FA-derived from marine and parasitic fungal endophytes. 
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A highly unsaturated macrolide lactam named mirabilin with (6S,7S,E)-7-hydroxy-
4,4,6,8-tetramethyl-5-oxonon-2-enoic acid (70) was found in an unidentified fungus extract
that was associated with the marine sponge Siliquariaspongia mirabilis. An isolated com-
pound inhibits the growth of the tumor cell line HCT-116 [85].

Streptomyces sp. K04-0144 is a producer of nosokomycins A, B, C, and D, which belong
to the moenomycin family, consisting of an oligosaccharide moiety, a 2,3-dihydroxypropionic
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acid, and an unusual sesterterpenoid moiety. All isolated nosokomycins contain FA (71) [86].
The marine actinomycete B-1758 from collection of the Alfred Wegener Institute for Polar
and Marine Research in Bremerhafen (Germany) was isolated diamide, which contains
(2Z,9Z)-4,8-dihydroxyundeca-2,9-dienedioic acid (72) [87].

Table 5. Pharmacological profile of FA derived from microorganisms.

No. Predicted Biological Activity, Pa *

61 Acute neurologic disorders treatment (0.892); Antineoplastic (0.758)
Preneoplastic conditions treatment (0.612); Antiviral (Picornavirus) (0.547)

62 Anti-asthmatic (0.908); Acute neurologic disorders treatment (0.731); Antifungal (0.700)
Anti-inflammatory (0.697); Antibacterial (0.617); Spasmolytic (0.537)

63 Antineoplastic (0.806); Anti-inflammatory (0.801); Apoptosis agonist (0.764)
Acute neurologic disorders treatment (0.763); Antibacterial (0.657)

64 Hypolipemic (0.908); Antineoplastic (0.901); Apoptosis agonist (0.852); Antifungal (0.820)

65 Antineoplastic (0.916); Hypolipemic (0.905); Apoptosis agonist (0.864); Antifungal (0.797)

66 Antineoplastic (0.854); Antifungal (0.826); Hypolipemic (0.793); Apoptosis agonist (0.709)

67 Lipid metabolism regulator (0.962); Antiviral (Arbovirus) (0.917); Antineoplastic (0.867)

68 Antineoplastic (0.865); Apoptosis agonist (0.763); Preneoplastic conditions treatment (0.629)

69 Lipid metabolism regulator (0.931); Hypolipemic (0.853); Anti-hypercholesterolemic (0.748)
Atherosclerosis treatment (0.659); Antibacterial (0.595)

70 Antineoplastic (0.813); Antiviral (Arbovirus) (0.748); Antiviral (Picornavirus) (0.585)

71 Lipid metabolism regulator (0.961); Hypolipemic (0.915); Lipoprotein disorders treatment (0.707)
Anti-hypercholesterolemic (0.669); Antihypertriglyceridemic (0.532)

72 Antiviral (Arbovirus) (0.870); Anti-inflammatory (0.859); Antiviral (Picornavirus) (0.691)

73 Antineoplastic (0.912); Apoptosis agonist (0.833); Antiviral (Arbovirus) (0.686)

74 Antineoplastic (0.909); Apoptosis agonist (0.873); Lipid metabolism regulator (0.863)

75 Antineoplastic (0,907); Lipid metabolism regulator (0.898); Apoptosis agonist (0.871)

76 Antineoplastic (0.916); Lipid metabolism regulator (0.890); Apoptosis agonist (0.883)
* Only activities with Pa > 0.5 are shown.

The culture supernatant extract of the strain Myxococcus xanthus Mx X12 contained the
polyene antibiotic compounds named myxalamid A, B, C, and D [88]. Isolated antibiotics
contained FA (73), (74), (75), and (76, 3D graph, see Figure 11), respectively.

The polyene antifungal antibiotics, 6E,2′-O-methylmyxalamide D, 6E,10Z-2′-O-methyl-
myxalamide D, 2′-O-methyl-myxalamide D, and acetate derivative of (77) have been ob-
tained from myxobacterium Cystobacter fuscus AJ-13278, contained FA (78), (79), and (80), re-
spectively [89]. All compounds showed antifungal activities of against the phythopathogenic
fungus Phythopthora capsici.

Eliamid with (6E,10E)-2,4,6,8,10-pentamethyl-9-oxododeca-6,10-dienoic acid (81) is a
secondary metabolite isolated from Sorangium cellulosum (see Figure 12) [90]. An actino-
mycete Saccharothrix longispora DSM 43,749 (T) from a Saharan soil in Ghardaïa (Algeria) is
a producer of D-(-)-threo chloramphenicol with 2,2-dichloroacetic acid (82, for structure see
Figure 13, and activity see Table 6) [91].

Microsphaerone A with FA (83) is γ-pyrone derivative derived from the sponge-
derived fungus Microsphaeropsis sp. [92], and a ubiquitin-activating enzyme inhibitor
named himeic acid A with FA (84) was detected in a culture of marine-derived fungus
Aspergillus sp. [93].



Microbiol. Res. 2022, 13 392

Microbiol. Res. 2022, 13, FOR PEER REVIEW  16 
 

 

Streptomyces sp. K04-0144 is a producer of nosokomycins A, B, C, and D, which be-
long to the moenomycin family, consisting of an oligosaccharide moiety, a 2,3-dihydrox-
ypropionic acid, and an unusual sesterterpenoid moiety. All isolated nosokomycins con-
tain FA (71) [86]. The marine actinomycete B-1758 from collection of the Alfred Wegener 
Institute for Polar and Marine Research in Bremerhafen (Germany) was isolated diamide, 
which contains (2Z,9Z)-4,8-dihydroxyundeca-2,9-dienedioic acid (72) [87]. 

The culture supernatant extract of the strain Myxococcus xanthus Mx X12 contained 
the polyene antibiotic compounds named myxalamid A, B, C, and D [88]. Isolated antibi-
otics contained FA (73), (74), (75), and (76, 3D graph, see Figure 11), respectively. 

 
Figure 11. The 3D graph shows the predicted and calculated antineoplastic activity of FA (73, 74, 75, 
and 76). These FA contain amides that are synthesized by the gram-negative rod-shaped myxobac-
teria, Myxococcus xanthus. With an excess of nutrition in cultivated conditions, this bacterium exists 
in the form of a predatory, saprophytic single-species biofilm called a swarm. 

The polyene antifungal antibiotics, 6E,2′-O-methylmyxalamide D, 6E,10Z-2′-O-me-
thyl-myxalamide D, 2′-O-methyl-myxalamide D, and acetate derivative of (77) have been 
obtained from myxobacterium Cystobacter fuscus AJ-13278, contained FA (78), (79), and 
(80), respectively [89]. All compounds showed antifungal activities of against the phytho-
pathogenic fungus Phythopthora capsici. 

Eliamid with (6E,10E)-2,4,6,8,10-pentamethyl-9-oxododeca-6,10-dienoic acid (81) is a 
secondary metabolite isolated from Sorangium cellulosum (see Figure 12) [90]. An acti-
nomycete Saccharothrix longispora DSM 43,749 (T) from a Saharan soil in Ghardaïa (Alge-
ria) is a producer of D-(-)-threo chloramphenicol with 2,2-dichloroacetic acid (82, for struc-
ture see Figure 13, and activity see Table 6) [91]. 

  

Figure 11. The 3D graph shows the predicted and calculated antineoplastic activity of FA (73,
74, 75, and 76). These FA contain amides that are synthesized by the gram-negative rod-shaped
myxobacteria, Myxococcus xanthus. With an excess of nutrition in cultivated conditions, this bacterium
exists in the form of a predatory, saprophytic single-species biofilm called a swarm.

Liquid culture broth of Pseudomonas sp. MF381-IODS yielded two antimicrobial agents
named pseudotrienic acids A and B with (3E,5E)-7-hydroxy-4-methylhexadeca-3,5-dienoic
(85) and (3E,5E)-7-hydroxy-4-methyltetradeca-3,5-dienoic (86) acids, respectively. Both
compounds are growth inhibitors of Staphylococcus aureus and Pseudomonas syringae pv.
syringae [94]. Citrate-hydroxamate siderophores named nannochelins A, B, and C with
3-hydroxypentane-1,3,5-tricarboxylic acid (87) has been obtained from the Nannocystis
exedens strain Na e485 [95].

An antibiotic named korormicin with (3R,4Z,6E,9S,10R)-10-bromo-9-hydroxy-3-
methyldodeca-4,6-dienoic acid (88) was obtained from an extract of the marine actino-
mycete Pseudoalteromonas sp. F-420 and had a specific inhibitory activity against marine
gram-negative bacteria [96].

A plant growth regulator, amidenin with (2E,4Z)-deca-2,4-dienoic acid (89) was
obtained from an extract of the fermentation broth of an Amycolatopsis sp. [97]. In ad-
dition, actinonin with 2-pentylsuccinic acid (90) has been shown to be an inhibitor of
CD13/aminopeptidase and is cytotoxic to some tumor cell lines in vitro [98].

Two aromatic compounds named citrinamides A and B were found and isolated
from the culture broth of Penicillium sp. FKI-1938. Both citrinamides A and B containing
2,2-dimethylbut-3-enoic acid (91) showed moderate potentiation of miconazole activity
against Candida albicans [99].
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Figure 12. Examples of myxobacteria Sorangium cellulosum (a), lichenized ascomycete Ramalina
terebarata (b), marine bacteria Pseudoalteromonas sp. (c), and the subterranean fungus Melanogaster
broomeianus (d) whose extracts contain bioactive FA amides.

Bacillus laterosporus isolate PNG 276 was a producer of compounds named basiliskamide
A and B with (2Z,4E,7R,8R,9S,10R)-7,9-dihydroxy-8,10-dimethyldodeca-2,4-dienoic acid
(92). Both compounds show potent in vitro anti-Candida activity [100]. The sub-acute
toxicity of an antimicrobial metabolite with (Z)-5-oxoundec-7-enoic acid (93) was isolated
from a Streptomyces sp. [101].

An endophytic fungus Aspergillus niger EN-13 isolated from the brown seaweed
Colpomenia sinuosa was the source of asperamides A and B. Asperamide A displayed mod-
erate activity against Candida albicans [102], and asperamide B contained (R,3E,5E,7E,9E)-2-
hydroxytrideca-3,5,7,9-tetraenoic acid (94).

Gliding bacterium Polyangium brachysporum sp. nov. no. K481-B101 is a producer
of antitumor antibiotics named glidobactins A, B, and C, and glidobactin B contained
(2E,4E)-dodeca-2,4-dienoic acid (95, 3D graph see Figure 14) [103].
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Table 6. Pharmacological profile of FA derived from microorganisms.

No. Predicted Biological Activity, Pa *

77 Antineoplastic (0.917); Apoptosis agonist (0.870); Lipid metabolism regulator (0.858)
Hypolipemic (0.855); Antifungal (0.808); Anti-inflammatory (0.768); Antibacterial (0.665)

78 Antineoplastic (0.929); Apoptosis agonist (0.883); Hypolipemic (0.835); Antifungal (0.788)

79 Antineoplastic (0.929); Apoptosis agonist (0.883); Hypolipemic (0.835); Antifungal (0.788)

80 Antineoplastic (0.929); Apoptosis agonist (0.883); Hypolipemic (0.835); Antifungal (0.788)

81 Antineoplastic (0.914); Hypolipemic (0.829); Apoptosis agonist (0.809); Antifungal (0.791)

82 Apoptosis agonist (0.970); Antineoplastic (0.788); Mucositis treatment (0.705)

83 Lipid metabolism regulator (0.907); Antineoplastic (0.869); Apoptosis agonist (0.843)

84 Lipid metabolism regulator (0.964); Hypolipemic (0.873); Atherosclerosis treatment (0.689)

85 Lipid metabolism regulator (0.937); Hypolipemic (0.866); Atherosclerosis treatment (0.653)

86 Lipid metabolism regulator (0.937); Hypolipemic (0.866); Atherosclerosis treatment (0.653)

87 Lipoprotein disorders treatment (0.912); Atherosclerosis treatment (0.910); Hypolipemic (0.903)
Lipid metabolism regulator (0.776); Anti-hypercholesterolemic (0.673)

88 Antifungal (0.728); Antibacterial (0.680); Antiviral (Arbovirus) (0.675)

89 Antiviral (Arbovirus) (0.952); Anti-inflammatory (0.808); Antiviral (Picornavirus) (0.790)

90 Sclerosant (0.906); Anesthetic general (0.881); Anticonvulsant (0.854)
Neuroprotector (0.835); Acute neurologic disorders treatment (0.746); Mucositis treatment (0.717)

91 Lipid metabolism regulator (0.868); Hypolipemic (0.680); Anti-hypercholesterolemic (0.641)

92 Antiviral (Arbovirus) (0.814); Antifungal (0.769); Antibacterial (0.626)

93 Anti-eczematic (0.939); Antimutagenic (0.832); Mucositis treatment (0.781)

94 Anti-eczematic (0.912); Lipid metabolism regulator (0.911); Anti-infective (0.876)

95 Anti-eczematic (0.957); Antiviral (Arbovirus) (0.952); Antiviral (Picornavirus) (0.790)

96 Sclerosant (0.834); Antifungal (0.698); Antiviral (Arbovirus) (0.693)

97 Antifungal (0.771); Apoptosis agonist (0.719); Antibacterial (0.632)

98 Antineoplastic (0.857); Apoptosis agonist (0.746); Lipid metabolism regulator (0.629)

99 Anti-ischemic, cerebral (0.835); Acute neurologic disorders treatment (0.783)
* Only activities with Pa > 0.5 are shown.

Stereocalpin A with (2R,4R,5R)-5-hydroxy-2,4-dimethyl-3-oxooctanoic acid (96) was
found in the Antarctic lichens Stereocaulon alpinum (see Figure 15) and Ramalina terebarata [104].

The FA amides named calcaripeptides A, B, and C were obtained from MeOH/CHCl3
extracts of the fungus Calcarisporium sp. KF525, which found in sediments of the German
Wadden Sea [105]. All compounds contained (2S,6R,9R,E)-9-hydroxy-2,4,6-trimethyl-3-
oxodec-4-enoic (97), (6R,9R,E)-9-hydroxy-4,6-dimethyl-3-oxodec-4-enoic (98) and (2S,4R,7R)-
7-hydroxy-2,4-dimethyl-3-oxooctanoic (99) acids, respectively [105].

Streptovaricins are a group of structurally related macrolide antibiotics. They belong
to the larger class of antibiotics known as ansamycins. Streptovaricin U is acyclic antibiotic
with FA (100) [106].

Fusaridione A acid form containing (4E,6E,8E,10E,12E,14E)-2,6,12,14-tetramethyl-3-
oxohexadeca-4,6,8,10,12,14-hexaenoic acid (101) [107] was produced by the filamentous
fungus Fusarium heterosporum ATCC 74349. Two polyene pigments, boletocrocin A and
B with common (2E,4E,6E,8E,10E,12E,14E)-hexadeca-2,4,6,8,10,12,14-heptaenedioic acid
(102, 3D graph see Figure 16), were isolated from the fruiting bodies of the Japanese
mushroom Boletus laetissimus [108]. The same compound named calostomal was detected
in the gasteromycete Calostoma cinnabarinum [109].
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Figure 14. The 3D graph shows the predicted and calculated anti-eczematic activity of FA (93, 94,
and 95). These FA are produced by endophytic microorganisms, Streptomyces sp. (93), Aspergillus
niger (94), and a gliding bacterium, Polyangium brachysporum (95), respectively.

A polyene pigment named melanocrocin with FA (103) was obtained from lipid
extracts of fruit bodies and mycelial cultures of the subterranean fungus Melanogaster
broomeianus. Melanocrocin is the N-acyl derivative of L-phenylalanine methyl ester with a
polyolefinic carboxylic acid [110]. Three glycosphingolipids with a cis-17-fatty acyl moiety
(104, for structure see Figure 17, and activity see Table 7)), namely, catacerebrosides A-C,
were obtained from the mushroom Catathelasma ventricosum [111].

Streptomyces nodosus NPS007994 found in marine sediment near Scripps Canyon (La
Jolla, California) is a producer of the lajollamycin family, a nitro-tetraene spiro-β-lactone-
γ-lactam antibiotics. Lajollamycin A contains FA (105), and B and C contained (106) and
D (107), and it has shown antimicrobial activity against gram-positive bacteria [112].

Unusual peptide-polyketide hybrid compounds containing a unique spiro-linked
β-lactone/γ-lactam, a 5-substituted oxazole ring named oxazolomycins, which exhibits
a wide range of biological activities, including antitumor and antibacterial activity, and
activity against human immunodeficiency virus [113–115].

Oxazolomycins B and C demonstrated potent inhibitory activity against crown gall
formation [116]. 16-Methyl-oxazolomycin showed antibacterial and antialgal activities
against Bacillus subtilis 1069 (MIC, 5.0/µg/mL) and Chlorella vulgaris IFO 15,941 (MIC,
10 µg/mL), respectively, and cytotoxicities (IC50 = 0.23 µg/mL against P388 leukemia cells;
4.6 µg/mL against A-549 human lung adenocarcinoma cells) [117]. Oxazolomycin A and
16-methyloxazolomycin contain FA (108), B (109), C (110), and curromycin A and B contain
a fatty acid (111). Antibiotic curromycin A produced by Streptomyces hygroscopicus and
Streptomyces sp. [118,119]. Both curromycins have shown an inhibitory effect on human
immunodeficiency virus replication [120]. Antibioics triedimycins A and B, which are
closely related to curromycin, have been found in the culture of Streptomyces sp. MJ213-
62F4 resembling Streptomyces melanosporofaciens. Both triedimycins contain FA (112) and
exhibited weak antimicrobial activity against Micrococcus luteus FDA16 (MIC, 25 µg/mL)
and Pseudomonas aeruginosa A3 (50 µg/mL) and had potent cytotoxicity to murine leukemia
P388 cells (IC50 0.06 and 0.19 µg/mL) [121].
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Figure 16. The 3D graph shows the predicted and calculated antiviral activity of FA (102). Interest-
ingly, this FA is synthesized in various FA amides by the fruiting bodies of the Japanese mushroom
Boletus laetissimus or the gasteroid fungus Calostoma cinnabarinum.
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Figure 17. Unique, rare, and unusual FA derived from microorganisms. 

Streptomyces nodosus NPS007994 found in marine sediment near Scripps Canyon (La 
Jolla, California) is a producer of the lajollamycin family, a nitro-tetraene spiro-β-lactone-
γ-lactam antibiotics. Lajollamycin A contains FA (105), and B and C contained (106) and 
D (107), and it has shown antimicrobial activity against gram-positive bacteria [112]. 
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μg/mL against A-549 human lung adenocarcinoma cells) [117]. Oxazolomycin A and 16-
methyloxazolomycin contain FA (108), B (109), C (110), and curromycin A and B contain 
a fatty acid (111). Antibiotic curromycin A produced by Streptomyces hygroscopicus and 
Streptomyces sp. [118,119]. Both curromycins have shown an inhibitory effect on human 
immunodeficiency virus replication [120]. Antibioics triedimycins A and B, which are 
closely related to curromycin, have been found in the culture of Streptomyces sp. MJ213-
62F4 resembling Streptomyces melanosporofaciens. Both triedimycins contain FA (112) and 
exhibited weak antimicrobial activity against Micrococcus luteus FDA16 (MIC, 25 μg/mL) 

Figure 17. Unique, rare, and unusual FA derived from microorganisms.

Table 7. Pharmacological profile of FA derived from microorganisms.

No. Predicted Biological Activity, Pa *

100 Antineoplastic (0.945); Apoptosis agonist (0.884); Antifungal (0.809)

101 Antineoplastic (0.892); Antifungal (0.755); Antibacterial (0.640)

102 Antiviral (Arbovirus) (0.930); Antiviral (Picornavirus) (0.917); Anti-inflammatory (0.815)

103 Apoptosis agonist (0.949); Angiogenesis inhibitor (0.892); Antineoplastic (0.881)

104 Lipid metabolism regulator (0.947); Antiviral (Arbovirus) (0.903); Anti-inflammatory (0.715)

105 Antineoplastic (0.987); Apoptosis agonist (0.858)

106 Lipid metabolism regulator (0.800); Antineoplastic (0.789); Hypolipemic (0.705)

107 Anti-inflammatory (0.844); Antineoplastic (0.802); Apoptosis agonist (0.793)

108 Lipid metabolism regulator (0.935); Hypolipemic (0.917); Anti-hypercholesterolemic (0.893)

109 Cell adhesion molecule inhibitor (0.889); Antileukemic (0.840); Antihypertensive (0.765)

110 Antineoplastic (0.864); Apoptosis agonist (0.800); Preneoplastic conditions treatment (0.676)

111 Antineoplastic (0.946); Apoptosis agonist (0.898); Allergic conjunctivitis treatment (0.537)

112 Antineoplastic (0.946); Apoptosis agonist (0.898); Allergic conjunctivitis treatment (0.537)
* Only activities with Pa > 0.5 are shown.
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Submerged cultures of the thermophilc fungus Talaromyces thermophilus YM cultivated
at 45 ◦C, yielding macrocyclic amides named thermolides A (113) and D (114, for structure
see Figure 18, and activity see Table 8). Thermolide A exhibited strong nematicidal activities
against Meloidogyne incognita, Bursaphelenchus xylophilus, and Panagrellus redivivus [122,123].

Le Goff and co-workers [124,125] reported the structural characterization of two
alkylhydrazides produced by the bacterial strain Streptomyces sp. LMA-545. Geralcins
A, B, and D contain 3-(2-oxo-2,5-dihydrofuran-3-yl)-propanoic acid (115), and geralcin C
contains (Z)-2-(1-carboxy-2-hydroxyethyl)-1-hexyldiazene oxide (116) [126].

(2E,4E)-5-Cyclohexylpenta-2,4-dienoic acid (117) was found in alisamycin and nisamycin,
which was detected in lipid extracts of the culture broth of Streptomyces sp. K106 [127].
Nisamycin showed cytotoxic activity, as well as antibacterial and antifungal activities
against gram-positive bacteria and fungi [128,129]. Antibiotic asukamycin was obtained
from of Streptomyces nodosus subsp. asukaensis. This antibiotic showed activity against
the growth of gram-positive bacteria including Nocardia asteroides [130]. (2E,4E,6E)-7-
cyclohexylhepta-2,4,6-trienoic acid (118) was found in asukamycin and asukamycin A-II.

Neoantimycin and analogues with a rare and unusual ring-extended member was produced
by a Streptomyces species (Streptoverticillium orinoci, Streptomyces sp. MST-AS4461) [131–133],
and all compounds contained (3S,4S)-3,4-dihydroxy-2,2-dimethyl-5-phenyl-pentanoic acid
(119). Streptomyces violaceoniger 4521-SVS3 is a producer of prunustatin A with (R)-4-
hydroxy-2,2-dimethyl-3-oxo-5-phenylpentanoic acid (120), and this compound exhibits
inhibitory activity against GRP78 expression [134]. Unantimycin A, a neoantimycin analog,
contains FA (120) [135].
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Table 8. Pharmacological profile of FA derived from microorganisms.

No. Predicted Biological Activity, Pa *

113 Antifungal (0.876); Anti-inflammatory (0.776); Antimutagenic (0.674)

114 Antifungal (0.898); Anti-inflammatory (0.823); Antimutagenic (0.672)

115 Hepatic disorders treatment (0.793); Cytoprotectant (0.661)

116 Anti-inflammatory (0.905); Antiviral (Arbovirus) (0.755); Antiviral (Picornavirus) (0.747)

117 Anti-eczematic (0.920); Anti-psoriatic (0.822); Antiviral (Arbovirus) (0.812)

118 Anti-eczematic (0.920); Anti-psoriatic (0.822); Antiviral (Arbovirus) (0.812)

119 Anti-psoriatic (0.929); Dermatologic (0.923); Anti-eczematic (0.695)

120 Lipid metabolism regulator (0.765); Anti-hypercholesterolemic (0.660); Hypolipemic (0.625)

121 Apoptosis agonist (0.834); Antineoplastic (0.817); Proliferative diseases treatment (0.737)

122 Growth stimulant (0.899); Antibacterial (0.897); Antifungal (0.889)

123 Growth stimulant (0.937); Anti-helmintic (0.866); Antiprotozoal (Coccidial) (0.806)

124 Myasthenia Gravis treatment (0.962); Anti-osteoporotic (0.866); Antiarthritic (0.831)

125 Anti-eczematic (0.933); Myasthenia Gravis treatment (0.794); Anti-osteoporotic (0.578)

126 Anti-infective (0.961); Antifungal (0.892); Anti-inflammatory (0.754)

127 Anti-infective (0.966); Antineoplastic (0.842); Antifungal (0.819)

128 Antiviral (Arbovirus) (0.858); Anti-inflammatory (0.785); Antiviral (Picornavirus) (0.723)

129 Antiviral (Arbovirus) (0.858); Anti-inflammatory (0.785); Antiviral (Picornavirus) (0.723)

130 Anti-hypercholesterolemic (0.881); Atherosclerosis treatment (0.859)
* Only activities with Pa > 0.5 are shown.

The marine sponge-derived Streptomyces sp. strain RM72 is a producer of trichostatin
analogues such as JBIR-109, JBIR-110, and JBIR-111 [136]. All components contain an
unusual acid (R,2E,4E)-7-(4-(dimethylamino)-phenyl)-4,6-dimethyl-7-oxohepta-2,4-dienoic
acid (121).

Efrotomycin including 6-deoxy-4-O-(6-deoxy-2,4-di-O-methyl-α-L-mannopyranosyl)-
3-O-methyl-β-D-allopyranose have been detected in the culture of Nocardia lactamdu-
rans [137,138]. This antibiotic contains FA (122), and aurodox (syn. antibiotic X 5108; goldin-
odox; goldinomycin; NSC 233989) isolated from Streptomyces sp. K06-0806 and contains FA
(123). The antibiotic aurodox was first described by Berger and co-authors [139,140], and
it was produced by Streptomyces goldiniensis ATCC 21386. The antibiotic is mainly active
against gram-positive bacteria and is an effective poultry growth promotant.

An anamorph, mesophilic fungus Penicillium citrinum is a producer of cysteine protease
inhibitors, which have been named cathestatin A–C [74]. Cathestatins A–C and estatins
A and B have also been found in Aspergilus terricola and fungus Microascus longirostris,
isolated from sponge [141]. All metabolites contain (2S,3S)-oxirane-2,3-dicarboxylic acid
(124, 3D graph, see Figure 19).

Cerulenin, with (2R,3S)-3-((4E,7E)-nona-4,7-dienoyl)-oxirane-2-carboxylic acid (125)
was isolated from lipid extracts of an endophytic fungus Phomopsis sp. This compound is
an inhibitor of FA and polyketide synthase [142,143].

Unusual bicyclic enol-carbamates named brabantamides A–C, although formally
known as SB-253514, SB-253517, and SB-253518 were first isolated from the culture ex-
tracts of Pseudomonas fluorescens [144,145]. Brabantamides A and B contains FA (126) and
(127), respectively.
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An unusual dicarboxylic acid was found in the FA amides of extracts of two fungi, Aspergilus terricola
and Microascus longirostris.

The filamentous fungus Alternaria alternata, which produce various toxins and cause
disease in various plants such as Japanese pear, strawberry, and mandarin produced
AK-toxin, AF-toxin, and ACT-toxin, respectively, and contained (R,2E,4Z,6E)-8-hydroxy-8-
((R)-2-methyloxiran-2-yl)-octa-2,4,6-trienoic acid (128) and (R,2E,4E,6E)-8-hydroxy-8-((R)-
2-methyloxiran-2-yl)-octa-2,4,6-trienoic acid (129) [146–148]. Methyl phenatate A with
FA (130) was detected in the organic extract of a fermentation culture of Streptomyces sp.
H7372 [149].

Crocacins A–D were produced by Chondromyces pediculatus strain Cm p17. Crocacin A
showed activity, an MIC of 0.625 µg/mL, against both Ustilago maydis and Saccharomyces cere-
visiae, while crocacin D was more potent against Saccharomyces cerevisiae, showing an MIC
of 1.4 ng/mL [150]. All compounds having (2E,4E,6S,7S,8R,9S,10E)-7,9-dimethoxy-3,6,8-
trimethyl-11-phenylundeca-2,4,10-trienoic acid (131). A marine actinomycete (strain MST-
MA190), which was detected and isolated from a sample of beach sand collected near Lorne
on the southwest coast of Victoria (Australia) contained aromatic amides, lorneamide A
and lorneamide B [151]. Both compounds contained (Z)-4-(2-((E)-3-hydroxyhex-1-en-1-yl)-
4-methylphenyl)-but-3-enoic acid (132) and (Z)-4-(4-methyl-2-(3-oxohexyl)phenyl)-but-3-
enoic acid (133), respectively. The antibiotic meroparamycin with 4-(3-oxo-6-propylnonyl)-
benzoic acid (134) was produced in the free culture system of Streptomyces sp. strain
MAR01 [152]. Streptomyces sp. MJ995-OF5 is a producer of epostatin which has property as
an inhibitor dipeptidyl peptidase II (DPP-II, EC 3.4.14.2) with FA (135) [153].

The cultivated strain of Streptomyces LZ35 produces cuevaenes A and C, cuevaenes D
and E, and cuevaene B. Cuevaenes A–C displayed moderate activity against Bacillus subtilis
and against fungi Fusarium verticillioides, and Rhizoctonia solani [154]. Cuevaenes A, C and
cuevaene B contained unusual FA (136–138), respectively.
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Ansamycins designated thiazinotrienomycins A–D were obtained from culture broth
of Streptomyces sp. MJ672-m3 [155], and contained FA (139), and FA (140). Cytotrienins
A–D with FA (139 and 140) are also found in Streptomyces sp. RK95-74.12 [156].

A cytotoxic (human A375-S2 and HELA cell lines) isocoumarin with acid (141), named
Sg17-1-4 were obtained from a marine fungus Alternaria tenuis Sg17-1 isolated from an
alga (Zhoushan Island, China). The cytotoxicities of these compounds were evaluated
in vitro [157].

TPU-0031-A and B antibiotics have been detected in the culture broth of Streptomyces
sp. TP-A0556 [158]. TPU-0031-A, B and novobiocin contained 4-hydroxy-3-(3-methylbut-2-
en-1-yl)-benzoic acid (142, for structure see Figure 20, and activity see Table 9).
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An endophytic Streptomyces sp. YIM65484 isolated from the vine used in traditional 
Chinese medicine (Tripterygium wilfordii) is a producer of the antimicrobial compound 
with (2E,4E)-5-(3-hydroxyphenyl)-penta-2,4-dienoic acid (144) [160]. 

The cultured broth of the marine actinomycete Salinispora arenicola contained a ri-
famycin antibiotic called salinisporamycin [161], and saliniketals A and B, bicyclic polyke-
tides, were from the same S. arenicola [162]. Salinisporamycin and saliniketal A contained 
FA (145), and saliniketal B—FA (146, 3D graph, see Figure 21). Korormicin with (4Z,6E)-
3-hydroxy-8-(3-nonyloxiran-2-yl)-octa-4,6-dienoic acid (147) had specific inhibitory activ-
ity against marine gram-negative bacteria [95]. 
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Table 9. Pharmacological profile of FA derived from microorganisms.

No. Predicted Biological Activity, Pa *

131 Antineoplastic (0.892); Lipid metabolism regulator (0.862); Antifungal (0.777)

132 Anti-inflammatory, intestinal (0.833); Antiviral (Arbovirus) (0.724); Antifungal (0.522)

133 Anti-inflammatory (0.741); Antiviral (Arbovirus) (0.683)

134 Preneoplastic conditions treatment (0.819); Acute neurologic disorders treatment (0.646)

135 Autoimmune disorders treatment (0.977); Antiarthritic (0.968)
Systemic lupus erythematosus treatment (0.880); Antiviral (Arbovirus) (0.741)

136 Antineoplastic (0.763); Apoptosis agonist (0.740); Antifungal (0.710)

137 Antineoplastic (0.763); Apoptosis agonist (0.740); Antifungal (0.710)

138 Antineoplastic (0.782); Apoptosis agonist (0.700); Antifungal (0.673)

139 Antiviral (Arbovirus) (0.723); Antiviral (Picornavirus) (0.673); Anti-inflammatory (0.570)

140 Antiviral (Arbovirus) (0.710); Anti-inflammatory (0.680); Antiviral (Picornavirus) (0.594)

141 Antineoplastic (0.813); Antiviral (Arbovirus) (0.748); Antiviral (Picornavirus) (0.585)

142 Anti-infective (0.780); Antiviral (Arbovirus) (0.728); Anti-inflammatory (0.716)
Antiviral (Picornavirus) (0.633); Antifungal (0.542); Antibacterial (0.533)

143 Anti-Helicobacter pylori (0.744); Antiviral (Arbovirus) (0.715); Antiviral (Picornavirus) (0.547)

144 Preneoplastic conditions treatment (0.833); Antimutagenic (0.829); Antineoplastic (0.767)

145 Antineoplastic (0.921); Apoptosis agonist (0.798); Chemoprotective (0.590)

146 Antineoplastic (0.922); Antifungal (0.860); Antibacterial (0.824); Apoptosis agonist (0.751)

147 Lipid metabolism regulator (0.956); Vasodilator (0.928); Hypolipemic (0.814)
* Only activities with Pa > 0.5 are shown.

Nucleoside antibiotics, named streptcytosines A–E, have been detected in a culture
broth of Streptomyces sp. TPU1236A (Okinawa, Japan) [159]. Streptcytosine B and D have
contained (E)-3-(methylthio)-acrylic (143) and 3-methylbut-2-enoic (81) acids, respectively.

An endophytic Streptomyces sp. YIM65484 isolated from the vine used in traditional
Chinese medicine (Tripterygium wilfordii) is a producer of the antimicrobial compound with
(2E,4E)-5-(3-hydroxyphenyl)-penta-2,4-dienoic acid (144) [160].

The cultured broth of the marine actinomycete Salinispora arenicola contained a ri-
famycin antibiotic called salinisporamycin [161], and saliniketals A and B, bicyclic polyke-
tides, were from the same S. arenicola [162]. Salinisporamycin and saliniketal A contained
FA (145), and saliniketal B—FA (146, 3D graph, see Figure 21). Korormicin with (4Z,6E)-3-
hydroxy-8-(3-nonyloxiran-2-yl)-octa-4,6-dienoic acid (147) had specific inhibitory activity
against marine gram-negative bacteria [95].

Myxalamide PI, related to phenalamides, containing FA (148, for structure see Figure 22,
and activity see Table 10) was isolated from actinomycete Cystobacter velutus [163]. Acti-
nomycete Myxococcus stipitatus (AJ-12587) from a soil sample from Izu Peninsula, Japan
produced antibiotic stipiamide (phenalamide A1) with FA (149) [164]. Phenalamide A1 was
found to suppress HIV-1 replication in cell cultures and has been detected in Polyangium sp.
and Myxococcus stipitatus. Phenalamide A1 could prevent the HIV-1 infection of MT-4 cells
even at concentrations of 1.02 nM, and thiangazole at 4.7 pM [164].

In 1992, Trowitzsch-Kienast and co-workers [165] reported the isolation and charac-
terisation of five new compounds, phenalamides A1, B, A2, A3, and C from Myxococcus
stipitatus Mx s40. Phenalamide A1 proved to be the same compound as the previously
isolated stipiamide. Phenalamide B is a methylated variant of stipiamide, and phenalamide
A3 has one less double bond. Phenalamide A2 possesses a cis-alkene, and phenalamide C
is an epoxidized derivative. Phenalamides A1, B, A2, and A3 contained (149), (150), (151),
(152), and (153, 3D graph, see Figure 23), respectively.
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No. Predicted Biological Activity, Pa * 
148 Antineoplastic (0.875); Apoptosis agonist (0.818); Antifungal (0.727); Antiparasitic (0.584) 
149 Antineoplastic (0.887); Apoptosis agonist (0.784); Antifungal (0.775); Antibacterial (0.621) 
150 Antineoplastic (0.906); Apoptosis agonist (0.834); Antifungal (0.792); Antibacterial (0.645) 
151 Antineoplastic (0.887); Apoptosis agonist (0.784); Antifungal (0.775); Antibacterial (0.621) 
152 Antineoplastic (0.887); Apoptosis agonist (0.784); Antifungal (0.775); Antibacterial (0.621) 
153 Antineoplastic (0.944); Apoptosis agonist (0.823); Antifungal (0.814); Antibacterial (0.652) 
154 Lipid metabolism regulator (0.937); Hypolipemic (0.866); Radioprotector (0.850) 
155 Lipoprotein disorders treatment (0.912); Atherosclerosis treatment (0.910); Hypolipemic (0.903) 

156 Lipid metabolism regulator (0.730); Acute neurologic disorders treatment (0.729)/////Hypolipemic (0.720); 
Anti-hypercholesterolemic (0.706); Atherosclerosis treatment (0.566) 

157 Antiviral (Arbovirus) (0.761); Antiallergic (0.622); Antifungal (0.541); Antibacterial (0.505) 
158 Immunosuppressant (0.933); Antibacterial (0.904); Antineoplastic (0.874); Antifungal (0.867) 
159 Immunosuppressant (0.916); Antibacterial (0.893); Antineoplastic (0.880); Antifungal (0.828) 
160 Antifungal (0.896); Antibacterial (0.803); Anti-inflammatory (0.747) 
161 Antifungal (0.918); Antineoplastic (0.897); Antibacterial (0.849); Apoptosis agonist (0.773) 
162 Antifungal (0.906); Antineoplastic (0.871); Antibacterial (0.828); Apoptosis agonist (0.659) 
163 Antineoplastic (0.879); Antifungal (0.863); Antibacterial (0.757) 
164 Antifungal (0.896); Antineoplastic (0.895); Antibacterial (0.826); Apoptosis agonist (0.739) 
165 Antineoplastic (0.905); Antifungal (0.864); Apoptosis agonist (0.837); Antibacterial (0.753) 

* Only activities with Pa > 0.5 are shown. 

Figure 21. The 3D graph shows the predicted and calculated antineoplastic activity of FA (145 and
146). Both FA in the amides is produced by the marine actinomycete Salinispora arenicola, and these
acids demonstrate anticancer activity with more than 90% confidence.
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In 1992, Trowitzsch-Kienast and co-workers [165] reported the isolation and charac-
terisation of five new compounds, phenalamides A1, B, A2, A3, and C from Myxococcus 
stipitatus Mx s40. Phenalamide A1 proved to be the same compound as the previously 
isolated stipiamide. Phenalamide B is a methylated variant of stipiamide, and phenal-
amide A3 has one less double bond. Phenalamide A2 possesses a cis-alkene, and phenal-
amide C is an epoxidized derivative. Phenalamides A1, B, A2, and A3 contained (149), 
(150), (151), (152), and (153, 3D graph, see Figure 23), respectively. 

Figure 22. Unusual FA derived from marine actinomycetes.
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Table 10. Pharmacological profile of FA derived from microorganisms.

No. Predicted Biological Activity, Pa *

148 Antineoplastic (0.875); Apoptosis agonist (0.818); Antifungal (0.727); Antiparasitic (0.584)

149 Antineoplastic (0.887); Apoptosis agonist (0.784); Antifungal (0.775); Antibacterial (0.621)

150 Antineoplastic (0.906); Apoptosis agonist (0.834); Antifungal (0.792); Antibacterial (0.645)

151 Antineoplastic (0.887); Apoptosis agonist (0.784); Antifungal (0.775); Antibacterial (0.621)

152 Antineoplastic (0.887); Apoptosis agonist (0.784); Antifungal (0.775); Antibacterial (0.621)

153 Antineoplastic (0.944); Apoptosis agonist (0.823); Antifungal (0.814); Antibacterial (0.652)

154 Lipid metabolism regulator (0.937); Hypolipemic (0.866); Radioprotector (0.850)

155 Lipoprotein disorders treatment (0.912); Atherosclerosis treatment (0.910); Hypolipemic (0.903)

156 Lipid metabolism regulator (0.730); Acute neurologic disorders treatment (0.729)
Hypolipemic (0.720); Anti-hypercholesterolemic (0.706); Atherosclerosis treatment (0.566)

157 Antiviral (Arbovirus) (0.761); Antiallergic (0.622); Antifungal (0.541); Antibacterial (0.505)

158 Immunosuppressant (0.933); Antibacterial (0.904); Antineoplastic (0.874); Antifungal (0.867)

159 Immunosuppressant (0.916); Antibacterial (0.893); Antineoplastic (0.880); Antifungal (0.828)

160 Antifungal (0.896); Antibacterial (0.803); Anti-inflammatory (0.747)

161 Antifungal (0.918); Antineoplastic (0.897); Antibacterial (0.849); Apoptosis agonist (0.773)

162 Antifungal (0.906); Antineoplastic (0.871); Antibacterial (0.828); Apoptosis agonist (0.659)

163 Antineoplastic (0.879); Antifungal (0.863); Antibacterial (0.757)

164 Antifungal (0.896); Antineoplastic (0.895); Antibacterial (0.826); Apoptosis agonist (0.739)

165 Antineoplastic (0.905); Antifungal (0.864); Apoptosis agonist (0.837); Antibacterial (0.753)
* Only activities with Pa > 0.5 are shown.
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Two polyketide metabolites, thailandamide A and thailandamide lactone with (E)-7-hy-
droxy-8-(4-hydroxyphenyl)-2-methyloct-4-enoic acid (156) have been isolated from gram-
negative bacillus Burkholderia thailandensis [168,169]. 

Antitumor antibiotics named oximidines I and II were obtained from Pseudomonas 
sp. Q52002. Oximidines I, II and III with (2E)-4-(methoxyimino)-but-2-enoic acid (157) se-
lectively inhibited the growth of rat 3Y1 cells [170]. Oximidine III, an antitumor antibiotic 
was isolated from Pseudomonas sp. QN05727 [171]. 

Streptomyces tsukubaenis fermentation broth no. 9993 contained an immunosup-
pressant, FK-506 [172], and the marine Streptomyces sp. CNH189 and Streptomyces sp. 
KCTC 11604BP produced of unnatural 36-methyl-FK506 [173]. Both compounds con-
tained fatty acid (158, for structure see Figure 24, activity see Table 10, and 3D graph see 
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Figure 23. The 3D graph shows the predicted and calculated antineoplastic activity of FA (150
and 153). Both FA have been found in amide that is synthesized by a mesophilic Proteobacterium
Myxococcus stipitatus.
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A marine-derived actinomycete Nocardiopsis sp. CMB-M0232 obtained from a sedi-
ment sample near Brisbane, Australia is a producer of nocardiopsins A–D [166,167]. Nocar-
diopsins A and C contained FA (154), and nocardiopsins B and D contained FA (155). Two
polyketide metabolites, thailandamide A and thailandamide lactone with (E)-7-hydroxy-8-
(4-hydroxyphenyl)-2-methyloct-4-enoic acid (156) have been isolated from gram-negative
bacillus Burkholderia thailandensis [168,169].

Antitumor antibiotics named oximidines I and II were obtained from Pseudomonas
sp. Q52002. Oximidines I, II and III with (2E)-4-(methoxyimino)-but-2-enoic acid (157)
selectively inhibited the growth of rat 3Y1 cells [170]. Oximidine III, an antitumor antibiotic
was isolated from Pseudomonas sp. QN05727 [171].

Streptomyces tsukubaenis fermentation broth no. 9993 contained an immunosuppres-
sant, FK-506 [172], and the marine Streptomyces sp. CNH189 and Streptomyces sp. KCTC
11604BP produced of unnatural 36-methyl-FK506 [173]. Both compounds contained fatty
acid (158, for structure see Figure 24, activity see Table 10, and 3D graph see Figure 25) and
(159), respectively.
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Figure 25. The 3D graph shows the predicted and calculated immunosuppressant activity of FA 
(158 and 159). Both fatty acids were found in a pseudopeptide synthesized by marine fungal endo-
phytes with rare biological properties. 

Actinomycete Amycolatopsis orientalis (see Figure 26), deposited as a vancomycin pro-
ducer, produced, a glycosidic polyketide ECO-0501, which contained fatty acid (160) 
[174]. Streptomyces aizunensis NRRL B-11277 is producer of a unique compound, ECO-
02301, with antifungal activity contained amino acid, (161, for structure see Figure 27, and 
for 3D graph see Figure 28) [175]. The fermentation broth of the actinomycete strain Strep-
tomyces hygroscopicus TP-A0623 contained clethramycin with FA (162) and demonstrated 
in vitro antifungal activity against Candida albicans and C. glabrata [176–179]. 

Figure 24. Unusual FA derived from marine fungal endophytes.

Actinomycete Amycolatopsis orientalis (see Figure 26), deposited as a vancomycin pro-
ducer, produced, a glycosidic polyketide ECO-0501, which contained fatty acid (160) [174].
Streptomyces aizunensis NRRL B-11277 is producer of a unique compound, ECO-02301,
with antifungal activity contained amino acid, (161, for structure see Figure 27, and for 3D
graph see Figure 28) [175]. The fermentation broth of the actinomycete strain Streptomyces
hygroscopicus TP-A0623 contained clethramycin with FA (162) and demonstrated in vitro
antifungal activity against Candida albicans and C. glabrata [176–179].

Streptomyces sp. are producers of zwitterionic polyketides with FA (163) and their
biosynthesis is well described [180]. Three polyene antibiotics, mediomycins A (164),
B (165), and clethramycin (163), were detected in extracts of Streptomyces mediocidicus
ATCC23936 [181,182].
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Figure 25. The 3D graph shows the predicted and calculated immunosuppressant activity of FA 
(158 and 159). Both fatty acids were found in a pseudopeptide synthesized by marine fungal endo-
phytes with rare biological properties. 

Actinomycete Amycolatopsis orientalis (see Figure 26), deposited as a vancomycin pro-
ducer, produced, a glycosidic polyketide ECO-0501, which contained fatty acid (160) 
[174]. Streptomyces aizunensis NRRL B-11277 is producer of a unique compound, ECO-
02301, with antifungal activity contained amino acid, (161, for structure see Figure 27, and 
for 3D graph see Figure 28) [175]. The fermentation broth of the actinomycete strain Strep-
tomyces hygroscopicus TP-A0623 contained clethramycin with FA (162) and demonstrated 
in vitro antifungal activity against Candida albicans and C. glabrata [176–179]. 

Figure 25. The 3D graph shows the predicted and calculated immunosuppressant activity of FA (158
and 159). Both fatty acids were found in a pseudopeptide synthesized by marine fungal endophytes
with rare biological properties.
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Amycolatopsis orientalis (previously known as Streptomyces orientalis) (c), and bacteria Nocardiopsis sp. 
(d), which are sources of bioactive amides. Pictures adapted by author. 

Figure 26. Examples of fungus Alternaria alternata (a), fungus Microsphaeropsis sp. (b), actinomycete
Amycolatopsis orientalis (previously known as Streptomyces orientalis) (c), and bacteria Nocardiopsis sp. (d),
which are sources of bioactive amides. Pictures adapted by author.
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acids show antifungal activity with more than 90% confidence. 

Streptomyces sp. are producers of zwitterionic polyketides with FA (163) and their 
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molecule was first proposed by Brown and Fraser more than 150 years ago, in 1868 [183]. 
However, according to other data, this was done by Kross in 1863, who established a re-
lationship between the toxicity of primary aliphatic alcohols and their solubility in water 
[184]. It was established by historians that more than 30 years later Richet in 1893 [185], 
Meyer in 1899 [186], and Overton in 1901 [187] independently discovered a linear correla-
tion between lipophilicity and biological effects. Additionally, in 1935, Hammett [188,189] 
described a method for considering the influence of substituents on reaction mechanisms 
using an equation in which two parameters were considered, namely, the substituent con-
stant and the reaction constant. Moreover, in 1956, Taft made an addition to the Hammett 
model and proposed an approach to separating the polar, steric, and resonant effects of 
substituents in aliphatic compounds [190]. Hansch and Fujita, developing these ideas, 
combined all previous developments and laid the mechanistic basis for the development 
of the QSAR method [191], and the Hansch linear equation and Hammett electronic con-
stants are described in detail in the book by Hansch and Leo, published in 1995 [192]. 

At present, well-known computer programs make it possible to evaluate the phar-
macological activity of chemical molecules with respect to various biological models with 
a certain degree of certainty [193–196]. It is known that classical SAR methods are based 
on the analysis of (quantitative) structure–activity relationships for one or more types of 

Figure 28. The 3D graph shows the predicted and calculated antifungal activity of FA (161 and 162).
Both FA were found in the pseudopeptide that synthesizes actinomycete Streptomyces, and both
acids show antifungal activity with more than 90% confidence.

3. Structure–Activity Relationships and Biological Activities of Natural FA Amides

Numerous works in the field of pharmacology have shown that the chemical structure
of natural chemical molecules predetermines their biological activity, and their mutual rela-
tionships can be described as the structure-activity relationships (SAR). Historical studies
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have shown that the idea of dependence of activity on the structure of a chemical molecule
was first proposed by Brown and Fraser more than 150 years ago, in 1868 [183]. However,
according to other data, this was done by Kross in 1863, who established a relationship
between the toxicity of primary aliphatic alcohols and their solubility in water [184]. It
was established by historians that more than 30 years later Richet in 1893 [185], Meyer
in 1899 [186], and Overton in 1901 [187] independently discovered a linear correlation
between lipophilicity and biological effects. Additionally, in 1935, Hammett [188,189]
described a method for considering the influence of substituents on reaction mechanisms
using an equation in which two parameters were considered, namely, the substituent con-
stant and the reaction constant. Moreover, in 1956, Taft made an addition to the Hammett
model and proposed an approach to separating the polar, steric, and resonant effects of
substituents in aliphatic compounds [190]. Hansch and Fujita, developing these ideas,
combined all previous developments and laid the mechanistic basis for the development of
the QSAR method [191], and the Hansch linear equation and Hammett electronic constants
are described in detail in the book by Hansch and Leo, published in 1995 [192].

At present, well-known computer programs make it possible to evaluate the pharma-
cological activity of chemical molecules with respect to various biological models with a
certain degree of certainty [193–196]. It is known that classical SAR methods are based
on the analysis of (quantitative) structure–activity relationships for one or more types of
biological activity using organic compounds belonging to the same chemical series as the
training set [196].

The software called PASS used to calculate biological activity has been constantly
updated and improved over the past thirty years [197] and is based on the analysis of a
heterogeneous training set that includes information on more than 1.3 million known biolog-
ically active compounds with data on approx. 10,000 types of biological activity [197–199].
Chemical descriptors implemented in PASS, reflecting the features of the ligand-target
interaction and the original implementation of the Bayesian approach to elucidation of
structure–activity relationships, provide an average accuracy and predictability for several
thousand biological activities, equal to approximately 96% [198].

Several comparative studies have shown that PASS is more predictive than some other
recently developed methods for assessing biological activity profiles [197,198], although
this program is not sufficiently effective for complex molecules or optical isomers. To
calculate the pharmacological potential profile of natural substances, we have successfully
used PASS for the past fifteen years [200–205].

4. Conclusions

The biological activity of natural FA amides has attracted the attention of pharmacol-
ogists for a long time. It is known that this class of compounds is found in many living
organisms, including plants, algae, and marine and freshwater invertebrates, but microor-
ganisms attract the greatest interest. This is because various bacteria or fungal endophytes
can be isolated from natural sources and cultivated to produce bioactive drugs that are
increasingly being used in medicine to fight various diseases. The review offered to the
reader covers a small number of natural amides as an example for their further study. This
review presents natural FA amides found in extracts from the marine-derived fungi, as well
as bacteria isolated from various natural sources. Some fatty acids demonstrated strong an-
tifungal, antibacterial, antiviral, antineoplastic, and anti-inflammatory activities, and other
fatty acids have shown rare activities such as antidiabetic, anti-infective, anti-eczematic,
antimutagenic, and anti-psoriatic activities. As a rule, the indicated biological activities of
fatty acids have a certainty of more than 90%. These data are undoubtedly of interest to
chemists and pharmacologists, both from a theoretical and practical point of view.
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