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Abstract: According to the World Health Organization (WHO), depression is a leading cause of
disability worldwide and a major contributor to the overall global burden of mental disorders.
An increasing number of studies have revealed that among 20 different amino acids, high proline
consumption is a dietary factor with the strongest impact on depression in humans and animals,
including insects. Recent studies acknowledged that gut microbiota play a key role in proline-related
pathophysiology of depression. In addition, the multi-omics approach has alleged that a high level of
metabolite proline is directly linked to depression severity, while variations in levels of circulating
proline are dependent on microbiome composition. The gut–brain axis proline analysis is a gut
microbiome model of studying depression, highlighting the critical importance of diet, but nothing is
known about the role of the plant microbiome–food axis in determining proline concentration in the
diet and thus about preventing excessive proline intake through food consumption. In this paper, we
discuss the protocooperative potential of a holistic study approach combining the microbiota–gut–
brain axis with the microbiota–plant–food–diet axis, as both are involved in proline biogenesis and
metabolism and thus on in its effect on mood and cognitive function. In preharvest agriculture, the
main scientific focus must be directed towards plant symbiotic endophytes, as scavengers of abiotic
stresses in plants and modulators of high proline concentration in crops/legumes/vegetables under
climate change. It is also implied that postharvest agriculture—including industrial food processing—
may be critical in designing a proline-balanced diet, especially if corroborated with microbiome-based
preharvest agriculture, within a circular agrifood system. The microbiome is suggested as a target
for selecting beneficial plant endophytes in aiming for a balanced dietary proline content, as it is
involved in the physiology and energy metabolism of eukaryotic plant/human/animal/insect hosts,
i.e., in core aspects of this amino acid network, while opening new venues for an efficient treatment
of depression that can be adapted to vast groups of consumers and patients. In that regard, the use
of artificial intelligence (AI) and molecular biomarkers combined with rapid and non-destructive
imaging technologies were also discussed in the scope of enhancing integrative science outcomes,
agricultural efficiencies, and diagnostic medical precisions.

Keywords: microbiome; symbionts; endophytes; proline; amino acids; biogenesis; plant; crops; stress;
food; diet; consumption; integrative science; imaging; human health; depression

1. Introduction

New molecular and metabolic studies have reported that a diet rich in the amino acid
proline causes a severe state of depression in humans and animals including insects [1].
Amino acids are the building blocks of proteins, which are digested in the stomach into their
constituent amino acids, resulting in improved body metabolism and functions. Among
20 different amino acids, proline is considered not essential, except in times of illness
and stress. The coevolution theory of the origin of the genetic code has uncovered the
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importance of the proline biosynthetic pathway [2]. Indeed, this highly efficient osmolyte
and antioxidant seems involved in the evolution of many organisms (Figure 1) due to its
counteracting effect to multiple environmental stresses. In the model Arabidopsis, an intra-
cellular proline level may increase by >100-fold, thus helping cellular metabolic stability
under water deficit or salt-stress [3,4]. Proline accumulation in plants is a common physio-
logical response to various stresses (Figure 2). It is usually enhanced by the endophytic
microbial communities living inside healthy host tissues (seed, root, leaf, flower), playing
an important role in mitigating abiotic and biotic stresses in plants.
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Figure 1. Phylogenetic tree based on maximum parsimony of the Proline-tRNA ligase, a mitochon-
drial enzyme that participates in proline metabolism, predicting the evolutionary history of taxa.
(NOTE: Because of its central role in linking amino acids with nucleotide triplets contained in tRNAs,
tRNA ligase is thought to be among the first proteins that appeared in evolution [5]). The evolutionary
analyses presented in this phylogenetic tree were conducted in MEGA X [6,7].
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Plant-associated microorganisms, such as endophytes, arbuscular mycorrhizal fungi
(AMF), and plant growth-promoting (PGP) rhizobacteria, are well-documented for their
role in promoting crop productivity and providing stress tolerance [9]. In staple food crops,
the symbiotic plant microbiome positively affects plant water and nutrient acquisition, and
stimulates flowering and fertility, fruit and grain production. The highest proline content
across plant developmental stages occurs in plant generative tissues such as flowers, where
nectar and pollen are produced in abundance [4]. Several insect species use the proline
from plant food as a major energy substrate [10]; they show the ability to oxidize this amino
acid at a high rate, which is considered a unique feature of this group of eukaryotes. The
presence of proline in the haemolymph of bees and in the nectar of flowering plants led to
the hypothesis that plants may produce proline as a metabolic reward for pollinators [11].
It appears that proline serves as metabolic fuel to power pollinators’ flights. Since honey
is a natural food produced by honeybees from the nectar of flowers, it is not surprising
that an extensive range in honey proline content ~300–900 mg/kg implies different flower
origins [12]. Besides that, proline showed properties of a broad-based antioxidant, a trait
which has been relatively unexplored in eukaryotic plant, fungi, insects, and mammalian
systems [13]. In mammals and fungi, the potential of proline may be to suppress reactive
oxygen species (ROS) and inhibit ROS-mediated cellular apoptosis [14]. To perform biolog-
ical functions, the human body can biosynthesize some proline on its own from the amino
acid L-glutamate. However, usually, humans and animals, including insects, boost proline
levels by obtaining it directly from food sources.

2. Proline: Contradictory Roles in Healing and Excitotoxin Functions

Traditionally, the presence of proline was positively correlated with the functionality of
the human body by helping form collagen, regenerating cartilage, forming connective tissue,
curing skin damage and wounds, healing the gut lining, and repairing joints [15]. However,
L-proline has been found to act as a weak agonist or activator of the glycine receptor
and of both NMDA and non-NMDA (AMPA/Kainate) ionotropic glutamate receptors.
Moreover, proline has been proposed to be a potential endogenous excitotoxin [16,17].
Excitotoxins are substances, usually amino acids, that overstimulate neuron receptors,
similarly to chemical food additives such as monosodium glutamate. Neuron receptors
facilitate brain cell communication and, upon excitotoxin exposure, overstimulate neurons
in the brain [18]. This process, if prolonged, can exhaust and weaken the neurons involved,
resulting in neuronal death. In short, excitotoxins can alter the chemistry of the brain to
the point of no return. Recent findings revealed that a diet rich in proline was linked to an
increased risk of depression in humans and animals [1], but there is a gap of knowledge
regarding an equilibrated proline biosynthesis in plants and its accumulation in plant
parts (in seeds/grains/nuts, flowers, fruits, and vegetables) used for a healthy diet. An
efficient control of proline levels in preharvest agriculture and postharvest food and food
commodities seems an inevitable step to undertake to prevent an excessive amount of
proline entering plant-based foods, constituting a vital component of the overall human
diet. Furthermore, the total amount of amino acids:proline ratio in plants and food might
be a good indicator of the need to adjust proline dosage in human and animal diets. This is
an area of science lagging behind in research in the field of food nutrients and functional
foods. The idea is to prevent or minimize the negative impact of proline on mental health,
i.e., to diminish proline-related neurological disorders, so particular attention must be
paid to set a maximum dosage limit to prevent its excitotoxin effects such as depression in
humans and animals.

3. Where Lie the Opportunities for Proline Science

Publication survey metrics within proline science (Figure 3) is a critical step in identi-
fying knowledge gaps that need to be filled to advance this emerging discipline. Currently,
there is a total of about 35,000 publications on proline in the scientific literature. Web of Sci-
ence data (1900–2022) suggest that Proline and Stress and Proline and Health topics largely
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prevail, together encompassing more than 80% of published papers or reports. Proline and
Food comprises ~15% of publications. Proline and Plants comprises ~7% of publications,
where there is mainly emphasis on the impact of proline on augmented plant resistance
against environmental stresses, in particularly in the context of agriculture-related climate
change issues [19]. In contrast, reports on the overall Proline and Microbiome and Proline
and Depression subjects are marginal, together representing ~1% of published papers
(Figure 3). Hence, the direction of scientific studies on proline should include a greater em-
phasis on microbiome-based approaches specific to plant genotypes under climate change
and various stressors in different geographic locations.
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A topic of particular interest for future science led by plant breeders, microbiologists,
mycologists and entomologists who are interested in plant resistance, plant growth promo-
tion and pest control, is to relate proline dynamics and translocation with microbiome-plant–
host interactions [20] when exposed to biotic and/or abiotic stresses [21]. Nevertheless,
establishing a basis for healthy food and feed, plant, grain, and vegetable products to
meet new food and nutrition standards should include determining a threshold for an
equilibrated proline content. Indeed, some reports indicate toxic effects of proline at higher
concentrations as immensely induced in staple plants when exposed to various abiotic
stresses [22,23]. Progress has been made in recent years regarding proline involvement
and concentration in plants grown under a plethora of different abiotic stresses, without
necessarily considering the microbiome component (Figure 4).

Proline is an excellent osmoprotectant in terms of healthy plant growth under salt
stress [23]. Salinization is seen as a universal abiotic stressor, and it is used in most
cultivated plant testing for comparison with other stressors with noticeable effects on
nutrient deficiency, pH and oxidative stress. Its effect translates to biomass and crop yield
decrease, and diminished quality of food [24]. In Figure 4, plants exposed to high salinity
showed an increased average value (%) of proline concentration compared to other plant
stressors. In plants, salt induced an average value of proline below that of high-water
scarcity (drought) and cold, but this value lies above that induced by pH/alkalinity and
heat stresses reviewed by previous papers [25–30]. Regarding proline distribution in
plants, findings indicated a long-distance transport of proline in plant organs or tissues as
critical for stress tolerance. Though proline biosynthesis occurs in cytosol and chloroplasts,
proline is detected both in xylem and phloem, inferring its circulation through different
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tissues—particularly to pollen grains, thus enhancing plant fertility and thereby limiting
seed loss [31] that greatly affects crop yield.
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Figure 4. Summarizing data from recent Web of Science (1980–2020) articles on the average proline
accumulation in staple wheat crops induced by individual abiotic stresses/climate-change-associated
factors such as water deficit, salinity, pH, cold and heat. (Data retrieved on 10 June 2022).

At the cellular level, the proline osmolyte permits cell osmotic adjustment, stabilizes
the structure of proteins and cell membranes, acts as a protective agent for enzymes, and
is a free radical scavenger and antioxidant [32]. Proline can also provide regulation of
cytosolic acidity, serves as a carbon and nitrogen reserve after stress relief, and may act
as a signalling molecule able to activate defence responses [33]. In response to various
environmental stresses, many plant species synthesize proline in the cytosol and accumulate
it in chloroplasts [34], while ensuing shifts in cellular hormonal activities. The changes in
endogenous hormonal balance were concomitant with accumulation of ROS and proline,
accompanied by a loss of reducing potential [NAD(P)H/NAD(P)(+) and GSH/GSSG]. SA
pretreatment scavenged drought-induced superoxide anion (O2−•) accumulation (but not
H2O2) and led to an additional proline accumulation with enhanced expression of proline
synthesis-related genes (P5CS1, P5CS2 and P5CR) and NADPH oxidase, and led to a reset
of reducing potential with enhanced expression of redox regulating genes (TRXh5 and
GRXC9). SA-mediated stress responses coincided with the enhanced expression of NPR1
and PR-1, with an antagonistic depression of ABA- and JA-related genes (NCED3, MYC2,
and PDF1.2) [35]. These results indicate that the SA-modulated NPR1-dependent signaling
pathway and proline synthesis represent an integrative process of redox control observed
under drought. However, stress-induced proline accumulation is not a passive but rather
a very dynamic process, as observed in Arabidopsis in low water potential polyethylene
glycol (PEG)–agar plate assays [36]. In fact, seedlings transferred to low water potential
caused a nearly 100-fold increase in proline content over 4 days. Proline increase during
stress has helped plants to recover, and when the environment returned to a high-water
potential, proline concentration returned to its initial level under a similar timeframe. This
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is clear evidence that proline turnover can buffer cellular redox status during drought.
Proline synthesis and catabolism are regulated by multiple cellular mechanisms, of which
we know only a few [37].

Overall, an increasing amount of evidence suggests that proline–plant interactions
and kinetics are involved in plant stress tolerance at the species, organ, tissue, cellular
and molecular levels. Determination of the relationship between stress resistance and
level of proline in plants during all growth phenophases would play a preponderant
role not only for future food security linked to a higher crop yield but also in control-
ling proline accumulation in food for a healthy diet. This cannot be easily achieved
without knowledge of plant–microbiome interactions and their effects on the dynam-
ics of proline metabolism in plants [37], as both proline and endophytic microbes are
circulating within the plant tissues. Additionally, more scientific attention should be
paid to integrated knowledge on the interconnection between plant health and human
health topics. Plant-associated bacterial and fungal communities, similarly to human gut
microbiota, increase host fitness under abiotic stresses, such as low temperature [38] and
shifts in osmolarity [39,40], by stimulating proline metabolism pathways. In addition,
host-associated symbiotic microorganisms accumulate important amounts of proline in
their cells as a response to increased external osmolarity and loss of water [36,39,41,42].
A study of both proline accumulation and activation would garner some interesting
and perhaps unexpected findings, as a microbiome influences insects’ and mammalians’
behavior throughout food consumption and digestion. The bidirectional plant genotype–
microbiome interactions and proline biogenesis and decomposition may each affect
individual-constituent species and assemblage of species, as these are modulated by
environmental stimuli and availability of food.

4. Proline: Microbiome–Plant Axis

The plant microbiome is defined as a plant’s second genome [43] composed of a
dynamic community of microbes. The host-associated prokaryotic and eukaryotic microbes
are the biological foundations of every species and every ecosystem on the earth. Previous
research mainly investigated the ecology and evolution of microorganisms associated
with plants throughout environments, while contemporary research has shifted to better
understand how microbial communities respond to a particular stress or a combination
of stresses, which is notably important in meeting global agri-food demands. The aim is
to manage plant–microbe interactions by creating stable plant ecosystems and a resilient
phytobiome [44] for improved food security and safety [45]. The goal of this review study
was to better understand the host and its microbiome and the role of the holobiont [46] and
its functioning, as a plant genotype armed with its second genome or microbes may greatly
affect proline production and metabolism in plants under multiple environmental stimuli.
The idea is to come up with a proposition of more efficient preventive measures to minimize
proline accumulation in plants, food and feed—as main sources of diets for human and
animal consumption. Focusing on plant–microbiome mechanisms and dietary proline may
open new avenues for innovative approaches in preventing depression in humans.

Recently, Mayneris-Perxachs et al. [1] revealed that a diet rich in proline is linked
to microbiota alterations in the human gut system shifting to a proline metabolism, with
possible impacts on depression. The proline levels in an animal or insect body depend on
the host–microbiota profile, where increased presence of Lactobacillus coincides with less
depression. However, the food chain starts with food produced from photosynthetic plants
and ends with food digestion in the gut. Thus, the proline amino acid level in our body must
also depend on proline levels in the diet, coming from symbiotic plants since harvested
grains and vegetables are used for food and feed. Like the microbiome–gut–brain axis as a
novel target in studying depression—a mental disorder with low treatment efficacy—the
endophytic microbiome–plant (root and seed) axis also emerged as a target of research,
with plant prenatal care as a strategy to alleviate plant stress. This concept nourishes
innovations in agri-food systems [20]. In the same vein goes the need to propose an efficient
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measure to mitigate proline in field plants, while both microbiome-based farming and
circular agriculture are gaining momentum.

Plant–microbiome science is dominated by studies focusing on changes in host agri-
cultural traits under drought, a major global single climate stress factor [47]. The story
of the amino acid proline is fascinating due to its efficacy in enhancing plant tolerance
to drought. In fact, beneficial plant microbiomes such as symbiotic mycorrhizal fungi
(AMF) (Figure 5) and plant-growth-promoting (PGP) rhizobacteria (Figure 6) greatly
contribute to increased proline concentrations in well-watered (control) plants [48–50].
Individual fungal or bacterial plant infections have been shown to trigger less proline
concentration compared to drought stress in plants. However, both symbiotic fungi and
bacteria, when combined with drought stress, showed a drastically increased proline
accumulation (>70–90%) in plants, when compared with plants exposed to biotic (fungi
and bacteria) or abiotic (drought) stress alone. The concentration trend of this metabolite
remains unchanged when tested in different crop varieties (Figure 5).
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bacterial cells, accumulate less proline. It has been reported that symbiotic AMF and non-
AMF contain less proline compared to the Bacillus–PGP species complex, i.e., ~0.5–1.0 mg/g
FW [51] versus ~1.0–2.0 µmol/g FW [49], respectively. In yeasts, the mitochondrial energy
metabolism is maintained through oxidative degradation of proline, and this process
is important in regulating the longevity of fungal cells [52]. Bacteria and fungi often
accumulate proline in response to increased external osmolarity and loss of water [36,38,42].
However, proline contributes to the pathogenesis of various disease-causing organisms
and host–disease interactions [21]. An increasing number of studies show that proline acts
as an antioxidant and suppresses apoptosis by regulating intracellular metabolite levels
in microbial pathogens [14,53]. Thus, understanding the mechanisms of how pathogens
utilize proline is important for developing new strategies against infectious diseases [21]
and excessive proline formation in host plants.

From a system biology standpoint, the ever-growing interest is to picture the inter-
actions not only between plants and microbiomes within changing environments but
also to study associated insects acting as plant pests or vectors. According to Auerswald
and Gäde [54], differences in plant organ and tissue types consumed by insect species
determined the level of proline needed for insect lifecycle (Figure 7). The energy of
substrates consumed and insect feeding lifestyle makes proline concentration higher in
insects feeding on flowers and fruits compared to those feeding on leaves and dead or-
ganic matter (Figure 7). Under water deficit conditions, the root in sugar beet reduced by
1/3 in proline concentration compared to the leaf [55]. It appears that insects consuming
flowers and fruits risk accumulating more proline and proportionally less carbohydrates
in their bodies. Figure 7 shows that proline increased with decreased concentration of
carbohydrates in insect hemolymph. Proline and sugars are important solutes that plants
accumulate as osmoregulators when tissues are subjected to dehydration [56]. Their
presence is inversely proportional in the body of different phylogenetic groups of insects.
Interestingly, in honey, as a honeybee product, it was also reported that proline content
decreased gradually with an increasing amount of added sugar products in all examined
honey types [57].

Migratory locusts (Locus migratoria L.) show a relatively low proline content (Figure 7)
and do not exhibit a significant increase in respiration rate due to external stimulation
by proline. Conversely, hymenopterous bumblebee (Bombus impatiens Cresson) and wasp
(Vespula vulgaris L.) species can oxidize proline, and more than double their respiratory
capacities when proline is combined with carbohydrate-derived substrates [11]. The honey-
bees (Apis mellifera L.) show a relatively low increase in respiration with addition of proline
compared with other hymenopterans.

Together, the findings of Teulier et al. [11] demonstrate that some bee and wasp
species can greatly enhance the oxidation of carbohydrates using proline as fuel for flight.
However, there is no evidence suggesting that gut microbiomes [38,58] and symbionts [59]
can affect proline biosynthesis in insects—including in the L. migratoria model insect, as it
was discovered within the human gut microbiome [1,60]. Stability of the insect gut as a
microbial habitat is dependent, among other things, on the epithelial cells protected with
secretory/gel-forming mucins [61] which also contain proline [62]. It would be worth
exploring comparative insects’ microbiomes and associated biosynthesis of proline to make
a better prediction of proline circulation within insects, plants, and microbes within a
phytobiome level food chain. In any case, the case of migratory locusts’ low proline profile
opens new scientific venues in the search for edible insect-based food and feed [63].
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5. Future Perspectives

The observed changes in the taxonomic composition and diversity of the gut mi-
crobiota define the proline levels associated with brain damage severity and can be a
biomarker of post-traumatic neurological deficit [60], as well as the state of depression
in humans and animals [1]. Interestingly, proline concentration in eukaryotic plants
and insect hosts is also regulated by microbial diversity and structure, altering internal
biosynthesis and external acquisition of this amino acid. Consequently, host lifestyle and
functionality, including feeding on energy substrates (food and feed) is related to proline
circulation, with specific roles of host–microbiome-dependent activation or disruption
of proline accumulation. Proline manipulation or level modulation is controlled by
protocooperative host–microbe symbiotic interactions, where there is a protective role
against excessive reactive oxygen species (ROS) formation in plant–host tissues or in
human–host brain cells—i.e., a neuroprotective role in humans (e.g., against depression).
Along with those protocooperative effects, adaptive shifts in microbial diversity and
their metabolic profiles were observed. Supplementation of beneficial microbiomes
targeting equilibrated proline biosynthesis and translocation at the cellular, tissue, organ
and body systemic levels offers promising solutions to secure desirable proline levels in
diets and improve proline digestion in preventing host disorders.

Mycorrhizal (AMF)-mediated low proline accumulation has been recorded in various
plants under water deficit such as Trifoliata, Citrus, Poncirus, Macademia and Cicer [52,64–66],
to name a few. Leguminous plants accumulated significantly less proline when associ-
ated with Funneliformis mossae (syn. G. mosseae) than with PGP inoculant Bradyrhizobium
sp.–a root nodulating bacterium [66]. The mechanisms associated with lowering proline
in symbiotic plants are poorly known. However, protocooperation in those healthy plants
under stress conditions might functionally compensate for the need for proline. Current
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hypotheses consider different mechanisms, including the integration of proline synthesis
inhibition and increased proline degradation in host cells, and AMF colonization-related
increase in soluble sugar and non-structural carbohydrates (NSC) distribution through
plant tissues. However, AMF showed some limitations in shifting accumulated proline
levels through various mycorrhizal species-plant host combinations. Some symbiotic
plants clearly exhibit important fluctuation in efficacy, going from increased to reduced
proline concentration, when inoculated for example with Rhizophagus intraradicens com-
pared to with R. fasiculatus or Funneliformis mossae or Paraglomus occultum (reviewed
in [67]). Additional challenges in applying AMF species include low root colonization
efficacy, particularly in Triticae cereals—major staple foods that provide key nutritional
elements to the human diet. Indeed, the plant growth response in 27 tested wheat
cultivars inoculated with mycorrhiza R. intraradicens varied from –36% to +19% [68].

Furthermore, emerging mycological discoveries on endophytes offer promising
solutions. The next-generation fungal endophytes are vital symbiotic providers of
multiple benefits to plants. Besides lowering proline in plants under drought stress,
Paraconiothyrium SMCD 2210, for example, provides plant protection by inducing bene-
ficial changes in microbiome communities in host plants and associated metabolomes
to harness the host’s defense system, alleviate stress effects, and control insects [69].
It might mitigate proline metabolism and as such reduce the pathogenesis of various
disease-causing organisms. In other words, inhibiting proline metabolism and transport
may be a useful therapeutic strategy against some pathogens and insect pests [21]. The
study on Paraconiothyrium SMCD 2210 highlights endosymbiotic plant growth promo-
tion and alleviation of abiotic stress and ROS accumulation in germinating pea and
chickpea seeds in plants grown under drought stress conditions, and so in addition to
down-regulation of proline gene expression [70,71].

Chickpeas (Cicer arietinum L.) and peas (Pisum sativum L.) are two of the most im-
portant leguminous crops grown worldwide due to their nutritional and economic value.
However, abiotic stress, primarily that induced by drought, limits legume production.
Seeds of these two leguminous plants produced by F1 endosymbiotic plants under a con-
trolled environment was used to conduct the second-generation (F2) growth study. Fungal
and bacterial endosymbionts improved seed germination, colonization, and enhanced
root and shoot growth in second-generation seeds produced by applying drought stress
without endophytes. However, among several tested bacterial and fungal endophytes, only
the SMCD 2210 strain down-regulated antioxidant proline gene expression for >100%, in
addition to SOD-superoxide dismutase, manganese SOD-superoxide dismutase and dehy-
drin genes. These findings characterize enhanced oxidative stress tolerance and reduced
reactive oxygen species (ROS) in symbiotic host cells, together with reduced proline. Like
endophytes, some mycorrhizal (AMF) species also showed a similar tendency to moderate
proline in stressed plants. The endosymbiont beneficial effect on plant resilience and im-
proved phenotypes with reduced proline was translated into increased nutrient-protein
quality of second-generation leguminous seeds [70,71]. These studies on leguminous plants
indicate the potential of fungal endosymbionts to moderate drought-induced stress in
plants by triggering epigenetic changes inherited across pea and chickpea generations,
which correlate with enhanced resilience and improved agricultural traits in these glob-
ally important crops. These transgenerational effects of bacterial and fungal endophytes,
named bactovitalism and mycovitalism, were also found in other staple crops such as
wheat [72]. These plants experienced an enhanced biological seed stratification and germi-
nation and an early plant establishment [73], which implies multiple prenatal care effects
in plants. In addition, FTIR spectroscopy analyses uncovered endophyte effects on shifts
in plant-protective metabolic profiles against both abiotic (drought) and biotic (pathogen)
stressors [74,75]. Recent reviews on plant symbiosis and plant microbiomes highlighted
multiple opportunities offered by plant endophytes to global agri-food sectors [20,76].
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6. Conclusions

Despite advancements in understanding the mechanisms of proline biosynthesis and
metabolism, and its function in augmenting stress tolerance in procaryotes and eukaryotes,
there are deficiencies in the overall understanding of the ecology of fungus–bacteria–insect–
host–proline interactions and the way they have been investigated at the holobiont level.
Although foods rich in proline may be linked to depression, it is unknown how to efficiently
manipulate the proline concentration in plant- and food-based diets using the microbiome
and thus to reduce the risk of depression in humans and animals.

A phytobiome approach that describes a holobiont within an environment offers an
enormous potential for preventive control of proline accumulation in plants and food under
climate change. The accumulation of this osmotolerant for crop survival under stress is
often greatly enhanced in plants by a spectrum of symbiotic, endophytic, pathogenic, and
commensal microbiota. In fact, the lack of knowledge and adequate measures to modulate
proline levels raises concern as a plant-food-based diet can be a major issue related to
depression in humans and animals. It appears that joint plant genotype–microbiome
functionality affects proline in plants exacerbated with climate change, an additional
confounding factor in tackling proline bioaccumulation in food and feed products. To
address this problem at the source, we must focus on newly discovered plant endophytic
symbionts that downregulate proline gene expression and prevent proline biosynthesis
in plants under abiotic stress, while protecting plant health and global crops productivity.
How is this feasible? Some fungal symbionts, such as endophytic fungi, and to a lesser
extent mycorrhizal fungi and bacteria, are able to lower proline in both well-watered and
-stressed plants through different mechanisms.

In this regard, and mainly based on a review of the literature supplementing our lab
findings, the fungal endophyte effects on F1 plants and acquired epigenetic inheritance
transmitted from parent to offspring should be taken into consideration to improve stress
tolerance, together with ROS scavenging and reduced proline bioaccumulation in plants,
while improving yield and grain nutritional value. The molecular mechanisms of proline-
biosynthesis in stressed plants, although a complex issue, particularly when interacting on
the phytobiome level with associated insects under a changing environment, is possible to
control with symbiotic endophytes. This approach opens new opportunities for discoveries
through combining research in the fields of agriculture, food nutrients and functional
foods with the field of health science. Therefore, it is important to study the specificities
of the protocooperative regulation of proline genes and proline biosynthesis in symbiotic
plants, insects, and food products including honeys, using omics-innovative biotechnology
integrated into plant–microbiome-based breeding programs designed to ameliorate crop
traits across drought regions under climate change. The aim is to secure a diet without
excessive proline accumulation. The effectiveness of this “green” strategy is inscribed
in the control of this amino acid in the diet to prevent states of depression in humans
and animals, including insects. It implies that newly acquired knowledge in pre- and
post-harvest agriculture, including industrial food processing, may be critical to designing
a proline-balanced diet.

Finally, we need a more holistic model system to study proline by combining the
protocooperative microbiome–plant axis with the microbiome–human/animal/insect axis,
targeting a healthier diet for humans and animals (Figure 8).

This synergetic agri-food and pharmaco-medical strategy within the complex land-
scape of mental health problems requires systems science [77] to build interdisciplinary
bridges between diverse research fields in order to take better care of mental disorders
globally. Attention should be paid to mycotoxin food co-contamination (trichothecenes,
zearalenone, fumonisins, ochratoxins, and aflatoxins) in the presence of proline and how
they affect the nervous system, directly or through immune cell activation [78], thus
contributing to neuropsychiatric disorders [79,80] including depression. Mycotoxins specif-
ically target high-protein-turnover and -activated cells, which are predominant in the gut
epithelium [81]. In addition, some mycotoxins facilitate the persistence of intestinal mi-
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crobial pathogens and potentiate intestinal inflammation [82]. Thus, mycotoxin ingestion
may greatly affect gut microbiome composition and intestinal functions and metabolism,
including proline systematic mobilisation through the human body. A better understand-
ing of links between preharvest agriculture and postharvest food handling, and between
mycotoxin exposure and excessive proline amounts entering plant-based foods, seems a
vital component in understanding the overall human diet.
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Further, plant and gut microbiome research is experiencing fundamental shifts, notably
in ways that focus on analyzing large data quantities, typically to make better predictions
about multiple causes and contributors to symptoms of depression. The use of artificial
intelligence (AI) and molecular biomarkers in combination with imaging systems to in-
crease agricultural efficiencies and diagnostic medical precisions is undergoing extensive
evaluation. As such, microbiome research using AI and data science creates unique op-
portunities to personalize agriculture and medicine surrounding proline-related mental
issues (Figure 8). The recent integration of molecular pathology epidemiology (MPE) [83],
which allows a rapid progress in the health sciences of precision medicine and precision
prevention, aims to improve precision public health globally. As such, the disturbative
effects of diet on gut microbiota have been closely related to immunology and pathology,
and can be readily integrated into MPE’s framework [84]. Practically, MPE research can
conduct integrative analyses of biospecimens (plant, diet, and patient) considering both
hosts’ endogenous and exogenous factors—including environmental, lifestyle, dietary,
host germline genetics and microbial variations—and examine immunological and disease
processes at the molecular, cellular, tissue, individual, and population levels [83].

Rapid visual and quantitative detection of proline and mycotoxins within biospeci-
mens may help to evaluate the interplay between this amino acid and secondary metabo-
lites, as well as their combined effect on neurological disorders, thus leading to better
integrative understanding of depression epidemiology. Different radiological imaging
techniques, such as magnetic resonance imaging (MRI) and dual-energy computed tomog-
raphy (CT) scanning [84–86], can potentially be explored in assessing proline molecules
in the human body, while nuclear magnetic resonance (NMR) and hyperspectral imaging
(HSI) [87,88] have been studied in tracking proline and mycotoxins in plants and food. A
future research goal may be to investigate the relation between shifts in environmental
exposures, agricultural outcomes (e.g., crop yield, quality of agricultural products) and
neurological findings. Diets can be a particular subject of meta-analyses in relation to any
molecular mechanisms in plants or humans and any outcomes for preventing or reducing
health risks. However, this type of approach is rarely taken. It could offer a wide opportu-
nity to advance the science of depression disorders, which is currently underappreciated.
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In this regard, digitalization and machine learning in agriculture science [89], as
well as automation and deep neural networking in medical science [90,91], may provide
complementary tools to researchers to enhance healthy food diet and related patient care.
This may open new avenues for innovations and more effective depression treatments.
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