
ARTICLE

Microbiome differential abundance methods
produce different results across 38 datasets
Jacob T. Nearing 1,7✉, Gavin M. Douglas1,7, Molly G. Hayes 2, Jocelyn MacDonald3, Dhwani K. Desai4,

Nicole Allward5, Casey M. A. Jones6, Robyn J. Wright6, Akhilesh S. Dhanani 4, André M. Comeau 4 &

Morgan G. I. Langille4,6

Identifying differentially abundant microbes is a common goal of microbiome studies.

Multiple methods are used interchangeably for this purpose in the literature. Yet, there are

few large-scale studies systematically exploring the appropriateness of using these tools

interchangeably, and the scale and significance of the differences between them. Here, we

compare the performance of 14 differential abundance testing methods on 38 16S rRNA gene

datasets with two sample groups. We test for differences in amplicon sequence variants and

operational taxonomic units (ASVs) between these groups. Our findings confirm that these

tools identified drastically different numbers and sets of significant ASVs, and that results

depend on data pre-processing. For many tools the number of features identified correlate

with aspects of the data, such as sample size, sequencing depth, and effect size of community

differences. ALDEx2 and ANCOM-II produce the most consistent results across studies and

agree best with the intersect of results from different approaches. Nevertheless, we

recommend that researchers should use a consensus approach based on multiple differential

abundance methods to help ensure robust biological interpretations.
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M icrobial communities are frequently characterized by
DNA sequencing. Marker gene sequencing, such as 16S
rRNA gene sequencing, is the most common form of

microbiome profiling and enables the relative abundances of taxa
to be compared across different samples. A frequent and see-
mingly simple question to investigate with this type of data is:
which taxa significantly differ in relative abundance between
sample groupings? Newcomers to the microbiome field may be
surprised to learn that there is little consensus on how best to
approach this question. Indeed, there are numerous ongoing
debates regarding the best practices for differential abundance
(DA) testing with microbiome data1,2.

One area of disagreement is whether read count tables should
be rarefied (i.e., subsampled) to correct for differing read depths
across samples3. This approach has been heavily criticized
because excluding data could reduce statistical power and intro-
duce biases. In particular, using rarefied count tables for standard
tests, such as the t-test and Wilcoxon test, can result in unac-
ceptably high false positive rates4. Nonetheless, microbiome data
is still frequently rarefied because it can simplify analyses, parti-
cularly for methods that do not control for variation in read
depth across samples. For example, LEfSe5 is a popular method
for identifying differentially abundant taxa that first converts read
counts to percentages. Accordingly, read count tables are often
rarefied before being input into this tool so that variation in
sample read depth does not bias analyses. Without addressing the
variation in depth across samples by some approach, the richness
can drastically differ between samples due to read depth alone.

A related question to whether data should be rarefied is whe-
ther rare taxa should be filtered out. This question arises in
many high-throughput datasets, where the burden of correcting
for many tests can greatly reduce statistical power. Filtering out
potentially uninformative features before running statistical tests
can help address this problem, although in some cases this can
also have unexpected effects such as increases in false positives6.
Importantly, this filtering must be independent of the test statistic
evaluated (referred to as Independent Filtering). For instance,
hard cut-offs for the prevalence and abundance of taxa across
samples, and not within one group compared with another, are
commonly used to exclude rare taxa7. This data filtering could be
especially important for microbiome datasets because they are
often extremely sparse. Nonetheless, it remains unclear whether
filtering rare taxa has much effect on DA results in practice.

Another contentious area is regarding which statistical dis-
tributions are most appropriate for analyzing microbiome data.
Statistical frameworks based on a range of distributions have
been developed for modeling read count data. For example,
DESeq28 and edgeR9 are both tools that assume read counts
follow a negative binomial distribution. To identify differentially
abundant taxa, a null and alternative hypothesis are compared
for each taxon. The null hypothesis states that the same setting
for certain parameters of the negative binomial solution explain
the distribution of taxa across all sample groupings. The alter-
native hypothesis states that different parameter settings are
needed to account for differences between sample groupings.
If the null hypothesis can be rejected for a specific taxon, then
it is considered differentially abundant. This idea is the foun-
dation of distribution-based DA tests, including other methods
such as corncob10 and metagenomeSeq11, which model micro-
biome data with the beta-binomial and zero-inflated Gaussian
distributions, respectively.

Finally, it has recently become more widely appreciated that
sequencing data are compositional12, meaning that sequencing
only provides information on the relative abundance of features
and that each feature’s observed abundance is dependent on the
observed abundances of all other features. This characteristic

means that false inferences are commonly made when standard
methods, intended for absolute abundances, are used with taxo-
nomic relative abundances. Compositional data analysis (CoDa)
methods circumvent this issue by reframing the focus of analysis
to ratios of read counts between different taxa within a
sample13,14. The difference among CoDa methods considered in
this paper is what abundance value is used as the denominator, or
the reference, for the transformation. The centered log-ratio
(CLR) transformation is a CoDa approach that uses the geometric
mean of the read counts of all taxa within a sample as the
reference/denominator for that sample. In this approach all taxon
read counts within a sample are divided by this geometric mean
and the log fold changes in this ratio between samples are com-
pared. An extension of this approach is implemented in the tool
ALDEx215. The additive log-ratio transformation is an alternative
approach where the reference is the count abundance of a single
taxon, which should be present with low variance in read counts
across samples. In this case the ratio between the reference taxon
chosen (denominator) and each taxon in that sample are com-
pared across different sample groupings. ANCOM is one tool that
implements this additive log-ratio approach16.

Regardless of the above choices, evaluating the numerous options
for analyzing microbiome data has proven difficult. This is largely
because there are no gold standards to compare DA tool results.
Simulating datasets with specific taxa that are differentially abun-
dant is a partial solution to this problem, but it is imperfect. For
example, it has been noted that parametric simulations can result in
circular arguments for specific tools, making it difficult to assess
their true performance17. It is unsurprising that distribution-based
methods perform best when applied to simulated data based on that
distribution. Nonetheless, simulated data with no expected differ-
ences has been valuable for evaluating the false discovery rate (FDR)
of these methods. Based on this approach it has become clear that
many of the methods produce unacceptably high numbers of false
positive identifications3,18,19. Similarly, based on simulated datasets
with spiked taxa it has been shown that these methods can dras-
tically vary in statistical power17,18.

Although these general observations have been well substantiated,
there is less agreement regarding the performance of tools across
evaluation studies. Certain observations have been reproducible,
such as the higher FDR of edgeR and metagenomeSeq. Similarly,
ALDEx2 has been repeatedly shown to have low power to detect
differences17,19. In contrast, both ANCOM and limma voom20,21

have been implicated as both accurately and poorly controlling the
FDR, depending on the study3,17,19. To further complicate com-
parisons, different sets of tools and dataset types have been analyzed
across evaluation studies. This means that, on some occasions, the
best performing method in one evaluation is missing from another.
In addition, certain popular microbiome-specific methods, such as
MaAsLin222, have been missing from past evaluations. Finally,
many evaluations limit their analysis to a small number of datasets
that do not represent the breadth of datasets found in 16S rRNA
gene sequencing studies.

Given the inconsistencies across these studies it is important
that additional, independent evaluations be performed to eluci-
date the performance of current DA methods. This is particularly
important as these tools are typically used interchangeably in
microbiome research. Accordingly, herein we have conducted
additional evaluations of common DA tools across 38 two-group
16S rRNA gene datasets. We first present the concordance of the
methods on these datasets to investigate how consistently
the methods cluster and perform in general, with and without the
removal of rare taxa. Next, based on artificially subsampling
the datasets into two groups where no differences are expected,
we present the observed false postive rate for each DA tool.
Lastly, we present an evaluation of how consistent biological
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interpretations would be across diarrheal and obesity datasets
depending on which tool was applied. Our work enables
improved assessment of these DA tools and highlights which key
recommendations made by previous studies hold in an inde-
pendent evaluation. Furthermore, our analysis shows various
characteristics of DA tools that authors can use to evaluate
published literature within the field.

Results
High variable in number of significant ASVs identified. To
investigate how different DA tools impact biological interpreta-
tions across microbiome datasets, we tested 14 different DA
testing approaches (Table 1) on 38 different microbiome datasets
with a total of 9,405 samples. These datasets corresponded to a
range of environments, including the human gut, plastisphere,
freshwater, marine, soil, wastewater, and built environments
(Supplementary Data 1). The features in these datasets corre-
sponded to both ASVs and clustered operational taxonomic units,
but we refer to them all as ASVs below for simplicity.

We also investigated how prevalence filtering each dataset prior
to analysis impacted the observed results. We chose to either use
no prevalence filtering (Fig. 1a) or a 10% prevalence filter that
removed any ASVs found in fewer than 10% of samples within
each dataset (Fig. 1b).

We found that in both the filtered and unfiltered analyses the
percentage of significant ASVs identified by each DA method
varied widely across datasets, with means ranging from 3.8–32.5%
and 0.8–40.5%, respectively. Interestingly, we found that many
tools behaved differently between datasets. Specifically, some
tools identified the most features in one dataset while identifying
only an intermediate number in other datasets. This was
especially evident in the unfiltered datasets (Fig. 1a).

Despite the variability of tool performance between datasets, we
did find that several tools tended to identify more significant hits
(Supplementary Fig. 1C, D). In the unfiltered datasets, we found
that limma voom (TMMwsp; mean: 40.5%; SD: 41% / TMM;
mean: 29.7%; SD: 37.5%), Wilcoxon (CLR; mean: 30.7%; SD:
42.3%), LEfSe (mean: 12.6%; SD: 12.3%), and edgeR (mean: 12.4%;
SD: 11.4%) tended to find the largest number of significant ASVs
compared with other methods. Interestingly, in a few datasets,
such as the Human-ASD and Human-OB (2) datasets, edgeR
found a higher proportion of significant ASVs than any other tool.
In addition, we found that limma voom (TMMwsp) found the
majority of ASVs to be significant (73.5%) in the Human-HIV (3)
dataset while the other tools found 0–11% ASVs to be significant
(Fig. 1a). We found that both limma voom methods identified
over 99% of ASVs to be significant in several cases such as the
Built-Office and Freshwater-Arctic datasets. This is most likely
due to the high sparsity of these datasets causing the tools’
reference sample selection method (upper-quartile normalization)
to fail. Such extreme findings were also seen in the Wilcoxon
(CLR) output, where more than 90% of ASVs were called as
significant in eight separate datasets. We found similar, although
not as extreme, trends with LEfSe where in some datasets, such as
the Human-T1D (1) dataset, the tool found a much higher
percentage of significant hits (3.5%) compared with all other tools
(0–0.4%). This observation is most likely a result of LEfSe filtering
significant features by effect size rather than using FDR correction
to reduce the number of false positives. We found that two of the
three compositionally aware methods we tested identified fewer
significant ASVs than the other tools tested. Specifically, ALDEx2
(mean: 1.4%; SD: 3.4%) and ANCOM-II (mean: 0.8%; SD: 1.8%)
identified the fewest significant ASVs. We found the conservative
behavior of these tools to be consistent across all 38 datasets
we tested.

Overall, the results based on the filtered tables were similar,
although there was a smaller range in the number of significant
features identified by each tool. All tools except for ALDEx2
found a lower number of total significant features when
compared with the unfiltered dataset (Supplementary Fig. 1C,
D). As with the unfiltered data, ANCOM-II was the most
stringent method (mean: 3.8%; SD: 5.9%), while edgeR (mean:
32.5%; SD: 28.5%), LEfSe (mean: 27.5%; SD: 25.0%), limma voom
(TMMwsp; mean: 27.3%; SD: 30.1%/TMM; mean: 23.5%; SD:
27.7%), and Wilcoxon (CLR; mean: 25.4%; SD: 31.7%) tended to
output the highest numbers of significant ASVs (Fig. 1b).

To investigate possible factors driving this variation we examined
how the number of ASVs identified by each tool correlated with
several variables. These variables included dataset richness, variation
in sequencing depth between samples, dataset sparsity, and
Aitchison’s distance effect size (based on PERMANOVA tests).
As expected, we found that the number of ASVs identified by all
tools positively correlated with the effect size between test groups
with Spearman correlation coefficient values ranging between
0.35–0.72 with unfiltered data (Fig. 2a) and 0.31–0.56 for filtered
data (Fig. 2b). We also found in the filtered datasets that the
number of ASVs found by all tools significantly correlated with the
median read depth, range in read depth, and sample size. There was
much less consistency in these correlations across the unfiltered
data. For instance, only the t-test, both Wilcoxon methods, and
both limma voom methods correlated significantly with the range
in read depth (Fig. 2b). We also found that edgeR was negatively
correlated with mean sample richness in the unfiltered analysis. The
percentage of ASVs in the unfiltered datasets that were lower than
10% prevalence was also significantly associated with the output of
several tools. We also investigated if chimeras could influence the
number of significant ASVs detected with results showing very
limited impact (Supplementary Fig. 2).

We next investigated whether the significant ASVs identified
by the tested DA tools were, on average, at different relative
abundances. The clearest outliers were ALDEx2 (median relative
abundance of significant ASVs: 0.013%), ANCOM-II (median:
0.024%), and to a lesser degree DESeq2 (median: 0.007%), which
tended to find significant features that were at higher relative
abundance in the unfiltered datasets (Supplementary Fig. 1A; the
medians for all other tools ranged from 0.00004–0.003%). A
similar trend for ALDEx2 (median: 0.011%) and ANCOM-II
(median: 0.029%) was also apparent in the filtered datasets
(Supplementary Fig. 1B; the medians for all other tools ranged
from 0.005–0.008%).

Finally, we also examined the discriminatory value of the
significant ASVs identified by each tool in the filtered datasets. By
discriminatory value we are referring to how well the sample
groups can be delineated by a single ASV using hard cut-off
abundance values. For this analysis we used either the relative
abundances (Supplementary Fig. 3A) or the CLR abundances
(Supplementary Fig. 3B) of each significant ASV input into
receiver operator curves (ROC) predicting the groups of interest.
Raw abundance values were used as input and multiple optimal
cut-off points were selected to produce ROCs comparing
sensitivity to specificity. We then measured the area under this
curve (AUC) of each significant ASV and calculated the mean
value across all ASVs identified by each tool. We found that ASVs
identified by either ALDEx2 or ANCOM-II had the highest mean
AUROC across the tested datasets using both relative abundances
and CLR abundances as input (Supplementary Fig. 3). Despite
this trend, there were instances where these tools failed to identify
any significant ASVs despite other tools achieving relatively high
mean AUROCs for the ASVs they identified. For example, in the
human-IBD dataset several tools found mean AUROCs of the
ASVs they identified ranging from 0.8–0.9 using either CLR or
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a

b

Fig. 1 Variation in the proportion of significant features depending on the differential abundance method and dataset. Heatmaps indicate the numbers
of significant amplicon sequence variants (ASVs) identified in each dataset by the corresponding tool based on a unfiltered data and b 10% prevalence-
filtered data. Cells are colored based on the standardized (scaled and mean centered) percentage of significant ASVs for each dataset. Additional colored
cells in the left-most six columns indicate the dataset characteristics we hypothesized could be driving variation in these results (darker colors indicate
higher values). Datasets were hierarchically clustered based on Euclidean distances using the complete method. Abbreviations: prev., previous; TMM,
trimmed mean of M-values; TMMwsp, trimmed mean of M-values with singleton pairing; rare, rarefied; CLR, center-log-ratio. Source data are provided as a
Source Data file.
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relative abundances as input while both ALDEx2 and ANCOM-II
failed to identify any significant ASVs.

As the above analysis has the potential to penalize tools that call
a higher number of ASVs that are of lower discriminatory values
we also investigated the ability of the tested DA methods to identify
ASVs above specific AUC thresholds (Supplementary Fig. 4). An
important assumption of this analysis is that to accept the exact
performance values all ASVs above and below the selected AUROC
threshold must be true and false positives, respectively. Although
this strict assumption is almost certainly false, it is likely that ASVs
above and below the AUC threshold are at least enriched for true
and false positives, respectively. We found that at an AUROC
threshold of 0.7 both ANCOM-II and ALDEx2 had the highest
precision for both relative abundance (medians: 0.99; SD: 0.36 and
median: 0.82, SD:0.39) and CLR data (medians: 1.0; SD:0.35 and
median: 0.83, SD:0.35). However, they suffered lower recall values
based on both relative (medians: 0.17 and 0.02) and CLR-based
(medians: 0.06 and 0.01) abundances when compared to the recall
scores of tools such as LEfSe and edgeR on relative abundance
(median: 0.96 and 0.69) and CLR data (medians: 0.50 and 0.34).
When examining CLR data as input we found that limma voom
(TMMwsp) had one of the highest F1 scores (median: 0.47) only
being outcompeted by the Wilcoxon (CLR) test (mean: 0.70).
Examining the data at a higher AUC threshold of 0.9 showed that
all tools had relatively high recall scores, apart from some tools
such as ANCOM-II, corncob, and t-test (rare) on CLR data
(medians: 0.5, 0.5, and 0.20). The precision score of all tools at this
threshold was low on both relative abundance (range: 0–0.01) and
CLR data (range: 0–0.2). This result is unsurprising as in practice
we would expect DA tools to identify features that are below a
discriminatory threshold of 0.9 AUC.

High variability of overlapping significant ASVs. We next
investigated the overlap in significant ASVs across tools within
each dataset. These analyses provided insight into how similar the
interpretations would be depending on which DA method was
applied. We hypothesize that tools that produce significant ASVs
that highly intersect with the output of other DA tools are the
most accurate approaches. Conversely, this may not be the case if
tools with similar approaches produce similar sets of significant
ASVs and end up identifying the same spurious ASVs. Either
way, identifying overlapping significant ASVs across methods
provides insights into their comparability.

Based on the unfiltered data, we found that limma voom
methods identified similar sets of significant ASVs that were
different from those of most other tools (Fig. 3a). However,
we also found that many of the ASVs identified by the limma
voom methods were also identified as significant based on
the Wilcoxon (CLR) approach, despite these being highly
methodologically distinct tools. Furthermore, the two Wilcoxon
test approaches had highly different consistency profiles, which
highlights the impact that CLR-transforming has on down-
stream results. In contrast, we found that both MaAsLin2
approaches had similar consistency profiles, although the non-
rarefied method found slightly lower-ranked features. We also
found that the most conservative tools, ALDEx2 and ANCOM-
II, primarily identified features that were also identified by
almost all other methods. In contrast, edgeR and LEfSe, two
tools that often identified the most significant ASVs, output the
highest percentage of ASVs that were not identified by any
other tool: 11.4% and 9.6%, respectively. Corncob, metagen-
omeSeq, and DESeq2 identified ASVs at more intermediate
consistency profiles.
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Fig. 2 Dataset characteristics associated with percentage of significant amplicon sequence variants. The correlation coefficients (Spearman’s rho) are
displayed by size and color for the a unfiltered and b prevalence-filtered data. These correspond to the dataset characteristics correlated with the
percentage of significant amplicon sequence variants identified by that tool per dataset. Only significant correlations before multiple comparison correction
(p < 0.05) are displayed. Abbreviations: prev., previous; TMM, trimmed mean of M-values; TMMwsp, trimmed mean of M-values with singleton pairing;
rare, rarefied; CLR, center-log-ratio. Source data are provided as a Source Data file.
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The overlap in significant ASVs based on the prevalence-
filtered data was similar overall to the unfiltered data results
(Fig. 3b). One important exception was that the limma voom
approaches identified a much higher proportion of ASVs that
were also identified by most other tools, compared with the
unfiltered data. Nonetheless, similar to the unfiltered data results,
the Wilcoxon (CLR) significant ASVs displayed a bimodal
distribution and a strong overlap with limma voom methods.

We also found that overall, the proportion of ASVs consistently
identified as significant by more than 12 tools was much higher in
the filtered data (mean: 38.6%; SD: 15.8%) compared with the
unfiltered data (mean: 17.3%; SD: 22.1%). In contrast with the
unfiltered results, corncob, metagenomeSeq, and DESeq2 had
lower proportions of ASVs at intermediate consistency ranks.
However, ALDEx2 and ANCOM-II once again produced
significant ASVs that largely overlapped with most other tools.

a b

c d

Fig. 3 Overlap of significant features across tools and tool clustering. a, b The number of tools that called each feature significant, stratified by features
called by each individual tool for the a unfiltered and b 10% prevalence-filtered data. Results are shown as a percentage of all ASVs identified by each tool.
The total number of significant features identified by each tool is indicated by the bar colors. For example, based on the unfiltered data these bars indicate
that almost 40% of significant ASVs identified by ALDEx2 were shared across all other tools, while ALDEx2 did not identify any significant ASVs shared by
fewer than eight tools. Note that when interpreting these results that they are dependent on which methods were included, and whether they are
represented multiple times. For instance, two different workflows for running MaAslin2 are included, which produced similar outputs. c, d Plots are
displayed for the first two principal coordinates (PCs) for both c non-prevalence-filtered and d 10% prevalence-filtered data. These plots are based on the
mean inter-tool Jaccard distance across the 38 main datasets that we analyzed, computed by averaging over the inter-tool distance matrices for all
individual datasets to weight each dataset equally. Abbreviations: TMM, trimmed mean of M-values; TMMwsp, trimmed mean of M-values with singleton
pairing; rare, rarefied; CLR, center-log-ratio. Source data are provided as a Source Data file.
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A major caveat of the above analysis is that each DA tool
produced different numbers of ASVs in total. Accordingly, in
principle all of the tools could be identifying the same top ASVs
and simply taking varying degrees of risk when identifying less
clearly differential ASVs. To investigate this possibility, we
identified the overlap between the 20 top-ranked ASVs per
dataset (Supplementary Fig. 5), which included non-significant
(but relatively highly ranked) ASVs in some cases. The
distribution of these ASVs in the 20 top-ranked hits for all tools
was similar to that of all significant ASVs described above. For
example, in the filtered data we found that, t-test (rare) (mean:
6.2; SD: 3.8), edgeR, (mean: 6.5; SD: 4.6), corncob (mean: 6.0; SD:
4.1), metagenomeSeq (mean: 5.2; SD: 4.7) and DESeq2 (mean:
4.7; SD: 4.5) had the highest number of ASVs only identified by
that particular tool as being in the top 20. On average only a small
number of ASVs were amongst the top 20 ranked of all tools in
both the filtered (mean: 0.21; SD: 0.62) and unfiltered (mean:
0.11; SD: 0.31) datasets (Supplementary Fig. 5). The above
analyses summarized the consistency in tool outputs, but it is
difficult to discern which tools performed most similarly from
these results alone. To identify overall similarly performing tools
we conducted principal coordinates analysis based on the Jaccard
distance between significant sets of ASVs (Fig. 3c, d). These
analyses provide insight into how similar the results of different
tools are expected to be, which could be due to methodological
similarities between them. However, this does not provide clear
evidence for which tools are the most accurate. One clear trend
for both unfiltered and filtered data is that edgeR and LEfSe
cluster together and are separated from other methods on the first
principal coordinate. Interestingly, corncob, which is a metho-
dologically distinct approach, also clusters relatively close to these
two methods on the first principal component. This may reflect
that the distributions that these two methods rely upon become
similar when considering the parameter values often associated
with microbiome data.

The major outliers on the second principal coordinate differ
depending on whether the data was prevalence-filtered. For the
unfiltered data, the main outliers are the limma voom methods,
followed by Wilcoxon (CLR; Fig. 3c). In contrast, ANCOM-II is
the sole major outlier on the second principal component based
on filtered data (Fig. 3d). These visualizations highlight the major
tool clusters based on the resulting sets of significant ASVs.
However, the percentage of variation explained by the top two
components is relatively low in each case, which means that
substantial information regarding potential tool clustering is
missing from these panels (Supplementary Fig. 6 and Supple-
mentary Fig. 7). For instance, ANCOM-II and corncob are major
outliers on the third and fourth principal coordinates, respec-
tively, of the unfiltered data analysis, which highlights the
uniqueness of these methods.

False discovery rate of microbiome differential abundance
tools depends on the dataset. We next evaluated how the DA
tools performed in cases where no significant hits were expected.
These cases corresponded to sub-samplings of eight of the 38
datasets presented above. For each dataset we selected the most
frequently sampled group and within this sample grouping we
randomly reassigned them as case or control samples. Each DA tool
was then run on this subset of randomly assigned samples and
results were compared. Due to the random nature of assignment
and the similar composition of samples from the same metadata
grouping (e.g. healthy humans) we would expect tools to not
identify any ASVs as being differential abundant. Through this
approach we were able to infer the false positive characteristics of
each tool. In other words, we determined what percentage of tested

ASVs was called as significant by each tool even when there is no
difference expected between the sample groups.

The clearest trend for both unfiltered and filtered data is that
certain outlier tools have relatively high FDRs in this context while
most others identify few false positives (Fig. 4). Both limma voom
methods output highly variable percentages of significant ASVs,
especially based on the unfiltered data (Fig. 4a). In 5/8 of the
unfiltered datasets, the limma voom methods identified more than
5% of ASVs as significant on average due to many high value
outliers. Only ALDEx2 and t-test (rare) consistently identified no
ASVs as significantly different in the unfiltered data analyses.
However, both MaAsLin2 and Wilcoxon (rare) found no significant
features in the majority of tested datasets (6/8 and 7/8 respectively).
Two clear outliers in the filtered data analyses were edgeR (mean:
0.69–27.9%) and LEfSe (mean: 3.4–5.1%) which consistently
identified more significant hits compared with other tools (Fig. 4b).
However, it should be noted that in some datasets Corncob,
DESeq2 and the limma methods also performed poorly.

Overall, we found that the raw numbers of significant ASVs
were lower in the filtered dataset than in the unfiltered data (as
expected due to many ASVs being filtered out), and that most
tools identified only a small percentage of significant ASVs,
regardless of filtering procedure. The exceptions were the two
limma voom methods, which had high FDRs with unfiltered data,
and edgeR and LEfSe, which had high FDRs on the filtered data.
Although these tools stand out on average, we also observed that
in several replicates on the unfiltered datasets, the Wilcoxon
(CLR) approach identified almost all features as statistically
significant (Fig. 4a). This was also true for both limma voom
methods, which highlights that a minority of replicates are
driving up the average FDR of these methods.

We investigated the outlier replicates for the Wilcoxon (CLR)
approach and found that the mean differences in read depth
between the two tested groups were consistently higher in replicates
in which 30% or more of ASVs were significant (Supplementary
Fig. 8). These differences were associated with similar differences in
the geometric mean abundances per-sample (i.e., the denominator
of the CLR transformation) between the test groups. Specifically,
per dataset, these outlier replicates commonly displayed the most
extreme mean difference in geometric mean between the test groups
and were otherwise amongst the top ten most extreme replicates.
Interestingly, the pattern of differential read depth was absent when
examining outlier replicates for the limma voom methods
(Supplementary Fig. 8).

Tools vary in consistently across diarrhea case-control datasets.
Separate from the above analysis comparing consistency between
tools on the same dataset, we next investigated whether certain tools
provide more consistent signals across datasets of the same disease.
This analysis focused on the genus-level across tools to help limit
inter-study variation. We specifically focused on diarrhea as a
phenotype, which has been shown to exhibit a strong effect on the
microbiome and to be relatively reproducible across studies23.

We acquired five datasets for this analysis representing the
microbiome of individuals with diarrhea compared with
individuals without diarrhea (see Methods). We ran all DA tools
on each individual filtered dataset and restricted our analyses to
the 218 genera found across all datasets. Like our ASV-level
analyses, the tools substantially varied in terms of the number of
significant genera identified. For instance, ALDEx2 identified a
mean of 17.6 genera as significant in each dataset (SD: 17.4),
while edgeR identified a mean of 46.0 significant genera
(SD: 12.9). Tools that generally identify more genera as significant
are accordingly more likely to identify genera as consistently
significant compared with tools with fewer significant hits.
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Accordingly, inter-tool comparisons of the number of times each
genus was identified as significant would not be informative.

Instead, we analyzed the observed distribution of the number
of studies that each genus was identified as significant in
compared with the expected distribution given random data.
This approach enabled us to compare the tools based on how
much more consistently each tool performed relative to its own

random expectation. For instance, on average edgeR identified
significant genera more consistently across studies compared with
ALDEx2 (mean numbers of datasets that genera were found in
across studies were 1.67 and 1.54 for edgeR and ALDEx2,
respectively). However, this observation was simply driven by the
increased number of significant genera identified by edgeR.
Indeed, when compared with the random expectation, ALDEx2

a

b

Fig. 4 Distribution of false discovery rate simulation replicates for both unfiltered and filtered data. The percentage of amplicon sequence variants that
are significant after performing Benjamini–Hochberg correction of the p-values (using a cut-off of 0.05) are shown for each separate dataset and tool.
Interquartile range (IQR) of boxplots represent the 25th and 75th percentiles while maxima and minima represent the maximum and minimum values
outside 1.5 times the IQR. Notch in the middle of the boxplot represent the median. Note that the x-axis is on a pseudo-log10 scale. a Represents unfiltered
datasets while b represents datasets filtered using a 10% prevalence requirement for each ASV. Datasets and tools were run 100 times while randomly
assigning samples from the same environment and original groupings to one of two new randomly selected groupings. Differential abundance analysis was
then performed on the two random groupings. Note that in the unfiltered datasets 100 replicates was only run 3 of the 8 datasets (Freshwater—Arctic, Soil
—Blueberry, Human—OB (1)) with 100 ALDEx2 replications also being run in the Human - HIV (3) dataset. All other unfiltered datasets were run with 10
replicates due to computational limitations. Abbreviations: TMM, trimmed mean of M-values; TMMwsp, trimmed mean of M-values with singleton pairing;
rare, rarefied; CLR, center-log-ratio. Source data are provided as a Source Data file.
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displayed a 1.35-fold increase (p < 0.001) of consistency in calling
significant genera in the observed data. In contrast, edgeR
produced results that were only 1.10-fold more consistent
compared with the random expectation (p= 0.002).

ALDEx2 and edgeR represent the extremes of how consistently
tools identify the same genera as significant across studies, but there
is a large range (Fig. 5). Notably, all tools were significantly more
consistent than the random expectation across these datasets
(p < 0.05) (Table 2). In addition to ALDEx2, the other top
performing approaches based on this evaluation included limma
voom (TMM), both MaAsLin2 workflows, and ANCOM-II.

We conducted a similar investigation across five obesity 16S
rRNA gene datasets, which was more challenging to interpret due

to the lower consistency in general (Supplementary Table 1).
Specifically, most significant genera were called in only a single
study and only MaAslin2 (both with non-rarefied and rarefied
data), the t-test (rare) approach, ALDEx2, and the limma voom
(TMMwsp) approach performed significantly better than
expected by chance (p < 0.05). The MaAsLin2 (rare) approach
produced by far the most consistent results based on these
datasets (fold difference: 1.23; p= 0.003).

Discussion
Herein we have compared the performance of commonly used
DA tools on 16S rRNA gene datasets. While it might be argued

Wilcoxon (CLR) Wilcoxon (rare)

MaAsLin2 (rare) metagenomeSeq t−test (rare)

limma voom (TMM) limma voom (TMMwsp) MaAsLin2

DESeq2 edgeR LEfSe

ALDEx2 ANCOM−II corncob

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Number of studies where genus was significant

P
er

ce
nt

ag
e 

of
 s

ig
ni

fic
an

t g
en

er
a

Distribution

Expected

Observed

Fig. 5 Observed consistency of significant genera across diarrhea datasets is higher than the random expectation overall. These barplots illustrate
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that differences in tool outputs are expected given that they test
different hypotheses, we believe this perspective ignores how
these tools are used in practice. In particular, these tools are
frequently used interchangeably in the microbiome literature.
Accordingly, an improved understanding of the variation in DA
method performance is crucial to properly interpret microbiome
studies. We have illustrated here that these tools can produce
substantially different results, which highlights that many biolo-
gical interpretations based on microbiome data analysis are likely
not robust to DA tool choice. These results might partially
account for the common observation that significant microbial
features reported in one dataset only marginally overlap with
significant hits in similar datasets. However, it should be noted
that this could also be due to numerous other biases that affect
microbiome studies24. Our findings should serve as a cautionary
tale for researchers conducting their own microbiome data ana-
lysis and reinforce the need to accurately report the findings of a
representative set of different analysis options to ensure robust
results are reported. Importantly, readers should not misinterpret
our results to mean that 16S rRNA gene data is less reliable than
other microbiome data types, such as shotgun metagenomics and
metabolomics. We expect similar issues are affecting analyses
with these data types, as they have similar or even higher levels of
sparsity and inter-sample variation. Nonetheless, despite the high
variation across DA tool results, we were able to characterize
several consistent patterns produced by various tools that
researchers should keep in mind when assessing both their own
results and results from published work.

Two major groups of DA tools could be distinguished by how
many significant ASVs they tended to identify. We found that
limma voom, edgeR, Wilcoxon (CLR), and LEfSe output a high
number of significant ASVs on average. In contrast, ALDEx2 and
ANCOM-II tended to identify only a relatively small number of
ASVs as significant. We hypothesize that these latter tools are
more conservative and have higher precision, but with a con-
comitant probable loss in sensitivity. This hypothesis is related to
our observation that significant ASVs identified by these two tools
tended to also be identified by almost all other differential
abundance methods, which we interpret to be ASVs that are more
likely to be true positives. Furthermore, it was clear that in most,
but not all, cases these two methods tended to identify the most
discriminatory ASVs that were found by other tools. We believe
that the lower number of ASVs identified by these approaches

could be due to multiple reasons. ALDEx2’s conservative nature is
most likely due to its Monte Carlo Dirichlet sampling approach
which down weights low abundance ASVs. On the other hand,
ANCOM-II’s conservative nature could be attributed to its large
multiple testing burden. Furthermore, the variance in the number
of features identified could also be attributed to pre-processing
steps several tools use to remove potential ASVs for testing. This
includes corncob that does not report significance values for
ASVs only found in one group or ANCOM-II’s ability to remove
structural zeros. While it is unclear why some methods have
much higher significance rates than other tools it could be due to
several reasons. These include LEfSe’s choice not to correct sig-
nificance values for false discovery or Wilcoxon (CLR)’s inability
to consider differences in sequencing depth between metadata
groupings. It should be noted that in some cases authors haven
chosen to apply FDR p-value correction to LEfSe output, when
not including a subclass, however, this is not the default behavior
of this tool25.

Given that ASVs commonly identified as significant using a
wide range of approaches are likely more reliable, it is noteworthy
that significant ASVs in the unfiltered data tended to be called by
fewer tools. This was particularly evident for both limma voom
approaches and the Wilcoxon (CLR) approach. Although it is
possible that many of these significant ASVs are incorrectly
missed by other tools, it is more likely that these tools are simply
performing especially poorly on unfiltered data due to several
reasons, such as data sparsity.

This issue with the limma voom approaches was also high-
lighted by high false positive rates on several unfiltered rando-
mized datasets, which agrees with a past FDR assessment of this
approach17. We believe that this issue is most likely driven by the
inability for TMM normalization methods to deal with highly
sparse datasets as filtering the data resulted in performance more
in line with other DA methods9. It is important to acknowledge
that our randomized approach for estimating FDR is not a perfect
representation of real data; that is, real sample groupings will
likely contain some systematic differences in microbial abun-
dances—although the effect size may be very small—whereas our
randomized datasets should have none. Accordingly, identifying
only a few significant ASVs under this approach is not necessarily
proof that a tool has a low FDR in practice. However, tools that
identified many significant ASVs in the absence of distinguishing
signals likely also have high FDR on real data.

Table 2 Comparison of observed and expected consistency in differentially abundant genera across five diarrhea datasets.

Tool No. sig. genera Max overlap Mean exp. Mean obs. Fold diff. p

ALDEx2 57 3 1.141 1.544 1.353 <0.001
limma voom (TMM) 76 4 1.22 1.618 1.326 <0.001
MaAsLin2 (rare) 74 3 1.204 1.595 1.325 <0.001
ANCOM-II 15 3 1.033 1.333 1.29 <0.001
MaAsLin2 79 3 1.215 1.557 1.281 <0.001
Wilcoxon (rare) 88 4 1.269 1.625 1.281 <0.001
metagenomeSeq 66 3 1.164 1.485 1.276 <0.001
Wilcoxon (CLR) 82 3 1.22 1.549 1.27 <0.001
limma voom (TMMwsp) 85 4 1.239 1.565 1.263 <0.001
t-test (rare) 62 3 1.145 1.403 1.225 <0.001
corncob 87 5 1.275 1.552 1.217 <0.001
DESeq2 82 4 1.246 1.512 1.213 <0.001
LEfSe 119 5 1.408 1.613 1.146 <0.001
edgeR 138 5 1.509 1.667 1.105 0.002

No. sig. genera: Number of genera significant in at least one dataset; Max overlap: Maximum number of datasets where a genus was called significant by this tool; Mean exp.: Mean number of datasets
that each genus is expected to be significant in (of the genera that are significant at least once); Mean obs.: Mean number of datasets that each genus was observed to be significant in (of the genera that
are significant at least once); Fold diff.: Fold difference of mean observed over mean expected number of times significant genera are found across multiple datasets; p: p-value based on one-tailed
permutation test that used the ‘Mean obs.’ as the test statistic. Note that <0.001 is indicated instead of exact values, because 0.001 was the minimum non-zero p-value we could estimate based on our
permutation approach. Source data are provided as a Source Data file.
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Two additional problematic tools based on this analysis were
edgeR and LEfSe. The edgeR method has been previously found
to exhibit a high FDR on several occasions17,18 Although meta-
genomeSeq also has been flagged as such17,18, that was not the
case in our analysis. This agrees with a recent report that meta-
genomeSeq (using the zero-inflated log-normal approach, as we
did) appropriately controlled the FDR, but exhibited low power26.
There have been mixed results previously regarding whether
ANCOM appropriately controls the FDR3,17, but the results from
our limited analysis suggest that this method is conservative and
controls the FDR while sometimes potentially missing true
positives, as evident in our discriminatory analysis.

Related to this point, we found that ANCOM-II performed
better than average at identifying the same genera as significantly
DA across five diarrhea-related datasets despite only identifying a
mean of four genera as significant per dataset. Nonetheless, the
ANCOM-II results were less consistent than ALDEx2, both
MaAsLin2 workflows, and limma voom (TMM). The tools that
produced the least consistent results across datasets (relative to
the random expectation) included the t-test (rare) approach,
LEfSe, and edgeR. The random expectation in this case was quite
simplistic; it was generated based on the assumption that all
genera were equally likely to be significant by chance. This
assumption must be invalid to some degree simply because some
genera are more prevalent than others across samples. Accord-
ingly, it is surprising that the tools produced only marginally
more consistent results than expected.

Although this cross-data consistency analysis was informative, it
was interesting to note that not all environments and datasets are
appropriate for this comparison. Specifically, we found that the
consistency of significant genera across five datasets comparing
obese and control individuals was no higher than expected by
chance for most tools. This observation does not necessarily reflect
that there are few consistent genera that differ between obese and
non-obese individuals; it could instead simply reflect technical and/
or biological factors that differ between the particular datasets we
analyzed1. Despite these complicating factors, it is noteworthy that
the MaAsLin2 workflows and ALDEx2 produced more consistent
results than expected based on these datasets.

We believe the above observations regarding DA tools are
valuable, but many readers are likely primarily interested in
hearing specific recommendations. Indeed, the need for standar-
dized practices in microbiome analysis have recently become better
appreciated27. One goal of our work was to validate the recom-
mendations of another recent DA method evaluation paper, which
found that limma voom, corncob, and DESeq2 performed best
overall of the tools they tested19. Based on our results, we do not
recommend these tools as the sole methods used for data analysis,
and instead would suggest that researchers use more conservative
methods such as ALDEx2 and ANCOM-II. Although these
methods have lower statistical power17,19, we believe this is an
acceptable trade-off given the higher cost of identifying false
positives as differentially abundant. However, MaAsLin2 (parti-
cularly with rarefied data) could also be a reasonable choice for
users looking for increased statistical power at the potential cost of
more false positives. We can clearly recommend that users avoid
using edgeR (a tool primarily intended for RNA-seq data) as well
as LEfSe (without p-value correction) for conducting DA testing
with 16S rRNA gene data. Users should also be aware that limma
voom and the Wilcoxon (CLR) approaches may perform poorly on
unfiltered data that is highly sparse. This is particularly true for the
Wilcoxon (CLR) approach when read depths greatly differ between
groups of interest.

More generally, we recommend that users employ several
methods and focus on significant features identified by most
tools, while keeping in mind the characteristics of the tools

presented within this manuscript. For example, authors may want
to present identified taxonomic markers in categories based on
the tool characteristics presented within this paper or the number
of tools that agree upon its identification. Importantly, applying
multiple DA tools to the same dataset should be reported expli-
citly. Clearly this approach would make results more difficult to
biologically interpret, but it would provide a clearer perspective
on which differentially abundant features are robust to reasonable
changes in the analysis.

A common counterargument to using consensus approaches
with DA tools is that there is no assurance that the intersection of
the tool outputs is more reliable; it is possible that the tools are
simply picking up the same noise as significant. Although we
think this is unlikely, in any case running multiple DA tools is
still important to give context to reporting significant features.
For example, researchers might be using a tool that produces
highly non-overlapping sets of significant features compared with
other DA approaches. Even if the researchers are confident in
their approach, these discrepancies should be made clear when
the results are summarized. This is crucial for providing accurate
insight into how robust specific findings are expected to be across
independent studies, which often use different DA approaches.
Similarly, if researchers are most interested in determining if
signals from a specific study are reproducible, then they should
ensure that they use the same DA approach to help make their
results more comparable.

How and whether to conduct independent filtering of data
prior to conducting DA tests are other important open questions
regarding microbiome data analysis7. Although statistical argu-
ments regarding the validity of independent filtering are beyond
the scope of this work, intuitively it is reasonable to exclude
features found in only a small number of samples (regardless of
which groups those samples are in). The basic reason for this is
that otherwise the burden of multiple-test correction becomes so
great as to nearly prohibit identifying any differentially abundant
features. Despite this drawback, many tools identified large
numbers of significant ASVs in the unfiltered data. However,
these significant ASVs tended to be more tool-specific in the
unfiltered data and there was much more variation in the per-
centage of significant ASVs across tools. Accordingly, we would
suggest performing prevalence filtering (e.g., at 10%) of features
prior to DA testing, although we acknowledge that more work is
needed to estimate an optimal cut-off rather than just arbitrarily
selecting one4.

Another common question is whether DA tools that require
input data to be rarefied should be avoided. It is possible that the
question of whether to rarefy data has received disproportionate
attention in the microbiome field: there are numerous other
factors affecting an analysis pipeline that likely affect results
more. Indeed, tools that took in rarefied data in our analyses did
not perform substantially worse than other methods on average.
More specifically, the most consistent inter-tool methods,
ANCOM-II and ALDEx2, are based on non-rarefied data, but
MaAsLin2 based on rarefied data produced the most consistent
results across datasets of the same phenotype. Accordingly, we
cannot definitively conclude that DA tools that require input data
to be rarefied are less reliable in general. It should be noted that
we are referring only to rarefying in the context of DA testing:
whether rarefying is advisable for other analyses, such as prior to
computing diversity metrics, is beyond the scope of this work3,4.

Others have investigated the above questions by applying
simulations to various DA methods, which has yielded valuable
insights3,17–19. However, we believe this does not provide the full
picture of how these DA tools perform. This is because it has been
highlighted that in many scenarios simulations can led to circular
arguments where tools that are designed around specific
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parameters perform favorably on simulations using those
parameters17. Without better knowledge of the range of data
structures that microbiome sequencing can result in these types of
simulation analyses can be difficult to interpret. As such we
believe that it was important to test these methods on a wide
range of different real-world datasets in order to gain an under-
standing of how they differed from one another. By doing so we
have highlighted the issues of using these tools interchangeably
within the literature. Indeed, the question ‘which taxa sig-
nificantly differ in relative abundance between sample groupings?’
may be too simple and need further parameterization before it
can be answered. This includes information such as what type of
abundance the authors are comparing and the tools they plan to
use within their analysis. Unfortunately, the variation across tools
implies that biological interpretations based on these questions
will often drastically differ depending on which DA tool is
considered.

In conclusion, the high variation in the output of DA tools
across numerous 16S rRNA gene sequencing datasets highlights
an alarming reproducibility crisis facing microbiome researchers.
While we cannot make a direct simple recommendation of a
specific tool based on our analysis, we have highlighted several
issues that authors should be aware of while interpreting DA
results. This includes that several tools have inappropriately high
false discovery rates such as edgeR and LEfSe and as such should
be avoided when possible. It is also clear from our analysis that
some tools designed for RNA-seq such as limma voom methods
cannot deal with the much higher sparsity of microbiome data
without including a data filtration step. We have also highlighted
that these tools can significantly differ in the number of ASVs
that they identify as being significantly different and that some
tools are more consistent across datasets than others. Overall, we
recommend that authors use the same tools when comparing
results between specific studies and otherwise use a consensus
approach based on several DA tools to help ensure results are
robust to DA choice.

Methods
Dataset processing. Thirty-eight different datasets were included in our main
analyses for assessing the characteristics of microbiome differential abundance
tools. Three additional datasets were also included for a comparison of differential
abundance consistency across diarrhea and obesity-related microbiome datasets.
All datasets presented herein have been previously published or are publicly
available23,28–64 (Supplementary Data 1). Most datasets were already available in
table format with ASV or operational taxonomic unit abundances while a minority
needed to be processed from raw sequences. These raw sequences were processed
with QIIME 2 version 2019.765 based on the Microbiome Helper standard oper-
ating procedure66. Primers were removed using cutadapt67 and stitched together
using the QIIME 2 VSEARCH68 join-pairs plugin. Stitched reads were then quality
filtered using the quality-filter plugin and reads were denoised using Deblur69 to
produce amplicon sequence variants (ASVs). Abundance tables of ASVs for each
sample were then output into tab-delimited files. Rarefied tables were also pro-
duced for each dataset, where the rarefied read depth was taken to be the lowest
read depth of any sample in the dataset over 2000 reads (with samples below this
threshold discarded).

Chimeric ASVs were identified with the UCHIME2 and UCHIME3 chimera-
checking algorithms70 implemented in VSEARCH (v2.17.1)68. Both the UCHIME2
and UCHIME3 de novo approaches were applied in addition to the UCHIME2
reference-based chimera checking approach. For this latter approach we used the
SILVA v138.1 short-subunit reference database71. We used the default options
when running these algorithms.

Differential abundance testing. We created a custom shell script (run_all_-
tools.sh) that ran each differential abundance tool on each dataset within this
study. As input the script took a tab-delimited ASV abundance table, a rarefied
version of that same table, and a metadata file that contained a column that split
the samples into two groups for testing. This script also accepted a prevalence cut-
off filter to remove ASVs below a minimum cut-off, which was set to 10% (i.e.,
ASVs found in fewer than 10% of samples were removed) for the filtered data
analyses we present. Note that in a minority of cases a genus abundance table was
input instead, in which case all options were kept the same. When the prevalence

filter option was set, the script also generated new filtered rarefied tables based on
an input rarefaction depth.

Following these steps, each individual differential abundance method was run
on the input data using either the rarefied or non-rarefied table, depending on
which is recommended for that tool. Rarefaction was performed using GUniFrac
(version 1.1)72. The workflow used to run each differential abundance tool (with
run_all_tools.sh) is described below. The first step in each of these workflows was
to read the dataset tables into R (version 3.6.3) with a custom script and then
ensure that samples within the metadata and feature abundance tables were in the
same order. An alpha-value of 0.05 was chosen as our significance cutoff and
FDR adjusted p-values (using Benjamini-Hochberg adjustment) were used for
methods that output p-values (with the exception of LEfSe which does not output
all p-values by default)73.

ALDEx2. We passed the non-rarefied feature table and the corresponding sample
metadata to the aldex function from the ALDEx2 R package (version 1.18.0)15

which generated Monte Carlo samples of Dirichlet distributions for each sample,
using a uniform prior, performed CLR transformation of each realization, and then
performed Wilcoxon tests on the transformed realizations. The function then
returned the expected Benjamini-Hochberg (BH) FDR-corrected p-value for each
feature based on the results the different across Monte Carlo samples.

ANCOM-II. We ran the non-rarefied feature table through the R ANCOM-II16,74

(https://github.com/FrederickHuangLin/ANCOM) (version 2.1) function fea-
ture_table_pre_process, which first examined the abundance table to identify
outlier zeros and structural zeros74. The following packages were imported by
ANCOM-II: exactRankTests (version 0.8.31), nlme (version 3.1.149), dplyr (ver-
sion 0.8.5), ggplot2 (version 3.3.0) and compositions (version 1.40.2). Outlier zeros,
identified by finding outliers in the distribution of taxon counts within each sample
grouping, were ignored during differential abundance analysis, and replaced with
NA. Structural zeros, taxa that were absent in one grouping but present in the
other, were ignored during data analysis and automatically called as differentially
abundant. A pseudo count of 1 was then applied across the dataset to allow for log
transformation. Using the main function ANCOM, all additive log-ratios for each
taxon were then tested for significance using Wilcoxon rank-sum tests, and p-
values were FDR-corrected using the BH method. ANCOM-II then applied a
detection threshold as described in the original paper16, whereby a taxon was called
as DA if the number of corrected p-values reaching nominal significance for that
taxon was greater than 90% of the maximum possible number of significant
comparisons.

corncob. We converted the metadata and non-rarefied feature tables into a phy-
loseq object (version 1.29.0)75, which we input to corncob’s differentialTest func-
tion (version 0.1.0)10. This function fits each taxon count abundance to a beta-
binomial model, using logit link functions for both the mean and overdispersion.
Because corncob models each of these simultaneously and performs both differ-
ential abundance and differential variability testing10, we set the null over-
dispersion model to be the same as the non-null model so that only taxa having
differential abundances were identified. Finally, the function performed sig-
nificance testing, for which we chose Wald tests (with the default non-bootstrap
setting), and we obtained BH FDR-corrected p-values as output.

DESeq2. We first passed the non-rarefied feature tables to the DESeq function
(version 1.26.0)8 with default settings, except that instead of the default relative log
expression (also known as the median-of-ratios method) the estimation of size
factors was set to use ‘poscounts’, which calculates a modified relative log
expression that helps account for features missing in at least one sample. The
function performed three steps: (1) estimation of size factors, which are used to
normalize library sizes in a model-based fashion; (2) estimation of dispersions from
the negative binomial likelihood for each feature, and subsequent shrinkage of each
dispersion estimate towards the parametric (default) trendline by empirical Bayes;
(3) fitting each feature to the specified class groupings with negative binomial
generalized linear models and performing hypothesis testing, for which we chose
the default Wald test. Finally, using the results function, we obtained the resulting
BH FDR-corrected p-values.

edgeR. Using the phyloseq_to_edgeR function (https://joey711.github.io/phyloseq-
extensions/edgeR.html), we added a pseudocount of 1 to the non-rarefied feature
table and used the function calcNormFactors from the edgeR R package (version
3.28.1)9 to compute relative log expression normalization factors. Negative bino-
mial dispersion parameters were then estimated using the functions estimate-
CommonDisp followed by estimateTagwiseDisp to shrink feature-wise dispersion
estimates through an empirical Bayes approach. We then used the exactTest for
negative binomial data9 to identify features that differ between the specified groups.
The resulting p-values were then corrected for multiple testing with the BH method
with the function topTags.
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LEfSe. The rarefied feature table was first converted into LEfSe format using the
LEfSe script format_input.py5. We then ran LEfSe on the formatted table using the
run_lefse.py script with default settings and no subclass specifications. Briefly, this
command first normalized the data using total sum scaling, which divides each
feature count by the total library size. Then it performed a Kruskal-Wallis (which
in our two-group case reduces to the Wilcoxon rank-sum) hypothesis test to
identify potential differentially abundant features, followed by linear discriminant
analysis (LDA) of class labels on abundances to estimate the effect sizes for sig-
nificant features. From these, only those features with scaled LDA analysis scores
above the threshold score of 2.0 (default) were called as differentially abundant.
This key step is what distinguished LEfSe from the Wilcoxon test approach based
on relative abundances that we also ran. In addition, no multiple-test correction
was performed on the raw LEfSe output as only the p-values of significant features
above-threshold LDA scores are returned by this tool.

limma voom. We first normalized the non-rarefied feature table using the edgeR
calcNormFactors function, with either the trimmed mean of M-values (TMM) or
TMM with singleton pairing (TMMwsp) option. We choose to run this tool with
two different normalization functions as we found the standard TMM normal-
ization technique to struggle with highly spare datasets despite it previously being
shown to perform preferentially in DA testing. Furthermore, the TMMwsp method
is highlighted within the edgeR package as an alternative for highly sparse data.
During either of these normalization steps a single sample was chosen to be a
reference sample using upper-quartile normalization. This step failed in some
highly sparse abundance tables; in these cases, we instead chose the sample with the
largest sum of square-root transformed feature abundances to be the reference
sample. After normalization, we used the limma R package (version 3.42.2)21

function voom to convert normalized counts to log2-counts-per-million and assign
precision weights to each observation based on the mean-variance trend. We then
used the functions lmFit, eBayes, and topTable in the limma R package to fit
weighted linear regression models, perform tests based on an empirical Bayes
moderated t-statistic76 and obtain BH FDR-corrected p-values.

MaAsLin2. We entered either a rarefied or non-rarefied feature table into the main
Maaslin2 function within the MaAsLin2 R package (version 0.99.12)22. We spe-
cified arcsine square-root transformation as in the package vignette (instead of the
default log) and total sum scaling normalization. For consistency with other tools,
we specified no random effects and turned off default standardization. The func-
tion fit a linear model to each feature’s transformed abundance on the specified
sample grouping, tested significance using a Wald test, and output BH FDR-
corrected p-values.

metagenomeSeq. We first entered the counts and sample information to the
function newMRexperiment from the metagenomeSeq R package (version
1.28.2)11. Next, we used cumNormStat and cumNorm to apply cumulative sum-
scaling normalization, which attempts to normalize sequence counts based on the
lower-quartile abundance of features. We then used fitFeatureModel to fit nor-
malized feature counts with zero-inflated log-normal models (with pseudo-counts
of 1 added prior to log2 transformation) and perform empirical Bayes moderated t-
tests, and MRfulltable to obtain BH FDR-corrected p-values.

t-test. We applied total sum scaling normalization to the rarefied feature table and
then performed an unpaired Welch’s t-test for each feature to compare the specified
groups. We corrected the resulting p-values for multiple testing with the BH method.

Wilcoxon test. Using raw feature abundances in the rarefied case, and CLR-
transformed abundances (after applying a pseudocount of 1) in the non-rarefied
case, we performed Wilcoxon rank-sum tests for each feature to compare the
specified sample groupings. We corrected the resulting p-values with the BH
method.

Comparing numbers of significant hits between tools. We compared the
number of significant ASVs each tool identified in 38 different datasets. Each tool
was run as described above using default settings with some modifications sug-
gested by the tool authors, as noted above. A heatmap representing the number of
significant hits found by each tool was constructed using the pheatmap R package
(version 1.0.12)77. Spearman correlations between the percent of significant ASVs
identified by a tool and the following dataset characteristics were computed using
the cor.test function in R: sample size, Aitchison’s distance effect size as computed
using a PERMANOVA test (adonis; vegan, version 2.5.6)78, sparsity, mean sample
ASV richness, median sample read depth, read depth range between samples and
the coefficient of variation for read depth within a dataset. In addition, for the
unfiltered analyses, we also computed Spearman correlations with the percent of
ASVs below 10% prevalence in each dataset (i.e., the percent of ASVs that would be
removed to produce the filtered datasets). Correlations were displayed using the R
package corrplot (version 0.85) and gridExtra (version 2.3). Dataset manipulation
for plotting and reshaping were conducting using the following R packages: doMC

(version 1.3.5), doParallel (version 1.0.15), matrixStats (version 0.56.0), reshape2
(version 1.4.4), plyr (version 1.8.6) and tidyverse (version 1.3.0).

Cross-tool, within-study differential abundance consistency analysis. We
compared the consistency between different tools within all datasets by pooling all
ASVs identified as being significant by at least one tool in the 38 different datasets.
The number of methods that identified each ASV as differentially abundant were
then tallied. A second way of examining the between method consistency without
choosing a specific significance threshold was to examine the overlap between the
top 20 ASVs identified by each DA method. To do this ASVs were ranked for each
DA method depending on their significance value apart from ANCOM-II, where
its W statistic was used for ranking. Like the above analysis, we than tallied the
number of methods that identified each ASV as being in its top 20 most differ-
entially abundant ASVs. Multi-panel figures were combined using the R package
cowplot (version 1.0.0) and ggplotify (version 0.0.5). To get another view of the
data principal coordinate analysis plots were constructed using the mean inter-tool
Jaccard distance across the 38 main datasets. Distances were computed by aver-
aging over the inter-tool distance matrices for all individual datasets to weight each
dataset equally using the R packages vegan (version 2.5.6) and parallelDist (version
0.2.4). Labels were displayed using the R package ggrepel (version 0.8.1).

False positive analysis. To evaluate the false positive rates of each DA method,
eight datasets were selected for analysis based on having the largest sample sizes,
while also being from diverse environment types. In each dataset, only the most
frequent sample group was chosen for analysis to help ensure similar composition
among samples tested. Within this grouping, random labels of either case or
control were assigned to samples and the various differential abundance methods
were tested on them. This was replicated 100 times for each dataset and tool
combination aside from ALDEx2, ANCOM-II, and Corncob. These were run using
100 replicates in only 3 of the 8 datasets (Freshwater – Arctic, Soil – Blueberry,
Human - OB (1)) with 100 ALDEx2 replications also being run in the Human -
HIV (3) dataset. This was due to the long computational time required to run these
tools on all datasets. The remaining datasets were replicated 10 times for each of
these three tools. After this analysis was completed, the number of differentially
abundant ASVs identified by each tool was assessed at an alpha value of 0.05.
Boxplots for this data was constructed using the R packages ggplot2 (version 3.3.0),
ggbeeswarm (version 0.6.0), and scales (version 1.1.0).

Cross-study differential abundance consistency analysis. For this analysis we
acquired two additional pre-processed datasets that were not used for other ana-
lyses, which are the GEMS179 and the dia_schneider55, datasets (Supplementary
Data 1). The processed data for these datasets was acquired from the
MicrobiomeDB48 and the microbiomeHD23 databases, respectively. These datasets
were combined with three of the datasets used elsewhere in this manuscript
(Human – C. diff [1 and 2] and Human – Inf.), to bring the number of diarrhea-
related datasets to five. These three pre-existing datasets all related to enteric
infections that had all been previously demonstrated to show a distinct signal of
microbial differences driven by diarrhea in patient samples23.

For the obesity cross-study analysis we leveraged four datasets that were part of
the core 38 datasets: Human – OB (1–4)37,52,59,64. We also included an additional
obesity dataset, ob_zupancic80, that we acquired from the microbiomeHD
database.

The ASVs in each of these datasets were previously taxonomically classified and
so we used these classifications to collapse all feature abundances to the genus level.
Note that taxonomic classification was performed using several different methods,
which represents another source of technical variation. We excluded unclassified
and sensu stricto-labeled genus levels. We then ran all differential abundance tools
on these datasets at the genus level. These comparisons were between the diarrhea
and non-diarrhea sample groups. The same processing workflow was used for the
supplementary obesity dataset comparison as well.

For each tool and study combination, we determined which genera were
significantly different at an alpha of 0.05 (where relevant). For each tool we then
tallied the number of times each genus was significant, i.e., how many datasets each
genus was significant in based on a given tool. The null expectation distributions of
these counts per tool were generated by randomly sampling genera from each
dataset. The probability of sampling a genus (i.e., calling it significant) was set to be
equal to the proportion of actual significant genera. This procedure was repeated
1000 times, with genus replicates equal to the actual number of tested genera (218
and 116 for the diarrhea and obesity datasets, respectively). For each replicate we
tallied the number of times the genus was sampled across datasets. Note that to
simplify this analysis we ignored the directionality of the significance (e.g., whether
it was higher in case or control samples). We also excluded genera never found to
be significant. We computed the mean of these 1000 distributions to generate an
empirical distribution of the expected mean number of studies where a genus
would be called as significant, given random sampling. We determined where the
observed mean values lay on each corresponding distribution to calculate statistical
significance.
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Discriminatory analysis. We calculated the discriminatory value of each ASV (i.e.,
the extent to which the ASV can be used to distinguish the sample groups) based on
the area under the curve (AUC) of the receiver operator curve (ROC) for that ASV.
This was performed independently for both non-rarefied relative and CLR abun-
dances. For each ASV in a dataset the abundance of that ASV along with metadata
groupings was used as input into the prediction function in the ROCR R package81.
Multiple different optimal abundance cut-offs were then used to classify samples
based on the input ASVs abundance. Classifications were then compared to the true
sample groupings to generate ROCs for each ASV within the 38 tested datasets. For
each tool the mean AUC of all ASVs identified as being differentially abundant in
each dataset was computed, based on both relative and CLR abundances separately.
We then calculated the precision, recall and F1 scores of each tool for the tested
datasets when AUC cut-offs of 0.7 or 0.9 were used. In each case the ‘true positives’
were treated as features that were above the specified AUC threshold.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The accessions and/or locations of the raw data for each tested dataset are listed in
Supplementary Data 1. SILVA database v138 is available at: https://www.arb-silva.de/
documentation/release-138/. Source data are provided with this paper. It is also available
at https://github.com/nearinj/Comparison_of_DA_microbiome_methods82. The
processed datasets and metadata files are available at https://figshare.com/articles/
dataset/16S_rRNA_Microbiome_Datasets/14531724. Source data are provided with
this paper.

Code availability
All code used for processing and analyzing the data is available in this GitHub repository
[https://github.com/nearinj/Comparison_of_DA_microbiome_methods]82.
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