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Microbiome effects on immunity, health and disease in
the lung
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Chronic respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), are

among the leading causes of mortality and morbidity worldwide. In the past decade, the interest in the role of microbiome in

maintaining lung health and in respiratory diseases has grown exponentially. The advent of sophisticated multiomics techniques

has enabled the identification and characterisation of microbiota and their roles in respiratory health and disease. Furthermore,

associations between the microbiome of the lung and gut, as well as the immune cells and mediators that may link these two

mucosal sites, appear to be important in the pathogenesis of lung conditions. Here we review the recent evidence of the role of

normal gastrointestinal and respiratory microbiome in health and how dysbiosis affects chronic pulmonary diseases. The potential

implications of host and environmental factors such as age, gender, diet and use of antibiotics on the composition and overall

functionality of microbiome are also discussed. We summarise how microbiota may mediate the dynamic process of immune

development and/or regulation focusing on recent data from both clinical human studies and translational animal studies. This

furthers the understanding of the pathogenesis of chronic pulmonary diseases and may yield novel avenues for the utilisation of

microbiota as potential therapeutic interventions.

Clinical & Translational Immunology (2017) 6, e133; doi:10.1038/cti.2017.6; published online 10 March 2017

CHRONIC RESPIRATORY DISEASES

Chronic respiratory diseases, namely asthma, chronic obstructive
pulmonary disease (COPD) and cystic fibrosis (CF), are among the
leading cause of morbidity and mortality worldwide.1 In Australia,
deaths due to respiratory diseases are among top five causes of
mortality, and COPD alone is the second most common cause of
hospitalisation.2 Mortality rates are expected to rise significantly in the
next decade, partly due to ageing populations and also as a result of
the lack of effective measures to reduce some of the major risk factors
such as smoking, air pollution, wood and cooking smoke. There are
also likely to be generational effects of exposures prolonging these
effects into subsequent generations even if exposures were to decline
now. Despite the enormous burden of these conditions, the various
causative factors and underlying mechanisms associated with disease
progression are still not fully understood. The human microbiome is
one such factor, which not only has a pivotal role in maintaining
health but also in regulating various inflammatory and metabolic
pathways in a range of conditions including gastrointestinal (GI)
diseases (inflammatory bowel disease, irritable bowel syndrome),
arthritis (rheumatoid arthritis), cancer (colorectal cancer) and recently
in chronic pulmonary diseases, such as asthma, COPD and CF.3,4

Early investigations largely focussed on the roles of intestinal
commensal bacteria and their metabolites in health and disease.
However, new evidence suggests that non-bacterial microorganisms
such as fungi (mycobiome) and viruses (virome), as well as microbiota

residing on other tissues such as the lungs, could be critical in
modulating health and disease in the host.5,6 The term ‘microbiota’
refers to the entire microbial community (bacteria, archaea, fungi,
viruses and protozoa) associated with specific host tissues or organs,
whereas the total genome of this community is designated the
‘microbiome’.7,8 Accordingly, the human microbiome can be defined
as the sum total of all forms of microorganisms and their genomes,
inhabiting an individual, at a given time. The composition and
diversity of microbiota varies greatly between different individuals
and is shaped by both environmental and host genetics factors,
although it remains relatively stable within a host in the absence of
a major change in lifestyle (e.g., diet, disease onset, inhalation and
environment exposures etc.).9 Remarkably, the microbiome is often
dubbed the ‘new’ biomarker of human health as it aids in maintaining
normal host physiology, developing and educating the immune
system, metabolising complex substrates and providing crucial protec-
tion against opportunistic pathogens. With the rapid technological
advances in the field of metagenomics and bioinformatics, researchers
are now unravelling the effects of both the respiratory and
GI microbiota on the immunity of lungs in health and disease.
Here we review the relationships between the host and

the microbiota in chronic respiratory disorders (e.g., asthma, COPD
and CF), and outline novel microbiome-oriented strategies with
therapeutic potential for preventing or treating these diseases, which
are currently incurable and often have poor treatment options.
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HEALTHY MICROBIOME IN THE GI AND RESPIRATORY

TRACTS

The comprehensive analysis of microbial communities, the implica-
tion of individual taxa in biological processes and the identification of
interactions between the microbiota, host and the immune response
have been driven by the development and application of new
technologies and advanced high-throughput bioinformatics techni-
ques. Although a detailed discussion of modern sequencing and
analysis would form its own review, familiarity with the basic
principles is key to understanding the workflow and potential
limitations in the field. The DNA encoding the 16S rRNA gene is
amplifiable by PCR, and consists of both conserved regions present in
all prokaryotes and variable (V1-V9) sequence regions. Notably, these
regions have evolved at different rates, allowing measurement of both
close and distant phylogenetic relationships, which enables the
taxonomic assignment of a broad range of bacteria to family/genus/
species level.10 Similarly, fungal detection by DNA based technologies
include sequencing and evaluation of conserved 18S rRNA gene
(phylum level differentiation), which can be coupled with highly
variable internal transcribed spacer regions (ITS) to achieve inter-
species separation.11 It should be noted that the utility of 18S rRNA/
ITS sequencing based approaches for fungal identification can be
confounded by the specificity and bias of currently available PCR
primers, as well as the lack of exhaustive fungal reference libraries.12

Despite some concerns about the variability of experimental protocols
or PCR primer bias, 16S rRNA/18S rRNA remain the mainstay of
microbiome analysis. Briefly, total DNA is extracted from the sample
(e.g., stool, bronchoalveolar lavage fluid, tissue) and the bacterial 16S
rRNA gene is PCR-amplified to create a mix of individual amplicons.
For eukaryotic microbes (fungi and protozoa), 18S rRNA/ITS genes
are amplified and assessed. Similar phylogenetic characterisation of
viruses/phages can be undertaken but is difficult owing to the lack of
small subunit rRNA (16S/18S), or any conserved genes/proteins.
In addition, overlapping of specific marker genes that are frequently
transferred between viruses through horizontal gene transfer induces
further challenges for the identification and characterisation of
viruses.13 However, with the advent of next-generation sequencing
and sophisticated methods for purifying virus-like particles, it is now
possible to assess viral diversity through shotgun sequencing.14 Then
next generation sequencing (NGS) technology is employed to analyse
these sequences simultaneously, thus avoiding the pedestrian tradi-
tional separation and cloning of individual amplified sequences and
reducing the biases. These 16S rRNA gene amplicon sequences are
assessed qualitatively and highly similar sequences are clustered into
operational taxonomic units (OTUs), which are finally identified
against a standard reference database. It may be possible to classify
some OTUs to the species level, while others may be classified only to
a higher taxonomic level such as family or genus. This is primarily due
to the varying resolution in the sequencing reads of specific regions of
the 16S rRNA gene used for distinguishing different types of bacteria.
The total number of reads assigned to each operational taxonomic
unit is indicative of the relative abundance of members of the
microbiome, as well as characterising their phylogenetic relationships,
that is, taxonomic diversity.15 These microbial profiles can then be
correlated with host physiological parameters in both health and
disease. More recently, the advent of whole-genome sequencing and
functional metagenomics (i.e., genome-based pathway analyses) has
enabled the prediction of the functionality of whole microbial
communities as well as of individual members.16 The sequencing of
16S rRNA gene amplicons of bacteria, and 18S rRNA/ITS gene
amplicons of fungi, allows the cost-effective identification and

characterisation of microbial diversity in ecosystems, including the
human gut.17 This has proved extremely valuable in enabling the
analysis of host-microbe interactions in health and disease. However,
several key issues remain to be resolved, such as reducing PCR-bias,
accurate projections of microbial diversity, translating microbial
taxonomic classification into essential biological parameters, and
determining cause and effect of species and population changes.
Crucially, shotgun metagenome sequencing provides both the identi-
fication of microbes and the information regarding biological function
encoded in the total genome. Major challenges still exist with this
technique, including analysis of extremely complex data into mean-
ingful conclusions, presence of host DNA in the whole sample,
exclusion of sequences generated due to contaminants and high cost.
However, both 16S rRNA sequencing and shotgun metagenome
sequencing are in use across in many laboratories worldwide, and
with advances made in refining these techniques, it will become more
sophisticated and affordable in coming years.18 Additional molecular
methods such as metatranscriptomics (analysis of mRNA transcripts),
metaproteomics (analysis of proteins) and metabolomics (analysis of
metabolites) have also proved beneficial in understanding the func-
tional complexity of host–microbe interactions.
The total surface area of the gastrointestinal mucosa in the adult

human is between 30 and 80 m2,19 and this harbours large populations
of microorganisms (~1014), which are predominantly commensal in
nature. To characterise the ‘healthy’ microbiome in humans,
Qin et al.20 sequenced the total faecal genetic material from 124
European adults and revealed that the gut microbiota is predominantly
comprised of bacteria and archaea, representative of 41000 distinct
species, with lesser populations of viruses and eukaryotic microbes.
These ‘Healthy’ gut microbiota are dominated by the phyla Bacter-
oidetes, Firmicutes, Actinobacteria, Proteobacteria and Verrucomicrobia
with a lesser proportion of Fusobacteria. Regional tissue variations in
microbiome composition exist in the GI tract, which are determined
by factors such as oxygen gradient, antimicrobial peptides (bile acids)
and pH. Lactobacillaceae and Enterobacteriaceae dominate small intes-
tine (~102 CFU g� 1), whereas the colon (~1011 CFU g � 1) is inhab-
ited by members of Bacteroidaceae, Prevotellaceae, Rikenellaceae,
Lachnospiraceae and Ruminococcaceae.21 Consequently, luminal-
(faeces) and mucosal-associated (colonic mucosa) microbiota demon-
strate the persistence of distinct microbial taxa, differing in both
diversity and composition, with luminal populations showing higher
diversity.22

Mouse models are integral to understanding the role of the
GI microbiome in immune disorders. Lagkouvardos et al.23 recently
established the first public library of the Mouse Intestinal Bacterial
Collection.18 Approximately 1500 pure cultures were isolated from the
GI tract of mice, and 76 different species from 26 families belonging to
the phyla Firmicutes (74% strains), Actinobacteria, Bacteroidetes,
Proteobacteria and Verrucomicrobia were identified, characterised and
archived. The authors also identified 32 bacterial species shared
between both humans and mice, and 16 species that were exclusively
present in the murine intestine.23 Other key factors such as variability
in the gut microbiome between different laboratory mouse strains and
environmental factors (e.g., co-housing, physical/psychological stress)
should be considered while referring to miBC library.24 Moreover,
further investigations are warranted to resolve differences in the
composition of the gut microbiota in different mouse strains, and
the influence of their respective microbiota on health and disease.25

Recently, our knowledge of the respiratory microbiome has
improved significantly. Previously thought to be sterile, numerous
investigators have detected bacterial DNA in the lower respiratory tract
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of healthy individuals.26–28 Despite several technical limitations, such
as low bacterial load and potential contamination with upper
respiratory tract secretions (oral or nasal), it is now widely accepted
that a ‘healthy’ microbiome exists in the lung. Whether this is resident
or is transient and continually reseeded from the environment and
cleared by immune responses is currently under debate.4 The
bronchial tree consists of a complex and dynamic microbial commu-
nity (~500 species), which often overlaps with the oral microbiome.27

In contrast to the GI tract, the luminal surface area of lungs is between
50–75 m2,29 and the total bacterial load varies greatly between subjects
in both bronchoalveolar lavage fluid (4.5–8.25 log copy numbers
per ml)30,31 and lung tissue samples (10–100 bacterial cells per 1000
human cells). Similar to gut microbiota, the ‘core’ airway microbiota
in healthy lungs is predominantly comprised of the phyla Bacteroidetes,
Firmicutes and Proteobacteria, followed by lesser proportions of
Actinobacteria.28,32,33 Moreover, the lung bacterial communities of
healthy individuals resemble the microbiome of the mouth but not the
nose. Indeed, the prevalence of the genus Prevotella, which occurs at
high levels in the oral cavity, is low in healthy lungs.27 This suggests
that oral microbial communities that transgress into lower respiratory
tract are selectively eliminated from healthy lungs.27 It has also been
postulated that increases in the abundance of Prevotella may induce
low-grade inflammation in lungs.34

Establishment of the microbiome
The establishment of the microbiome may commence before an
individual is born, as nonpathogenic commensal microbes, largely
resembling the oral microbiota, have been detected from placental
DNA (Figure 1).35 At birth, the mode of delivery affects early
colonisation in the gut, with delivery by caesarean section shown to
be significantly associated with lower abundance and diversity of the
phyla Actinobacteria and Bacteroidetes, whereas higher abundance and

diversity of Firmicutes in the first 3 months of life.36 Other factors
including the place of birth, feeding practice, host genetics, siblings,
gender and preterm pharmacotherapy (e.g., antibiotics, steroids) could
also affect the microbiome substantially.37 At age 1–2 years, the infant
gut microbiome changes dramatically, although detectable changes in
microbiota may occur as early as 6 weeks post birth as these changes
are largely shaped by the cessation of breastfeeding and subsequent
alterations in diet.38 During the next 18–36 months, a final shift in
microbiota takes place in the majority of individuals, which primarily
involves enrichment with bacterial phyla Bacteriodetes and Firmicutes,
and leads to a microbiome resembling that of adults.39 Once
established, the microbiome remains fairly stable throughout middle
age, with only transient changes occurring. A 5-year follow-up study of
US adults showed that the relative abundance of the majority of
bacterial strains (~60%), especially Bacteroidetes and Actinobacteria,
remain fairly stable in an individual.40 Nevertheless, there is a large
degree of interpersonal variation of microbiota, which is mainly due to
host associated factors, including diet, genetics, age and gender
(Figure 1)41,42 and new taxa continue to be characterised.43 Data
generated by the Human Microbiome Project44 reported significant
correlations between the first principle coordinates of host genetic
variations and first principle coordinate of microbiome composition
in stool samples and palatine tonsils (UniFrac distances). Similar
statistically nonsignificant correlations between host genome and
microbiota composition were also observed for other body sites, such
as the skin.41 Another study also used the Human Microbiome Project
data to show that mitochondrial haplotypes correlated with abun-
dances of specific microbiota in faeces.44 Other factors can also lead to
long-term sustained changes in the composition of gut microbiota,
such as the onset of chronic diseases, changes in diet or repeated
exposure to environmental insults, such as cigarette smoke, allergens,
infections and air pollution (Figure 1).4,45 Gender-specific differences

Factors affecting the microbiome

Early life Adult life

Cigarette smoke

Allergens

Infections 

Air pollution 
0-3 months
Caesarean
• Actinobacteria
• Bacteroidetes
•  Firmicutes 

pre-term
pharmacotherapy (e.g. 
antibiotics, steroids)

1-3 years
Breastfeeding cessation
• Bacteroidetes
•  Firmicutes 

Maternal BMI

• Age
• Gender
• BMI
• Onset of chronic 

diseases
• Diet (eg. High 

fiber vs. high fat)
• Pharmacotherapy 

(e.g. antibiotics, 
steroids)

Day care attendance  

Figure 1 Factors affecting microbiome in early life and adulthood. Host microbiome in both early and adult life is affected by various factors. Preterm (during
gestation) determinants of microbiome include maternal BMI and pharmacotherapy, whereas post-term factors such as mode of delivery, duration of
breastfeeding, day-care attendance and diet (throughout life) significantly influence the microbiota composition. Environmental factors, for example, exposure
to cigarette smoke/air pollution/allergens, respiratory infections as well as host-associated factors such as age, gender, BMI and onset of chronic diseases
could result in ‘dysbiosis’.
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in microbiota also occur and could possibly explain differences in
the prevalence of metabolic and intestinal inflammatory diseases
in men compared with women.46 Gut bacterial microbiota differs
between men and women at the phylum (Firmicutes:Bacteriodetes
ratio higher in men o33 kg m � 2 body mass index (BMI); higher
in women 433 kg m � 2 BMI) as well as genus level (Bacteroides and
Bilophila: higher in women; Veillonella and Methanobrevibacter: higher
in men).46 In the same study, levels of 66 bacterial genera strongly
correlated with both BMI and plasma lipids (triglycerides, high- and
low-density lipoproteins and total cholesterol).46 Evidence also
suggests that commensal gut microbial communities affect both sex
hormone levels and metabolomics in a non-obese mice model of type
1 diabetes (T1D), and also regulates autoimmune diseases in these
genetically susceptible animals.47 Furthermore, recent evidence sug-
gests that normal ageing profoundly affects the composition of
microbiome, in both humans and mice,17,48 and is strongly influenced
by BMI (Figure 1).

Effects of diet and other factors on microbiome composition
Thomson and co-workers analysed stool samples from nine infants
(age; 7 days–10.5 months; followed weekly for 16 weeks) and reported
that the infant microbiome was affected by age, diet and day-care
attendance. They also found a greater plasticity in microbiome
composition in exclusively breastfed infants compared with
non-exclusively breastfed infants, although the phylogenetic diversity
and species richness was diminished in exclusively breastfed infants.49

In 33 children with irritable bowel syndrome, a diet low in
fermentable oligosaccharides, disaccharides, monosaccharides and
polyols (FODMAP) was found to be effective in reducing the
frequency of abdominal pain, compared with a typical American
childhood diet.50 Independent of maternal BMI, a maternal high-fat
diet was associated with a notable relative depletion of Bacteroidetes in
neonates at birth, which persisted up to 6 weeks of age.51 In adults,
a short-term (5-day) dietary intervention (entirely plant or animal
based) significantly altered gut microbial community structure
(with notable increases in the genus Prevotella) and accounted for
individual differences in microbiome-associated metabolic gene
expression.52 Consumption of fibre is also important in maintaining
the composition of the microbiome as a low fibre diet has recently
been shown to cause an irreversible loss in gut bacterial diversity over
several generations in mice.53

Lee and Ko54 reported that oral administration of retinoic acid
significantly increased the abundance of members of Lactobacillaceae
families in the murine gut, which inhibited murine noroviral replica-
tion in the host through the upregulation of interferon-β. Prebiotic
feeding of β(1–4)galacto-oligosaccharides (GOS90) formulation to
germ-free (GF) mice colonised with normal mouse gut microbiota
resulted in increased abundance of Bifidobacterium adolescentis
(B. adolescentis), B. pseudocatenulatum, B. lactis and B. gallicum and
decreased abundance of Bacteroidales, Helicobacter and Clostridium.
However, the prebiotic diet (GOS90) was not associated with an
altered inflammatory profile (interleukin-6 (IL-6), IL-12, IL-1β,
interferon-γ and tumour necrosis factor-α).55
Recent evidence also indicates the role of gut microbiota in

aggravating metabolic inflammation via toll-like receptor (TLR)
signalling (primarily TLR2 and TLR4) induced with a saturated
lipid-rich diet. Feeding mice a diet rich in saturated fats resulted in
weight gain, higher food consumption and reduced respiratory
quotient as well as increased the abundance of genera Bacteroides,
Turicibacter and Bilophila. This was in comparison with a diet rich
in polyunsaturated lipids in which the genera Actinobacteria

(Bifidobacterium and Adlercreutzia), Lactobacillus, Streptococcus, Verru-
comicrobia (Akkermansia muciniphila), Alphaproteobacteria and Delta-
proteobacteria were increased.56

Effects of microbiome in health and regulation of host immunity
Normal gut microbiota perform a wide range of metabolic activities
that benefit the host. Forms of vitamin K synthesised by bacteria are
known as menaquinones, and are associated with cardiometabolic
health in humans.57 Moreover, Bifidobacteria and Lactobacilli have
vital roles in the synthesis of several components of vitamin B
complexes.58 Healthy gut bacteria also modulate energy metabolism
by increasing the serum concentrations of pyruvic acid, citric acid,
fumaric acid and malic acid.59 Specific members of gut microbiota
(Bacteroides, Bifidobacterium, Fecalibacterium and Enterobacteria) facil-
itate the fermentation of indigestible oligosaccharides resulting in the
production of short chain fatty acids (SCFAs) such as acetate,
propionate and butyrate. These SCFAs are present in the intestinal
lumen at a total concentration of ~ 100 mM at an approximate ratio of
6:3:1, respectively, although this is subject to carbohydrate availability,
microbiota composition and intestinal transit time.60 SCFAs serve as
the primary energy substrate for colonocytes and also aid in main-
taining colonic epithelial integrity, regulating host energy balance,
suppressing colonic inflammation and inducing apoptosis in colon
cancer cells.61,62 The gut microbiota has also been shown to modulate
lipid metabolism by promoting lipase activity in adipocytes.63 Targeted
alterations in the gut microbiome could prove beneficial in controlling
body mass, triglycerides and high-density lipoproteins.64

Local intestinal immunity is largely regulated by resident microbiota
(and/or microbial metabolites/components) and fails to develop fully
in the absence of normal microbiota. This is best demonstrated in
GF mice that have underdeveloped gut-associated lymphoid tissues
including Peyer's patches, isolated lymphoid follicles and mesenteric
lymph nodes.65 Genesis and maturation of lymphoid follicles in mice
requires stimulation by bacterial cell wall components from commen-
sals and is mediated through nucleotide-binding oligomerization
domain-containing protein 1 (NOD1) signalling.66 Establishment of
normal microbiota at an early age is critical for the development of
appropriate cellular immune responses, as colonisation of neonatal
mice, but not adult GF mice, with conventional microbiota from wild-
type mice protected the animals from pathological manifestations of
IBD and asthma that were associated with the accumulation of
mucosal invariant natural killer T cells.67 Microbiota are involved in
the maintenance of innate immunity. Peptidoglycan from intestinal
bacteria has been shown to regulate the steady-state cellular lifespan of
neutrophils and inflammatory monocytes through NOD1 signalling.68

Commensal bacteria are commonly recognised by pathogen-sensing
receptors, such as TLRs under normal conditions, which is essential in
maintaining intestinal epithelial homeostasis and protects against
dextran sulphate sodium-associated gut injury in mice.69 Commensal
bacteria maintain the intestinal barrier in mice by selectively stimulat-
ing the release of lysozyme from secretory intestinal epithelial cells
(Paneth cells) and protect the host from enteric infections through
increased identification of enteric pathogens via NOD2 signalling
in IBD.70 Furthermore, individual members of the intestinal micro-
biome can markedly alter the inflammatory state of the intestinal
immune system. Murein lipoprotein from selective gut symbiotic
Gram-negative bacteria are capable of inducing systemic immunoglo-
bulin G (IgG) responses in a TLR4-dependent manner, which
primarily targets bacterial antigens for removal by phagocytes and
protects mice against systemic infections by Escherichia coli and
Salmonella.71 Very recently, in an in vitro model of bone marrow-
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derived macrophages, Deng et al.72 demonstrated that B. fragilis
polarises the macrophages into an proinflammatory M1 phenotype,
and also enhances its phagocytic activity against pathogenic bacteria
(Figure 2). Microbiota also regulate adaptive immunity. Intestinal
microbiota promotes the development of CD4+ T cells, regulatory
T (Treg) cells, Th1 or Th2 responses and Th17 T cells, all of which are
important in the maintenance of systemic immune responses.73

Recently, it has also been shown that resident microbiota can induce
high IL-21-producing CD4+ T-follicular helper cells in Peyer’s patches
that subsequently regulate the development of germinal centres
in mice.74

The bacterial metabolites SCFAs bind specifically to the G-protein-
coupled receptor 43/free fatty acid receptor 2 (GPR43/FFAR2),
GPR41/FFAR3 and GPR109A, and these interactions significantly
affect normal inflammatory responses. Similar to GF mice, which
have negligible SCFAs, GPR43-deficient (Gpr43 � / �) mice showed
either heightened or unresolved inflammatory responses in experi-
mental models of colitis, arthritis and asthma.75 GPR43 is expressed
on cells of the distal ileum, colon, adipose tissue and immune cells,
and intestinal mast cells. GPR41 is localised in the cytoplasm of
enterocytes and enteroendocrine cells in human colonic mucosa.
GPR41-expressing cells occur at lower levels than GPR43-expressing
cells.76 Propionate-GPR41 interactions promote the development of
macrophages with enhanced phagocytic activity as well as dendritic
cell precursors, which migrate to the lung and possess impaired ability
to differentiate naïve T cells into TH2 cells.77 Similarly, butyrate–
GPR109A interactions have been shown to induce IL-10 production
by colonic Treg cells in mice (Figure 2). Interestingly, a Gpr109A
agonist, niacin, also suppressed colitis and colon cancer in a Niacr-
knockout mice model.78 Moreover, microbial-derived butyrate has
been shown to induce differentiation (but not survival or prolifera-
tion) of intestinal Treg cells, in both in vitro and in vivomodels, which
also ameliorated the development of colitis in Rag1� / � mice. This
promotion of Treg differentiation occurred via the activity of butyrate

in inhibiting histone deacetylase, leading to enhanced histone
H3 acetylation at both promoter and non-coding regions of the
Foxp3 locus. In support of this, the intake of butyrylated high-amylose
maize starch significantly increased IL-10-producing Treg cells in
the colon.79

Microbial components also have the potential to maintain immune
homeostasis in the host. Evidence is mounting in support of
a ‘common mucosal response’, where the GI mucosa may regulate
immune responses at distal mucosal sites (e.g., lungs), or vice versa,
through the migration of preprogramed lymphoid cells and/or
inflammatory mediators.80 Using animal models, it has been demon-
strated that perturbation of the normal gut microbiota in inbred mice
may promote fungal overgrowth in the gut, and the development of
experimental asthma when challenged with fungal spores in later life
(allergic airway disease), which is characterised by increased levels of in
eosinophils, IgE, IL-5 and IL-13, as well as goblet cell metaplasia.81

In the respiratory tract, upper airway commensals may impart an
effective antiviral immune response against influenza A virus in the
lower airways through the induction of M2-macrophage-induced
anti-inflammatory cytokines and inhibitory ligands.82 Furthermore,
commensal neomycin-sensitive bacteria regulate protective immune
responses in the lungs against influenza A virus infections by
generating virus-specific CD4 and CD8 T cells through inflammasome
activation and dendritic cell migration from the site of infection to
lymph nodes.83 These findings clearly demonstrate a critical role for
normal microbiota, as well as its metabolites, in shaping and
modulating host immune responses, not only in intestinal tract but
also at other sites such as the lungs.4,45

Disruption of either the composition or overall numbers of ‘normal’
microbiota (in both gut and lungs) is termed as ‘dysbiosis’, and may
contribute to the development, progression, or exacerbation of various
inflammatory disorders of lungs, including asthma, COPD and
CF.84–87 Typically, dysbiosis is associated with the outgrowth of
dominant (usually pathogenic) bacterial genera over community

Bacteroides, Bifidobacterium, Fecalibacterium, and Enterobacteria   

SCFA

Paneth cells

Mac

B. fragilis 

Epithelial barrier

Lysozyme

pathogenic 
colonization

MLP

IgG

Antigen removal

T cell
Mac

NOD2

IL-10
IL-21

    inflammatory cytokines

Figure 2 Roles of commensal bacteria and/or their components/metabolites in regulation of host immunity. Commensal bacteria induce the lysozyme
production by Paneth cells that reduces the colonisation of pathogenic bacteria via NOD2 sensing. Moreover, these beneficial bacteria ferment dietary
fibres to produce SCFAs, which then promotes the secretion of anti-inflammatory cytokines (IL-10, IL-21) by immune cells. Murein lipoprotein (MLP),
a Gram-negative commensal bacterial cell wall component, can induce production of IgG, which primes macrophages and dendritic cells to remove antigens/
pathogens. B. fragilis selectively polarises macrophages into proinflammatory M1 phenotype leading to enhanced pathogen clearance/inflammation.
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diversity. However, in relation to lung diseases, we do not precisely
know if any of these observed microbial community changes are
causal factors or result of disease, and/or then subsequently contribute
to disease progression.

THE ROLE OF THE MICROBIOME IN ASTHMA

Asthma is a multifactorial disease, primarily characterised by heigh-
tened airway inflammation, associated smooth muscle hyperplasia and
airway hyperreactivity.88–90 Patients are susceptible to infectious
exacerbations.91 Allergic asthma develops in responses to host and
environmental factors involving infections and other exposures.92–94

As the microbiota aids in the development and maturation of both
innate and adaptive immunity, this potentially influences the allergic
responses throughout the life of an individual, including the develop-
ment of allergic asthma.94–96 Several studies have observed
a positive association between childhood antibiotic exposure, which
disrupts the normal microbiome, and risk of early-onset childhood
asthma.97 The role of the microbiome appears to relate directly to the
type of microbial exposure as opposed to the total microbial load.
Indeed, neither personal nor home cleanliness were associated with
a risk for asthma and allergies, but exposure to specific microbial
markers in the environment, such as muramic acid and endotoxin,
correlated with asthma prevalence (odds ratio (OR): 0.59;
95% confidence interval (CI): 0.39–0.90) and allergic sensitisation
(OR: 0.73; 95% CI: 0.56–0.96) in school-age children.98

The diversity of nasopharyngeal microbiota has a fundamental role
in determining the host susceptibility to febrile lower respiratory
infections and the development of asthma later in life.99 In particular,
colonisation of the hypopharyngeal region of 1-month-old infants
(n= 321) with Moraxella catarrhalis, Haemophilus influenzae or
Streptococcus pneumoniae was associated with a significantly increased
risk for childhood asthma.100 Respiratory H. influenzae, Chlamydia
and viral infections are linked to severe asthma.90,101–103 In human
adults, the composition of the lung microbiome in asthmatics differs
significantly from healthy controls,84 which seems to regulate proasth-
matic immune responses. Several studies have reported greater
abundance of Proteobacteria in the lower airway secretions of
asthmatics compared with healthy individuals,84,104 which was also
associated with TH17-associated gene expression.105 Specific pulmon-
ary bacterial communities have been associated with clinical char-
acteristics (e.g., sputum total leucocyte levels, reduced quality of life)
in severe asthma (dominated by Actinobacteria) and differs from both
healthy individuals and patients with mild-to-moderate asthma.105

Interestingly, asthmatics who displayed improved bronchial reactivity
after 6 weeks of macrolide antibiotic (clarithromycin) treatment had
higher baseline bacterial diversity,106 potentially implicating the
resident microbiota in the outcome of therapeutic interventions. In
addition to bacterial communities, the analysis of induced sputum
revealed that 90 fungal species were more abundant in asthmatics,
whereas 46 were more abundant in the control subjects.107 In
particular, members of genera Aspergillus and Penicillium were
significantly associated with impaired postbronchodilator reduced
expiratory volume in 1 s in asthmatics.108 Mouse models have been
developed that replicate features of acute, chronic, mild-to-moderate
and severe steroid-resistant asthma.103,109–112 Such models have been
used to confirm this role for the respiratory microbiota in allergic
asthma, as increased infiltration of lymphocytes and eosinophils
occurred following ovalbumin administration in GF compared with
SPF mice, which could be reversed with recolonising GF mice with
normal microflora113 (phenotype-specific).

In addition to the modulation of immunity by the lung micro-
biome, perturbations in GI microbiota, such as through antibiotic use
and poor diet, may disrupt mucosal tolerance. A recent Finnish study
showed that the use of macrolides in early life was associated with
long-term microbial dysbiosis (depletion of Actinobacteria, increased
Bacteroidetes and Proteobacteria), and significantly increased asthma
risk and antibiotic-associated weight gain in 2–7-year-old children.114

A mouse model of antibiotic use in early life demonstrated significant
changes in gut microbiome composition (both richness and Shannon
evenness) that was dependent on the number of courses and class of
antibiotic used, resulting in weight gain.115 Similarly, vancomycin-
treated neonatal mice exhibited markedly altered gut microbiota and
heightened allergic asthma characterised by significant increases in
bronchoalveolar lavage fluid eosinophils, serum ovalbumin-specific
IgE levels and airway hyperresponsiveness compared with control
mice.116 Even in the absence of antibiotics, subtle differences in the
GI microbiota in early life can affect asthma risk. Data from Canadian
Healthy Infant Longitudinal Development (CHILD) Study (n= 319)
demonstrated that gut microbial dysbiosis during the first 3 months of
life predisposed infants to a relatively high risk of asthma, which was
associated with significant decreases in bacterial genera Faecalibacter-
ium, Lachnospira, Veillonella and Rothia as well as reduced faecal
acetate levels. GF mice inoculated with faeces lacking these taxa
exhibited airway inflammation and pathology in their adult progeny.
This was improved in mice inoculated with the same faeces
supplemented with the specific bacterial taxa, demonstrating
a beneficial role for these bacterial taxa in asthma prevention.117

Furthermore, pregnant mice fed with high-fibre/acetate diet protected
the offspring against the development of allergic airway disease,
possibly via histone deacetylase 9 inhibition and promoting highly
suppressive Treg cells involving acetylation at the Foxp3 promoter
region.118

Apart from infancy, the changing microbiota throughout life may
influence allergic asthma. Vital et al.119 found that aged mice
(9–10 months) that were sensitised and challenged with house dust
mite exhibited greater allergic airway responses compared with young
similar treated mice (6–8 weeks). Notably, age-related gut microbiota
alterations in old mice (decrease in Bacteroidetes:Firmicutes ratio)
resemble those in mice challenged with house dust mite. In addition,
intestinal microbial dysbiosis was significantly associated with elevated
bronchoalveolar lavage fluid IL-17A and increased Th17 cells in
the spleen in aged mice, whereas serum IL-17A levels were increased
in both groups. This study suggests important links between
age-associated gut microbial dysbiosis and allergic airway responses.
Moreover, interestingly, pulmonary sensitization with house dust
mite may drive alterations in gut microbiome through priming
Th17 regulatory cells.

THE ROLE OF THE MICROBIOME IN COPD

COPD is a multicomponent disease that involves airway inflamma-
tion, mucociliary dysfunction and lung structural changes, which are
observed in varying degree of severities in COPD patients, and
contribute to airflow obstruction and breathing difficulties.120–122

The structural and airway changes in COPD patients include small
airway fibrosis and emphysema, whereas the large airways demonstrate
epithelial goblet cell hyperplasia, epithelial squamous metaplasia and
submucosal gland hyperplasia. Emphysema develops usually after
a decade and only in a subset of patients.123 Tobacco smoking
remains the principal causal factor worldwide, especially in developed
countries. In addition to cigarette smoke, exposure to biomass
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fuel smoke and air pollution contribute significantly in disease
prevalence in low- and middle-income countries.124,125

The clinical course of COPD is complicated by frequent episodes of
acute exacerbations, which primarily involves microbial and viral
infections.91,126,127 In the past two decades, our understanding of the
pathogenesis of airway infections has increased substantially. The most
common ‘colonisers’ in the stable state of COPD are non-typeable
H. influenzae (~60%), M. catarrhalis (~48%) and S. pneumoniae
(~28%).128 Moreover, bacterial colonisation of the respiratory tract in
COPD patients is believed to be dynamic, as the bacterial flora
frequently changes in terms of both strains and species, although the
above-mentioned bacteria remain prominent.129 These bacterial
pathogens undoubtedly worsen a patient’s health over a long period
of time and may be a major driver of airway luminal inflammation
and oxidative stress,128,130–133 as well as increased daily symptoms in
COPD patients.134 Indeed, COPD patients chronically colonised with
H. influenzae during stable phase showed increased airway inflamma-
tion and reduced lung volumes when compared with non-chronically
colonised patients.135

The influence of cigarette smoke on the microbiome and the role
of the microbiome in COPD are relatively new paradigms with
limited data.4,45 However, both of these issues could be relevant in
understanding disease development, progression and exacerbations.
Results from a multicentre cohort study (n= 64), based on modern
culture-independent techniques such as quantitative reverse transcrip-
tion PCR (using 16S rRNA) show that the oropharyngeal microbiome
(oral wash) differed in non-smokers compared with smokers, but no
difference was found in lung microbial communities using
bronchoalveolar lavage.136 In contrast, the microbial communities in
the lungs of COPD patients differ significantly from both healthy
smokers and non-smokers, primarily due to an enrichment of some
taxa including Firmicutes (e.g., Lactobacillus, Streptococcus) and
Proteobacteria (e.g., Burkholderia, Campylobacter).32,33,137,138

Studies of the COPD microbiome have also shown significant
biogeographical and temporal variations in microbial diversity and
relative abundance.32,33,138 In a healthy individual, spatial and
temporal variation in microbiota composition is significantly less than
variation across individuals and is primarily influenced by microbial
immigration and elimination, whereas in disease microbial commu-
nities are more likely to be affected by local growth conditions.26 In
particular, the decline in both the diversity and richness in the
respiratory microbiome is shown to be associated with greater
emphysema and increased immune cell infiltration in COPD
patients.33 Moreover, a recent study by Wang et al.139 showed different
phenotypic patterns in COPD exacerbations (e.g., bacterial or eosi-
nophilic), which were associated with distinct lung microbiome
profiles at both phylum and genus levels. In patients exhibiting
bacterial exacerbations, the microbiome was dominated by the phyla
Proteobacteria (mainly Haemophilus spp.), whereas Firmicutes domi-
nated eosinophilic exacerbations. Thus, changes in the lung micro-
biota composition may be associated with acute exacerbations and
could potentially shape host inflammatory responses (especially IL-8),
at least in some individuals.
Mouse models have been developed that replicate features of

COPD, including exacerbations, in a short time frame and can be
used in cause and effect and mechanism studies.110,121,122,126,140–144

Several mechanistic studies in animals have explored the modulation
of lung immunity by lung microbes. One of the first showed a causal
relationship between the bacterial microbiome, inflammation and
IL-17A-mediated lymphoid follicle formation.145 In a lipopolysacchar-
ide/elastase-challenged mice model of COPD, Yadava et al.145 showed

that treated mice had decreased microbiota richness and diversity
compared with SPF mice, with an increased representation of the
genera Pseudomonas and Lactobacillus and a reduction in Prevotella.
The authors also observed increased inflammation (lymphoid follicle
formation), extensive lung damage as well as increased production of
antibodies and IL-17A in treated mice. Interestingly, GF mice
exhibited reduced inflammatory cells in the airways, indicating that
microbial factors modulate lung inflammatory responses.145 In addi-
tion, intranasal administration of bronchoalveolar lavage fluid from
lipopolysaccharide/elastase-treated mice, but not from phosphate-
buffered saline-treated mice, resulted in an increase in IL-17A-
producing cells in the lungs of both GF mice and antibiotic-treated
mice.145 Besides inflammation, lung microbiome may also affect lung
architecture, which could significantly affect both pulmonary function
and airflow obstruction. Yun et al.146 reported metabolically active
lung microbiota in both SPF- and wild-type outbred mice, but not in
GF mice. Although the overall microbiome composition across these
mice was similar at the phylum and family level, species richness was
significantly different between those housed in SPF and non-SPF
facilities. The authors also found a positive correlation between higher
bacterial abundance in non-SPF mice and increased number and
smaller size alveoli.146

The GI microbiome has not been characterised in COPD patients;
however, there is evidence of gut bacterial dysbiosis in response
to cigarette smoke in both humans and mice. Compared with
non-smoking Crohn's disease patients, gut microbial gene richness,
genus and species diversity were reduced in smoking patients, with
lower relative abundance of the genera Collinsella, Enterorhabdus
and Gordonibacter, and of Faecalibacterium prausnitzii.147 Moreover,
significant alterations in microbiota composition has been reported in
healthy smokers, which reverses upon smoking cessation, with marked
increases in overall microbial diversity and an increase in the phyla
Firmicutes and Actinobacteria, as well as a lower proportion of
Bacteroidetes and Proteobacteria, compared with continuing smokers
and non-smokers.148 Colonic bacterial dysbiosis was also reported in
mice chronically (24 weeks) exposed to cigarette smoke, with increases
in Lachnospiraceae sp.149

Increased levels of reactive oxygen species likely drives pathophy-
siology of COPD.150 Bacterial activation of NOD-like receptors in the
GI tract enhances production of reactive oxygen species in alveolar
macrophages, potentially implicating the GI microbiome in oxidative
stress and inflammation in COPD.151 There is evidence for the
beneficial use of probiotic bacterial strains to modulate lung immune
responses in COPD patients. Phagocytosis of Lactobacillus rhamnosus
and Bifidobacterium breve by human macrophages in vitro resulted in
the suppression of cigarette smoke-induced nuclear factor-κB activa-
tion and associated inflammation.152 In addition, daily intake of
Lactobacillus casei Shirota increased the cytotoxic activity of natural
killer cells as well as CD16+ cells in current smokers.153 Respiratory
syncytial virus infection can lead to significant airspace enlargement
and fibrosis in mice exposed to cigarette smoke, as well as heightened
disease severity in mice.154 Notably, administration of L. rhamnosus
before respiratory syncytial virus infection in mice resulted in elevated
antiviral responses via TLR3/RIG-I activation.155 Although the role of
microbiome in COPD needs to be further investigated, early studies
have suggested an association between both lung and gut microbiota
and the outcomes of disease.

THE ROLE OF THE MICROBIOME IN CF

CF is caused by mutations in the gene encoding the CF transmem-
brane conductance regulator (CFTR) protein that affects various
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organs, including lungs, pancreas, intestines and hepatobiliary tract.156

The predominant bacterial pathogens identified in CF are
Pseudomonas aeruginosa and Staphylococcus aureus, whereas
H. influenzae and Burkholderia cepacia coinfection also have a role.
It is now acknowledged that CF patients harbour a complex
polymicrobial community in both the airways and gut, and alterations
in these microbial communities significantly affect the disease
progression and clinical course.157 Early microbial dysbiosis in the
lungs due to mucus hypersecretion and impaired airway clearance may
result in chronic aberrant inflammation and damage of the airways.
This in turn may lead to chronic colonisation by major bacterial
pathogens in CF due to impaired immunity and barrier function.
Moreover, variation in CF phenotypes, especially in infants and young
children sharing similar CFTR mutations, may be attributed to the
differences in microbial composition and its interaction with the host
immune system. Recently, Mirkovic et al.158 demonstrated that the
abundance of SCFA-producing anaerobic bacterial species are
increased in CF airways. Furthermore, SCFAs stimulated excessive
IL-8 production by bronchial epithelial cells from CF patients, but not
from normal participants. The SCFA receptor GPR41 is overexpressed
in epithelial cells from CF patients and blocking its signalling through
small interfering RNA inhibited IL-8 production by CF airway cells,
implicating GPR41 in microbiota-mediated inflammation in
CF patients.158 Additionally, SCFAs also promoted the release of
granulocyte–macrophage colony-stimulating factor, granulocyte
colony-stimulating factor and IL-6, while the concentration of SCFAs
are positively correlated with sputum neutrophil counts in
CF patients.159

In other studies, Hoen et al.160 conducted a prospective longitudinal
metagenomics analysis (120 samples collected from 13 participating

children) of oropharyngeal (n= 66) and stool samples (n= 54) in
infants from birth to 34 months old, and noted a significant reduction
in genus Parabacteroides in the gut well before the chronic airway
colonisation with P. aeruginosa. The investigators also found signifi-
cant associations between gut microbial communities (but not
respiratory microbiota) and early-life CF exacerbations indicating
the crucial role of gut–lung cross-talk in this chronic respiratory
disease.160 Apart from lung pathology, elevated levels of intestinal
inflammatory markers have been reported in whole gut lavage
(e.g., albumin, IgG, IgM, eosinophil cationic protein, neutrophil
elastase, IL-1β, IL-8)161 and faeces (e.g., calprotectin)162 from young
children with CF. The GI microbiome of CF patients has reduced
richness and diversity beginning in early childhood (2 years) and
continuing until late adolescence (17 years).163 Other changes that
may affect the overall clinical outcome include an increased abun-
dance of P. aeruginosa in the gastric juice of CF patients, and markedly
lower abundance of normal gut bacteria (Bacteroides, Faecalibacterium)
in digestive tract samples from CF patients compared with non-CF
individuals.164 Notably, the severity of CFTR dysfunction was related
to dysbiotic faecal bacterial profiles, with an increased abundance of
deleterious species (Escherichia coli, Eubacterium biforme) and reduc-
tion in normal species (F. prausnitzii, Bifidobacterium spp., Eubacter-
ium limosum).165 Gut microbiota dysbiosis in CF children (o3 years
old) has also been linked to significantly altered lipid metabolism,
including depleted capacity for overall fatty acid biosynthesis and
increased capacity for degrading anti-inflammatory SCFAs, particu-
larly butyrate and propionate,166 which may lead to increased risk of
developing allergic responses in the lungs.
In a mouse model of CF (BALB/c Cftrtm1UNC), the administration

of streptomycin significantly reduced gut bacterial overgrowth
compared with wild-type mice and ameliorated airway hyperrespon-
siveness. Cftr mutants had reduced lymphocytes in lymph
nodes, which could be restored with streptomycin treatment, whereas
γδ T cells were not changed in Cftrtm1UNC mice, they were reduced
by the same treatment.167 This study further strengthens the notion
that gut microbiota indeed influences lung inflammatory
responses in CF.

CONCLUSIONS AND FUTURE DIRECTIONS

Evidence suggests that certain microbes have pivotal roles in the
development of healthy immune responses, and microbial dysbiosis
can contribute to chronic inflammatory lung diseases such as asthma,
COPD and CF. The cross-talk between mucosal barriers, such as
occurs in gut–lung cross-talk, is considered to be mediated by both
resident microbes and patrolling immune cells, but this remains to
be fully elucidated. Currently, available treatments for major
non-communicable lung diseases only focus on alleviating symptoms
with poor applicability to completely prevent and/or treat the diseases.
A better understanding of microbiome-driven pathophysiology and
inflammation, in conjunction with the interaction of major risk factors
for chronic lung disease such as host genetics and cigarette smoking,
would aid in optimising current treatments and in managing these
chronic lung conditions (Figure 3). Furthermore, by improving our
understanding of the role of microbiomes in these diseases, novel
therapeutic strategies may be developed. The effects of current
therapeutics on overall microbiome, and consequently on the disease
severity/progression, remains largely unknown and needs to be
properly understood to realise the full impact of these treatments.
Modification of the microbiome through diet, probiotics, faecal or
selected bacterial transfers may supplement currently available

Microbiome

External and host 
factors

• Age
• Cigarette smoke
• Hormones
• Diet
• Antibiotics
• Host genetics

Disease Pathology
• LF parameters
• Inflammation
• Emphysema

Inflammation
• Local (lung, gut)
• Systemic
• Impaired Immunity

Figure 3 Interaction matrix: risk factors for chronic respiratory diseases and
associated pathology with microbiome. Major risk factors could lead to
immune dysregulation, characteristic pathology and ‘dysbiosis’. Altered
microbiome could then aggravate the host immunity and disease pathology.
Notably, aberrant immune response could further skew the microbiome
favoring specific pathogens typically reported in respiratory diseases, such as
COPD and CF. LF, lung function.
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treatments or be effective treatments in their own right, but further
research into such alternatives is required.
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